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Abstract—This paper deals with one of the types of ‘“Satellite
Range Scheduling” problems arising in Earth Observation Satellite
operations, Antenna-Satellite Scheduling. Given a set of satellites,
a set of available antennas and a time horizon, the problem
consists of designing an operational plan that assigns satellites
to antennas in an optimal fashion. Extending a previous Integer
Linear Programming (ILP) model (Shortening Model, with only
integer variables), we propose a Mixed Integer Linear Programming
(MILP) model (Shaving Model, which includes both continuous
and integer variables), to more efficiently solve this problem.
After computing the passes generated by the satellites’ windows of
visibility from the antennas, the optimal planner is able to cancel a
pass, move it to another antenna, or shorten its duration, in order
to avoid scheduling conflicts. In contrast to the Shortening Model,
which used intersections between passes to determine the best
schedule, the shortening operation is now referred to as shaving,
since the Shaving Model can arbitrarily adjust the duration of a pass
in a razor-like fashion, giving the model its name. Computational
results obtained in tests over realistic scenarios prove that the
Shaving Model outperforms the Shortening Model, producing fewer
cancellations, smaller shaved times, and a fairer distribution of
cancelled passes among satellites, with much shorter pre-processing
times.

Index Terms—Deconfliction, Mixed Integer Linear Program-
ming, Antenna-Satellite Allocation, Optimal Satellite Scheduling,
Satellite Range Scheduling.

I. INTRODUCTION

Earth Observation Satellites (EOSs) have experienced
a considerable growth in the last decades. These satellites
generate very large datasets, and, consequently, require
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efficient communication with ground antennas to transmit
their acquired information. The problem of scheduling
downlink (or uplink) connections between satellites and
antennas falls under the umbrella of the “Satellite Range
Scheduling” (SRS) problem, which has been shown to be
NP-complete [1], [2]. When many satellites and antennas
are considered, the problem therefore becomes intractable
and requires the use of advanced algorithms to obtain
good solutions in short computing times.

Numerous researchers have proposed solutions to the
SRS problem in the last two decades. The first seminal
results were reported by Barbulescu and coauthors. In [3]
the SRS was solved, applied to the US Air Force Satellite
Control Network (AFSCN), which had at that time over
100 spacecraft, 16 antennas, 9 stations, resulting in about
500 requests per day. Finding typically over a hundred
conflicts, genetic algorithms performed better than other
algorithms. In a posterior work the SRS problem was
analyzed and found to formally be NP-complete [1], [2].
New algorithms are provided, improving previous results.
Next [4] gave an overview of how the problem was
addressed during the previous 10 years at the AFSCN.
In addition, they explored different cost functions, for
instance one that reduces overlaps. Finally, other heuristic
algorithms for SRS were proposed [5], including combi-
nations of the previous ones.

These initial publications were soon followed by
works from other groups. To cite a few, another work
explored the SRS problem for the Deep Space Network
(DSN) [6]; the corresponding scenarios have 16 antennas,
20 satellites, a horizon of four months, which results in
over 500 passes each week. They generated and repaired
schedules, and proposed heuristics for solving the prob-
lem with emphasis in re-scheduling. In another approach
the authors integrated Genetic Algorithms, Graph Theory
and Linear Programming in order to build conflict-free
plans [7], and applied their approach to a practical case
study provided by a satellite service company. Other
authors studied the scheduling of a single geostationary
satellite [8]. In another example, the problem was formu-
lated as a MILP model, solved by means of a Lagrangian
relaxation [9]. As a case study, they applied their approach
to Galileo. In [10] the authors solved SRS by using
Struggle Genetic Algorithms on STK simulations. In
another work ant-colony algorithms were proposed [11],
solving examples with 17 satellites and 11 to 13 antennas,
yielding around 400 passes. To cite another approach,
graph coloring algorithms have also been applied [12],
with examples of up to 500 realistic instances. Finally, a
more global point of view was adopted in [13], where
the authors try to integrate automated scheduling into the
concept of timeline (a track record of spacecraft states
and resources).

This problem has also arisen in the context of aca-
demic ground station networks [14], [15] for small satel-
lites operated by research institutions, which usually have
some specific needs such as redundancy and flexibility.
Similarly, this problem has been solved with a tailored
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approach that also maximizes redundancy in order to
solve possible failures in communication [16], where
a simple scenario with 6 satellites and 4 stations is
considered, yielding 51 contact windows.

Some other more recent results are explored next. For
instance, [17] also used a MILP approach to solve the
problem of multi-satellite scheduling. The case problem
has limited observation capacities so stronger constraints
were used to speed up the solution process. It combined 3
satellites and different target sets to generate 37 problem
instances with a scheduling horizon of 24 or 48 hours.
Due to its NP-completeness, heuristic methods have been
widely adopted when solving the SRS problem. In [18]
the Agile Earth Observing Satellite (AEOS) scheduling
problem was solved by proposing a temporal conflict
network-based heuristic algorithm with a satellite and
15 generated scenarios. These scenarios contained targets
that varies from 50 to 400 in a 24 h scheduling time
horizon. A detailed summary of the AEOSs problem
was given in [19]. There were two approaches to its
formulation, the discrete time model and the continuous
time model.

It is usual to find academic articles developing dif-
ferent deterministic algorithms along with their heuristic
analogue, as in [20]. The paper introduces a deterministic
optimization model for downloading large data quanti-
ties, and develops a scheduling heuristic that mimics a
traditional process to compare the results. It generates a
real-world space mission consisting of 50 satellites and
50 ground stations in a 3-month time span. A notorious
example is [21], that designs a MILP formulation of the
NASA’s Deep Space Network (DSN) scheduling problem,
and later a non-MILP based heuristic to validate the
results for a real week with 14 resources, 286 activ-
ities, 1430 hours of tracking time, and 30 missions.
Subsequently, this same formulation is improved in [22],
that introduces a new set of constraints and compared
the results with the previous one. The variant allows to
prioritize emergency or landing scenarios and satisfies all
the requested constraints. Another MILP formulation is
proposed in [23] for optimal scheduling of AEOSs, but it
requires such a long computational time, that a heuristic
algorithm is needed to find a near-optimal solution. The
approach generates a case study of 4 satellites and 8
problem instances with 50-100 observations tasks and
random ground stations.

In addition, it is important to highlight the progress in
solving the SRS problem thanks to the flourish of genetic
algorithms, Deep Learning and evolutionary algorithms.
There is a wealth of relevant papers developing these
artificial intelligence techniques. For instance, genetic
algorithms are used in [24] with a prominent superiority
solving large-scale problems with a task size that varies
from 25 up to 400 tasks. The improved genetic algorithm
for the ground tracking telemetry and command tasks
in multi satellite mission scheduling with population
perturbation and elimination, is compared with a genetic
algorithm, an adaptive neighborhood local search algo-

rithm, and a local search one, upgrading the performance
in profit and task completion rate. A multi-relay satellite
resource scheduling algorithm based on ant colony genetic
algorithm is proposed in [25]. This algorithm has a
fast convergence speed and a strong global optimization
ability solving multi-constraint conditions. The simulation
scenario consists of 6 hours span with 64 tasks, 3 satellites
and 2 antennas for each one. Deep Learning and heuristics
are combined in [26]. It trains a method using 3 satellites
observing scheduling results for one day, and gives a
high-quality solution for the 5350 experimental scenarios.
Another example is [27], where the classical technology
and machine learning are integrated with a Support Vector
Machine classification (SVM) approach, combines with
a multiobjective evolutionary algorithm (NSGA-II). The
model solves 546 tasks in 6 simulation scenarios with 5
ground stations (2 antennas for each one) and from 10
to 60 satellites for a day planning horizon. In the last
year, [28] formulated a MILP model and develops an
improved genetic algorithm with a novel idea of encoding
and decoding to match the specific request with the
corresponding satellite-ground resources. It establishes
5 scenarios with 5 satellites and five ground stations
for a day span. Finally, [29] deals with the multiple
Earth observation satellites (EOSs) scheduling problem by
formulating it as an unrelated parallel machine scheduling
problem with multiple time windows. The paper takes
into account observation targets and satellites as jobs and
machines and develops two mixed-integer linear program-
ming formulations with additional inequalities to refine
the formulation. It solves 47 problem instances, with 100
up to 1200 number of jobs in a scheduling horizon setting
of one day.

As a summary, the most relevant contributions of
recent years with their main features is given in Table I.

A. Contribution and novelty with respect to previous
work

From the most recent literature, we can see that
solving the Antenna-Satellite Scheduling problem in large
scenarios with numerous passes is still relevant today and
no single algorithm has emerged as the most efficient
approach. [30] was our first work on this problem; a
discrete Shortening Model (which only allowed to shorten
the passes to certain values) was solved by an ILP.
Inspired by a result in a closely-related area (namely,
optimization of swath acquisitions, see e.g. [31]), one
of the main ideas was computing all self-intersections
produced by the set of intervals of the passes (subpasses),
which gives the discrete values which the passes can be
shortened to. This approach solved the conflicts respect-
ing the priorities and preferred assignments of 10 real
instances, containing around 3000 passes requested in a
week, with 50 satellites and 20 antennas. These results
are compared in this paper against our approach. Next,
in the conference paper [32] we preliminary proposed an
improved optimization algorithm based on Mixed Integer
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TABLE I: Summary of recent works on the Antenna-Satellite Scheduling problem.

Reference Optimization Method Description Scenarios
Chen et al. Machine learning-based hi- Maximizes observation 5350 experimental scenarios
[26] erarchical prediction model  tasks with their priorities 1000 observation targets
and heuristic local search 3 satellites
algorithm with Python and 1 day span
CPLEX
Zhang and Genetic Algorithm with  Maximizes requests 5 scenarios
Xing [28] Matlab hosting 6 satellites and 5 antennas
1 day span
Claudet et al. An upgraded MILP with Maximizes the number 14 resources (284 activities)
[22] Matlab and GUROBI of tracks (or scheduled 1418 hours of requested
view periods) and activ-  tracking time
ities 1 week span
Zhao et al. Ant colony algorithm and Maximizes task priority 3 satellites
[25] Genetic Algorithm 2 antennas for each satellite

6 hours span with 64 tasks

Kim et al

MILP formulation with

Maximizes selected task

4 satellites

[23] Python and GUROBI 50-100 requests in different
antennas
Chen et al. Genetic Algorithm with Maximizes  execution 7 scenarios with 25-400 tasks
[24] Matlab possibility and Numerous satellites and an-
completed tasks tennas
Chen et al. MILP formulation with Maximizes requests 37 problem instances
[17] GUROBI hosting or completed 3 satellites
tasks 1 or 2 days span

Xie et al. [18]

Heuristic with C#

Maximizes observations
benefit

15 scenarios
1 satellite
1 day span

Lemay et al.
[20]

Deterministic system with
C++ and CPLEX

Maximizes the amount
of information and its ef-
ficiency

50 satellites

50 antennas

3 months span (1 minute res-
olution time)

Vazquez et al.
[30]

ILP model in Matlab and
LPSolve

Maximizes the priorities
and the active time of
passes

10 real instances
50 satellites and 3000 passes
20 antennas

A week span

Linear Programming (MILP) to reduce the number of
cancellations, solving 3 scenarios of up to 18 satellites and
6 antennas with 1790 passes, in a time frame of one day
and one week. In this work, shortening was now referred
to as Shaving, since it can arbitrarily adjust the duration
of a pass in a razor-like fashion thanks to the inclusion of
new continuous variables, in contrast with our previous
ILP formulation which only allowed integer variables.

We have developed a new shaving formulation in this
paper, which now avoids computing the sub passes and
reduces drastically the pre-processing time. We achieve
feasible solutions for large scenarios with thousands of
passes, attaining at the same time fewer cancelled passes
(with a fairer distribution among satellites). In addition,
it is proven that missed times (when satellites do not
connect to antennas for the full duration of a pass due to
another satellite already being connected) in the Shaving
Model, referred to as Shaved times, are significantly
lower, compared with the previously shortened times in
the Shortening model. All these facts make our model
a suitable alternative to deal with the Antenna-Satellite
Scheduling problem.
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B. Structure of the paper

This paper is structured as follows. After the present
introduction, Section II states the Antenna-Satellite
Scheduling problem and establishes some notation used
throughout the paper and the initial processing of data
required for our algorithm including the computation of
passes from the most basic data (satellites, antennas and
a time frame). Next, Section III is devoted to the Shaving
Model, giving details on the variables, constraints and
objective functions used in it. We continue in Section IV
by specifying 32 scenarios used to perform numerical
experiments, and give the results comparing the Shaving
Model with our previous Shortening Model. Finally, Sec-
tion V closes the paper with some concluding remarks.

II. PROBLEM SETTING AND COMPUTATION OF
PASSES

This section formulates the initial data for the
Antenna-Satellite Scheduling problem and states our goal;
then, it explains how to process these inputs to obtain
the inputs required for the Shaving Model. Next, a brief
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example of how conflicts are managed is explained, and
finally, a list of all the used satellites is presented.

A. Problem input

The initial data of the Antenna-Satellite Scheduling
problem are:

1) The time horizon for the scheduling problem,
which is an interval T'=[1;,7] with the initial and
final times respectively.

2) A set of antennas A with their geographical co-
ordinates, as well as their visibility masks. In
our example scenarios, we consider for simplicity
antennas located at the same site.

3) A set of satellites N, with their orbital data in,
e.g., TLE format. See Section B. Each satellite
generates passes when flying over the antennas.
Let P be the set of all passes.

4) A binary valued matrix C' with Cj, = 1 if
satellite j is compatible with antenna % (in terms of
frequency, protocol, etc), zero otherwise. By abuse
of notation, for each pass i we define C; C A as
the set of antennas which are compatible with 1.
For our example scenarios, we assume that each
pass is in a basic original schedule, assigned to an
antenna, but that they are compatible with all the
antennas.

With these data, the Antenna-Satellite Scheduling prob-
lem can be informally stated as finding the times of
connection of satellites (with visible and compatible an-
tennas) verifying some performance criteria, which can
included maximizing total connection time, enforcing
fairness, trying not to deviate too much from previously-
used schedules, satellite preferences, and others, which
are explained in subsequent sections. The main challenge
arises from the fact that only one satellite can be con-
nected at a time to a given antenna, and therefore many
conflicts can emerge in scenarios with numerous satellites
and scarce numbers of antennas.

B. Computation of satellite passes

To formalize the Antenna-Satellite Scheduling prob-
lem, we first need to calculate the set of passes P that
corresponds to the set of satellites N and (compatible)
antennas A in the time horizon. A pass is defined as
one window of visibility between a satellite and a given
antenna at the ground station. Thus, given a time horizon,
a satellite, and an antenna, several passes (or none) may
be generated, depending on orbital mechanics and the
underlying geometry.

The passes are indexed by 7 and the corresponding
antenna k; the windows of visiblity has an initial time
value oy, and a final time value [3;%.

To compute these passes, we have to propagate the
orbital elements of the satellites over the considered time
horizon. If considering TLEs, one can use the simplified

perturbations model SGP4 (see e.g., [33]). The propagator
calculates orbital state vectors of satellites relative to the
Earth-centered inertial coordinate system (ECI) including
the effect of the most relevant perturbations in LEO,
and from there, computing the visibility is a simple
geometrical calculation; for simplicity, a spherical Earth
was considered in the process.

Pass computation was implemented as follows. Once
we acquire the data of each satellite in TLE format, we
use a two-step process. First, we propagate all the TLEs
with a one minute sample time to delimit satellite visibil-
ity data. This is further refined, in the I-minute intervals
where visibility is detected to be possible, with a much
smaller sample time, obtaining sufficient accuracy with
rapid computations time. When discussing the scenarios,
the time spent obtaining the satellite visibility data is
referred to as data acquisition time; this time is not taken
into account in the total processing time. Figure 1 shows
the data acquisition time (on an average modern laptop,
as described in Section IV) for a scheduling horizon of
either one and four days (used in our example scenarios).
Evidently, more exact propagators could be used at the
expense of increasing these times, if precise initial orbital
data are available.

C. Input data associated to passes

Let N be a set of satellites and A the set of antennas,
indexed by letters j and k, respectively. Following Sec-
tion B, set of passes P is generated, which are indexed
by i. The following data are associated to each pass:

1) As explained in Section B, (g, 8ik), With agp <
Bik, is the time window on which the satellite
generating pass ¢ is visible by antenna k.

2) b;, is the minimum time (in seconds) that antenna
k needs to be connected to the satellite generating
pass ¢ to be able to download data. Evidently, the
longer the connection time, the larger the amount
of data downloaded.

3) pir > 0 is the priority of the pass for antenna
k. Having p;; < py, means that pass i is more
preferred than pass i’ for antenna k.

4) d;r = 1 if the pass is pre-assigned to antenna
k, and 0.5 otherwise. This parameter allows us
to enforce keeping passes in their pre-assigned
antennas, if possible, as in [30].

D. Computation of conflict pairs

After obtaining the passes, the algorithm needs as
input the list of overlaps for a given antenna k; that
is to say, how many potential “conflict pairs” exist,
therefore creating a “conflict pair set”, which we denote
as CFj. This set contains all the pairs of passes i, &’
that can overlap for a given antenna k. For this purpose,
a simple function has been created which exploits the
linear nature of the timeline of passes for each antenna
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Data acquisition time for a scheduling horizon
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Fig. 1: Data acquisition time (on an average modern laptop, as described in Section IV) for a scheduling horizon of
one day (green) and four days (blue). The dotted lines are linear fits to the data.

instead of checking pairs of passes, which would slow
down tremendously the processing time if many passes
exists.

This process to compute potential conflict pairs is as
follows. We start by storing for each antenna k, from
zero and in ascending order, all the values of («y, Bix) of
the passes, creating an ordered vector of times with joint
starting and ending times; the indexes of the passes are
also put in the same order. All passes start as inactive. The
timeline is then swept, starting at its initial value, until its
end; if for a given pass, the starting time is the current
value, then it is marked as active, but if the ending time is
the current one, it is then marked as inactive. Every time
a new pass is marked as active, one stores (as potential
conflicts) all the pairs composed by this new active pass
and all other passes which are marked as active at the
time.

We can see an example timeline with 3 passes and
2 antennas in Figure 2. For simplicity, all passes can
be on any of the two antennas. For both antennas, the
computation is thus the same, and proceeds as follows.
First, the time vector would be [0, 200, 300, 400, 500, 600]
and the associated index vector [3,1,2,3,1,2]. Starting
the timeline, only Pass 3 is active. Then Pass 1 becomes
active and one stores the pair (1,3). Next Pass 2 becomes
active and one stores the pairs (1,2) and (2,3). No new
activations happen, and all satellites become subsequently
inactive, thus obtaining the list of potential conflicts as
{(1,3),(1,2),(2,3)} (for both antennas).

. THE SHAVING MODEL

In this section, we now present a new MILP model
to solve the Antenna-Satellite Scheduling problem, which
we refer to as the Shaving Model. This new model has
a main conceptual change with respect to the Shortening
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Model presented in [30]: Continuous variables to decide
the starting time and end time of a pass-antenna connec-
tion are used. Thus, we avoid having the need to compute
all possible intersections between passes, as required in
[30] to formulate the ILP, and later in [32] which was
our first attempt at a MILP model. This computation was
extremely time-consuming when many passes are present.
By avoiding it, the Shaving Model requires much less
pre-processing time. The only time-consuming operation
is the computation of conflict pairs, but as explained in
Section D, we devised an efficient algorithm to reduce
this burden.

In this section, we detail the variables, constraints and
objective functions used in our model to formalize the
Antenna-Satellite Scheduling problem.

A. Formulation

The model presented uses the following sets of vari-
ables:

1) S; > 0 (resp. E; > 0) defines the starting (resp.
end) time of the connection between the satellite
at pass ¢ and the antenna assigned to it.

2) Vi = 1 if pass ¢ is assigned to antenna k, zero
otherwise.

3) Wy = 1 if pass ¢ is previous (or “to the left” if
represented in a timeline, which is the nomencla-
ture used in the sequel) to pass i’ (this means that
both passes are assigned to the same antenna, and
the satellite generating pass ¢ ends its connection
before the one generating pass 4’ starts its, or in
other words, the passes are not in conflict).
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Fig. 2: Initial passes for Section D example.

B. Objective function

We consider a combination of different performance
indexes to construct an objective function:

1) Moving performance: following [30], we define

Z = Z Z (»* = pir + 1)dir. Vig,

i keC;

where p* = max; p;r. This function aims at max-
imizing the sum of priorities of satellite-antenna
assignments while respecting as much as possible
a pre-arranged schedule given by d;j.

Shaving performance: Zo = > .(E; — S;). The
aim of this function is to maximize the time that
satellites are connected to antennas by keeping
as much as possible of the original length of the
passes.

2)

The objective function of the Shaving Model is a
weighted sum of both functions:

max(1 —v)Z1 +vZa, (1)

with v € [0,1]. Note that if a pass ¢ is cancelled (which
means that it is not assigned to any antenna), then this
pass contributes nothing to the objective function (because
Vie =0V k € C;, and E; = ;). The assigned passes
(which have not been cancelled), contribute in different
degrees to the objective function, depending on whether
they are assigned to one antenna or another, and their
possible length.

C. Constraints

The set of constraints of the Shaving Model is as
follows

Vi <1,V 2)
kec;
Bi—=S > > biVig, Vi 3)
keC;
E;, < Si/ —I—M(l—Wii/), VZ#Z’ (4)
Wi + Wiy > (Vi + Virg) — 1, VE,V 0,7 (5)
Si > auVik, Vi, kel (6)
E; < Bi+MA-Vy), Vi, keC (7)
B < maxfBi Y Vi, Vi ®)
keC;

Equation (2) ensures that each pass is assigned at most
to one of its compatible antennas. Equation (3) imposes
the minimum time that the satellite originating pass ¢ must
be connected to the antenna %k to be considered a valid
connection. Equation (4) enforces that, if W,;;; = 1 (i is to
the left of ¢'), then pass ¢ must end before the beginning
of pass i'. M is defined as a sufficiently large positive
number; in fact, M = maxy B suffices. Equation (5)
imposes that, if the passes ¢ and i’ belong to the conflict
pair set for antenna k, then either 7 is to the left of ¢/,
or 7' is to the left of ¢ (note that using the conflict pair
set avoids redundant constraints). Equations (6) and (7)
ensure that, if the pass ¢ is assigned to the antenna k, then
it can not start before the instant «;; nor end after (3;.
In this case, M = maxy (;; is also sufficient. Finally,
constraints (8) make sure that £; = 0 if pass ¢ is not
assigned to any antenna.

In addition, the following cut can be added, in order
to accelerate the solution process without eliminating any
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optimal solution:

Si < max By 3 Vik, Vi ©)
keC;
Equation (9) causes that, if the pass ¢ is not assigned
to any antenna, then S; = 0 (because S; is defined as a
non negative variable).

D. Comparison with Shortening Model

In this section we briefly emphasize the main dif-
ference between the Shaving Model with respect to the
Shortening Model. In the Shortening Model we need to
compute the subpasses, which are defined as all possible
intersections between distinct passes, as explained in [30].
Next, one has to assign one binary variable for each
subpass-antenna combination. For example, for the passes
in Example 1 (extracted from [30]) of Figure 3 (left) one
would need to create several subpasses for pass 2 as in
Fig. 3 (right). Note that the computation of the set of
subpasses is a challenging computational problem, since
the number of subpasses originating from the (possibly
large) set of passes may grow quite rapidly. Thus, the
preprocessing step for the Shortening Model is already
a computational burden (it may exceed the maximum
allowed running time as shown in Section B). Next, it
is required to create a binary variable Y;;, = 1 if subpass
i is assigned to antenna k, and zero otherwise. In the
Shaving Model the subpasses are not required; only the
much smaller set of passes is used. That makes the
Shaving Model more efficient than the Shortening Model,
as empirically proven in Section B.

Additionally, there are some cases which cannot be
solved by shortening without cancellation, as shown in
Example 2 extracted from [32]. In this example, shown
in Fig. 4, the candidate passes considerably overlap. Thus,
shortening, shown in Fig. 5 can only keep one pass and
has to cancel the other, whereas shaving, shown in Fig. 6,
can adjust the durations and keep both passes.

IV. COMPUTATIONAL EXPERIMENTS AND
ANALYSIS

In this section we detail the experiments we have
carried out in order to assess the quality of the model
proposed in this paper, and compare it with that in [30].
All models and functions were coded in Matlab R2021b
using Gurobi 9.1.2, on a PC with Intel Core i7-11800H
CPU (2.30 GHz).

A. Scenario generation

A number of different scenarios with the following
sizes have been generated:

1) Number of antennas: |A| € {2,4}, where |A| de-
notes the cardinality of set A. The set of antennas
A is composed of either two or four antennas,
all located at the same site, Svalbard Satellite
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Fig. 3: Example 1 of Section IIID. Conflicts (left) and
subpasses generated by pass 2 (right).

I5‘

Station (SvalSat), with visibility in all directions;
its closeness to the North Pole helps maximis-
ing communications with EOSs, typically in Sun-
synchronous (i.e. almost polar) orbits.

2) Number of satellites: |N| €
{6,12,18, 24,30, 36,42, 48}. The satellites
used are EOSs, this is, LEO satellites mostly
in  Sun-synchronous orbits. Their Two-Line
Element Sets (TLE) are obtained from CelesTrak.
We consider 48 satellites operated by different
entities worldwide: Cosmo-SkyMed (from 1 to 4),
Alsat-2A, Cartosat (from 2A to 2E), Deimos-1,
UK-DMC 2, DubaiSat-1, ERS-2, Flock-3M (from
1 to 4), H-2A R/B, HaiYang-2A, NigeriaSat-2,
PRISM, RASAT, Resourcesat-2, Sentinel (1A,
1B, 2A, 2B, 3A, 3B, 5P and 6), SkySat (A, B
and from C1 to C12), Sumbandila, TanDEM-X,
Theos and Tianhui-1. Note that some of those are
already non-operational, but we include them just
for the purpose of experimentation.

3) Planning horizon (number of days): In our example
scenarios, the interval’s length is set to either one
day or four days, this is D € {1,4}, starting on
the first of January of 2021 at 18:00 pm. Since we
are considering LEO satellites in Sun-synchronous
orbits and a site close to the Earth’s poles, we
obtain about 14 passes each day per satellite

In total, by combining the number of antennas (2 possibil-
ities), number of satellites (8 possibilities) and number of
days (2 possibilities), we generate 2 x 8 x 2 = 32 different
scenarios.

7
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Fig. 4: Example 2 of Section IIID: Candidate passes with considerable overlap.
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|

Fig. 5: Example 2 of Section IIID: Shortening solution cancels one pass.

‘ Pass 1
|

Pass 2

Fig. 6: Example 2 of Section IIID: Shaving solution adjusts the duration of the passes requiring no cancelations.

The chosen priorities p;; depend on whether the pass’
subindex is odd or even, that is, p;;=5 for even ¢, and
pir=4 for odd i.

Parameter d;;, is defined depending on the number
of antennas. If we have two (resp. four antennas), the
first two (resp. four) passes are pre-assigned to the first
antenna, and the second two (resp. four) passes to the
next one, and so on and so forth.

After the input data for the problem have been gener-
ated, we follow the steps of Section II to find the set of
passes and the conflict pairs set.

B. Computational results

Table II summarizes the results obtained in the 32
tested scenarios, with the last row showing average results
over the first 30 scenarios, since the last two could not
be solved by the Shortening Model. Column “Scenario”
identifies the tested scenario as a 3-tuple of the form
D — |N| — |A] (planning horizon, number of satellites,
number of antennas). Column “m” refers to the resulting
number of passes, which is an indicator of the problem
size and complexity. Then, for each scenario and each
model (Shaving Model or Shortening Model), in their
corresponding row we use the following notation:

1) Column “ST” (shortened/shaved time) shows the
total time (in hours) that visible satellites (i.e.,
satellites generating a pass) are not connected to
any antenna. Evidently, the smaller this number,

the better, as one wants to maximize the satellite
connection times. Note that this indicator is related
to objective Zs.

2) Column “CP” shows the number of passes that
have been cancelled. Since cancellations are unde-
sirable, it becomes important to reduce this number
as much as possible. Note that this indicator is
related to objective Z;.

Note that we imposed a maximum running time equal
to 3600 seconds, which includes both pre-processing and
the solver time; in the Shaving algorithm, pre-processing
is quite fast due to efficient computation of conflict pairs
(see Section D) and therefore most of the time is saved
for the solver, while this may not be the case for the
Shortening Model. Note also that, if the solver reaches the
maximum running time, it returns a solution which does
not necessarily needs to be optimal. The last two scenarios
could not be solved by the Shortening Model (due to
the considerable number of passes, the pre-processing,
which requires self-intersection of all passes, could not
be finished).

Comparing the two models, we highlight that, on
average, the Shaving Model with respect to the Shortening
Model has the following advantages:

1) It reduces less time with respect to the visibility
time windows (32.63 hours against 33.48).
2) It cancels fewer passes (13.03 against 93.3).
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TABLE II: Complete results over the 32 tested scenarios for v = 0.5.

Instance Shaving Model Shortening Model
Scenario m ST CpP ST Cp
1-06-2 85 0.50 1 0.50 1
1-12-2 173 1.45 4 1.66 2
1-18-2 253 5.95 3 6.31 9
1-24-2 336 12.63 9 13.11 28
1-30-2 421 20.73 9 21.28 61
1-36-2 502 32.73 11 33.22 92
1-42-2 582 41.90 19 42.35 84
1-48-2 660 50.75 23 51.34 124
1-06-4 85 0.00 0 0.00 0
1-12-4 173 0.00 0 0.11 2
1-18-4 253 0.42 1 0.73 5
1-24-4 336 2.39 1 2.74 9
1-30-4 421 4.95 4 5.59 21
1-36-4 502 9.79 1 10.34 18
1-42-4 582 14.42 2 15.20 25
1-48-4 660 20.24 2 20.95 36
4-06-2 337 1.04 1 1.25 5
4-12-2 685 9.31 7 10.12 12
4-18-2 1004 | 26.21 19 27.56 37
4-24-2 1336 | 56.87 21 58.59 132
4-30-2 1660 | 85.67 30 87.22 226
4-36-2 1982 | 134.39 35 135.88 370
4-42-2 2300 | 171.26 75 172.86 525
4-48-2 2604 | 206.15 102 208.04 704
4-06-4 337 0.00 0 0.35 4
4-12-4 685 0.10 0 0.43 6
4-18-4 1004 1.31 1 2.46 20
4-24-4 1336 9.68 1 11.79 47
4-30-4 1660 18.50 4 20.76 55
4-36-4 1982 | 39.51 5 41.62 70
4-42-4 2300 | 57.34 7 - -
4-48-4 2604 | 80.20 8 - -
Average 32.63 13.03 33.48 93.3

Looking at the particular results for each scenario, we
can see a few instances where the Shaving Model cancels
more passes ({1-12-2}) or where the presence of sufficient
antennas (4) for a few satellites (6 or 12) needs only a
few operations ({1-06-4}, {1-12-4}, {4-06-4},{4-12-4}).
Note that these case are not very challenging given the
rather small number of passes per day. However, as soon
as the number of satellites and antennas grow large and
numerous passes are generated (e.g. {4-42-4} or {4-48-
4}), we can see that the Shaving Model offers excellent
performance.

Regarding cancelled passes, one can see that the im-
provement is dramatic. Since fewer passes are cancelled,
and satellites are connected for longer times, we can
confidently state that the Shaving Model yields better
results than the Shortening Model, even if more passes
are shaved. Besides, the Shaving Model escalates much
better than the Shortening Model (as suggested by the fact
that, when the scenarios get larger, the Shortening Model
is unable to return a feasible solution). We do not have
results for Shortening Model in the last two scenarios
because Matlab ran out of memory, whereas the Shaving
model always returned a solution.

In addition, comparing the number of shortened passes
in the Shortening Model versus the shaved passes in the
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Shaving Model, one can notice that, in average, 55%
more passes were affected by the shaving operation. This
is an expected outcome, being an indicator of how our
model works, since to avoid cancellations one needs to
better adjust the schedule by shaving more passes. In
other words, both the total shaved time (ST column) and
cancelled passes (CP column) are reduced due to a better
distribution of shaved passes, meaning that more passes
are shaved but with less total shaved time (ST column).
When analyzing the results at the satellite level instead
of from the point of view of passes, Table III shows
how, for the Shaving Model, the number of satellites
with one (or more) cancelled passes also diminishes;
indeed, the Shortening Model has about 2.5 times more
satellites with at least a cancelled pass. Moreover, another
notorious improvement from the point of view of satellites
is a fairer distribution of cancelled passes, in terms of
the satellites generating the passes. With the previous
Shortening Model, it was common to find numerous
cancelled passes generated by a single satellite; in fact,
in some instances, up to half of the passes generated
by a single satellite were cancelled. On the other hand,
cancelled passes are quite uniformly distributed between
satellites generating them with the Shaving Model.
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The accumulation of cancelled passes belonging just
to a few satellites becomes more evident in scenarios
with two antennas, and tends to be proportional to the
number of satellites. To illustrate this trend, we have
extracted the number of cancelled passes per satellite for a
particular scenario with numerous satellites, two antennas,
and a time-span of one day, that is, scenario 1-48-2. The
results are shown in Figure 7, where it can be seen how
cancelled passes accumulate for just a few satellites for
the Shortening Model, whereas the Shaving Model has a
fairer distribution of cancellations.

C. Effect of the cut

In Section III we claimed that (9) was a feasible cut
for our problem. We now show that this set of constraints,
indeed, does improve the efficiency of the model. The re-
sults shown before for the Shaving Model do include (9).
In Table IV we show a comparison regarding CPU time
(in seconds) between the model with these constraints
and the model without these constraints, with v = 0.5.
For each of the scenarios where both models found the
optimal solution in less than 3600 seconds, we show the
CPU time of the model with the cut, and that of the model
without the cut. The last column computes the percentage
difference between these two. The reader may note that
in eight of the 14 such scenarios, the model with the cut
found the optimal solution in less time, with an average
percentage difference of 16%.

D. Effect of v

In order to further test the efficiency of the new
model, we run a new set of experiments in which all
scenarios are solved by the two models, varying v €
{0,0.2,0.4,0.6,0.8,1}. Due to length constraints, we only
show average results for each value of v in Table V. On
that table we see that, the Shaving Model always cancels
less passes that the Shortening model, and only for v = 0
the Shortening Model reduces less connection time than
the Shaving Model. All in all, we can fairly state that
the Shaving Model returns better solutions independently
of the value of . It should also be emphasized that the
Shortening Model is unable to return a feasible solution
to the last two scenarios within one hour, regardless of
the value of ~, whereas the Shaving Model finds feasible
solutions to all scenarios and all values of ~.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new Mixed Integer
Linear Programming model (named Shaving Model) to
efficiently solve the antenna-satellite scheduling problem,
which consists of scheduling abundant requests for allo-
cation of antenna time slots by customers satellites. The
problem complexity grows as the number of satellites
increases. Our method has proven effective for 32 realistic
scenarios, over an horizon of a few days. The results

showed that the Shaving Model yields better solutions
for larger scenarios, fairly lower shaved times, and much
fewer cancelled passes than the previous Shortening
Model, with much shorter pre-processing times and a
fairer distribution of cancellations among satellites.

Future research will focus on the inclusion of addi-
tional criteria, such as, user technical specifications (e.g.,
limited storage), new variables that take into account
unpredictable failures, or changing the objective functions
by only prioritizing the processes of shortening or mov-
ing. Another possible line could be the development of
a metaheuristic algorithm, capable of rapidly producing
feasible solutions for large scenarios.
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4-48-2 43 48
4-06-4 0 3
4-12-4 0 5
4-18-4 1 12
4-24-4 1 18
4-30-4 4 23
4-36-4 4 30
4-42-4 21 -
4-48-4 23 -

Average 7.47 18.63

TABLE 1V: Effect of the cut (9).
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TABLE V: Effect of parameter ~.
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Average-Shortening Model: 3.6
Average-Shaving Model: 0.48
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Fig. 7: Number of cancelled passes per satellite for scenario 1-48-2
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