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Abstract- To solve the coverage consistency and launch cost 

problems of continuous and periodic coverage, this study 

proposes a regular and symmetric constellation method for 

repeating ground track orbits and its closed-form solution 

for constellation design. The equations of motion developed 

in this study were implemented via a geometric analysis of 

Ptolemy’s deferent and epicycle systems, and the solution 

was composed of design parameters. Therefore, unlike the 

existing constellation method, design and analysis can be 

realized simultaneously and efficiently. The performance of 

the proposed constellation method was compared with that 

of a typical Walker constellation in terms of the figure of 

merit sensitivity and coverage consistency, and its superior 

performance was verified. In addition, a comparison with 

Flower constellations using the same repeating ground track 

orbit was evaluated via launch cost problems and theoretical 

comparisons with respect to constellation design. 
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I. INTRODUCTION 

Based on a literature survey of satellite constellation 

methods, the most well-known and common method is to 

position satellite orbits regularly and symmetrically on a 

sphere. With respect to Earth observation missions, the 

two types are broadly classified as kinematically regular 

and symmetrical distributions of satellite orbits on the 

Earth’s sphere. The first involves the regular deployment 

of satellite orbits in the space configuration without 

considering the rotation of the Earth, and the second 

involves the deployment of satellite orbits considering the 

rotational characteristics of the Earth.   

A representative example of the first case is the well-

known Walker constellation. Given that the Walker 

constellation does not consider Earth’s rotation, the 

angular separation between the satellite and the 
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observation point on the Earth’s surface does not 

significantly influence Earth coverage. The Walker 

method was developed by Walker and Mozhaev, and 

thereafter, various studies were conducted based on this 

method and applied to practical missions [1-9]. The 

Walker constellation has four design parameters (i:t/p/f, 

where i is the inclination of the orbits, t is the total number 

of satellites, p is the number of orbit planes, and f is the 

phase parameter) to regularly set inertial circular orbits on 

the Earth’s sphere. Recently, based on these design 

parameters, research areas have expanded to include 

improving accuracy and reliability for relative orbit 

determination of inter-satellite range measurement and 

analyzing coverage capacity of complex satellite 

constellations [10, 11]. 

The second representative constellation method 

involves the use of a repeating ground-track (RGT) orbit. 

In this method, the rotation of the Earth directly 

influences the coverage characteristics. In particular, the 

altitude of the satellite is a critical factor in calculating the 

coverage performance. Research using the RGT orbit was 

extensively conducted in various manners, e.g., on the 

repeat Sun-Synchronous orbit (RSSO) [12-14], design of 

the RGT orbit under high-fidelity conditions [15,16], 

optimization of the RGT orbit [17,18], and target-based 

RGT design [19,20]. However, the abovementioned 

studies were focused on improving the coverage 

performance using the RGT orbit. Moreover, studies were 

conducted on uniform distributions using repeating space 

tracks in a given rotating reference system based on 

Flower constellations (FCs). 

Given that the FC was proposed by Mortari and 

Wilkins (2008), research was conducted on various 

theories and applications: millimeter-wave radiometers 

for tropospheric monitoring [21], designs for 

telecommunications services [22], dual-compatible orbits 

[23], and two-/three-dimensional (2D/3D) lattice theory 
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[24,25]. The original FC has the same relative trajectory 

with respect to a rotating frame by utilizing the phasing 

mechanism of the ascending node Ω and the initial mean 

anomaly 𝑀0 among six orbital elements and six integer 

parameters ( 𝑁𝑑 , 𝑁𝑝, 𝐹𝑑, 𝐹𝑛, 𝐹ℎ, 𝑎𝑛𝑑𝑁𝑠 ). In addition, 2D 

lattice theory, which is an approach similar to that 

employed in this study, deviates from the concept of the 

original FC and is focused on the uniform distribution of 

satellite orbits such as the Walker constellation, based on 

different relative orbits. 

The abovementioned methods can be classified into 

continuous and periodic coverage. In the Walker method, 

the coverage consistency of the satellite, which is the 

acquisition of consistent images (number of repeated 

accesses) with the same ground track for the Earth’s 

surface and observation targets in the mission analysis 

period that forms the RGT orbit in this study, is not 

considered because the coverage performance is 

calculated for the stationary Earth sphere. Moreover, FCs 

have the advantage of coverage consistency, as they 

provide periodic coverage by orbit compatibility between 

the Earth and satellites. However, given that different 

inertial orbits are generally used, launch costs can be high 

unless the constellation is efficiently designed. 

Expanding on the conceptual classification mentioned 

above, satellite constellation methods have also been 

studied for a variety of specific purposes: achieving 

complex regional coverage requirements [26], simple 

coverage of complex scenarios involving full or partial 

visibility of a geographic region [27], and satellite 

constellation design for hurricane monitors [28]. This 

paper proposes a novel constellation method for the 

purpose of simultaneously solving the coverage 

consistency and launch cost problems of continuous and 

periodic coverage. As an academic contribution, existing 

constellation methods (Walker, FCs, etc.) require an orbit 

propagator after constellation design phase; however, the 

solution in this study consists of design parameters and 

presents an explicit mathematical formulation that 

simultaneously performs the design phase that determines 

the position of the satellite constellation and orbit 

propagation. 

 

II. RELATIVE ORBIT COMPATIBILITY 

The concept of this study starts from the rotation ratio 

relationship of the satellite orbit to the rotation of a 

rotating reference frame (e.g., the Earth). To define the 

notation for this description, the primary orbit (acts as a 

rotating reference frame) is denoted as q-orbit, the 

secondary orbit is denoted as p-orbit, and the two orbits 

are closed periodic orbits. The angular velocities of each 

orbit are 𝜔𝑞 and 𝜔𝑝, respectively, and it is not necessary 

to have a constant value to apply the proposed method. 

However, it is assumed that the two orbits have constant 

angular velocities. Therefore, the periods of each orbit are 

𝑇𝑞 =
2𝜋

𝜔𝑞
 and 𝑇𝑝 =

2𝜋

𝜔𝑝
, respectively. The q-orbit rotates 𝑁𝑞 

times with angular velocity 𝜔𝑞, and the p-orbit rotates 𝑁𝑝 

times with angular velocity 𝜔𝑝. Thus, the relative orbital 

compatibility of the two orbits is expressed as follows: 

 𝑁𝑞𝑇𝑞 = 𝑁𝑝𝑇𝑝 (1) 

An important characteristic of the orbit compatibility in 

Eq. (1) is that the dynamics of the relative trajectory 

between the two orbits are continuously repeated and 

exhibit the same relative trajectory according to the 

position and distribution of the orbit. Figure 1 presents the 

characteristics of the relative trajectory according to the 

orbit compatibility and placement distribution. As shown 

in Fig. 1 (a), the positions of the three objects, which are 

the ratios of the number of rotations to the q-orbit with 

respect to the p-orbit, are equally spaced: 

 𝑇𝑗 = 𝑇𝑞 ,     (𝑗 = 1,2,3) (2) 

In contrast, as shown in Fig. 1(b), the ratio of the number 

of rotations with the q-orbit with respect to the p-orbit to 

the positions of the two objects, which are different 

numbers, are equally distributed: 

 𝑇𝑗 +  ∆𝑇 = 𝑇𝑞 ,     (𝑗 = 1,2) (3) 

From a comparison of the two relative orbit dynamics, 

Fig. 1(a) reveals that the three objects in the p-orbit have 

the same relative trajectory with respect to the q-orbit. 

However, the two objects in Fig. 1(b) have different 

relative trajectories with respect to the q-orbit. This is 

because the objects of the p-orbit continuously and 

repeatedly move with the same pattern at intervals of 

Period 𝑇𝑞  of the q-orbit. Consequently, if objects are 

evenly placed on the secondary orbit by the number of 

revolutions of the primary orbit, all objects in the 

secondary orbit have an identical relative trajectory to the 

Fig. 1. a) Placement on p-orbit with the same relative 

trajectory with respect to q-orbit (left), and b) placement 

on p-orbit with the different relative trajectory with 

respect to q-orbit (right) 
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primary orbit. This relationship can be expressed as 

follows: 

 𝑁𝑠 = 𝑁𝑞 (
𝑝

𝑞
)

⊥
 (4) 

where 𝑁𝑠 denotes the number of objects. As expressed by 

Eq. (4), the two positive integers q and p are co-prime, 

which can be expressed as gcd (p, q) = 1 or (
𝑝

𝑞
)

⊥
.  

As expressed by Eq. (4), the q-value is a divisor of 𝑁𝑞, 

the p-value is the number of p-orbits, and the total 𝑁𝑠 

objects are equally divided by the p-plane to have the 

same relative trajectory. As an example, if 𝑁𝑞  of the 

primary orbit is set as 100 and 𝑁𝑝 of the secondary orbit 

is set as 1494, 60 objects in the p-orbit have the same 

relative trajectory as the q-orbit: 

 𝑁𝑠 = 100 (
3

5
)

⊥
 (5) 

Given that p = 3 in Eq. (5), three p-orbit are required, and 

20 objects are placed in each plane, where q = 5 is a 

coprime of the p-value and a divisor of 100.  

 

III. REPEATING GROUND TRACK ORBIT 

The previous section presents the orbital compatibility 

between any rotating gravitational forces of any two 

orbits. In actual space missions, these characteristics are 

applied to the RGT orbit between the Earth and satellites. 

It is common knowledge that the RGT trajectory of a 

satellite returns to its original position on the Earth’s 

surface by orbit compatibility after a certain interval of 

the nodal period. From Eq. (1), the following expression 

is obtained: 

 𝑇𝑝 =
𝑁𝑞

𝑁𝑝
𝑇𝑞  (6) 

Applying Eq. (6) to the RGT orbit of the Earth and 

satellite, 𝑇𝑝 is the orbit period of the satellite and 𝑇𝑞 is the 

nodal period of the Earth. Thus, 𝑁𝑞 and 𝑁𝑝 are coprime. 

In Eq. (6), 𝑇𝑝 can be expressed as a function of the semi-

major axis a representing the size of the satellite orbit: 

 

 2𝜋√
𝑎3

𝜇
=

𝑁𝑞

𝑁𝑝
𝑇𝑞 

(7) 

From Eq. (7), the semi-major axis a is expressed as 

follows: 

 𝑎 = 𝜇
1
3 (

2𝜋

𝑇𝑞

𝑁𝑝

𝑁𝑞
)

−
2
3

 
(8) 

where the gravitational constant μ  is 3.98600441 ×
1014(𝑚3/𝑠2)  and the nodal day of Earth 𝑇𝑞  is 

86164.10035. Equation (8) has constant values, except for 

𝑁𝑞 and 𝑁𝑝; thus, it can be expressed as follows: 

 ℎ0 ≈ 𝜅 (
𝑁𝑝

𝑁𝑞
)

−
2
3

− 𝑅𝐸  
(9) 

where the value 𝜅 is approximately 42164.173 km and 𝑅𝐸 

is the Earth’s radius.  

The altitude obtained from Eq. (9) is clearly an 

imprecise value that does not consider the effects of 

orbital perturbations. In practice, calculating the altitude 

of the RGT orbit by considering the perturbation of the 

orbit is complex. In this study, only the effect of the 𝐽2 

perturbation was considered, and the rotation ratio 

between the Earth and RGT orbit, which is the relative 

orbit frequency that defines the altitude of the RGT orbit, 

is expressed as follows: 

 𝑛 + 𝑀̇ + 𝜔̇ =
𝑁𝑝

𝑁𝑞
(𝜔⊕ − 𝛺̇) 

(10) 

where 𝑛, 𝑀̇, 𝜔̇, 𝜔⊕, and 𝛺̇ denote the mean motion of the 

satellite, change in the mean motion, change in the perigee, 

rotational velocity of the Earth, and change in the 

ascending node, respectively. Each element of Eq. (10) 

under the Earth’s 𝐽2 perturbation is defined as follows: 

𝛺̇ = −
3

2
𝑛 𝐽2 (

𝑅𝐸

𝑝
)

2

𝑐𝑜𝑠 𝑖 (11a) 

  𝜔̇ =
1

2
𝑛 𝐽2 (

𝑅𝐸

𝑝
)

2

(4 − 5 𝑠𝑖𝑛2 𝑖 ) (11b) 

𝑀̇ =
3

4
𝑛 𝐽2 (

𝑅𝐸

𝑝
)

2

√1 − 𝑒2  (3 𝑐𝑜𝑠2 𝑖 − 1) (11c) 

where p = a(1 – e2) with the eccentricity e and inclination 

i of the satellite orbit, the Earth’s radius 𝑅𝐸 , and 

𝐽2 = 0.00108263. Substituting Eq. (10) into Eq. (8), the 

RGT altitude, considering 𝐽2, is expressed as follows: 

 ℎ = 𝜇
1
3 [

𝑁𝑝

𝑁𝑞
(𝜔⊕ − 𝛺̇) − (𝑀̇ + 𝜔̇)]

−
2
3

− 𝑅𝐸 
(12) 

Thus, to obtain the final RGT altitude, the iterative 

process of Eqs. (9)-(12) is required, and convergence to 

the final altitude occurs after three to five iterations. 

Furthermore, 
𝑁𝑝

𝑁𝑞
 in Eq. (12) requires a more extensive 

explanation. A critical factor in designing an RGT orbit is 

the altitude, which is highly sensitive to the values of 𝑁𝑞 

and 𝑁𝑝 . An effective method to reduce the sensitivity 

involves the adjustment of the desired altitude via a small 

change value based on the 𝑁𝑞  and 𝑁𝑝  values of the 

reference altitude. The orbit frequency with the simplest 

ground track structure in the RGT orbit is the case 

wherein the denominator is 1, which is coprime for all 

natural numbers. In particular, the altitude of the Earth 

observation mission, which was of significance in this 

study, has an orbit frequency range of 14 to 16 and an 
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altitude of approximately 200 km to 830 km. In addition, 
14

1
,

15

1
, and

16

1
, which are fractions with a denominator of 

1, are referred to as the principal orbit frequencies. This 

section presents a method for determining the desired 

altitude by changing the values of the denominator and 

numerator based on the principal orbit frequency. The 

irreducible fraction can be maintained by changing the 

values of the denominator and numerator of the 

irreducible fraction (
𝑁𝑝

𝑁𝑞
)

⊥

: addition/subtraction and 

multiplication/division. 

Addition/subtraction maintains an irreducible fraction 

by adding or subtracting another irreducible fraction [29]:  

 (
𝑁𝑝

𝑁𝑞
)

⊥

± (
𝑝

𝑞
)

⊥

=  (
𝑝′

𝑞′)
⊥

 
(13) 

where gcd (𝑁𝑞 , q) = 1. In the multiplication/division 

method, the irreducible fraction is obtained by 

multiplying or dividing the irreducible fraction (
𝑁𝑝

𝑁𝑞
)

⊥

by 

the same value as the denominator 𝑁𝑞: 

 (
𝑁𝑝

𝑁𝑞
)

⊥

×
÷

 (
𝑝

𝑁𝑞
)

⊥

=  (
𝑝′

𝑞′)
⊥

 
(14) 

In a simpler manner, four arithmetic operations are 

applied to the reference irreducible fraction 𝑁𝑞 using 1, 

which can have all natural numbers as co-primes.  

 (
𝑁𝑝

𝑁𝑞
)

⊥

± (
1

𝑞
)

⊥

=  (
𝑝′

𝑞′
)

⊥

 
(15) 

where gcd (𝑁𝑞, q) = 1. Equation (15) fixes the value of p 

to 1, and the result has an irreducible fraction regardless 

of the natural number substituted for the value of q. In 

particular, as the q value increases, the equation 

converges to a value close to the principal orbit frequency. 

Combining these properties with the multiplication 

/division characteristics of Eq. (14), an irreducible 

fraction is obtained with faster convergence: 

 (
𝑁𝑝

𝑁𝑞

)
⊥

± (
1

𝑞
)

⊥

∙ (
1

𝑞
)

⊥

⋯ = (
𝑁𝑝

𝑁𝑞

)
⊥

± (
1

𝑞𝑚
)

⊥

 
(16) 

for m = 1, 2, 3, ⋯. 

Figure 2 presents the results obtained by applying Eq. 

(16) to the reference principal orbit frequency (
𝑁𝑝

𝑁𝑞
)

⊥

=

(
15

1
)

⊥
. As shown in the figure, as the value of q increases, 

the altitude converges to the reference altitude. In 

particular, as the value of m increases, the altitude 

converges rapidly. It should be noted that setting a high q 

value is advantageous for determining the desired altitude 

relative to the reference altitude; however, as the 

numerator of the new irreducible fraction increases, the 

density of the RGT structure increases. 

IV. MATHEMATICAL FORMULATION OF RGT 

CONSTELLATION DESIGN 

A. Geometrical modeling 

As detailed in this section, a closed-form solution of the 

satellite constellation was developed via geometrical 

modeling for the RGT design of a circular orbit. For 

geometrical modeling, Ptolemais’ deferent and epicycle 

systems were employed in this study. Lee and Hall 

defined that the relative motion of two orbits is 

determined by the rotation ratio of the two orbits [30]. In 

particular, if the relative orbit frequency representing the 

rotation ratio of the two orbits is less than 1, (
𝑁𝑝

𝑁𝑞
< 1), it 

is epi-type (epicycloid/epitrochoid) motion, and if it is 

greater than 1, (
𝑁𝑝

𝑁𝑞
> 1) , it is hypo-type (hypocycloid 

/hypotrochoid) motion. A representative example of epi-

type motion is the orbital motion of the Earth–Moon 

system, and an example of hypo-type motion is the 

trajectory between the Earth and a satellite.  

The aim of this study was to apply the hypocycloid 

principle to satellite orbit geometrical mechanics. The 

RGT geometry on the Earth is the projection of a satellite 

orbit on a celestial sphere onto the Earth’s surface. Thus, 

considering only the size of the satellite orbit projected on 

the celestial sphere, as shown in Fig. 3a, it is a function of 

the semi-major axis a and the inclination i of the satellite. 

When projected onto the x–y plane of the celestial sphere, 

the maximum value is a and the minimum value is 𝑎 cos 𝑖, 
and the trajectory projected on the x–y plane lies between 

Fig. 2. Convergence to the reference altitude 

according to the q value 
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these two values. The magnitude of the z-coordinate is 

𝑎 sin 𝑖. This determines the size of the circles in deferent 

and epicycle system. Describing the trajectory properties 

of the satellite orbit in more detail, the x–y plane is 

represented by the relationship between the angular rate 

𝜔𝑞  of the rotating reference frame of the Earth and the 

angular rate 𝜔𝑝  of the satellite, as shown in Fig. 3b. It 

should be highlighted that the trajectory of the satellite 

orbit traces a looping motion, as shown in Fig. 3b, which 

is caused by the prograde and retrograde motions 

respectively generated by the sum and difference of the 

two angular rates. This looping motion is observed as 

loops or cusps (i.e., sharp corners) on the trajectory 

depending on the inclination of the satellite. If the 

geometric characteristics of this satellite orbit trajectory 

are expressed in a hypocycloid geometry on the x–y plane, 

it shows the hypocycloid geometry of the deferent and 

epicycle system as shown in Fig. 3c. The z-axis motion is 

in accordance with a simple spring-mass system. Thus, 

the parametric formula of the satellite orbit is expressed 

in a generalized hypocycloid form as follows [31]: 

𝑥 = 𝑟1 𝑐𝑜𝑠 𝜃1(𝑡) + 𝑟2 𝑐𝑜𝑠 𝜃2(𝑡) (17a) 

  𝑦 = 𝑟1 𝑠𝑖𝑛 𝜃1(𝑡) − 𝑟2 𝑠𝑖𝑛 𝜃2(𝑡) (17b) 

𝑧 = 𝑟3 𝑠𝑖𝑛 𝜃3(𝑡) (17c) 

As detailed in this section, each term in Eq. (17) can be 

obtained via a geometric analysis. As shown in Fig. 3c, 

the radii of the large and small epicycle circles are 

obtained as follows: 

𝑟1 + 𝑟2 = 𝑎 (18a) 

          𝑟1 − 𝑟2 = 𝑎 𝑐𝑜𝑠 𝑖 (18b) 

From Eq. (18), 𝑟1  and 𝑟2  are respectively expressed as 

follows: 

        𝑟1 =
𝑎

2
(1 + 𝑐𝑜𝑠 𝑖) (19a) 

         𝑟2 =
𝑎

2
(1 − 𝑐𝑜𝑠 𝑖) (19b) 

As shown in Fig. 3c, the angular rate 𝜃1(𝑡) of the deferent 

circle is related to the prograde motion of the satellite 

orbit and can be obtained as the difference between the 

Earth’s angular rate and that of the satellite: 

 𝜃1(𝑡) = (𝜔𝑝 − 𝜔𝑞)𝑡 + 𝜃10 
(20) 

where 𝜃10 is the initial angular position of deferent circle. 

The angular rate 𝜃2(𝑡)  of the epicycle circle is a 

retrograde motion, which is expressed as follows:    

 𝜃2(𝑡) = (𝜔𝑝 + 𝜔𝑞)𝑡 + 𝜃20 
(21) 

where 𝜃20 denotes the initial angular position of the circle. 

Thereafter, the magnitude and angular rate of the satellite 

orbit along the z-axis can be simply expressed as follows: 

        𝑟3 = 𝑎 𝑠𝑖𝑛 𝑖 (22a) 

         𝜃3(𝑡) = 𝜔𝑝𝑡 + 𝜃30 (22b) 

Fig. 3. a) Magnitude of the satellite orbit projected onto the celestial 

sphere, b) looping motion of satellite orbit, and c) deferent and epicycle 

system of satellite orbit 
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To represent Eqs. (18)–(22) with the well-known six orbit 

elements considering the 𝐽2 perturbation, the parameters 

𝜔𝑝 and 𝜔𝑞 are defined as follows: 

      𝜔𝑝 = 𝑛 + 𝑀̇ + 𝜔̇ (23a) 

 𝜔𝑞 = 𝜔⊕ − 𝛺̇ (23b) 

In addition, the initial phase angles 𝜃10, 𝜃20, and 𝜃30 of 

the deferent and epicycle circles are expressed as 

functions of the initial mean anomaly 𝑀0 and ascending 

node 𝛺  by applying the principles of prograde and 

retrograde motion: 

𝜃10 = 𝑀0 + 𝛺,    𝜃20 = 𝑀0 − 𝛺,    𝜃30 = 𝑀0 (24) 

Therefore, by substituting the orbit parameters of Eqs. 

(18)-(24) into Eq. (17), the equations of motion for the 

RGT orbit on the Earth can be obtained. 

 

B. Closed-form solution 

The aim of this study was to develop a closed-form 

solution for the design of an RGT constellation as a 

parameter term for orbit compatibility. As a result of the 

study, RGT orbit-based constellations were designed with 

four constellation design parameters: inclination 𝑖, total 

number of satellites 𝑁𝑠 , and orbit compatibility 𝑁𝑞  and 

𝑁𝑝. The satellite group was arranged in accordance with 

the Walker-type configuration. However, the difference 

was that the satellite constellation had the same orbital 

plane and relative trajectory. For a constellation to have 

the same orbital plane, satellites are equally spaced in the 

Earth-Centered Inertial (ECI) coordinate frame. 

Moreover, the constellation of satellites with the same 

relative trajectory in the Earth-Centered Earth-Fixed 

(ECEF) coordinate frame is implemented by the phasing 

mechanism of (𝛺, 𝑀0) [32]: 

𝛺𝑘 = 𝛩𝛺(𝑘 − 1) (25a) 

   𝑀𝑘0 = −
𝑁𝑝

𝑁𝑞

(𝑘 − 1) (25b) 

where k = 1, 2, 3, ⋯ , 𝑁𝑠 , and 𝛩𝛺  is the spacing of 

ascending nodes between satellites. Equation (25) is 

expressed as follows to distribute 𝑁𝑠  constellations at 

equal intervals: 

𝛺𝑘 =
2𝜋

𝑁𝑠
𝑁𝑞(𝑘 − 1) (26a) 

  𝑀𝑘0 = −
2𝜋

𝑁𝑠
𝑁𝑝(𝑘 − 1) (26b) 

where k = 1, 2, 3,⋯ , 𝑁𝑠. Using Eqs. (1), (10), and (23) to 

express the relative orbit compatibility of the RGT orbit, 

the following relationship is obtained:  

𝑁𝑞𝑇𝑞 = 𝑁𝑞

2𝜋

𝜔𝑞
= 𝑁𝑝𝑇𝑝 = 𝑁𝑝

2𝜋

𝜔𝑝
 (27) 

From Eq. (27), the following is obtained: 

𝜔𝑞 =
2𝜋

𝑇𝑞
, 𝜔𝑝 =

2𝜋

𝑇𝑝
 (28) 

Moreover, 

𝑇𝑞 =
𝑁𝑝

𝑁𝑞
= 𝑇𝑝 (29) 

Thus, Eq. (20) can be expressed using Eqs. (24), (26), (28), 

and (29): 

𝜃1(𝑡) = (𝜔𝑝 − 𝜔𝑞 )𝑡 + 𝜃10                                              (30a) 

         = 2𝜋 (
1

𝑇𝑝
−

𝑁𝑞

𝑁𝑝𝑇𝑝
) 𝑡 − 2𝜋 (

𝑁𝑝 − 𝑁𝑞

𝑁𝑠
) (𝑘 − 1) (30b) 

= (
𝑁𝑝 − 𝑁𝑞

𝑁𝑝
) 𝜏 − 2𝜋 (

𝑁𝑝 − 𝑁𝑞

𝑁𝑠
) (𝑘 − 1) (30c) 

where τ = 2π
𝑡

𝑇𝑝
. Similarly, Eq. (21) is represented by Eqs. 

(24), (26), (28), and (29). 

𝜃2(𝑡) = (
𝑁𝑝 + 𝑁𝑞

𝑁𝑝
) 𝜏 − 2𝜋 (

𝑁𝑝 + 𝑁𝑞

𝑁𝑠
) (𝑘 − 1) (31) 

Thereafter, 𝜃3(𝑡) of Eq. (22) is expressed as follows: 

𝜃3(𝑡) = 𝜏 − 2𝜋 (
𝑁𝑝

𝑁𝑠
) (𝑘 − 1) (32) 

Finally, Eq. (17) represents a completely closed-form 

solution for the RGT constellation design of Ns satellite 

group in terms of only four constellation design 

parameters ( i, Ns, Np, and Nq)  while acting as an orbit 

propagator. 

𝑥𝑘 = 𝐴 𝑐𝑜𝑠 [(
𝑁𝑝 − 𝑁𝑞

𝑁𝑝
) 𝜏 − 2𝜋 (

𝑁𝑝 − 𝑁𝑞

𝑁𝑠
) (𝑘 − 1)] 

          +𝐵 𝑐𝑜𝑠 [(
𝑁𝑝 + 𝑁𝑞

𝑁𝑝
) 𝜏 − 2𝜋 (

𝑁𝑝 + 𝑁𝑞

𝑁𝑠
) (𝑘 − 1)]    

(33a) 

𝑦𝑘 = 𝐴 𝑠𝑖𝑛 [(
𝑁𝑝 − 𝑁𝑞

𝑁𝑝
) 𝜏 − 2𝜋 (

𝑁𝑝 − 𝑁𝑞

𝑁𝑠
) (𝑘 − 1)] 

        −𝐵 𝑠𝑖𝑛 [(
𝑁𝑝 + 𝑁𝑞

𝑁𝑝
) 𝜏 − 2𝜋 (

𝑁𝑝 + 𝑁𝑞

𝑁𝑠
) (𝑘 − 1)] 

(33b) 

𝑧𝑘 = 𝐶 𝑠𝑖𝑛 [𝜏 − 2𝜋 (
𝑁𝑝

𝑁𝑠
) (𝑘 − 1)]                                (33c) 

where  

 𝐴 =
𝜅

2
(

𝑁𝑝

𝑁𝑞
)

−
2
3

(1 + 𝑐𝑜𝑠 𝑖) 
(34a) 

𝐵 =
𝜅

2
(

𝑁𝑝

𝑁𝑞
)

−
2
3

(1 − 𝑐𝑜𝑠 𝑖) 
(34b) 

 𝐶 = 𝜅 (
𝑁𝑝

𝑁𝑞
)

−
2
3

𝑠𝑖𝑛 𝑖                  
(34c) 
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In addition, the closed-form solutions of Eqs. (33) and (34) 

are applied to the sun-synchronous orbit, and given that 

the cos 𝑖 term is constant, the four design parameters are 

reduced to three parameters (𝑁𝑠, 𝑁𝑝, and 𝑁𝑞). The cos 𝑖 

term is expressed as a function of the semi-major axis a. 

𝑐𝑜𝑠 𝑖 = − (
𝑎

12352
)

7
2
 (35) 

Equation (35) is obtained by setting the semi-major axis 

a in Eq. (8) constant as follows: 

𝑐𝑜𝑠 𝑖 = −73.4890 (
𝑁𝑝

𝑁𝑞
)

−
7
3

 (36) 

Therefore, when Eq. (36) is substituted in the cos 𝑖 term 

of Eq. (34), the RGT constellation of the sun-synchronous 

orbit is designed with only three design parameters. 

Equations (33) and (34) clearly express the design of a 

kinematically regular RGT constellation without 

computational effort, and with only four design 

parameters. Compared with the well-known Walker 

constellation, the solution in this study is composed of 

terms related to orbit compatibility and the number of 

satellites, and because it defines the RGT altitude and 

orbital plane, the RGT constellation is designed like a 

Walker constellation without an orbit propagator. In this 

paper, the solutions to Eqs. (33) and (34) are referred to 

as the RGT-Walker (RGT-W) constellation for 

comparison with other satellite constellation techniques. 

The RGT-W closed-form solution of Eqs. (33) and (34) 

provides several implications for constellation design. 

First, the equations itself consists of the terms of rotation 

ratio (
𝑁𝑝

𝑁𝑞
) of the Earth and satellite; thus, it is possible to 

directly design the constellation without considering the 

effects of perturbation such as 𝐽2 oblateness. The problem 

of satellite constellation design and perturbation effect 

can be analyzed independently. In addition, Eqs. (33) and 

(34) are composed of variables such as the mission 

analysis time 𝑡 of the RGT orbit and number of satellites 

k if the design parameters are constant. Therefore, the 

mission designer expresses a specific constellation as a 

simple parametric equation consisting of t and k terms. 

For example, the parametric equation of the RGT-W 

constellation for 8 satellites with 𝑁𝑞 = 2, 𝑁𝑝 = 29 and an 

inclination 43° is expressed as follows: 

𝑥𝑘 = 6091.8 𝑐𝑜𝑠[0.000996𝑡 − 21.47(𝑘 − 1)]
+ 945.23 𝑐𝑜𝑠[0.0011𝑡
− 24.61(𝑘 − 1)]    

(37a) 

𝑦𝑘 = 6091.8 𝑠𝑖𝑛[0.000996𝑡 − 21.47(𝑘 − 1)]
− 945.23 𝑠𝑖𝑛[0.0011𝑡
− 24.61(𝑘 − 1)] 

(37b) 

𝑧𝑘 = 4799.2 𝑠𝑖𝑛[0.001𝑡 − 24.04(𝑘 − 1)]         (37c) 

The above advantages of RGT-W reduce the significant 

computational load for mission designers and help to 

analyze various characteristics of a particular satellite 

constellation. 

V. THE RGT-W CONSTELLATION DESIGN 

As detailed in this section, various constellations were 

designed based on the solution proposed in the previous 

section. The characteristics of the RGT-W constellation 

are as follows: the satellite group is uniformly and 

regularly distributed in the ECI frame, which is similar to 

the Walker method, and has an identical RGT in the ECEF 

frame. The notations and common characteristics of the 

constellation design are as follows: 

(1) 𝜒𝑝
𝑁𝑠 = 𝑖 ∶ 𝑁𝑠, 𝑁𝑝, 𝑁𝑞, 

- 𝜒𝑝
𝑁𝑠: total number of satellites 𝑁𝑠 in p orbital planes 

- 𝑖: inclination of satellite group 

- 𝑁𝑝: number of satellite orbit revolutions to form RGT 

- 𝑁𝑞: number of Earth rotations to form an RGT 

where 𝑁𝑠 = 𝑁𝑞 (
𝑝

𝑞
)

⊥
. 

(2) All satellites are in circular orbits with the same 

inclination and altitude. 

Based on the characteristics above, the RGT-W 

constellation exhibits three broad types of patterns: a 

sequential constellation, simultaneous constellation, and 

sun-synchronous constellation. Figure 4a presents the 

sequential pattern of 𝜒2
48=45°:48,61,24 with an altitude of 

16,260 km, and there are 48 satellites with 24 satellites in 

one orbital plane. As shown in Fig. 4a, the ECI frame has 

two orbital planes, and the constellation pattern on the 

Earth’s surface has two inclined circular shapes. This 

circular pattern involves two kinematic behaviors: 1) the 

distance between satellites on the circular pattern is 

maintained and 2) the satellite group passes sequentially 

over the target area. Additionally, based on the same 

latitude, the time interval between sequentially moving 

satellites is calculated from the orbit compatibility: 

𝑃𝑡 =
86400 ∙ 3600 ∙ 𝑁𝑞

𝑁𝑝 ∙ 𝑁𝑠
 (𝑠𝑒𝑐) (38) 

Figure 4b presents the simultaneous pattern of 𝜒16
48 =

45°: 48, 16, 3. The altitude of the satellite group is 7425.7 

km, and there are 48 satellites in 16 orbital planes with 

three satellites per orbital plane. In Fig. 4b, three 

horizontal circular patterns can be observed, and these 

constellation patterns are accompanied by the following 

dynamic characteristics: 1) The satellite spacing on the 

circular pattern is largest at the equator and narrowed 

toward the poles. In particular, the phenomenon of the 

gathering and moving away of the satellite group is 

repeated. 2) The satellite group passes simultaneously 

over the same latitude. The sequential constellation is 

designed using the following relational expression: 
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𝑁𝑞 ∙ 𝑁𝑝 = 𝑁𝑠 (39) 

Figure 4c presents the sun-synchronous constellation of 

𝜒5
120 = 97.1°: 120, 131, 48 with an altitude of 15211 km 

and 120 satellites deployed in five orbital planes. 

Figure 5 presents the (𝛺, 𝑀0)  values for the three 

constellation designs. The value 𝛺 on the x-axis indicates 

an orbital plane in the ECI frame for constellation, and it 

can be seen that satellites are uniformly distributed in each 

orbital plane. 

 

VI. RESULTS AND DISCUSSION 

The proposed RGT-W constellation technique can be 

used to perform preliminary mission design and analysis 

while minimizing the computational effort without an 

orbit propagator via a closed-form solution consisting of 

only three to four design parameters. This section presents 

the validation of the proposed method via a performance 

comparison analysis between the proposed RGT-W 

technique and the prominent Walker constellations and 

FCs. The RGT-W technique was compared with the 

conventional Walker technique with respect to coverage 

consistency and with FC in terms of reducing the orbital 

plane. 

 

A. Coverage consistency analysis 

In this section, to examine the characteristics of the 

coverage consistency of the proposed RGT-W method, 

we analyzed the accessibility of random ground targets. 

The position vector 𝑟(𝑥, 𝑦, 𝑧) of the satellite required to 

calculate the number of RGT orbit accesses to the target 

is readily obtained by Eqs. (33) and (34), and based on 

this, the SSP (Sub-Satellite Point, 𝛼𝑠: 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒,
𝛿𝑠: 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒) of the ground track on the Earth’s surface 

is as follows:  

𝛼𝑠 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)  (40a) 

   𝛿𝑠 = 𝑠𝑖𝑛−1
𝑧

𝑎
         (40b) 

The accessibility to the target is determined by whether 

the Earth central angle (Θ) is included in the range of the 

given sensor swath of the satellite, and the Earth central 

angle between the target and SSP is obtained by   

𝛩 = 𝑐𝑜𝑠−1[𝑐𝑜𝑠 𝛿𝑠(𝑡) 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠(𝛼𝑠(𝑡) − 𝛼)

+ 𝑠𝑖𝑛 𝛿𝑠(𝑡) 𝑠𝑖𝑛 𝛿] 
(41) 

Fig. 4. a) Sequential constellation, b) simultaneous constellation, and c) sun-synchronous 

constellation 

Fig. 5. (𝜴, 𝑴𝟎)  phasing mechanism of RGT-W 

constellation 
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where α and δ are the longitude and latitude of the target, 

respectively. 

The priority factor to be considered for the coverage 

consistency analysis of RGT-W is the mission analysis 

period. The mission analysis period of the RGT orbit is 

given by 𝑁𝑞, and the ground track is periodically repeated 

by the value of 𝑁𝑞. Using Eq. (16), a RGT orbit with a 

mission analysis period of 3 days is selected from the 

reference principal orbit frequency (
15

1
)

⊥
: 

(
15

1
)

⊥
±  (

1

3𝑚)
⊥

=  (
44

3
)

⊥
 (42) 

where m=1; thus, the altitude of (
44

3
)

⊥
is 597.7 km. As 

shown in Fig. 6a, the ground target was randomly set 

between longitude (±20°), latitude(0~60°), and Table 1 

shows the SAR payload and orbital specifications of the 

satellite.  

 

TABLE I. SATELLITE ORBIT AND SAR PAYLOAD 

SPECIFICATIONS 

𝑁𝑝
𝑁𝑞

⁄  𝑖(°) 𝛺(°) 𝑀0(°) Elevation angle(°) 

44/3 61.58 -11.9 31.1 30~50 

 

Figure 6b shows the access results for 10 ground targets 

for a total of 21 days using the satellite specifications in 

Table 1. It can be clearly observed that the target 

accessibility has a repetitive and identical access pattern 

with a mission analysis period of 3 days. 

 

B. The RGT-W in comparison with the Walker 

constellation 

 

The existing conventional Walker method achieves 

global coverage through equally spaced distribution of 

satellite orbits on the Earth sphere. The Walker method 

does not include the definition of altitude setting on the 

satellite phasing rule (i: t/p/f): i is the inclination, t is the 

total number of satellites, p is the number of equally 

spaced planes, and f is the relative spacing between 

satellites in adjacent planes. Thus, in general, mission 

designers allow drift of the ground track from the 

viewpoint of any observed target in the case of Walker 

method. On the contrary, in the RGT-W method proposed 

in this study, the definition of altitude and the satellite 

phasing rule for equally spaced distribution of satellite 

groups are implicitly included in the formula itself. 

To prove the clear difference between the two methods, 

the constellations are arranged under the same conditions 

for 24 satellites using the RGT-W and Walker methods. 

The constellation of Table 2 has 8 evenly spaced orbital 

planes on the equator, and 3 satellites are arranged on each 

orbital plane. Orbital elements such as altitude and 

inclination of the constellation are identical, with the only 

difference being the initial mean anomaly on the orbital 

plane. With this difference, the constellation of Walker 

method has 8 orbital planes and 8 RGT orbits, and RGT-

W has 8 orbital planes and 1 RGT orbit. As shown in Fig. 

7, the difference between the two methods greatly affects 

the coverage consistency. Figure 7a shows the ascending 

node (𝛺) and initial mean anomaly (𝑀0) distributions of 

24 satellites, and the distribution of ascending node of the 

two methods is the same; however, the distribution of 

initial mean anomaly is different. Figure 7b shows the 

elevation angle of the satellite sensor during the 3-day 

mission analysis period for one arbitrary ground target 

(127.978°, 37.5665°). In the case of RGT-W, only 3 

elevation angles are required during the 3-days mission 

analysis period, whereas the Walker method changes to 

various elevation angles according to access. This 

Fig. 6. Accessibility analysis for 10 random ground targets 
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characteristic is continuously repeated at 3-days intervals 

throughout the entire mission. Thus, RGT-W has a clear 

superiority in consistent target observation compared to 

the Walker method. 

Next, for comparison of coverage consistency 

according to altitude, the FOMs (Figure of Merits) 

sensitivity of the two techniques were compared with 

respect to the average revisit time (ART) and system 

response time (SRT). The ART refers to the time required 

to re-observe the same observation area, and the SRT is 

the time elapsed from the capturing of a satellite image to 

its distribution upon the arrival of an image request for an 

unplanned area. A critical factor for the comparison of the 

ART and SRT between the two techniques is the selection 

of the altitude, which characterizes the RGT and non-

RGT orbits. As expressed by Eq. (4), the altitude of the 

RGT-W technique is determined by the number of 

satellites and orbital planes. However, the satellite 

altitude of the Walker technique is a free parameter, 

which is different from the altitude calculated using Eq. 

(12). The altitude of the Walker techniques in this study 

was the integer altitude obtained by truncating the 

decimal point from the RGT altitude, which ranged from 

tens to hundreds of meters from the RGT altitude and did 

not have a significant effect on the FOM performance 

comparisons between the two techniques, 

The similarity observed between the RGT-W and 

Walker techniques was that the satellite group was 

Fig. 7. Comparison of coverage consistency between RGT-W and Walker methods 

Fig. 8. Sensitivities of ART and SRT with respect to both techniques 
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uniformly distributed on a unit sphere and exhibited 

symmetrical characteristics. These symmetrical 

properties have more longitudinal effects than horizontal 

effects. For the sensitivity analysis of the FOM, one target 

was positioned for a specific RGT orbit while changing 

the latitude from 0° to 43° at intervals of 1° on the same 

longitude, and the relative differences of the ART and 

SRT between the two techniques were analyzed. Figure 8 

presents the relative difference in values by latitude 

between RGT-W (𝜒2
36 = 43°: 36, 269, 18) of 508.084 km 

and Walker ( 43°: 36/2/1 ) of 508 km. The mission 

analysis period was 18 days, which is the repeat cycle of 

the RGT-W. As shown in Fig. 8a, the ART generally 

maintained the relative values of the RGT-W and Walker 

techniques within a range of 0 s to 400 s; however, in the 

case of the Walker technique, the difference in relative 

values when compared with the RGT-W technique was 

large at low-latitude targets. In the SRT shown in Fig. 8b, 

the relative value of the Walker technique changed 

abruptly at a specific latitude when compared with that of 

the RGT-W technique. This was evaluated based on the 

influence of the coverage consistency of the satellite. 

More specifically, the characteristics of the ground track 

on the Earth’s surface are that the upper part of the 

trajectory is dense, while the lower part (towards the 

equator) is wide; thus, the drift in the ground track of the 

Walker altitude is relatively large compared to the RGT 

trajectory. 

 

C. The RGT-W in comparison with the Flower 

constellation 

 

A representative constellation technique using an RGT 

orbit is the FC. This technique was proposed by Mortari 

and Wilkins (2008) [22], and the original FC was 

designed such that all satellites had the same relative 

trajectory for a rotating reference frame. The 

disadvantage of the original FC is its high launch cost, 

given that each satellite is required to have a different 

ascending node Ω for the same relative trajectory:  

𝛺𝑘+1 = 𝛺𝑘 − 2𝜋
𝐹𝑛

𝐹𝑑
 (43) 

where 𝐹𝑛 and 𝐹𝑑 are independent integer parameters that 

can be freely chosen. The method further developed based 

on the original FC is the Lattice theory proposed by 

Avendño and Mortari (2013) [24, 25]. This objective of 

this theory is to distribute the satellites evenly via distinct 

relative trajectories in the constellation configuration 

space, which deviates from the original FC concept, 

wherein all satellites have the same relative trajectory. 

The RGT-W technique was designed such that the 

satellite group is in the same orbital plane in the ECI 

frame and has the same relative trajectory at the same time. 

In Lattice theory, the condition for the satellite 

constellation to satisfy this objective is mentioned 

𝑁𝑞 = 𝜆𝑁𝑠𝑜,   𝑁𝑝 = 𝜇𝑁𝑜 + 𝜆𝑁𝑐 (44) 

where 𝑁so  is the number of satellites per orbital plane, 

and 𝑁𝑜 is the number of orbital planes. Moreover, λ and 

μ  are two coprime integers, and 𝑁𝑐 ∈ [1, 𝑁𝑜] . In this 

section, to demonstrate a clear difference between the 

RGT-W technique and Lattice theory, it is mathematically 

proven that the simultaneous constellation design of 

RGT-W cannot be achieved based on Eq. (44). The 

condition for the simultaneous constellation design in Eq. 

(39) is expressed as follows: 

𝑁𝑞𝑁𝑝 = 𝑁𝑜𝑁𝑠𝑜 = 𝑁𝑠 (45) 

Substituting Eq. (44) into Eq. (45) yields the following:  

𝑁𝑜𝑁𝑠𝑜 = 𝜆𝑁𝑠𝑜(𝜇𝑁𝑜 + 𝜆𝑁𝑐) (46) 

This can be re-written as follows: 

𝑁𝑐𝜆2 = 𝑁𝑜(1 − 𝜆𝜇) (47) 

Given that 𝑁𝑐 ≥ 1 in lattice theory, 1 − λμ > 1 should be 

satisfied. However, this cannot be achieved. Additionally, 

Eq. (47) is expressed in a quadratic form in terms of λ. 

𝑁𝑐𝜆2 + 𝜇𝑁𝑜𝜆 − 𝑁𝑜 = 0 (48) 

The solution to Eq. (48) is expressed as follows: 

𝜆 =
−𝜇𝑁𝑜 ± √(𝜇𝑁𝑜)2 + 4𝑁𝑐𝑁𝑜

2𝑁𝑐
 (49) 

For the RGT-W technique, λ = 1 is required; however, 

Eq. (49) cannot have an integer of λ = 1. Therefore, Eq. 

(44) cannot be used to design the simultaneous 

constellation of the RGT-W technique. 

In summary, the RGT-W technique demonstrated a 

superior performance to the Walker technique in terms of 

the FOM sensitivity and coverage consistency. Compared 

with the original FC that uses the RGT orbit, the RGT-W 

technique can be implemented to design the same relative 

trajectory while minimizing the orbital plane and launch 

cost. 

VII. CONCLUSIONS 

In general, implementing analytical formulas for the 

constellation designs of multiple satellites is extremely 

complex. This is because the analytical formula should 

incorporate the role of the orbit propagator and design 

parameters. Thus, most previous studies on constellation 

methods were focused on either design parameters or 

orbit propagators, and used either classical two-body 

system or orbit propagators. In contrast to previous 

studies centered on constellation design parameters, this 

study focused on the development of an analytical 

formula based on the equations of motion for 
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constellation designs. To this end, the equations of motion 

of the RGT orbit were derived using a geometric model, 

and a complete closed-form solution consisting of 

constellation design parameter terms was developed by 

combining it with orbit compatibility. 

 This study presents three constellation types based on 

the solution, and the proposed constellation method is 

superior to the Walker constellation technique in terms of 

the FOM sensitivity and coverage consistency. Moreover, 

it minimizes the launch cost when compared to the 

original FC using the same RGT orbit. 
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