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To circumvent the intractability of the usual Cardinalized Proba-
bility Hypothesis Density (CPHD) smoother, we present an approxi-
mate scheme where the population of targets born until and after the
starting time of the smoothing are estimated separately and where
smoothing is only applied to the estimate of the former population.
The approach is illustrated through the implementation of a tractable
approximation of the usual CPHD smoother.
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I. INTRODUCTION

Estimation of dynamical systems from sensor data re-
lies on the concepts of stochastic filtering, prediction, and
smoothing. The state of the system, of interest to some op-
erator, is unknown and only partially observed through a
sensor. Stochastic modeling allows the operator to describe
the uncertainty of their knowledge on the system state, the
inaccuracies of the sensor, and how the observations pro-
duced by the sensor relate to the system state.

Prediction, filtering, and smoothing are distinct compo-
nents of the problem of sequential estimation of a dynamic
system conditioned on noisy observations. Prediction pro-
vides a means of forecasting the state of the system at
some point in the future conditioned on measurements col-
lected up to the present time by the operator, while filtering
aims at estimating the state of the system at regular time
steps based on all the measurements collected up to that
instant. Smoothing [1]–[6] refers to the estimation of the
system state at some past time t conditioned on a set of
observations collected up to the present time t ′ > t . The
production of the smoothed estimate is, per construction,
delayed in time; however, because it exploits observations
posterior to the time of estimation, the smoothed estimate
provides a more refined description of the system state than
the corresponding filtered estimate.

Smoothing is generally a computationally expensive op-
eration. In this respect, advances in sequential Monte Carlo
(SMC) methods [7]–[9] have allowed for more efficient
implementations of SMC smoothers [10]–[13].

Multi-object estimation requires extending these meth-
ods in order to deal with false measurements (clutter),
missed detections, as well as uncertainty in the number of
targets. A solution to the problem of multi-object estimation
can be found in a direct generalisation of the Bayes filter to
multi-object systems using the finite set statistics (FISST)
framework. Due to the complexity of the multi-object Bayes
filter, Mahler proposed approximate filtering solutions [14].

The Probability Hypothesis Density (PHD) filter [15]
estimates the posterior multitarget density using its first
moment (also referred to as intensity function or PHD).
In Mahler’s approach, the multitarget state is represented
by a random finite set (RFS), and the filter prediction and
update equations are derived following the rules provided
by the FISST framework. This principled approach to the
multi-object estimation problem allows the PHD filter to
account for target birth, missed detections as well as clutter.
Additionally, it spares the necessity of a data association
step. Following the derivation of the PHD filter, Mahler
proposed the Cardinalized PHD (CPHD) filter [16], which
propagates a cardinality distribution on the number of
targets in addition to the intensity, thereby, improving the
quality of the estimation.

More recently, smoothing in the context of the PHD
filter received some attention. The PHD smoother and its
implementation have been addressed by various authors
[17]–[28]. As an example of practical application,
multi-object smoothing has recently been applied to per-
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son tracking in a crowded environment [22]. It has been
shown that, compared to the PHD filter, the PHD smoother
reduces the localisation error of the state estimates but is
not always able to improve the cardinality estimate, i.e., the
estimation of the number of targets present in the scene.
In particular, it has been shown that the PHD smoother
does not perform well when the probability of target death
is significant, leading to an overestimated cardinality. Ad-
ditionally, missed detections propagate backwards in the
PHD smoother, further degrading the cardinality estimate
in some cases.

The general multi-object smoothing approach devel-
oped using FISST estimates the whole population of targets
with a single RFS, thereby, incorporating the targets born
before and after the past time step k where the smoothing
process starts. The incorporation of the latter population,
however, makes the approach intractable when applied
to the CPHD filter because of the presence of target birth
in the smoothing step [21]. In this paper, we propose an
alternative to the general smoothing approach in which the
population of targets born before and after the starting date
of the smoothing process are estimated separately in order
to circumvent the intractability of the CPHD smoothing
step, and we derive a tractable approximation of the usual
CPHD smoother. An SMC implementation of the proposed
solution is then given, and its performance is compared
with the CPHD filter and the usual PHD smoother. We
show that the CPHD smoother addresses the drawbacks of
the usual PHD smoother by providing stable estimates in
the number of targets.

In the following section, we introduce multi-object fil-
tering and the proposed multi-object smoothing approach,
circumventing the intractability of the general approach
when applied to the CPHD filter. Section III summarizes the
CPHD filter and we derive a tractable approximation of the
usual CPHD smoother in Section IV. An SMC implementa-
tion of the filter and smoother is presented in Section V, and
we analyze the performance of the algorithm in Section VI.

II. MULTI-OBJECT FILTERING AND SMOOTHING

A. Point Processes

In multiple target detection and tracking problems, the
objects of interest—the targets—have individual states in
some target space X ⊂ R

d that describes some character-
istics relevant to the operator (e.g., position and velocity
coordinates). Just as the target states, the number of targets
is unknown and possibly time varying. In the multi-object
filtering framework, the knowledge of the operator about
the whole target population is represented by a single ran-
dom object called a (simple finite) point process, whose
number of elements and element states are random. A real-
isation of a (target) point process� is a set {x1, . . . , xN } of
points in X depicting a specific multitarget configuration.

A simple finite point process � can be described
by its probability distribution p� on the measurable
space (X,BX), where X = ⋃

n≥0 X n is the point process
state space, i.e., the space of all the finite vectors ϕ =

(x1, . . . , xN ) of points in X , and BX is the Borel σ -algebra
on X [29]. The corresponding probability density describes
the point process as well, and is defined as a symmetric func-
tion that vanishes if at least two of its arguments are equal.1

Similarly to usual random variables, it is also convenient
to describe a point process through its moment measures.
For any region B ∈ BX , the first moment measure μ� of a
point process � is given by

μ�(B) = E

[
∑

x∈�
1B(x)

]

(1a)

=
∑

n�0

∫
⎛

⎝
∑

1�i�n
1B(xi)

⎞

⎠p�(dx1:n) (1b)

where x1:n = (x1, . . . , xn), and 1B is the indicator
function2 on B. The scalar μ�(B) provides the expected
number of targets or mean target number insideB [14]. The
first moment measure plays a central role in the derivation
of multi-object filtering algorithms, for it is a meaningful
statistics describing the point process that is far less ex-
pensive to propagate than the full probability distribution
(more details are given later). The corresponding density is
called the first moment density or intensity or probability
hypothesis density of the point process; we shall denote it
by the same notation μ� when there is no ambiguity.

B. Multi-object Bayes Filter

Within the Bayesian paradigm the law pk|k of the fil-
tered state—i.e., the probability distribution of the point
process�k|k representing the population of targets—can be
estimated at some time k ≥ 0 given the sequence of mea-
surement sets Z0:k = (Zk′)k′≤k , where Zk′ denotes the (pos-
sibly empty) set of measurements collected by the operator
at time 0 ≤ k′ ≤ k, each measurement z ∈ Zk′ belonging to
some observation space Z ⊂ R

m. The multi-object Bayes
filter [14], [32] is given by the combination of a one-step
prediction and update3

pk|k−1(dξ |Z0:k−1) =
∫

tk|k−1(dξ |ϕ)pk−1|k−1(dϕ|Z0:k−1),

(2)

pk|k(dξ |Z0:k) = gk(Zk|ξ )pk|k−1(dξ |Z0:k−1)
∫
gk(Zk|ϕ)pk|k−1(dϕ|Z0:k−1)

(3)

1The FISST methodology for target tracking [14], [30], [31] considers the
representation of point processes through a multi-object density f� defined
on sets, whose elements are per construction unordered and distinct, and
relies on the notion of the set integral for the derivation of the filtering
algorithms such as the PHD [15] or CPHD [16] filters. In this context, a
simple finite point process is also called an RFS. In this paper, we follow
the alternative measure-theoretical formulation exploited in [32] and [33],
which is based on more general representations of point processes [29],
[34], [35].
2For a measurable subset B ∈ BX , the indicator function 1B is defined as
the function on X such that 1B (x) = 1 if x ∈ B, 1B (x) = 0 otherwise.
3When p and q are measures on some common space, we use the notation
p(dx) = q(dx) to indicate that, for every bounded measurable function f
on the same space, it holds that

∫
f (x)p(dx) = ∫

f (x)q(dx).
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Fig. 1. Forward–backward smoothing for a fixed window [k, . . . , k + �]
(general approach). During the forward filtering step, the posterior

distributions pk|k, . . . , pk+�|k+� are propagated with a multi-object filter
(e.g., PHD and Cardinalized PHD (CPHD)). During the backward

filtering steps, the smoothed distributions pk+�−1|k+�, . . . , pk|k+� are
produced in reverse order with the corresponding multi-object smoother.

where tk|k−1 is the multitarget Markov transition kernel be-
tween time steps k − 1 and k, that incorporates the target
motion model, the target birth and death mechanisms, and
gk is the multimeasurement/multitarget likelihood at time
step k, that incorporates the sensor observation, the false
alarm and missed detection mechanisms.

In the prediction and update equations (2) and (3), the
point process�k1|k2 represents the multitarget configuration
in the scene at time k1 ≥ 0 given the sequence of measure-
ment sets (Zk′)k′≤k2 . For the sake of simplicity, the condi-
tional dependencies on measurement sets in the expression
of probability distributions (or densities) involving point
processes will be omitted from now on when there is no
ambiguity, i.e., pk1|k2 (·) will denote pk1|k2 (·|Z0:k2 ).

C. Multi-object Smoothing: General Approach

It is possible to refine the law pk|k of the filtered state
in past times exploiting current measurements step through
a process referred to as smoothing. Given some smooth-
ing lag � > 0 and some sequence of measurement sets
(Zk′)k′≤k+�, the smoothed distribution pk|k+� is obtained
using the forward–backward recursion [21], for every time
step k′ from k + �− 1 down to k as

pk′|k+�(dξ ) =
∫

tk′|k′+1(dξ |ϕ)pk′+1|k+�(dϕ) (4)

where tk′|k′+1 is the kernel defined by

tk′|k′+1(dξ |ϕ) = tk′+1|k′(ϕ|ξ )pk′|k′(dξ )
∫
tk′+1|k′(ϕ|ζ )pk′|k′(dζ )

(5)

where the multitarget Markov transition kernel introduced
in (2) is assumed to have a density, denoted by the same
notation tk′+1|k′ . Note the similarities between the construc-
tion of the posterior distribution pk|k in (3) and the kernel
tk′|k′+1 through (5), for both follow Bayes’ rule. This will
be exploited for the derivation of the CPHD smoother in
Section IV.

The general structure of a multi-object forward–
backward smoother on the time window [k, . . . , k + �] is
illustrated in Fig. 1 and can be split into the following two
steps.

1) Forward filtering Produce the posterior distributions
pk|k, pk+1|k+1, . . . , pk+�|k+� using (2) and (3).

Fig. 2. Forward–backward smoothing for a fixed window
[k, . . . , k + �] (proposed approach). During the forward filtering step, the

posterior distributions p−•k
k|k , . . . , p

−•k
k+�|k+� are propagated with an

adapted multi-object filter, treating the population of targets born since
starting time k as clutter. During the backward filtering steps, the

smoothed distributions p−•k
k+�−1|k+�, . . . , p

−•k
k|k+� are produced in reverse

order with the corresponding multi-object smoother, in which the
modeled birth is removed.

2) Backward smoothing Produce the smoothed distribu-
tions pk+�−1|k+�, pk+�−2|k+�, . . . , pk|k+� using (4) and
(5).

D. Multi-object Smoothing: Proposed Approach

This paper follows an alternative approach to the previ-
ous approach presented in Section II-C. From the previous
approach to multi-object smoothing, we may observe that,
for a smoothing step on a fixed window [k, . . . , k + �], the
posterior distributions pk|k, pk+1|k+1, . . . , pk+�|k+� propa-
gated by the forward filtering step describe the process
� representing the whole population of targets, including
those born since the starting time k (that is, the multitar-
get Markov transition kernel in the prediction equation (2)
incorporates a birth target process representing the new-
born targets in the whole population). Since the presence
of this birth target process makes the corresponding CPHD
smoother intractable [21], we propose an alternative ap-
proach separating the targets born before and after the start-
ing time k, leading to an approximate but tractable CPHD
smoother.

For the rest of this paper, we denote by �−•k (respec-
tively (resp.)�k◦−) the process representing the population
of targets born until time k (resp. since time k, k excluded).
The general structure of the proposed multi-object forward–
backward smoother on the time window [k, . . . , k + �] is
illustrated in Fig. 2 and can be split into the following two
steps.

1) Forward filtering Produce the posterior distributions
p−•k
k|k , p

−•k
k+1|k+1, . . . , p

−•k
k+�|k+� of the process �−•k , treat-

ing the population of targets born since k as clutter.
2) Backward smoothing Produce the smoothed distribu-

tions p−•k
k+�−1|k+�, p

−•k
k+�−2|k+�, . . . , p

−•k
k|k+� using adapted

smoothing equations in which the modeled birth is re-
moved.

In order to proceed with the aforementioned first point,
note that both the population of targets born until and since
time k need to be estimated: The former is the output of
the forward filtering step, while the latter is used to model
clutter. The proposed forward filtering approach is detailed
in the next section.

NAGAPPA ET AL.: TRACTABLE FORWARD– BACKWARD CPHD SMOOTHER 203



E. Forward Filtering Without Birth: Principle

Following the principle exposed in Section II-D, the
forward filtering step aims at providing the posterior distri-
butions of the target population process �−•k , representing
the targets born until time k. In order to provide better esti-
mates the processes �k+1, . . . , �k+�, representing the mod-
eled newborn targets in the subsequent time steps relevant to
the smoothing window, are not discarded but rather treated
as clutter, i.e., as undesirable sources of observations. Es-
sentially, the proposed forward filtering step is composed
of two filters running in parallel.

1) The primary filter propagates the posterior distribution
p−•k of the process �−•k (i.e., representing the popula-
tion of targets born until starting time k).

2) The secondary filter propagates the posterior distribution
pk◦− of the process �k◦− (i.e., representing the popula-
tion of targets born since time k, excluded).

Following the notations in [36], for some process � on
the target state spaceX , we denote by	k(�) the conditional
process on the observation space Z defined by

	k(�) =
⋃

x∈�
θk(x) (6)

where θk(x) is the Bernoulli process corresponding to the
single-measurement/single-target observation model con-
ditional on target state x [see (21)]. Let us fix some time step
k′ relevant to the smoothing window, i.e., k ≤ k′ < k + �.
Since the primary filter focusses on the estimation of the tar-
gets born until time step k, both the targets born since time
step k and the current false alarms produced by the sensor
are undesirable sources of observations. Thus, the update
step of the primary filter is fed with the outer population
process representing these undesirable sources, i.e.

K−•k
k′+1 = Kk′+1 ∪	k′+1(�k◦−

k′+1|k′) (7)

where �k◦−
k′+1|k′ is the predicted process propagated by the

secondary filter, and Kk′+1 is the modeled clutter process,
accounting for the false alarms produced by the sensor at
time step k′ + 1. Conversely, the update step of the sec-
ondary filter is fed with the outer population process

Kk◦−
k′+1 = Kk′+1 ∪	k′+1(�−•k

k′+1|k′) (8)

where �−•k
k′+1|k′ is the predicted process propagated by the

primary filter. The concept of the proposed forward filter-
ing scheme is illustrated for a generic multi-object filter in
Fig. 3.

III. CPHD FILTER

The multi-object Bayes filtering equations (2) and (3)—
let alone the smoothing ones (4), (5)—are intractable in the
general case, and additional assumptions are necessary in
order to derive a practical solution [14]. Both derivations of
the two most popular multi-object filters within the FISST
framework are based on a central assumption considering
the predicted target process �k+1|k as either a Poisson
or a independent and identically distributed (i.i.d.) point

Fig. 3. Forward filtering for a fixed window [k, . . . , k + �], illustrated
at some time k′, k ≤ k′ < k + � (generic filter). Arrows in plain style

denote filtering steps, dotted arrows denote information transfer between
filters. The primary filter (above) propagates the law p−•k of the

population �−•k , representing the targets born before the beginning of
the smoothing window (hence, no birth in the prediction step). The

secondary filter (below) propagates the law pk◦− of the population �k◦−,
representing the population of targets born since the beginning of the

smoothing window (hence, the modeled target birth �k′+1 in the
prediction step). Note from Fig. 2 that only the law p−•k is involved in

the forward–backward smoothing process.

process: The former assumption leads to the construction
of the PHD filter [15] and the latter to the CPHD filter [16].

A. General Notations

Throughout of this paper we shall use the following
notations. The binomial coefficients Cji and P ji are defined
by

C
j

i =
⎧
⎨

⎩

j !

i!(j − i)!
, 0 ≤ i ≤ j

0, otherwise
(9)

P
j

i =
⎧
⎨

⎩

j !

(j − i)!
, 0 ≤ i ≤ j

0, otherwise.
(10)

We shall also exploit the notations

〈q, ρ〉 =
∑

n≥0

q(n)ρ(n) (11)

ρ ∗ ρ ′ : n →
n∑

m=0

ρ(m)ρ ′(n−m) (12)

μ(f ) =
∫

f (x)μ(dx) (13)

μ(B) =
∫

B

μ(dx) (14)

where ρ and ρ ′ denote some cardinality distributions, μ
some measure, q andf some suitable functions, andB some
suitable region. In addition, ed will denote the elementary
symmetric function of order d

ed (ξ ) =
∑

ϕ⊆ξ,|ϕ|=d

⎛

⎝
∏

ζ∈ϕ
ζ

⎞

⎠ (15)

where ξ denotes some (possibly empty) set. Finally, δ will
denote, depending on the context, the Kronecker or the
Dirac delta function.
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B. PHD Filtering and Limitations

A Poisson point process is fully characterized by its
first moment measure (1), and the aim of the PHD filter is
to propagate the first moment measure (or density) μ� of
the target point process � within the Bayesian paradigm.
Mahler derived the PHD filtering equations in [15]; since
then, several implementations of the PHD filter have been
proposed [14], [31], [36]–[38]. More recently, adaptations
of the smoothing equations (4) and (5) have been investi-
gated and formulations of the corresponding PHD filter with
smoothing—or PHD smoother—have been presented [17],
[24], [26]–[28].

While inexpensive, the PHD filter has some drawbacks
due to the restrictive nature of the Poisson assumption.
Because the first and second moment measures of a Poisson
process are equal, the variance in the estimated number
of targets is significant [16], [39], [40]. In addition, the
estimation is generally unstable in the presence of missed
detections and high levels of clutter [16].

C. CPHD Filter: Prediction and Update

An i.i.d. point process is fully characterized by its first
moment measure (1) and its cardinality distribution ρ�,
which describes the number of elements in the point pro-
cess. Accordingly, the CPHD filter jointly propagates the
reduced distribution (ρ�,μ�) of the target point process�
within the Bayesian paradigm. Mahler derived the CPHD
filtering equations in [14], but no attempt has been done to
produce a corresponding CPHD smoother. In this section,
k > 0 designs some time step relevant to the scenario.

1) Prediction Equation Denoting byψ the “empty” state
that describes a target that has left the surveillance scene, the
single-target transition kernel tk|k−1 from the target space
X to the augmented target state space {ψ} ∪ X is defined
as follows:

{
tk|k−1(dx ′|x) = ps,k(x)t̂k|k−1(dx ′|x), x ′ ∈ X
tk|k−1(ψ |x) = 1 − ps,k(x)

(16)

where t̂k|k−1 is the single-target Markov transition kernel,
from X to X , describing the evolution of the target states
since time k − 1, and ps,k is the probability of survival of
targets since time k − 1.

THEOREM 1 (PREDICTION [16], [41]) Assuming that the
newborn targets can be represented by a point process �k
with cardinality distribution ρb,k and first moment measure
γk , the predicted cardinality distribution ρk|k−1 and first
moment measure μk|k−1 are found to be

ρk|k−1 = ρs,k|k−1 ∗ ρb,k (17)

μk|k−1(dx) = μk−1|k−1(tk|k−1(dx|·)) + γk(dx) (18)

where ρs,k|k−1 is the cardinality distribution of the surviving
targets

ρs,k|k−1(i) = r
p
k (X )i

∑

j≥i
C
j

i r
p
k (ψ)jρk−1|k−1(j ) (19)

with rp
k (ψ) and rp

k (X ) defined as the ratios
⎧
⎪⎪⎨

⎪⎪⎩

r
p
k (ψ) = μk−1|k−1(tk|k−1(ψ |·))

μk−1|k−1(X )

r
p
k (X ) = μk−1|k−1(tk|k−1(X |·))

μk−1|k−1(tk|k−1(ψ |·)) .
(20)

2) Update Equation Denoting by φ the “empty” obser-
vation that describes a missed detection, the likelihood gk
in the augmented observation space {φ} ∪ Z is defined as
follows:

{
gk(z|x) = pd,k(x)ĝk(z|x), z ∈ Z
gk(φ|x) = 1 − pd,k(x)

(21)

where ĝk is the single-measurement/single-target likelihood
in Z and pd,k is the probability of detection at time k.

THEOREM 2 (UPDATE [16], [32]) Assuming that 1) the
false alarms can be represented by a point process Kk with
cardinality distribution ρc,k , intensity μc,k , and spatial dis-
tribution κk , and 2) the predicted target process�k|k−1 is an
i.i.d. point process, the updated cardinality distribution ρk|k
and first moment measure μk|k are found to be

ρk|k(n) = ϒ0
k [μk|k−1, Zk](n)ρk|k−1(n)

〈ϒ0
k [μk|k−1, Zk], ρk|k−1〉

(22)

μk|k(dx) =
⎡

⎣gk(φ|x)�u
k(φ) +

∑

z∈Zk
gk(z|x)�u

k(z)

⎤

⎦μk|k−1(dx)

(23)

where we follow the notation introduced by Vo et al. in [40]

ϒ
j

k [μk|k−1, Z](n) = 1

μk|k−1(gk(φ|·))j

×
min(|Z|,n)∑

d=0

n!(|Z| − d)!

(n− (d + j ))!
ρc,k(|Z| − d)ru

k (φ)ned (Z)

(24)

with ed applied to some set { ru
k (z)
κk(z)

|z ∈ Z} referred as ed (Z)
for notational convenience, and with ru

k (φ), ru
k (z) defined as

the ratios
⎧
⎪⎪⎨

⎪⎪⎩

ru
k (φ) = μk|k−1(gk(φ|·))

μk|k−1(X )

ru
k (z) = μk|k−1(gk(z|·))

μk|k−1(gk(φ|·))
(25)

and where the corrector terms �u
k(φ) and �u

k(z) are given by
⎧
⎪⎪⎨

⎪⎪⎩

�u
k(φ) = 〈ϒ1

k [μk|k−1, Zk], ρk|k−1〉
〈ϒ0

k [μk|k−1, Zk], ρk|k−1〉
�u
k(z) = κk(z)−1 〈ϒ1

k [μk|k−1, Zk \ z], ρk|k−1〉
〈ϒ0

k [μk|k−1, Zk], ρk|k−1〉
.

(26)

3) Update Equation Without Clutter In scenarios with-
out clutter, the CPHD update (22), (23) takes a simpler
form. Since we require this form of update for the analogy
with the smoother in the following section, we present this
case here.
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Fig. 4. Forward–backward smoothing for a fixed window
[k, . . . , k + �] (CPHD filter). During the forward filtering step, the

posterior distributions (ρ,μ)−•k
k|k , . . . , (ρ,μ)−•k

k+�|k+� are propagated with
an adapted CPHD filter, treating the population of targets born since

starting time k as clutter. During the backward filtering steps, the
smoothed distributions (ρ,μ)−•k

k+�−1|k+�, . . . , (ρ,μ)−•k
k|k+� are produced in

reverse order with the corresponding CPHD smoother, in which the
modeled birth is discarded.

COROLLARY 1 (SIMPLIFIED UPDATE [42]) Under the same
assumptions as Theorem 2, and the additional assumption
that there is no clutter at time k, the updated cardinality
distribution ρk|k and first moment measure μk|k are found
to be

ρk|k(n) = Pn|Zk |r
u
k (φ)nρk|k−1(n)

∑

q≥|Zk |
P
q

|Zk |r
u
k (φ)qρk|k−1(q)

(27)

μk|k(dx) =
⎡

⎣gk(φ|x)�̃u
k(φ) +

∑

z∈Zk
gk(z|x)�̃u

k(z)

⎤

⎦μk|k−1(dx)

(28)

where the reduced corrector terms �̃u
k(φ) and �̃u

k(z) are given
by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�̃u
k(φ) =

∑
n≥|Zk |+1P

n
|Zk |+1r

u
k (φ)nρk|k−1(n)

μk|k−1(gk(φ|·))
∑

q≥|Zk |
P
q

|Zk |r
u
k (φ)qρk|k−1(q)

�̃u
k(z) = 1

μk|k−1(gk(z|·)) .
(29)

IV. FORWARD–BACKWARD CPHD SMOOTHER

In a similar manner as the PHD and CPHD filters pro-
vide a tractable approximation of the multitarget Bayes
filter by focusing on the first moment measure of the target
point process μk|k rather than its full probability distribu-
tion pk|k , a suitable approximation of the smoothing (4)
can be produced through the expression of the first moment
μk|k+� of the smoothed posterior pk|k+�. Vo et al. [24],
[28] and Mahler et al. [27] developed a PHD smoother us-
ing the PHD filter to approximate the forward filter and
a backward recursion to approximate the smoothed poste-
rior intensity. In this section, an analogous construction is
proposed for the CPHD filter; we use the simplified update
equation proposed in Section III-C in order to develop a
tractable approximation of the usual CPHD smoother.

A. Principle

Following the proposed smoothing approach exposed in
Section II-D, the smoothing step in the context of the CPHD
filter shall be split into the following two steps (see Fig. 4).

1) Forward filtering Produce the posterior distributions
(ρ,μ)−•k

k|k , (ρ,μ)−•k
k+1|k+1, . . . , (ρ,μ)−•k

k+�|k+� of the pro-
cess �−•k , treating the population of targets born since
k as clutter.

2) Backward smoothing Produce the smoothed distribu-
tions (ρ,μ)−•k

k+�−1|k+�, (ρ,μ)−•k
k+�−2|k+�, . . . , (ρ,μ)−•k

k|k+�
using adapted smoothing equations in which the mod-
eled birth is discarded.

We first provide the backward smoothing equations for
the CPHD filter in Section IV-B, assuming no target birth
between the starting time k and the ending time k + �.
In Section IV-C, we adapt the generic forward filtering ap-
proach proposed in Section II-E to the CPHD filter, on some
fixed smoothing window [k, . . . , k + �]. We then general-
ize the concept on a sliding window in Section IV-D.

B. Backward Smoothing

In this section, the backward smoothing must be pro-
duced on some time window [k, . . . , k + �]; we assume that
the posterior distribution (ρ,μ)−•k

k′|k′ and the smoothed distri-

bution (ρ,μ)−•k
k′+1|k+� are available for some time k ≤ k′ <

k + � and we wish to produce the smoothed distribution
(ρ,μ)−•k

k′|k+� (see Fig. 4).

We need to evaluate the smoothed first moment μ−•k
k′|k+�

through (4), assuming that the updated target process�−•k
k′|k′

is i.i.d. Note that the construction of the posterior distribu-
tion pk|k in (3) and of the kernel tk|k+1 in (5) follow a similar
structure through Bayes’ rule. Where Corollary 1 allowed
the construction of the first moment measure μk|k of the
posterior distribution pk|k assuming no clutter, we can pro-
duce an analogous construction of the first moment measure
τk′|k′+1 of the kernel tk′|k′+1 assuming no target birth:

LEMMA 1 (FORWARD RECURSION) Assuming that 1) the
updated target process �−•k

k′|k′ is an i.i.d. point process, and
2) there is no target birth at time k′, the cardinality τk′|k′+1

and first moment measure νk′|k′+1 of the kernel tk′|k′+1 are
found to be

τk′|k′+1(n|ϕ) = Pn|ϕ|r
s
k′(ψ)nρ−•k

k′|k′(n)
∑

q≥|ϕ|P
q

|ϕ|r
s
k′(ψ)qρ−•k

k′|k′(q)
(30)

νk′|k′+1(dx|ϕ) =
[

tk′+1|k′(ψ |x)�̃s
k′(ψ) +

∑

y∈ϕ
tk′+1|k′(y|x)�̃s

k′(y)

]

μ−•k
k′|k′(dx)

(31)

where rs
k′(ψ) is defined as the ratio

rs
k′(ψ) = μ−•k

k′|k′(tk′+1|k′(ψ |·))
μ−•k
k′|k′(X )

(32)

206 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 53, NO. 1 FEBRUARY 2017



and where the reduced corrector terms �̃s
k′(ψ) and �̃s

k′(y) are
given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�̃s
k′(ψ) =

∑

n≥|ϕ|+1
Pn|ϕ|+1r

s
k′(ψ)nρ−•k

k′|k′(n)

μ−•k
k′ |k′ (tk′+1|k′ (ψ |·))

∑

q≥|ϕ|P
q

|ϕ|r
s
k′(ψ)qρ−•k

k′|k′(q)

�̃s
k′(y) = 1

μ−•k
k′ |k′ (tk′+1|k′ (y|·)) .

(33)

The proof is given in Appendix A. The main result of
this paper then follows:

THEOREM 3 (CPHD SMOOTHER (TIME k, LAG � > 0)) Un-
der the same assumptions as Lemma 1, the smoothed cardi-
nality distribution ρ−•k

k′|k+� and first moment measureμ−•k
k′|k+�,

at some time k ≤ k′ < k + �, are found to be

ρ−•k
k′|k+�(n) =

∑

m≥0

Pnmr
s
k′(ψ)nρ−•k

k′|k′(n)
∑

q≥mP
q
mr

s
k′(ψ)qρ−•k

k′|k′(q)
ρ−•k
k′+1|k+�(m)

(34)

μ−•k
k′|k+�(dx) = [

cmd
k′ (x) + cd

k′(x)
]
μ−•k
k′|k′(dx) (35)

where the missed detection cmd
k′ and detection cd

k′ corrector
terms are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cmd
k′ (x) = tk′+1|k′ (ψ |x)

μ−•k
k′ |k′ (tk′+1|k′ (ψ |·))

×∑
m≥0

∑

n≥m+1
Pnm+1r

s
k′(ψ)nρ−•k

k′|k′(n)
∑

q≥mP
q
mr

s
k′(ψ)qρ−•k

k′|k′(q)
ρ−•k
k′+1|k+�(m)

cd
k′(x) = ∫ tk′+1|k′ (y|x)

μ−•k
k′ |k′ (tk′+1|k′ (y|·))μ

−•k
k′+1|k+�(dy).

(36)

The proof is given in Appendix B.

C. Smoothing on a Fixed Window [k, . . . , k + �]

Here, we adapt the generic forward filtering approach
presented in Section II-E, i.e., we exploit CPHD filters [16]
for the primary and the secondary filters to propagate the
posterior distributions (ρ,μ)−•k and (ρ,μ)k◦−, respectively
(see Fig. 5). As required in the construction CPHD filter
[16], the following approximations are necessary, for every
time step k ≤ k′ < k + �.

(A1) The outer population process4 K−•k
k′+1 is i.i.d.

(A2) The predicted target process �k◦−
k′+1|k′ is i.i.d.

(A3) The outer population process Kk◦−
k′+1 is i.i.d.

(A4) The predicted target process �−•k
k′+1|k′ is i.i.d.

PROPOSITION 1 (OUTER POPULATION PROCESSES) Under
Approximations IV-C and IV-C, the outer population pro-
cess K−•k

k′+1 is characterized by its distribution (ρ,μ)−•k
c,k′+1

4Recall from (7) that the outer population process K−•k
k′+1 represents the

population of undesirable observations for the primary filter, treated as
clutter in the data update step.

Fig. 5. Forward filtering for a fixed window [k, . . . , k + �] (CPHD
filter). Arrows in plain style denote filtering steps, dotted arrows denote

information transfer between filters. The primary filter (above)
propagates the distribution (ρ,μ)−•k of the population�−•k , representing
the targets born before the beginning of the smoothing window (hence,

no birth in the prediction steps). The secondary filter (below) propagates
the distribution (ρ,μ)k◦− of the population �k◦−, representing the

population of targets born since the beginning of the smoothing window
(hence, the modeled target birth (ρb, γ ) in the prediction steps).

given by
{
ρ−•k

c,k′+1 = ρc,k′+1 ∗ ρk◦−	,k′+1|k′

μ−•k
c,k′+1 = μc,k′+1 + μk◦−	,k′+1|k′

(37)

where (ρ,μ)k◦−	,k′+1|k′ is the distribution of the process

	k′+1(�k◦−
k′+1|k′), that is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρk◦−	,k′+1|k′(n) =
(
μk◦−
k′+1|k′ (pd,k′+1(·))
μk◦−
k′+1|k′ (X )

)n

×∑
m≥n ρ

k◦−
k′+1|k′(m)Cmn

(
μk◦−
k′+1|k′ (gk′+1(φ|·))
μk◦−
k′+1|k′ (X )

)m−n

μk◦−	,k′+1|k′(z) = μk◦−k′+1|k′(gk′+1(z|·)).

(38)

Likewise, under Approximations IV-C and IV-C, the outer
population process Kk◦−

k′+1 is characterized by its distribution
(ρ,μ)k◦−c,k′+1 given by (37) and (38) in which “−•” subscripts
are substituted to “◦−,” and vice versa.

The proof is given in Appendix C.
Once all the posterior distributions (ρ,μ)−•k

k+1|k+1, . . . ,

(ρ,μ)−•k
k+�|k+� of the primary CPHD filter are collected

through the forward filtering process illustrated in Fig. 5,
the smoothed distributions (ρ,μ)−•k

k+�−1|k+�, . . . , (ρ,μ)−•k
k|k+�

are produced as illustrated in Fig. 4, using Theorem 3.

D. Smoothing on a Sliding Window [k, . . . , k + �]

Suppose now that we wish to produce the smoothed
distributions (ρ,μ)−•k

k|k+�, for some smoothing lag � > 0 and
for every time k > 0. Observe in Fig. 5 that the only input
for the forward filtering step starting at time k is the filtered
distribution (ρ,μ)−•k

k|k of the process �−•k representing all
the targets born until time k. Since there is no backward
recursion in the usual CPHD filter [16], its output (ρ,μ)k|k
at time k ignores any information acquired in posterior
times and does describe the process �−•k; in other words,
the distribution (ρ,μ)k|k is the distribution (ρ,μ)−•k

k|k . The
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Fig. 6. Forward filtering for a sliding window of fixed smoothing lag
� > 0 (CPHD filter). Arrows in plain style denote filtering steps, dotted
arrows denote information transfer between filters. A main CPHD filter
(vertical) propagates the posterior distribution of the target process �k .

At every time step k, the filtered posterior (ρ,μ)k|k feeds a new
smoothing step over the window [k, . . . , k + �], initialized through an

additional pair of primary and secondary CPHD filters.

CPHD smoother on a sliding window can thus be con-
structed through a usual CPHD filter, whose output at every
time step k feeds the new smoothing step initialized with a
new pair of primary and secondary filters (see Fig. 6).

A less expensive alternative, for which the exploitation
of the main CPHD filter is spared, can be constructed as
follows. Recall that the primary and the secondary filters
propagate the law of the processes �−•k

k′|k′ and �k◦−
k′|k′ , repre-

senting the population of targets born until and since the
starting time step k, respectively; essentially, the process
�−•k
k′|k′ represents the marginalisation of the process �k′|k′

over the targets born since the starting time step k, while
the process�k◦−

k′|k′ represents the marginalisation of the pro-
cess �k′|k′ over the targets born until the starting time step
k. While the superposition of the two processes �−•k

k′|k′ and

�k◦−
k′|k′ does not yield the full target process�k′|k′ maintained

by the main CPHD filter, in the general case, we may assume
the discrepancies to be small enough after a single time step
of forward filtering (see Fig. 5) in order to approximate the
distribution of the full target process �k+1|k+1 as follows.

(A5) For any time k, the distribution (ρ,μ)k+1|k+1 is
approximated as

{
ρk+1|k+1 ≈ ρ−•k

k+1|k+1 ∗ ρk◦−k+1|k+1

μk+1|k+1 ≈ μ−•k
k+1|k+1 + μk◦−k+1|k+1

(39)

so that we can exploit the outputs of the first step of the
smoothing window that started at time step k to feed the
smoothing window starting at the next time step k + 1, as
shown in Fig. 7.

Regardless of the chosen method to initialize the for-
ward filtering processes, i.e., either as illustrated in Fig. 6
or as illustrated in Fig. 7, the backward recursion process
is as explained in Section IV-C. That is, once the forward

Fig. 7. Simplified forward filtering for a sliding window of fixed
smoothing lag � > 0 (CPHD filter). Arrows in plain style denote filtering
steps, dotted arrows denote information transfer between filters. At every

time step k + 1, the outputs (ρ,μ)−•k
k+1|k+1, (ρ,μ)k◦−k+1|k+1 of the

smoothing step launched at the previous time k1 are superposed to form
an approximation of the filtered posterior (ρ,μ)−•k+1

k+1|k+1, the input of the
new smoothing step.

filtering window (k → k + �) is complete, the posterior
distributions (ρ,μ)−•k

k+1|k+1, . . . , (ρ,μ)−•k
k+�|k+� of its primary

CPHD filter are collected and the smoothed distributions
(ρ,μ)−•k

k+�−1|k+�, . . . , (ρ,μ)−•k
k|k+� are produced as illustrated

in Fig. 4, using Theorem 3.

V. MONTE CARLO IMPLEMENTATION

We summarize in this section the SMC implementa-
tion of the CPHD filter as described by Ristic et al. [41],
[43], as well as an SMC implementation for the CPHD
smoother. Equivalent implementations for the PHD filter
and smoother have been presented previously [27], [31],
[37], [41], [43]. A pseudo code of the SMC-CPHD with
smoother follows with Algorithm 1.

A. CPHD Filter

1) Input The posterior intensity μk−1|k−1 is approxi-
mated using Nk−1 particles as

μk−1|k−1 ≈
Nk−1∑

n=1

w
(n)
k−1δx(n)

k−1
. (40)

2) Prediction In order to evaluate the predicted cardi-
nality distribution ρk|k−1 with (17), we need to evaluate the
ratios (20). Following (40), the numerators and denomina-
tors of these ratios can be approximated as follows5:

μk−1|k−1(X ) ≈
Nk−1∑

n=1

w
(n)
k−1 (41)

5Pay attention to the fact that X is not a variable but denotes the tar-
get state space; recall from (14) that μk−1|k−1(X ) denotes the quantity∫
X μk−1|k−1(dx).
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μk−1|k−1(tk|k−1(ψ |·)) ≈
Nk−1∑

n=1

w
(n)
k−1

[
1 −ps,k

(
x

(n)
k−1

)]
(42)

μk−1|k−1(tk|k−1(X |·)) ≈
Nk−1∑

n=1

w
(n)
k−1ps,k

(
x

(n)
k−1

)
. (43)

In order to evaluate the predicted intensity μk|k−1 with
(18), we need to construct the target birth intensity γk and
the predicted intensity μs,k|k−1 for surviving targets. The
target birth intensity is approximated using Nb,k uniformly
weighted particles drawn following a measurement-driven
sampling function bk [41], i.e.

γk ≈
Nb,k∑

n=1

w
(n)
b,k|k−1δx(n)

b,k
(44)

where
⎧
⎨

⎩

xb,k ∼ bk(·|Zk)
w

(n)
b,k|k−1 = νb,k

Nb,k

(45)

with νb,k denoting the expected number of newborn targets.
Following (40), the predicted intensityμs,k|k−1 for surviving
targets is approximated as

μs,k|k−1 ≈
Nk−1∑

n=1

w
(n)
s,k|k−1δx(n)

s,k|k−1
(46)

where
{
x

(n)
s,k|k−1 ∼ t̂k|k−1

( · |x(n)
k−1

)

w
(n)
s,k|k−1 = ps,k

(
x

(n)
k−1

)
w

(n)
k−1.

(47)

Note that the surviving particles are sampled with the tran-
sition kernel; while more efficient solutions exist [9], we
have chosen to do so for the sake of simplicity.

3) Update: Following the adaptive target birth
scheme in [41], the weights of the surviving particles
w

(n)
s,k|k−1 and those of the newborn particles x(n)

b,k|k−1 are up-
dated separately.

In order to evaluate the posterior distribution (ρ,μ)s,k|k
of the surviving targets with (22) and (23), we need to
evaluate the ratios (25). Following (46), the numerators
and denominators of these ratios can be approximated as
follows:

μs,k|k−1(X ) ≈
Nk−1∑

n=1

w
(n)
s,k|k−1 (48)

μs,k|k−1(gk(φ|·)) ≈
Nk−1∑

n=1

w
(n)
s,k|k−1

[
1 −pd,k

(
x

(n)
s,k|k−1

)]
(49)

μs,k|k−1(gk(z|·)) ≈
Nk−1∑

n=1

w
(n)
s,k|k−1pd,k

(
x

(n)
s,k|k−1

)
ĝk
(
z|x(n)

s,k|k−1

)
.

(50)

The detection w(n)
md,k and missed detection w(n)

d,k weight

components of each surviving particle x(n)
s,k|k−1 are kept

separate in order to allow for separate resampling process
(explained later). That is

w
(n)
md,k = gk

(
φ|x(n)

s,k|k−1

)
�u
k(φ)w(n)

s,k|k−1 (51)

w
(n)
d,k =

⎡

⎣
∑

z∈Zk
gk
(
z|x(n)

s,k|k−1

)
�u
k(z)

⎤

⎦w(n)
s,k|k−1. (52)

Following the adaptive target birth scheme in [41], the
weight of the newborn particles x(n)

b,k are updated separately
as their probability of detection must be set to one. There-
fore, the missed detection term (51) vanishes in the case of
newborn particles and the weight update reduces to

w
(n)
b,k =

⎡

⎣
∑

z∈Zk
gk
(
z|x(n)

b,k

)
�u
k(z)

⎤

⎦

pd,k=1

w
(n)
b,k|k−1. (53)

4) Output Following (23), the updated intensity μk|k is
thus approximated as

μk|k ≈
Nk−1∑

n=1

[
w

(n)
md,k + w

(n)
d,k

]
δ
x

(n)
s,k|k−1

+
Nb,k∑

n=1

w
(n)
b,kδx(n)

b,k
. (54)

Also, the updated cardinality ρk|k is evaluated with (22).
5) Resampling Resampling needs to be carried out in or-

der to prevent particle degeneracy [9]. Resampling (with re-
placement) involves replacing particles having low weights
with particles, which have a high weight. The resampled
particles constitute i.i.d. samples from the posterior with a
representation, which is proportional to the weight of the
particles.

In the CPHD filter, the intensity associated with the
missed detection component is typically low. In a standard
resampling scheme, the particles representing the missed
detection will be sparsely sampled due to the associated low
weights. This increases the probability of track loss due to
particle depletion in some regions of the state space [27].
To avoid this, Mahler et al. [27] proposed a variation to the
resampling scheme for smoothing, whereby, particles cor-
responding to missed detections are resampled separately.
The intensity due to missed detection is approximated by

particles with weights {w(n)
md,k}

Nk−1

n=1
while the intensity due

to detection is approximated by the same particles with

weights {w(n)
d,k}

Nk−1

n=1
. By resampling these two sets separately,

it becomes possible to retain samples in low intensity re-
gions of the state space, which is critical for good perfor-
mance of the smoother.

B. CPHD Smoother

Suppose that we wish to produce the smoothed distri-
bution (ρ,μ)−•k

k|k over the fixed window [k, . . . , k + �].
1) Forward Filtering The first step consists in pro-

ducing the posterior distributions (ρ,μ)−•k
k+1|k+1, . . . ,

(ρ,μ)−•k
k+�|k+� of the process �−•k as explained in

Section IV-C. As seen in Fig. 5, both the primary and
secondary filters are usual CPHD filters that can be imple-
mented following the instructions given in Section V-A.
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The only interaction between the primary and secondary
CPHD filters occurs following each prediction step, where
the predicted distribution (ρ,μ)k◦−k′+1|k′ maintained by the
secondary filter is used to compute the process of indesir-
able observations of the primary filter (37), and vice versa.

Let us focus on the evaluation of (37); in order to do so,
let us evaluate the distribution (ρ,μ)k◦−	,k′+1|k′ of the process

	k′+1(�k◦−
k′+1|k′) using (38). Assuming that the predicted in-

tensity μk◦−k′+1|k′ maintained by the secondary filter is given
by

μk◦−k′+1|k′ ≈
Nk◦−
k′+1|k′∑

n=1

w
k◦−,(n)
k′+1|k′ δxk◦−,(n)

k′+1|k′
(55)

then the numerators and denominators in (38) can be ap-
proximated as

μk◦−k′+1|k′(X ) ≈
Nk◦−
k′+1|k′∑

n=1

w
k◦−,(n)
k′+1|k′ (56)

μk◦−k′+1|k′(gk′+1(φ|·))

≈
Nk◦−
k′+1|k′∑

n=1

w
k◦−,(n)
k′+1|k′

[
1 − pd,k′+1

(
x
k◦−,(n)
k′+1|k′

)]
(57)

μk◦−k′+1|k′(pd,k′+1(·)) ≈
Nk◦−
k′+1|k′∑

n=1

w
k◦−,(n)
k′+1|k′pd,k′+1

(
x
k◦−,(n)
k′+1|k′

)
(58)

and the intensity μk◦−	,k′+1|k′ can be approximated as

μk◦−	,k′+1|k′ ≈
Nk◦−
k′+1|k′∑

n=1

w
k◦−,(n)
o,k′+1|k′δzk◦−,(n)

k′+1|k′
(59)

where
{
z
k◦−,(n)
k′+1|k′ ∼ ĝk′+1

( · |xk◦−,(n)
k′+1|k′

)

w
k◦−,(n)
o,k′+1|k′ = pd,k′+1

(
x
k◦−,(n)
k′+1|k′

)
w
k◦−,(n)
k′+1|k′ .

(60)

A similar reasoning applies in order to evaluate the distri-
bution (ρ,μ)−•k

	,k′+1|k′ of the process 	k′+1(�−•k
k′+1|k′).

2) Backward Smoothing We can then produce the
smoothed distributions over the window [k, . . . , k + �] us-
ing the backward recursion presented in Theorem 3. Sup-
pose that the smoothed intensity μ−•k

k′+1|k+� and the posterior

intensity μ−•k
k′|k′ are approximated by the sets of particles

μ−•k
k′+1|k+� ≈

N−•k
k′+1∑

n=0

w
−•k,(n)
k′+1|k+�δx−•k,(n)

k′+1
(61)

μ−•k
k′|k′ ≈

N−•k
k′∑

n=0

w
−•k,(n)
k′ δ

x
−•k,(n)
k′

(62)

and that we wish to produce the smoothed intensity μ−•k
k′|k+�

(see Fig. 4). Note that the SMC implementation of the pos-
terior intensity μ−•k

k′|k′ and the corresponding smoothed in-

tensityμ−•k
k′|k+� use the same set of particles {x−•k,(n)

k′ }N
−•k
k′

n=1 , for

the smoothing process only reweighs the particles without
moving them.

Then, the smoothed intensity μ−•k
k′|k+� is approximated

by the set of particles {w−•k,(n)
k′|k+� , x

−•k,(n)
k′ }N

−•k
k′

n=0 where the
smoothed weights are given by

w
−•k,(n)
k′|k+� =

[
cmd
k′

(
x

−•k,(n)
k′

) + cd
k′
(
x

−•k,(n)
k′

)]
w

−•k,(n)
k′ (63)

where the missed detection cmd
k and detection cd

k corrector
terms are approximated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cmd
k′ (·) ≈ tk′+1|k′ (ψ |·)

∑N
−•k
k′

j=1 w
−•k,(j )
k′ tk′+1|k′ (ψ |x−•k,(j )

k′ )

× ∑

m≥0

∑

n≥m+1
Pnm+1r

s
k′(ψ)nρ−•k

k′|k′(n)
∑

q≥mP
q
mr

s
k′(ψ)qρ−•k

k′|k′(q)
ρ−•k
k′+1|k+�(m)

cd
k′(·) ≈

N−•k
k′+1∑

i=1

w
−•k,(i)
k′+1|k+�tk′+1|k′ (x

−•k,(i)
k′+1

|·)
∑N

−•k
k′

j=1 w
−•k,(j )
k′ tk′+1|k′ (x

−•k,(i)
k′+1

|x−•k,(j )
k′ )

(64)

where the ratio rs
k′(ψ) is approximated by

rs
k′(ψ) ≈

∑N−•k
k′

i=1 w
−•k,(i)
k′ tk′+1|k′

(
ψ |x−•k,(i)

k′
)

∑N−•k
k′

j=1 w
−•k,(j )
k′

. (65)

Also, the smoothed cardinality ρ−•k
k′|k+� is evaluated with

(34).

VI. RESULTS

In this section, we present results illustrating the per-
formance of the CPHD smoother and comparisons with the
PHD smoother. The CPHD filter is used to approximate the
forward filter and the backward recursion of the smoothers
is applied to this. In particular, Section VI-B1 considers
the effect of missed detections on the CPHD smoother,
while Section VI-B2 examines the impact of increasing the
probability of target death. Section VI-C considers a gen-
eral multitarget scenario with nonlinear observation model.
The optimal subpattern assignment (OSPA) error [44] is
used to compare the performance of the CPHD and PHD
smoothers.

A. Motion Model and Simulation Parameters

Before discussing the behavior and performance of the
CPHD smoother, we present the motion model and other
parameters used in the following simulations.

1) Single Target Motion Model A constant ve-
locity model is used to describe the single target
motion. The single target state is specified as the tar-
get in Cartesian coordinates with the associated veloc-
ity xk = [px,k, ˙px,k, py,k, ˙py,k]T . The state transition and
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Algorithm 1: CPHD Filter and Smoother (time k, lag
� > 0).

Input:
Filtered estimate ρk−1|k−1, {(w(n)

k−1, x
(n)
k−1)}Nk−1

n=1
Filtering:
Prediction:

Evaluate ρk|k−1 from (17)
Eval. {(w(n)

s,k|k−1, x
(n)
s,k|k−1)}Nk−1

n=1 from (47)
Update:

Eval. ρk|k from (22)
Eval. {(w(n)

md,k|k, w
(n)
d,k|k, x

(n)
s,k|k−1)}Nk−1

n=1 [see (51), (52)]

Eval. {(w(n)
b,k|k, xb,k)(n)}Nb,k

n=1 from (45), (53)
Resampling:

Sample {(w(n)
k , x

(n)
k )}Nkn=1 from

{(w(n)
md,k|k, w

(n)
d,k|k, x

(n)
s,k|k−1)}Nk−1

n=1 and {(w(n)
b,k|k, x

(n)
b,k)}Nb,k

n=1

Smoothing:
Forward filtering (from k to k + �):

Init. primary filter with ρk|k , {(w(n)
k , x

(n)
k )}Nkn=1

Init. secondary filter with empty distribution
for k′ = k : k + �− 1 do
Predition steps (see CPHD filtering

aforementioned):

Eval. ρ−•k
k′+1|k′ , {(w−•k,(n)

k′+1|k′ , x
−•k,(n)
k′+1 )}N

−•k
k′+1|k′

n=1

Eval. ρk◦−k′+1|k′ , {(wk◦−,(n)
k′+1|k′ , x

k◦−,(n)
k′+1 )}N

k◦−
k′+1|k′

n=1
Primary and secondary clutter:
see (37), (38), (56), and (60)

Update steps (see CPHD filtering
aforementioned):

Eval. ρ−•k
k′+1|k′+1, {(w−•k,(n)

k′+1 , x
−•k,(n)
k′+1 )}N

−•k
k′+1

n=1

Eval. ρk◦−k′+1|k′+1, {(wk◦−,(n)
k′+1 , x

k◦−,(n)
k′+1 )}N

k◦−
k′+1

n=1
end for

Backward recursion (from k + � to k):
for k′ = k + �− 1 : k do

Eval. smoothed est. ρk′|k+�, {(w(n)
k′|k+�)}

N−•k
k′

n=1 from:

a) Smoothed est. ρk′+1|k+�, {(w(n)
k′+1|k+�)}

N−•k
k′+1

n=1

b) Filtered est. ρ−•k
k′ , {(w−•k,(n)

k′ , x
−•k,(n)
k′ )}N

−•k
k′

n=1
using (34), (63)

end for
Output:
At time k: filtered est. ρk|k , {(w(n)

k , x
(n)
k )}Nkn=1

At time k + �: smoothed est. ρ−•k
k|k+�,

{(w−•k,(n)
k|k+� , x

(n)
k )}Nkn=1

observation models are given by the following equations:

xk =

⎡

⎢
⎢
⎣

1 �T 0 0
0 1 0 0
0 0 1 �T

0 0 0 1

⎤

⎥
⎥
⎦ xk−1 +

⎡

⎢
⎢
⎢
⎣

�T 2

2 0
�T 0

0 �T 2

2

0 �T

⎤

⎥
⎥
⎥
⎦
wk−1

(66)

where the time between successive observations is �T =
1 s and wk−1 ∼ N (0, σ 2

wI2) is the process noise.
2) Observation Model A nonlinear range-bearing ob-

servation model is used here. The observation is spec-
ified as zk = [rk, θk]T with a the range taking values
rk ∈ [0, 2800] m and the bearing angle θk ∈ [−π, π] rad.
Given a state xk

zk =

⎡

⎢
⎣

√
p2
x,k + p2

y,k

arctan

(
py,k

px,k

)

⎤

⎥
⎦ + vk (67)

where vk ∼ N (0, diag([σ 2
r , σ

2
θ ]
T

)) is assumed to be zero-
mean additive white Gaussian noise. The variance on
the range and bearing are, respectively, σ 2

r = 3 m2 and
σ 2
θ = 0.035 rad2. Clutter is modeled as a Poisson process

with mean λc with a uniform spatial distribution over the
observation space.

3) SMC Implementation In the SMC implementation
used here, 1000 particles are assigned per target. Following
the resampling scheme of Mahler et al. [27], the particles
are equally divided between missed detections and the mea-
surement updated intensity.

The target birth function is modeled as a Gaussian mix-
ture with components centered on the observations [41];
250 particles are drawn from each component of the mixture
with these particles constituting the target birth intensity.

Additionally, we utilize a label-augmented state space
to reduce the complexity of the smoother from quadratic to
linear in the number of targets [23]. A label τ is assigned
to the particle state at the time of target birth such that
τ (i) = τ (j ) if x(i) and x(j ) are drawn from the same Gaus-
sian mixture birth component. Then, the augmented-state
transition kernel density t̃k′+1|k′ is

t̃k′+1|k′
(
(x, τ )−•k,(i)

k′+1

∣
∣(x, τ )−•k,(j )

k′
)

= tk+1|k
(
x

−•k,(i)
k′+1

∣
∣x

−•k,(j )
k′

)
δ
τ

−•k,(i)
k′+1

(
τ

−•k,(j )
k′

)
(68)

so that t̃k′+1|k′
(
(x, τ )−•k,(i)

k′+1

∣
∣(x, τ )−•k,(j )

k′
) = 0 if x−•k,(i)

k′+1 and

x
−•k,(j )
k′ originate from different birth terms in (64).

4) Performance Metric We compare the performance
of the algorithms using the optimal sub-pattern assignment
(OSPA) metric [44]. The OSPA metric measures the multi-
object miss distance between a set of true targets and a set of
estimated targets. The distance is composed of a localisation
and cardinality error. Here, we use the OSPA metric with
parameters cutoff, c = 100 m, and power p = 1.

B. Two-Target Scenario

Mahler et al. showed that the PHD smoother does not
necessarily improve cardinality estimates “especially when
the birth PHD γ is small compared to the PHD of surviving
targets [. . .] and when the probability of target death 1 −
pS is high” [27]. In this section, we show that the CPHD
smoother consistently produces more accurate cardinality
estimates when compared with the CPHD filter and PHD
smoother.
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Fig. 8. Solid lines show the true x- and y-coordinates of the two targets
in the scene.

Fig. 9. Mean target number estimated by the CPHD filter, PHD
smoother, and CPHD smoother. Target birth occurs only at k = 1 and

there are no clutter measurements (averaged over 100 Monte Carlo runs).

We consider a tracking scenario involving two targets
as shown in Fig. 8. Clutter is not present in this scenario.
The CPHD filter is used for the forward filter and fixed lag
smoothing with a lag of 5 is performed using the PHD and
CPHD smoothers. Target birth in the filter occurs only at
the start (k = 1) and is centered around the true positions
of the targets.

1) Missed Detections and Target Death We first exam-
ine the effect of missed detection and target death on the
smoothers. This simulation uses the scenario illustrated in
Fig. 8 with the constraint that the targets are always de-
tected except at two consecutive time steps, k = {21, 22},
where only one of the targets is detected. The probability
of target detection is assumed as pd = 0.98 and the proba-
bility of target survival as ps = 0.98. The results from this
simulation are averaged over 100 Monte Carlo runs.

Fig. 9 shows the cardinality estimate produced by the
filter and smoothers. The filter operates as expected and
always suffers a missed detection at k = {21, 22}. Mahler
et al. [27] showed that the PHD smoother is unable to

Fig. 10. Total OSPA error (c = 100 m, p = 1) of the CPHD filter, PHD
smoother, and CPHD smoother for a two-target scenario with no clutter

(averaged over 100 Monte Carlo runs).

recover tracks lost due to missed detections. Missed detec-
tions in the filter propagate backwards through the smooth-
ing recursion resulting in missed detections in the smoother
at previous time instants. This missed detection in the fil-
ter affects the cardinality estimate of the PHD smoother,
which shows a cardinality error at k = 17. Mahler et al.
suggested that this is due to the “strictly first-order nature
of the PHD, which propagates cardinality information with
a single parameter” [27]. Missed detections in the filter do
not propagate backwards in the CPHD smoother due to its
more robust formulation.

Fig. 9 also illustrates premature target death, which oc-
curs in the PHD smoother. This is related to the problem
of missed detections discussed previously. Target 2 is lost
by the CPHD filter at time k = 32. This leads to premature
target death in the PHD smoother at k = 27. The effect of
premature death is not seen in the CPHD smoother.

The average total OSPA error of the filter and smoothers
is shown in Fig. 10. The figure shows that the PHD and
CPHD smoothers exhibit near-identical localisation error.
The OSPA error at k ∈ {17, 21, 22, 25 . . . 31} arises from
cardinality error in the PHD smoother. Improvements in
the CPHD smoother, thus, manifest as improved cardinality
estimates.

2) Effect of Probability of Survival We now examine
the effect of the probability of target survival ps on the
intensity of the smoother. Mahler et al. [27] noted that
the cardinality estimates of the smoother may not improve
when 1 − ps is not negligible. We show that the intensity
function of the CPHD smoother is unaffected by the value
of ps. For the two-target scenario in Fig. 8, we consider
ps = {0.99, 0.98}.

Figs. 11 and 12 show the intensity from the filter and
smoothers for ps = 0.99 and ps = 0.98, respectively. We
see that the PHD smoother overestimates the intensity as
1 − ps increases, and in some cases, this may lead to the
reporting of false targets. The CPHD smoother provides
stable estimates regardless of the probability of target death
and is robust with regards to this parameter.
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Fig. 11. Mean target number estimated by the CPHD filter, PHD
smoother, and CPHD smoother for a two-target scenario when ps = 0.99

(averaged over 100 Monte Carlo runs).

Fig. 12. Mean target number estimated by the CPHD filter, PHD
smoother, and CPHD smoother for a two-target scenario when ps = 0.98

(averaged over 100 Monte Carlo runs).

C. Five-Target Scenario

In this section, we consider a more general multitarget
filtering and smoothing example where target birth is al-
lowed. The scenario consists of five targets following the
trajectories illustrated in Fig. 13. The probability of target
detection is pd = 0.98 and the probability of target sur-
vival is ps = 0.99. A smoothing lag of 3 is used in these
simulations and results are averaged over 500 Monte Carlo
runs.

Clutter is modeled as a Poisson process with intensity
λc = 1.1 × 10−3 rad−1m−1 over the observation region, re-
sulting in an average of 20 clutter points per scan. Target
birth follows a measurement-driven model with an intensity
of γ = 0.1 using 250 particles per measurement.

Figs. 14–16 compare the total (resp., localisation and
cardinality) OSPA distance of the filter and smoothers,
averaged over 500 Monte Carlo runs. In this general
multitarget scenario, the CPHD smoother consistently has
a lower OSPA error than the PHD smoother. As discussed

Fig. 13. Multitarget scenario showing the trajectories of five targets in
the scene. Clutter intensity is λc = 1.1 × 10−3 rad−1m−1 (≈20 clutter

measurements per scan) and measurement-driven target birth intensity is
γ = 0.1.

Fig. 14. Total OSPA error (c = 100 m, p = 1) of the CPHD filter, PHD
smoother, and CPHD smoother for a multitarget tracking scenario

(averaged over 500 Monte Carlo runs).

Fig. 15. Localisation OSPA error (c = 100 m, p = 1) of the CPHD
filter, PHD smoother, and CPHD smoother for a multitarget tracking

scenario (averaged over 500 Monte Carlo runs).
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Fig. 16. Cardinality OSPA error (c = 100 m, p = 1) of the CPHD
filter, PHD smoother, and CPHD smoother for a multitarget tracking

scenario (averaged over 500 Monte Carlo runs).

previously and shown in Figs. 15 and 16, this is mostly due
to improved cardinality estimates of the CPHD smoother,
rather than improved localisation.

VII. CONCLUSION

In this paper, a multi-object smoothing approach in
which targets born before and after the starting time of
the smoothing step are estimated separately is proposed, in
order to circumvent the intractability of the general multi-
object smoothing approach with FISST when applied to the
CPHD filter.

A tractable approximation of the usual CPHD smoother
is then derived, and compared with the PHD smoother on
a simulation where it is shown to provide better estimates.
In particular, the CPHD smoother performance does not
deteriorate in the same manner as the PHD smoother when
the probability of target death is significant. Additionally,
the CPHD smoother is able to improve the cardinality esti-
mate produced by the PHD smoother, and does not exhibit
undesirable track deletions as the PHD smoother does.

APPENDIX

A. LEMMA 1

PROOF The proof is straightforward: indeed, considering
the structure of the Bayes’s rules (3) and (5), the result di-
rectly obtained from Corollary 1 in which the parameters of
the observation process are replaced by the corresponding
parameters in the target evolution process, i.e., Zk → ϕ,
gk → tk′+1|k′ , κk → γk′ , ρk|k−1 → ρ−•k

k′|k′ , μk|k−1 → μ−•k
k′|k′ ,

ρk|k → τk|k+1, and μk|k → νk|k+1. �

B. THEOREM 3

PROOF Let us set some starting time k ≤ 0, some smooth-
ing lag � > 0, and some time step k ≤ k′ < k + �.

Let us focus first on the cardinality distribution. From
the expression of the smoothed distributionpk′ |k+� in (4), we

draw the expression of the smoothed cardinality distribution
ρk′|k+�, i.e.

ρ−•k
k′|k+�(n) =

∫

τk′|k′+1(n|ϕ)p−•k
k′+1|k+�(dϕ). (69)

We then substitute the result of Lemma 1 in (69) and we
get

ρ−•k
k′|k+�(n) =

∫
Pn|ϕ|r

s
k′(φ)nρ−•k

k′|k′(n)
∑

q≥|ϕ|P
q

|ϕ|r
s
k′(φ)qρ−•k

k′|k′(q)
p−•k
k′+1|k+�(dϕ)

(70a)

=
∑

m≥0

Pnmr
s
k′(φ)nρ−•k

k′|k′(n)
∑

q≥mP
q
mr

s
k′(φ)qρ−•k

k′|k′(q)
ρ−•k
k′+1|k+�(m).

(70b)

Let us now focus on the first moment measure. From the
expression of the smoothed distribution pk′|k+� in (4), we
draw the expression of the smoothed first moment measure
μ−•k
k′|k+�, i.e.

μ−•k
k′|k+�(dx) =

∫

νk′|k′+1(dx|ϕ)p−•k
k′+1|k+�(dϕ). (71)

We then substitute the result of Lemma 1 into (71) and we
get

μ−•k
k′|k+�(dx) = [

cmd
k′ (x) + cd

k′(x)
]
μ−•k
k′|k′(dx) (72)

with
⎧
⎪⎪⎨

⎪⎪⎩

cmd
k′ (x) = ∫

tk′+1|k′(φ|x)�̃s
k′(φ)p−•k

k′+1|k+�(dϕ)

cd
k′(x) = ∫

(
∑

y∈ϕ
tk′+1|k′(y|x)�̃s

k′(y)

)

p−•k
k′+1|k+�(dϕ).

(73)

Let us focus first on the term cmd
k′ . Substituting the expres-

sion of the corrector term �̃s
k′(φ), given by (33), into (73)

yields

cmd
k′ (x) = tk′+1|k′(φ|x)

μ−•k
k′|k′(tk′+1|k′(φ|·))

×
∫

∑

n≥|ϕ|+1
Pn|ϕ|+1r

s
k′(φ)nρ−•k

k′|k′(n)
∑

q≥|ϕ|P
q

|ϕ|r
s
k′(φ)qρ−•k

k′|k′(q)
p−•k
k′+1|k+�(dϕ)

(74a)

= tk′+1|k′(φ|x)

μ−•k
k′|k′(tk′+1|k′(φ|·))

×
∑

m≥0

∑

n≥m+1
Pnm+1r

s
k′(φ)nρ−•k

k′|k′(n)
∑

q≥mP
q
mr

s
k′(φ)qρ−•k

k′|k′(q)
ρ−•k
k′+1|k+�(m).

(74b)

Let us now focus on the term cd
k′ . Substituting the ex-

pression of the corrector term �̃s
k′(y), given by (33) into (73)
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yields

cd
k′(x) =

∫ ∑

y∈ϕ

tk′+1|k′(y|x)

μ−•k
k′|k′(tk′+1|k′(y|·))p

−•k
k′+1|k+�(dϕ) (75a)

=
∫

tk′+1|k′(y|x)

μ−•k
k′|k′(tk′+1|k′(y|·))μ

−•k
k′+1|k+�(dy) (75b)

where the last equality was obtained using Campbell’s
Theorem (see [29], p. 106).

C. PROPOSITION 1

PROOF The time subscripts are omitted in this proof for the
sake of clarity.

1) Process 	(�k◦−) Under Approximation IV-C, the
predicted target process �k◦− is i.i.d. with distribution
(ρ,μ)k◦−, its probability generating functional (p.g.fl.) [16]
Gk◦− is, thus, given by

Gk◦−(h) =
∑

m≥0

ρk◦−(m)

(
μk◦−(h)

μk◦−(X )

)m

. (76)

Using the notations introduced in (21), the p.g.fl.Gθ of the
observation process [16] is given by

Gθ (h|x) = g(φ|x) +
∫

h(z)g(z|x)dz. (77)

The p.g.fl. Gk◦−
	 of the process 	(�k◦−) is then

Gk◦−
	 (h) = Gk◦−(Gθ (h|·)) (78a)

=
∑

m≥0

ρk◦−(m)

(
μk◦−(Gθ (h|·))
μk◦−(X )

)m

(78b)

=
∑

m≥0

ρk◦−(m)

(
μk◦−(g(φ|·))
μk◦−(X )

+
∫
h(z)μk◦−(g(z|·))dz

μk◦−(X )

)m

(78c)

=
∑

m≥0

ρk◦−(m)
m∑

n=0

Cmn

(
μk◦−(g(φ|·))
μk◦−(X )

)m−n

×
(∫

h(z)μk◦−(g(z|·))dz
μk◦−(X )

)n

(78d)

=
∑

n≥0

(∫
h(z)μk◦−(g(z|·))dz
∫
μk◦−(g(z|·))dz

)n (∫
μk◦−(g(z|·))dz
μk◦−(X )

)n

×
∑

m≥n
ρk◦−(m)Cmn

(
μk◦−(g(φ|·))
μk◦−(X )

)m−n
. (78e)

From (78e), we see that the process 	(�k◦−) is i.i.d.
with cardinality distribution μk◦−	 given by

ρk◦−	 (n) =
(∫

μk◦−(g(z|·))dz
μk◦−(X )

)n

×
∑

m≥n
ρk◦−(m)Cmn

(
μk◦−(g(φ|·))
μk◦−(X )

)m−n
(79)

and intensity function μk◦−	 given by

μk◦−	 (z) = μk◦−(g(z|·)). (80)

2) Process K−•k Following its definition (7), the outer
population process K−•k is the superposition of the pro-
cesses K and 	(�k◦−), which are independent. From [16,
eq. (16)], it follows that its cardinality distribution ρ−•k

c is
given by

ρ−•k
c = ρc ∗ ρk◦−	 . (81)

In addition, its intensity function μ−•k
c is given by [29,

p.152]

μ−•k
c = μc + μk◦−	 . (82)

Under Approximation IV-C, the outer population process
K−•k is i.i.d., and is, thus, characterized by its distribution
(ρ,μ)−•k

c .
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