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Abstract—This paper introduces a multi-metric multi-

constraint strategic path planning framework applicable to 

unstructured urban airspace. The planner is based on a 

modular and scalable approach to handle several information 

sources and aspects characterizing urban flight scenarios, 

such as risk and weather maps, landing site locations, 

navigation requirements, and mobile and fixed obstacle 

characteristics. This information is coupled with dynamic 

constraints and UAV specifications to derive a flyable and safe 

path connecting a start position and a destination. Strategies 

for data gathering and synthesis, used to keep a reduced 

computational burden, are described along with the path 

planner algorithm. The latter consists in three steps 

specifically developed to handle both static and time-varying 

information. A multi-objective cost function with variable 

weighting coefficients has been implemented so that the most 

relevant factors for the considered applications can be 

selected in an adaptive fashion. The performance of the 

developed algorithms is tested by investigating the planner 

behavior when changing its inputs as well as the cost function 

weighting coefficients, demonstrating the ability of the 

planner in returning an efficient and safe trajectory.   
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I. INTRODUCTION 

Urban Air Mobility (UAM) represents an opportunity-

rich scenario for Unmanned Aircraft Systems (UAS), 

which are expected to carry out several missions in urban 

environments in highly autonomous fashion, in the next 

future. The growing requests for operations to be carried 

out by Unmanned Aerial Vehicles (UAVs) in very low 

altitude and people dense environments calls for improved 

planning and decision-making capabilities to ensure safe 

integration of these platforms. In addition, as the number 

and density of UAVs increase, more sophisticated airspace 

management [1] and traffic control strategies are needed. 

Trajectory design in these environments is not a trivial task. 

It consists in defining the trajectory connecting a start and 

a goal point which can be flown by the vehicle. Fixed and 

mobile obstacles, navigation performance, and dynamic 

constraints of the UAV must be taken into account during 

trajectory design to ensure path flyability.  

In order to optimize the path while also reducing the 

computational burden, path definition usually includes a 

strategic (i.e., offline) phase and a tactical (i.e., online) 

replanning step which modifies the strategic trajectory in 

case an unpredicted event (e.g., incoming conflict with an 

a priori unknown obstacle) can negatively impact its 

safety. An example of this strategy is reported in [2], where 

strategic path definition carried out with RRT* algorithm 

is followed by a tactical deconfliction strategy which uses 

precomputed trajectories to avoid collisions with mobile 

obstacles. Strategic phase uses all the a-priori information 

to plan an optimal path, and its output is strictly related to 

the quality and the quantity of available information, thus 

making information gathering a crucial step of the planning 

phase. The more information is available at strategic level, 

the more it is unlikely that the path has to be modified 

during the tactical phase. Several services are now under 

development for retrieving and predicting information 

related to the urban environment, such as GNSS coverage 

and integrity [3]–[5], ground risk [6]–[8], and weather [9] 

and/or wind [10] information. But other information 

regarding urban environments and strictly connected to the 

airspace should be considered, such as airspace structure 

[11], [12] and landing site locations. 

Airspace structure highly influences the path planning 

solution, due to the imposed rules over operating areas. 

Several airspace concepts have been defined so far ranging 

from unstructured (allowing free flight) to structured 

configuration where the usage of geovectoring, zones or 

lanes and tube approaches have been considered [11]. 
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Landing site definition is a widely investigated problem in 

the open literature, where several strategies have been 

developed for correctly tailoring landing site selection to 

environment topography and ground risk [13], [14]. 

Besides optimally selecting ground landing site, other 

approaches have been considered which only assume as 

landing opportunities vertiport locations [15]. 

Risk and weather data are generally used within the path 

construction phase either as information to drive the 

trajectory optimization, or to define areas the UAV cannot 

cross, e.g., regions of space where the wind speed is higher 

than the maximum admissible by the vehicle, or the risk is 

too high. The problem of defining the trajectory which 

minimizes the ground risk has been widely investigated in 

the open literature both in 3d [16] and 2d scenario [17]. 

Risk information is usually derived using population data 

over different weekdays, obtained by census data [18], real 

time sensing [19], phone activity. However also models 

involving multi-information risk assessment, thus 

combining population information with urban environment 

topology have been used in [7], [8].  Weather-based path 

definition has been tackled both in strategical and tactical 

phase in [20]. Here, wind module information has been 

used either to optimize the overall flight time [21], [22] or 

to minimize the energy consumption of the UAV [22]–[24]. 

As far as the navigation performance is concerned, the 

obstacle dense urban environment requires a small UAV 

localization error while negatively impacting, at the same 

time, the performance of classic GNSS/INS fusion 

strategies. Indeed, GNSS signals are deviated and or 

obstructed by the 3D environment, potentially producing 

unreliable and large errors in navigation solution. To meet 

required navigation performance (RNP) levels, several 

solutions have been developed in the open literature which 

either exploit a selection mechanism of GNSS signals [25], 

[26] or use additional information coming from 

exteroceptive sensors, such as LiDAR [27], cameras [28], 

or cooperative platforms [29], [30]. Besides these 

approaches, a very common solution when dealing with 

path planning consists in building a navigation-aware 

trajectory, which aims at fulfilling RNP and minimizing the 

navigation error covariance. Following this approach 

several works developed path planning solutions based on 

Bellman-Ford [31], A* [32] or Partially Observable 

Markow Decision Process (POMDP) [33].  

To overcome the computational complexity of the 

aforementioned graph-based algorithms, which increases 

with the environment size, the authors developed in [5] a 

navigation-aware planning strategy using a sampling based 

approach, i.e. Batch Informed Tree (BIT*), and GNSS 

coverage maps. The navigation-aware trajectory was 

chosen among several alternatives (derived as a function of 

the GNSS coverage conditions), as the shortest one 

fulfilling the RNP. 

 Following this line of research, this paper aims at 

extending the work carried out in [5] to develop a multi-

metric multi-constraint strategic planning framework able 

to deal with several constraints and information inputs 

which are relevant to the urban environment. This 

framework is specifically designed for rotorcraft and has 

been developed within the project SMARTGO (gnsS-

enabled urban air Mobility through Ai-powered 

environment-awaRe Techniques for strateGic and tactical 

path planning Operations) funded by the Italian Space 

Agency and coordinated by the University of Naples.  

The paper provides the following contributions: 

• It develops a modular strategic planning framework 
which can handle both mobile and fixed obstacles, 
and can provide a trajectory which fulfills the 
airspace constraints while being navigation, risk, and 
weather aware; 

• Due to the significant amount of information the 
planner has to deal with, an innovative data 
simplification approach is introduced, so that some 
of the planner inputs can be stored in maps. 

• Path geometry can be shaped by a weighted multi-
optimization cost function which can be adapted to 
the user needs; 

• Path planning strategy is tested in a wide city-like 
environment based on a real world scenario. 
Algorithm performance is assessed by changing 
input information and cost weight.  

The strategic algorithm detailed in this paper is part of a 

broader planning pipeline developed within the 

SMARTGO project, composed by a strategic (off-line) 

path definition and a tactical path modification if an 

unpredicted event should compromise the path safety 

during the flight. Details about the entire planning 

framework are reported in [34]. 

To the best of the authors' knowledge, this paper 

represents the first attempt of combining all the considered 

information sources and constraints for path generation in 

UAM relevant environments. A multi-optimization multi-

constrained algorithm using GNSS/Lidar, and risk maps 

have been proposed in [18], while using constant altitude 

routes. Following a similar line of reasoning, the current 

paper enables full 3d planning and adds several information 

inputs including static risk maps, landing site maps, 

navigation performance (depending on GNSS coverage), 

wind maps and dynamic traffic information which 

represent a wide range of information sources and 

constraints relevant for path generation in UAM relevant 

environments.  

The remaining of the paper is structured as follows. 

Section II introduces the modular inputs that the planner 
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has to take into account and describes data simplification 

approaches. Hence, the developed planning framework is 

detailed in section III. Section VI reports results obtained 

in simulations considering a real-world scenario. Finally, 

section V draws the conclusion of this work. 

II. CONSTRAINTS AND PLANNING 

INPUTS 

As mentioned earlier, the requirements and constraints 

to be accounted for when defining a safe path to be flown 

in urban environment are multiple and of different nature. 

Following a scalable approach, the conceived planner has 

to be able to work with the whole set of information, or with 

a subset of it. Environmental, airspace and vehicle 

constraints must be taken into account to ensure the 

planned path meets safety and flyability requirements.  

Environmental constraints are mostly related to the 

characteristics of the scenario and include 3D obstacles, 

ground risk, and weather/wind forecast.  

Airspace constraints are all the constraints which are 

related to the traffic and airspace management system. 

Dealing with the traffic is the most complex aspect. Indeed, 

the path planner should ensure a conflict-free trajectory, 

even with increasing traffic density. On the other hand, 

airspace management system constraints possibly include 

areas for landing and contingency landing (e.g., vertiports) 

which limit the departure and arrival locations of the 

UAVs, as well as airspace rules, no-fly zones, and altitude 

limitations. 

Path flyability is also linked with vehicle constraints. 

They include dynamic constraints (i.e., maximum velocity, 

limits on flight path angle, path length, and endurance) and 

autonomy constraints. The latter ones are specifically 

accounted for to ensure that the UAV can fly the mission 

in an autonomous way, and are strictly related to navigation 

and control errors in following the trajectory. Navigation 

and control error bounds must be taken into account when 

defining separation minima of the UAV with respect to 

moving and fixed obstacles. In addition, navigation error 

propagation along the trajectory is needed to verify that the 

navigation error is always consistent with the RNP.  

A.  Constraints simplification 

Since most of the optimization techniques have been 

developed to deal with spatial based representations, 3D 

and 2D maps are used to enclose and simplify some of the 

aforementioned constraints. These include: 

1) 3D Maps of the fixed obstacles and No-fly zones (NFZ) 

obtained from publicly available sources and the 

associated zone classification information which can be 

retrieved from CityGML database [35]. 

2) 2D Risk maps which associate to each ground 

coordinate a risk level. Although the planning 

framework can be adaptive to any risk map information, 

in this work they are derived by classifying the terrain 

using satellite imagery, and combining this information 

with the knowledge of the building position and the 

CityGML-based information, as detailed in [34]. Six 

levels of risk are envisaged, in ascending order. Level 1 

and 2 include natural and rural areas, and industrial 

areas, respectively, which are characterized by low 

population density. Level 3 and 4 are associated with 

cities, with a lower level of risk assumed over the 

building roofs (i.e., level 3) due to sheltering factor 

considerations. Level 5 includes high risk areas where 

UAV flight should be avoided if possible (e.g., 

hospitals, power plants and railway stations). Finally, 

areas where flight is forbidden (airports and military 

areas) is included in Level 6, which can be included 

within the No fly zones. Especially considering levels 3 

and 4, it is worth remarking that the level of risk in 

urban areas may vary as a function of the forecasted 

population density as done in [8]. 

3) 2D Maps containing information about distance from 

the landing sites. They are cost maps derived from the 

knowledge of the landing sites, whose location is 

known and fixed. A lower cost is associated to the 

points whose horizontal distance from the landing sites 

is smaller.  

4) Multi-dimensional wind maps. They associate the 3D 

information about forecasted wind module and 

direction to each ground coordinate of the environment. 

This information impacts energy costs and may also 

define no fly zones when the conditions are beyond the 

worst ones that are acceptable for safe flight. Due to the 

granularity in space and time of the current available 

wind maps, a static map is considered in this paper 

which uses only 2D variation of the wind information, 

assuming it constant in the vertical direction. 

5) GNSS Coverage Maps, which are 2.5D elevation maps 

defining for each point of the environment the altitude 

at which the position dilution of precision (here referred 

to simply as DOP) becomes lower than a threshold. A 

discrete number (J) of GNSS coverage maps is defined 

corresponding to various DOP levels. In general, these 

elevation maps inflate for decreasing DOP value. They 

are derived as detailed in [5], and retained constant 

along the whole mission. GNSS coverage maps 

synthesize the navigation performance of a GNSS 

receiver in a simplified and concise information, 

avoiding the need to propagate the navigation error 

when building the trajectory. 

6) Traffic information known at strategic level, which 

includes the 4D trajectory of the mobile obstacles. This 

information is lumped in time-varying 3D maps. The 

latter, being of the same nature of the fixed obstacles 
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map, allow collapsing them in a single information 

when performing collision checks. Being Ttot the total 

endurance of the vehicle whose flight plan has to be 

built, information about other vehicles’ trajectories is 

stored in No occupancy maps (OM) each one covering 

an interval of time of duration Δt. 

                          = tot o
t T N                                    (1) 

Specifically the no-th (no = 1,…,No) map is used by the 

planner as mobile obstacle occupancy map in the 

interval of time going from tno-1 to tno, assuming that tno 

= t0 + noΔt and t0 is the start time of the mission. This 

occupancy map includes the volumes which are 

assumed to be reserved to the mobile obstacles (called 

“intruders”) and cannot be crossed by any other UAV. 

These volumes are obtained by offsetting with a margin 

both in position and time the intruder trajectories in the 

no-th interval as detailed in [36]. The position offset is 

obtained by assuming the intruder is enclosed in each 

point of the trajectory in a sphere with radius dc. The 

time offset, defined as Δtc, is used to account for intruder 

timing uncertainties and to increase the safety distance 

along the intruder direction of motion.  

Some of the information stored within the maps can 

either vary as a function of the initial time of the mission, 

i.e., t0, such as the GNSS coverage maps [5] and the traffic 

information, or can be dependent on the safety level 

required by the user. As an example, level 5 areas can be 

included in the NFZ if a more stringent requirement on risk 

is demanded by the user. An example of the maps described 

above is shown in Fig. 1. Fig. 1a and b show the lateral and 

top view of fixed obstacles (gray) and NFZ (orange) maps. 

In order to contextualize the data, 3D obstacles are also 

reported in all the other subfigures. Normalized landing site 

maps and risk maps are reported in Fig. 1c and d, 

respectively. Risk maps are characterized by two colors in 

this case, highlighting in black the buildings which are 

associated with the lowest cost. Landing sites map’s 

intensity increases with the distance from the landing sites 

(depicted as red asterisks). The wind map reports the 

module and the direction of the wind, a top view 

representation is shown in Fig. 1e. Fig. 1f reports the time 

varying occupancy map of a single mobile obstacle. The 

blue color delineates the volume which encloses the 

trajectory of the intruder (which is the union of all the time 

varying occupancy maps). The occupancy volume which is 

accounted for in the 3rd time-varying map is highlighted in 

red. The trajectory of the intruder during the time interval 

t2-t3 is reported as a grey line to highlight the positioning 

and time offset used to generate the time-varying maps. 

Finally, the 3D GNSS coverage map corresponding to a 

DOP value of 4 is reported in Fig. 1g. 

 

Fig. 1. Example of planning inputs. (a) 3D and (b) topview 

representation of fixed obstacles and NFZ. (c) Landing site (d) risk 

and (e) wind maps top views. (f) Mobile obstacles maps: volume 
enclosing the obstacle trajectory (blue) and 3rd time-varying 

occupancy map (red). (g) 3d representation of GNSS coverage map 

obtained assuming DOP = 4. 
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III. STRATEGIC PATH PLANNING 

ALGORITHM 

The strategic path planning algorithm, whose flowchart 

is reported in Fig. 2, consists of three steps specifically 

designed to handle time-varying information (i.e., 

navigation error and moving obstacles trajectories) while 

still exploiting the potential of “static” planners in giving 

optimized solutions. Specifically, static and dynamic 

information are handled by two different and sequential 

steps, defined as Step I and II. The two steps are repeated 

for each GNSS coverage map (j = 1,…,J)  to associate a 

trajectory to each navigation level, thus avoiding the need 

to propagate the navigation error within the trajectory 

building process. At the end of step II, J polygonal chains 

are available as candidate solutions. Step III converts these 

trajectories in smoother paths and compares them, so that 

the trajectory which has the minimum cost is chosen as the 

final solution of the strategic planner. Details about the 

three steps are given in section from III.A to III.C. 

A. Optimized Polygonal chain generation 

Step I aims at defining for each GNSS map an optimized 

polygonal chain which accounts for all the static 

information. It is carried out by using the Open Motion 

Planning Library (OMPL) [37] framework, which 

implements some of the most common planners, and allows 

selecting the most suitable solution. A Batch informed tree 

(BIT*) [38] planner has been chosen for our aim, and 

modifications have been applied to the default version, to 

accommodate the multi-objective optimization and the 

multiple constraints derived in section II.  BIT* is an 

informed sampling-based algorithm which performs 

“rewiring-and-cut” to the three to return an optimized 

solution with a reduced computational time. Because of the 

rewiring operation, no time dependent information and 

constraints can be accounted for during the solution 

building process. Indeed, rewiring changes locally the time 

history of the nodes, which would require checking again 

the path feasibility for all the following segments [39], [40]. 

The solution of each (j) iteration over GNSS coverage 

map is a polygonal chain minimizing the optimization cost 

while satisfying the planner bounds. The planner also 

reports, for each polygonal chain, segment information 

about mean velocity, time-to-fly and required energy to be 

covered either in wind (Ew) or no wind (E0) condition. 

Planner segment information and planner costs and bounds 

are detailed in the following sub-sections. 

1) Planner segment information 

Planner segment is defined as the straight line included 

by two waypoints of the polygonal chain. Its mean velocity, 

elapsed time and mean energy depend on the wind direction 

and intensity, on the cruise velocity of the UAV, and on its 

aerodynamic characteristics. The ground velocity of the 

UAV in a North East Down (NED) frame, is referred to as 

vg and is directed along the planner segment. The norm of 

this vector (i.e., vg) is equal to the cruise velocity if allowed 

by the wind conditions. Since the segment could be in 

general very long while wind conditions can change with 

higher spatial frequency, vg is defined by averaging on 

several subdivisions of the segment (referred to as 

subsegments in the following) with a spacing of Δsv. For 

each (i) subsegment, the tentative airspeed (va,i) is derived 

as the difference between the desired ground velocity (i.e., 

vc, directed along the segment and with norm equal to the 

cruise velocity, i.e., vc) and the wind velocity sampled at 

the initial point of the subsegment, i.e., vw,i, as follows 

  , ,a i c w i= −v v v  (2) 

The ground velocity of the subsegment (i.e., vg,i) is given 

by 

 ( )
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Where ||a|| and a(s) are the operators which give the 

norm of the vector and its projection along the segment 

direction, respectively. m- is a constant which scales down 

the ground velocity in order to keep the airspeed equal to 

the 80% of the maximum admissible velocity by the vehicle 

(vmax), in the case ||va,i|| > vmax. If velocity reduction brings 

the norm of ground velocity to be smaller than the 

minimum admissible velocity (vmin) the path is considered 

not flyable. If the component of the airspeed along segment 

direction, i.e., va,i(s) is smaller than 0, the wind velocity on 

the vehicle tail is greater than the desired ground speed and 

it is convenient to increase the ground speed to 

accommodate the wind on the tail instead of counteracting 

it and thus producing an increase of energy consumption. 

Therefore the constraint m+ is used to make va,i(s) = 0. Once 

vg,i is obtained, the current airspeed (i.e., ,a iv ) is estimated 

by replacing vc with vg,i in (2). These velocities are used to 

compute energy consumption and define travelling time.  

As in the velocity case, energy consumption and 

travelling time are defined in each subsegment (Ei and τi, 

respectively) and summed up to obtain the segment-related 

value. The total time for covering each subsegment is 

 , = i v g is v , (4) 

 Energy consumption for electric multirotors is in 

general computed by considering the aerodynamic 

coefficients of both platform and propeller’s blades, and 

using battery and motor models to retrieve the current 

intensity (with first order modeling), and the associated 

required power and energy [41], [42]. In this work, battery 
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and motor modelling are not accounted for, since an 

approximate estimate of energy consumption is required to 

verify path flyability. Furthermore, the involved modeling 

parameters may be hard to find for existing configurations, 

and the more complex model can affect the path definition 

by increasing the computational burden. Therefore, the 

energy consumption is obtained by multiplying τi by the 

required power of a flying helicopter (i.e., Pi) derived with 

the rotor theory [43], as 

 , 0, , ,i r i i p i c iP P P P P= + + + , (5) 

where Pr,i is the induced power obtained applying the 

rotor momentum theory, P0,i is the viscous power which 

depends on the rotor blade drag. Pp,i and Pc,i are the 

parasitic and climb power, required to overcome the 

platform drag and increase its gravitational potential, 

respectively.  

Induced and parasite power can be expressed in terms of 

coefficients, i.e., Cpr,i and Cp0,i, so that 

 

 
Fig. 2. Strategic planner flowchart 

 ( ) ( )
32

, 0,, 0,  ++ =  r i ir i i b b b
Cp CpP P N r r . (6) 

where Nb, rb and Ω are the number, the radius and the 

angular velocity of the propellers, respectively and ρ is the 

air density. Cpr,i is a function of the thrust coefficient (Ct): 

 

3
2

,
2

r i

Ct
Cp =


. (7) 

κ is a coefficient accounting for non ideality losses 

which can be assumed equal to 1.15 [43]. Ct expression can 

be found in [42] for angular velocities of the blades 

expressed in RPM, using Ω in rad/s Ct is [44]: 
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. (8) 

ε is the downwash factor, λ and ζ are correction factors. 

η0 is a factor connecting the lift coefficient of the blade 

profile with its angle of attack. All the elements which are 

highlighted with a b subscript are blade-related, and include 

the blade number (Bb), its zero-lift angle (αb) and aspect 

ratio (ARb). θb is the angle of attack of the blade section, 

which, although counter intuitive, is constant 

independently from the forward velocity of the propeller, 

which is very small with respect to the rotational velocity 

of the blade. Conversely, the viscous power coefficient 

depends on the blade profile drag coefficient (i.e., Cd) [43]: 
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,
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b
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R

v
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where Kv is scaling factor accounting for forward 

velocity contribution to the profile drag and σ = 2Bb/πARb 

is the blade solidity. Cd is constant and can be derived as 

detailed in [42], as a function of the zero drag coefficient.  

The climb power exists only if a vertical velocity is 

envisaged and is equal to the product between this velocity 

and the vehicle weight. In descending phase, which 

requires less power than climbing, half of climbing power 

is accounted for.  

The parasitic power contribution is given by computing 

the dot product between the velocity and drag vector, which 

depends on orientation of the vehicle. Vehicle orientation 

(pitch and roll angles) and required thrust (i.e., Ti) to bear 

the current airspeed, are found by solving the non-linear 3D 

trim equations, which are omitted here in for the sake of 

brevity. The interested reader is referred to [42]. Rotational 

velocity of the blades can be obtained by Ti using [44]: 

 
4

/i b

b

T N

R Ct
 =


. (10) 

The adopted energy consumption model considers a 

quadratic dependance of drag on airspeed [45]. Multirotor 

UAS literature shows that linear drag modeling is effective 
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at low airspeeds and limited tilt angle [46]. Nevertheless, 

due to the main interest in moderate to relatively high 

airspeed, which also emphasizes the contribution of the 

drag generated by the frame (quadratic in nature), quadratic 

modeling is here considered adequate. Future works will 

address the injection in the planner of different energy 

consumption models and the effects on the final solution.   

2) Planner Cost 

The optimal path must be searched as the one 

minimizing the cost function which includes path length (l), 

ground risk (r), landing site (d) and energy/wind (e) costs. 

 = + + +l l r r d d e ef w C w C w C w C . (11) 

In (11) wx indicates the weight factor for the cost Cx. The 

length cost is estimated by computing the polygonal chain 

extent, i.e., Cl = L, being L the overall path length. Risk and 

landing site costs are obtained by integrating over the path 

extension the risk and landing site information reported in 

the dimensionless maps shown in Fig. 1d and c, 

respectively. Using dimensionless information provides 

over the integration a quantity which has the same unit of 

the length cost. Following this approach, also wind/energy 

cost is obtained by integrating the energy information along 

the trajectory. In order to nondimensionalize this 

information, an approach similar to [22] has been used so 

that the energy contribution to cost is estimated by dividing 

the required energy with and without wind. For each 

planner segment of the energy cost is 

 

, ,
0 0 0= =



 =  = 




 w i w i

i i

w i
e

i i

i

P t
E

C l l
E P t

v v

. (12) 

Where Δl is the segment length and the ratio presents at 

the numerator and denominator the energy obtained 

estimating Pi and Δti over each subsegment accounting or 

not for wind information, respectively. Specifically, the 

quantities 
, 0=w i

iP
v

 and 
, 0=


w i

it v
 indicate subsegments’ 

power and flying time in case no wind is considered. The 

overall energy cost i.e., Ce, is obtained by summing up ΔCe 

related to each planner segment.  

3) Planner Bounds 

As far as the planner bounds are concerned, flyable 

trajectories are those which lie above the GNSS coverage 

map, are free from collisions with fixed obstacles and NFZ, 

and satisfy the altitude and flight angle limitations imposed 

by vehicle dynamic and/or airspace constraints. In addition, 

wind constraints are also accounted for, by excluding the 

paths which require to fly in excessive wind areas, or whose 

ground speed estimated with (3) is smaller than vmin.  

Collision free requirement is ensured by modeling the 

vehicle as a sphere of radius rp, and avoiding its collisions 

with NFZ and fixed obstacles. The sphere radius is 

obtained by summing up a safety distance dm to the 

maximum admissible positioning error (Δpmax) which is 

scaled with a coefficient Km≥1: 

 maxp m mr d K p= +  . (13) 

Differently from [36], where the vehicle bound was 

modeled as an ellipsoid with time-changing size equal to 

the expected positioning error, in this work a worst case 

logic is applied and the maximum navigation error is 

accounted for to prevent vehicle collisions with obstacles. 

This choice allows using a time-invariant information 

which is compliant with the BIT* framework, and has little 

impact on the trajectory generation since the time varying 

safety ellipsoid plays a role only when dm = 0, as 

demonstrated in [36]. 

Maximum endurance and energy consumption must also 

be taken into account when verifying path flyability. Total 

elapsed energy is estimated for each point of the BIT* tree 

by accounting for the previous history. Since rewiring 

operation changes the point history, cumulative energy 

information associated to tree’s points cannot be used to 

exclude paths. Conversely, once the BIT* solution is 

available, energy consumption can be addressed and if the 

required energy is greater than the available one, cost 

steering mechanism is adopted to make the planner search 

for shorter paths, by increasing wl in (11). If the BIT* 

planner returns an energy-unfeasible path, Nt tentatives are 

performed to obtain a feasible solution by incrementally 

increasing wl. 

B. Strategic Deconfliction 

Time varying information about mobile obstacles, 

omitted in the previous step, is used at this stage to locally 

modify, when needed, the polynomial path resulting from 

STEP I. An RRT-based algorithm has been developed 

which aims at locally modifying the trajectory while 

driving the vehicle towards the previously computed 

trajectory when the collision has been solved, in order to 

keep trajectory optimality. RRT structure has been used 

instead of optimized RRT* [47] and its informed version 

[48], to store during the tree building process cumulative 

information about nodes, such as time of arrival and 

elapsed energy, without the need of recomputing it due to 

the rewiring process. A similar strategy has been adopted 

in [49], to accommodate energy and dynamic constraints 

when planning for the vehicle trajectory. The RRT-based 

local replanner uses the same bounds defined in STEP I to 

check path feasibility. In this case, the cumulative energy 

information is also taken into account to exclude non 

feasible points (i.e., whose energy consumption is higher 

than the maximum value). Velocity, energy and time 

required to fly each segment are derived as detailed in 
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section III.A.1. Landing site and risk map are not 

considered at this stage because they only contribute to the 

optimization cost which is not accounted for due to the non-

optimal nature of the RRT algorithm.  

The RRT building process, which is detailed in 

Algorithm 1, uses information about the list of waypoints 

obtained in the previous step, referred to as W, to support 

informed sampling directed towards the previous planned 

path, and aims at building a feasible trajectory going from 

the first (i.e., wstart) to the last (i.e., wgoal) point of this list. 

The RRT tree, namely Γ, stores for each node information 

about position, time of arrival, and total energy. The 

associated subtrees containing this information are referred 

to as Γp, Γt and Γe respectively. Γp is initialized as wstart, Γt 

as the initial time of the mission, i.e., t0, and for the first 

node, the total energy is set equal to zero (lines 11-13). The 

process ends when wgoal is added to the tree (line 31) or the 

maximum number of iterations (i.e., K) is reached. At each 

step, the building process tries to add to the tree a point wn 

from W/Γp (line 16). This list includes the points belonging 

to W which have not been already added to Γp. wn is the 

first point in the W/Γp list which satisfies 

 ( )( ) ( )( )0 1  − −goal goalgoal nΓ Γw ww n w n , (14) 

where nΓ() is the operator yielding the nearest neighbor 

within the tree of the points in the brackets. If the path to 

wn from its nearest neighbor nΓ(wn) is feasible (line 17), wn 

is selected as the new point to add to the tree, i.e., xw. If it 

is not, the last feasible point of the segment connecting 

nΓ(wn) to wn (i.e., xc) is used as the central point to perform 

a random extraction from a gaussian distribution (lines 20-

21). The random point xr becomes the next candidate point 

to add to the tree (i.e., xw) if the segment going from nΓ(xr) 

to xr is collision free (lines 22-24). If there is a suitable 

candidate to be added to the tree (line 26), xw is added to 

the tree and connected to xn which is either its nearest 

neighbor, i.e., nΓ(xw) or its preceding point in the tree if its 

path to xw is feasible (line 27). The operation of selecting 

xn by using as tentative the point preceding nΓ(xw) allows 

neglecting nodes which can make the path unnecessarily 

long without performing further trajectory pruning after 

path building, which is not allowed because of the time 

dependence of the nodes (that, if altered, could compromise 

the path safety). Once xw and xn are available, the position 

tree is updated along with the energy and time trees, 

knowing the mean velocity and total energy required to 

cover the segment from xn to xw (line 28). After tree update 

the path from xw to the point following wn in W, i.e., wn+, 

is checked for feasibility and if verified, wn+ is added to the 

tree (lines 29-33). This condition allows adding wgoal after 

xw if the latter is close to the end of the former polygonal 

chain, thus avoiding random sample to iteratively pick a 

point near to the goal to end the process. 

Algorithm 1 

1 Input:   wstart, wgoal// Start and end waypoints 

2    t0   // Initial time 

3    W   // Step I waypoint list 
4   α   // Maximum flight path angle 

5   hlim  // Altitude limits 

6       ξ   // Maximum battery capacity 
7   M   // occupancy map (fixed & mobile obstacle, NFZ)  

8    Dj  // GNSS coverage map 

9    Z   // Wind map 
10   K   // maximum iteration 

11 Γp     ← {ws} 

12 Γt     ← {t0} 

13 Γe     ← {0} 

14 for (k=0; k < K; k++) 

15   xw    ← {∅} 

16   wn    ← GET_NEXT_POINT(W, Γp, wgoal)  
17   if IS_FEASIBLE(n(wn),wn,M,Z,Dj,ξ,α,hlim) 

18    xw  ←  wn 

19   else  

20    xc  ←  GET_LAST_FEASIBLE(n(wn),wn,M,Z,Dj,ξ,α,hlim) 

21    xr  ← RANDOM_SAMPLE(xl) 

22    if  IS_FEASIBLE(n(xr), xr,M,Z,Dj,ξ,α,hlim) 
23      xw  ←  xr 

24    end if 

25   end if 

26   if xw ≠ ∅ 

27   xn ←  GET_CONNECTING_POINT(xw,M,Z,Dj,ξ,α,hlim) 

28    (Γp, Γt, Γe) ← UPDATE_TREE (Γp, Γt, Γe, xw, xn) 

29    if IS_FEASIBLE(xw, wn+,M,Z,Dj,ξ,α,hlim) 
30     (Γp, Γt, Γe) ← UPDATE_TREE (Γp, Γt, Γe, wn+, xw) 

31      if  wn+= wgoal, return 

32   end if 

33   end if 

34 end for 

35 Return:   E( Γp) // polygonal chain connecting wstart and wgoal  
36    E(Γt),E(Γe)// elapsed time and energy of E(Γp)  

C. Optimal trajectory selection 

The final step compares the J trajectories generated for 

each DOP level by the previous two steps. As reported in 

Fig. 2, the J polygonal chains are first transformed into 

smooth and flyable polynomial trajectories [50], along 

which the navigation error covariance is propagated by 

using an extended Kalman filter (EKF) exploiting GNSS 

pseudoranges and inertial measurements in tightly coupled 

integration. The reader is referred to [5] for the detailed 

formulation of the EKF. Only GNSS signals whose raypath 

is not obstructed by fixed obstacles are considered for 

covariance propagation. To predict GNSS constellation 

geometry, the information of t0 in UTC is required. 

The standard deviation of the positioning error along the 

trajectory (σp) is compared to the maximum allowed 

positioning error, i.e., Δpmax. The trajectories for which σp 

> Δpmax in at least one point of the time history are deemed 

not feasible and removed from the candidate list. The 

remaining trajectories are compared based on their cost f, 

which is computed again along the polynomial trajectory 

which can slightly deviate from its associated polygonal 

chain thus providing cost variation. In addition, since 

polynomial trajectory does not fulfill the constant velocity 

hypothesis which holds true in each segment of the 

polygonal chain, costs are estimated by integrating the risk, 
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energy and landing information over time instead of path 

length thus modifying (11) as follows 

 

( ) ( ) ( )
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0
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−
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f f ft t t
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t t

 (15) 

where L is the trajectory length and t0 and tf are the start 

and final time of the trajectory, respectively. βr(t), βd(t) and 

βe(t) are the punctual information about risk, landing site 

and energy which can be obtained from risk and landing 

site maps, or by estimating the ratio between windy and non 

windy required energy along the trajectory. The time 

integral (dt) is more indicative of the effective cost when a 

non constant velocity is assumed. 

IV. RESULTS 

The path planning algorithm performance is tested in a 

relevant environment, taken from a real-world scenario and 

consisting in a portion of the Naples city center. A portion 

of the city has been selected which is characterized by high 

buildings where navigation issues can arise. The associated 

3D obstacles and terrain are reported in Fig. 3. Two pairs 

of start and goal points have been considered to test the 

planner and are reported with circles (goal points) or 

crosses (start points) in the figure. The two test cases are 

defined as follows:  

 Case 1. Start point in [-689 302 30] and goal point in 

[503 117 20], reported in red in Fig. 3. 

 Case 2. Start point in [-1273 797 40] and goal point in 

[1111 -470 20], reported in green in Fig. 3. 

It is clear that since Case 2 points are more distant than 

those used in Case 1, a longer trajectory is expected.  

 
Fig. 3. Planning scenario, (a) top and (b) lateral view. 

NFZ play the same role of obstacles, therefore they have 

not been considered for planning performance evaluation. 

Conversely, the top views of the 2D maps such as risk, 

landing site and wind maps are reported in Fig. 4. Risk map 

associates the highest risk to the train station (highlighted 

by the yellow background). A lower risk is obtained over 

buildings. Wind map foresees a constant wind directed 

towards East of intensity 5 m/s and zero elevation. To 

account for navigation issues, three GNSS coverage maps 

have been derived with a resolution of 5 m. They are 

associated with increasing level of DOP (2, 3, and 4), which 

reduces their elevation as remarked in Fig. 5. For the sake 

of visualization, figures from Fig. 5a to Fig. 5c show the 

top view of the GNSS maps in a reduced portion of the 

environment characterized by high buildings where non 

nominal GNSS conditions could arise. 

 
Fig. 4. Planning scenario, (a) risk (b) landing and (c) wind map, top view. 

Maps (b) and (c) also report in black the top view of the obstacle to 

give context to the maps 
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Fig. 5. GNSS Coverage maps associated to DOP equal to (a) 2.0, (b) 3.0 

(c) 4.0. Figures (a) from (c) reports the topview of GNSS coverage 

map, whose altitude in meters is reported by the colorbar. (d) 

Comparison of the three maps, lateral view. 

The three GNSS coverage maps are reported with three 

different colors in Fig. 5d, to better remark their different 

spatial extension.  

The aircraft considered for the simulation is the DJI 

M300 RTK whose assumed specifications and constraints 

are reported in Table I. Navigation performance of the IMU 

has also been included and is assumed to be the one of the 

medium grade IMU HG1120AA50 from Honeywell [51]. 

Only accelerometer specifics are reported, because within 

the assumed covariance propagation scheme [5] they are 

the only parameters impacting positioning error 

propagation.  

To highlight the ability of the conceived framework to 

deal with several constraints, while shaping its final result 

as a function of inputs and weighting coefficients of the 

cost function, the results of the planner while varying these 

parameters are shown in section IV.A. Here, it is assumed 

that the start and the end points are those of case 1 and no 

time-varying information is available, so that STEP II does 

not have to modify STEP I trajectories. Conversely, sub-

section IV.B analyzes the planner behavior including 

traffic information and thus strategic deconfliction through 

STEP II. The results of all the three steps are reported in 

this subsection while using as reference case 2 start and end 

points. It is worth noting that being both STEP I and STEP 

II characterized by heuristic processes, the planner solution 

is non-deterministic.  
TABLE I 

VEHICLE SPECIFICS AND AIRSPACE CONSTRAINTS 

Constraints Value 

Battery capacity ξ (mAh) 11870 

Maximum airspeed (m/s) 23 

Max wind speed (m/s) 15 

Cruise speed vc (m/s) 10 

Maximum FPA α (°) 15 

Max Positioning error Δpmax (m) 2 

Safety margins 
dm (m) 3 

Km 1 

IMU Parameters 
Acc. In-run stability (mg) 0.20 

Velocity random walk (m/s/√h) 0.15 

Altitude limits  Min/Max altitude (m) 0-80 

A. Inputs and weighting coefficients variation 

This section underlines how STEP I output (and 

therefore planning output) modifies as a function of the 

coefficients of the cost function (in section IV.A.1), and 

planning inputs, considering Case 1. Specifically, variation 

of wind map and ground cost map (i.e., risk and/or landing 

site map) are tackled in sections IV.A.2 and IV.A.3, 

respectively. Finally, the impact of GNSS coverage map on 

navigation performance is discussed in section IV.A.4. 

Since the first three sub-sections are not discussing 

navigation performance, they all assume D3 (see Fig. 5c) as 

reference for GNSS coverage map. 

1) Weighting coefficient variation 

The effect of the weighting factors in shaping the UAV 

trajectory is highlighted in Fig. 6. The figure is reported to 

outline what is the behavior of the planner when the path 

selection either is driven by only one cost contribution 

(setting the other weighting coefficients to zero) or mixes 

all of them. To this aim, figures from Fig. 6a to Fig. 6d 

show the results obtained by setting to zero all the 

weighting coefficients except one which is length, risk, 

landing, or wind cost, respectively. Conversely, Fig. 6e 

shows the solution when setting wr = wd = 2 and wl = we = 

1. Associated cost maps to each case are reported in the 

figure along with 3D obstacles, for the sake of 

visualization. The shortest trajectory compliant with UAV 

constraints is reported in Fig. 6a. Fig. 6b reports the optimal 

trajectory in terms of ground risk, which mainly flies over 

buildings. In the case the main priority of the planner is 

guaranteeing a “landing safe” trajectory, the path deviates 

so to mostly cover the blue area of landing site map, as 

shown in Fig. 6c. Conversely a trajectory which is mostly 

headed toward east (which is parallel to the wind direction) 

is obtained when considering all weighting coefficients 

equal to zero except we, as reported in Fig. 6d. Fig. 6e 

shows the trajectory obtained when mixing the cost 

contribution. In this case, the optimization cost associated 

is mostly focused on minimizing risk and landing cost with 

respect to the other two. As expected, the resulting 
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trajectory is closer to the landing safe path reported in Fig. 

6c, while also complying with other costs requirements. 

Specifically, deviations from landing safe trajectory are 

experienced to push away the path from the riskiest area 

(yellow in Fig. 6b). The costs obtained in the 5 analyzed 

configurations are reported in Table II. The table highlights 

that the landing cost of the case reported in Fig. 6e, slightly 

increases with respect to the one of trajectory aimed at 

landing site cost minimization. Conversely, when aiming at 

optimizing all the cost contributions, all Cl, Ce and Cr 

reduce. However, being the risk weight higher than the 

others, a dramatic reduction of Cr is experienced. 

 

 
Fig. 6. Path solution of strategic planner in case 1. (a) wl = 1, wr = wd = 

we = 0; (b) wr = 1, wd = wl = we = 0 and dimensionless risk map;  (c) 
wd = 1, wl = wr = we = 0 and dimensionless landing site map; (d) we 

= 1, wl = wr = wd = 0 and wind map; (e) wl = we = 1, wr = wd = 2, 

wind map and dimensionless sum of risk and landing site maps. D3 

GNSS coverage map is used to define the area the UAV cannot cross 

due to navigation issue. 

TABLE II 

TRAJECTORY COSTS BY CHANGING WEIGHTING COEFFICIENTS, CASE 1 

Weighting 

coefficients 
Fig 

Cost functions (m) 

Cl Cr Cs Ce f 

wl = 1, wr = 
wd = we = 0 

6a 1314.9 518.3 895.4 1234.9 1314.9 

wr = 1, wl = 

wd = we = 0 
6b 1533.7 479.2 1098.5 1431.5 479.2 

wd = 1, wl = 
wr = we = 0 

6c 1764.2 1138.8 851.1 1670.9 851.1 

we = 1, wl = 

wr = wd = 0 
6d 1318.5 536.7 896.3 1228.2 1318.5 

wl = we = 1, 
wr = wd = 2 

6e 1507.5 502.7 902.3 1416.2 5733.8 

2) Wind variation 

If the wind direction varies with respect to the one 

reported in Fig. 5c, the path will be modified as well to meet 

energy cost minimization, while trying to be parallel to the 

wind direction. Fig. 7 reports the path obtained if the wind 

direction has a 120° angle with respect to the North 

direction. To emphasize the effect of wind variation, the 

planner is run assuming we = 1, wl = wr = wd = 0, resulting 

in an overall cost of 1262.7 m. Differently from the 

trajectory reported in Fig. 6d, the trajectory is mostly 

parallel to the 120° direction remarked by the wind vector 

in the figure. 

 
Fig. 7. Path solution of strategic planner over case 1 request, obtained by 

setting  we = 1, wd = wr = wl = 0, and wind map used to obtain the 
path. Wind is uniform in the scenario and has zero elevation and 

120° azimuth. D3 GNSS coverage map is used to delineate the area 

the UAV cannot cross due to navigation issue. 

3) Ground cost variation 

The performance of the planner while changing ground 

cost (which combines landing sites and risk) is assessed by 

accounting for only one of the ground information sources, 

for the sake of brevity. To this aim, landing site location 

variation is considered. The landing sites are moved with 

respect to those reported in Fig. 5b, so that they are placed 

in the central area of the Naples business center which is 

characterized by very high buildings. The novel landing 

site map is reported in Fig. 8 along with the trajectory 

obtained setting wd = 1, wl = wr = we = 0. The figure 

highlights how the planner is able to optimize the cost 

function by deviating its trajectory so as to cover the safer 

area for landing (reported in blue), obtaining a final cost of 

550.0 m. 
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Fig. 8. Path solution of strategic planner over case 1 request, obtained by 

setting  wd = 1, wl = wr = we = 0, and nondimensional landing site 
map used to obtain the path. D3 GNSS coverage map is used to 

delineate the area the UAV cannot cross due to navigation issue. 

4) Navigation performance variation 

Using the same landing site map and weighting 

coefficients of section IV.A.3 (i.e., wd = 1, wl = wr = we = 

0), Fig. 9 shows how the planned trajectory is modified 

when changing the GNSS coverage map. The top view of 

the paths obtained for each DOP level and GNSS coverage 

maps are reported in Fig. 9a. The area included within the 

D1 map is also highlighted in gray. Although D2 and D3 

paths are very close to each other and aimed at covering the 

area minimizing the landing cost, the extension of the D1 

map does not allow its associated trajectory to enter there. 

Indeed, paths populating that area fall below the D1 map as 

remarked by the gray shadow covering portion of D2 and 

D3 paths. As the GNSS map elevation reduces by going 

from D1 to D3, a huge free space is available for the UAV 

motion, which is able to fly over a path characterized by a 

lower cost function. A cost of 932.2 m can be obtained 

when D1 is used with respect to D2 (665.0 m) and D3 (558.0 

m) cases. 

 
Fig. 9. Path solution of strategic planner over case 1 request, obtained by 

setting  wd = 1, wl = wr = we = 0, and using different GNSS coverage 

maps. (a) Obtained paths and used nondimensional landing site map. 

(b) Positioning error of the UAV over the three paths. 

The trajectory associated with the highest DOP level 

easily falls below the GNSS coverage maps of the lower 

DOP indices (i.e., D1), resulting in possible navigation 

error degradation, which only UAV equipped with high 

performance IMU (or with other A-PNT solutions) can 

tackle. Fig. 9b shows the positioning error obtained with an 

UAV embarking the HG1120AA50 IMU. The D3 

trajectory, which violates both the GNSS coverage maps 

with j<3, is the most critical and experiences a significant 

positioning error, which exceed Δpmax, thus it cannot be 

flown by the vehicle. This also highlights the technology-

aware nature of the planning framework.   

B. Strategic planning solution 

This section reports the solution of the entire strategic 

planner pipeline considering case 2. Inputs included in Fig. 

4 have been used as risk, landing and wind information. 

The planner has been set to consider the risk cost as the 

highest one so that wl = we = 1, wr = 4, wd = 2. Time varying 

information is stored within the planner using map 

extension, i.e., Δt = 20 s, and Δtc = 10 s, dc = 10 m as 

margins for the intruders. The polygonal chains derived by 

STEP I are reported in Fig. 10. Due to the high-risk weight, 

all the trajectories aim at deviating in the bottom part of the 

figure, in order to avoid flying over the highest risk area. It 

can be observed that the trajectory associated to D3 is the 

shortest one due to the smaller elevation of its associated 

GNSS coverage map. Four intruders have been selected, 

whose trajectories, reported in Fig. 10 have been designed 

to intersect several times the paths retrieved in STEP I.  

 
Fig. 10. STEP I polygonal chain associated to each GNSS coverage map 

over case 2 request. Adimensional sum of risk and landing site maps 
is reported as background color. Used inputs for wind, risk and 

landing maps are reported in Fig. 4. wl = we = 1, wr =4, wd = 2. 

Intruders’ trajectories are reported in white. 

The resulting polygonal chains obtained after 

performing mobile obstacle deconfliction with STEP II are 

reported from Fig. 11a to Fig. 11c, for each GNSS coverage 

map, as well as the polynomial trajectory derived in STEP 

III. The polygonal chains of STEP II slightly deviate from 

the STEP I output, remarking the effectiveness of the 
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modified RRT planner in providing local variations to the 

path, thus preserving or only slightly modifying its cost. 

For the sake of completeness, the costs of each path 

estimated with and without obstacles are reported in Table 

III. The former is derived by using the polynomial paths 

reported in Fig. 11. Conversely, the cost associated with no 

intruders are obtained by converting the polygonal chains 

of STEP I in polynomial smooth paths, and are slightly 

different than those reported in Fig. 10. Navigation Error 

along the three polynomial paths using the IMU whose 

parameters are reported in Table I, is shown in Fig. 12. 

Each trajectory is feasible, and thus a candidate solution for 

STEP III, because its navigation error is always smaller 

than Δpmax. It can be seen that, as in the previous section, 

D3 trajectory is the one achieving the maximum navigation 

error because it can enter in GNSS-challenging areas due 

to the lower elevation of its associated GNSS map. The 

solution of the STEP III is selected among the candidates 

as the one with the minimum cost, thus being D2. 

 
Fig. 11. Case 2 solutions associated to (a) D1, (b) D2, (c) D3 GNSS 

coverage maps. STEP I, STEP II and polynomial paths are reported. 

Background shadow underlines the GNSS coverage map associated 
to each path. Used inputs for wind, risk and landing maps are 

reported in Fig. 4. wl = we = 1, wr =4, wd = 2. Δtc = 10 s, dc = 10 m. 

 
Fig. 12. Navigation error along the polynomial paths reported in Fig. 11. 

TABLE III 
COST OF EACH TRAJECTORY WITH AND WITHOUT OBSTACLES, CASE 2. 

GNSS 

Maps 

With 

intruders 

Cost functions (m) 

Cl Cr Cs Ce f 

D1 
No 2838.5 970.2 2466.8 2667.0 14320.0 

Yes 2831.8 952.9 2464.0 2662.7 14234.2 

D2 
No 2878.8 910.5 2100.7 2708.5 13230.9 

Yes 2909.5 950.0 2142.3 2735.6 13730.0 

D3 
No 2807.7 914.6 2328.3 2628.0 13750.7 

Yes 2816.9 940.7 2296.0 2649.2 13820.8 

 

1) Intruder safety margin variation 

To further assess the performance of STEP II, this 

section analyses the variation on its solution when Δtc and 

dc are increased. Specifically, information about 

polynomial paths obtained by increasing Δtc (i.e., Δtc = 20 

s) and leaving unaltered dc and their associated costs are 

reported in Fig. 13 and Table IV respectively. Only STEP 

III polynomial paths are reported in the figure, where both 

top view and lateral view are shown. Conversely, the 

results obtained in case dc changes and Δtc = 10 s, are 

reported in Table V. Due to the heuristic nature of the STEP 

II, the same seed has been used in all the simulations to 

have comparable results. Results show that increasing 

intruder margins generates more conflicts and anticipates 

the already existing ones, leading to an increased path 

length. Trajectory deviation is occurring on the horizontal 

or on the vertical plane. The latter behavior is shown by the 

D2 or D3 paths in Fig. 13a.  

In the case the spatial margin of the obstacle is enlarged, 

D2 trajectory shows a reduction of path length. Indeed, 

obstacle enlarging produces a huge region where the STEP 

I path is in conflict with the intruder, wider than the one 

obtained in the smallest dc case (i.e., dc = 10 m). 
TABLE IV 

POLYNOMIAL PATH COSTS, WHILE CHANGING Δtc, dc = 10 m. 

GNSS 

Maps 
Δtc (s) 

Cost functions (m) 

Cl Cr Cs Ce f 

D1 
10 2831.8 952.9 2464.0 2662.7 14234.2 

20 2839.7 972.3 2454.0 2667.9 14304.9 

D2 
10 2909.5 950.0 2142.3 2735.6 13730.0 

20 2910.8 944.1 2144.7 2736.9 13713.5 

D3 
10 2816.9 940.7 2296.0 2649.2 13820.8 

20 2806.1 870.0 2301.2 2636.9 13525.4 
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TABLE V 

POLYNOMIAL PATH COSTS, WHILE CHANGING dc, Δtc = 10 s. 

GNSS 
Maps 

dc (m) 
Cost functions (m) 

Cl Cr Cs Ce f 

D1 

10 2831.8 952.9 2464.0 2662.7 14234.2 

15 2844.7 987.7 2454.2 2673.6 14377.4 

20 2953.9 1011.1 2569.3 2773.8 14910.9 

D2 

10 2909.5 950.0 2142.3 2735.6 13730.0 

15 2877.0 937.2 2122.5 2702.4 13578.4 

20 2847.1 984.6 2125.5 2672.6 13709.3 

D3 

10 2816.9 940.7 2296.0 2649.2 13820.8 

15 2854.0 909.3 2323.7 2671.8 13810.3 

20 2890.5 958.2 2362.8 2689.0 14137.8 

 
Fig. 13. Case 2 polynomial path obtained with either Δtc = 10 s, dc = 10 

m, or Δtc = 20 s, dc = 10 m. Solution for all GNSS coverage maps 

are displayed. Used inputs for wind, risk and landing maps are 

reported in Fig. 4. wl = we = 1, wr =4, wd = 2. (a) lateral and (b) top 

view. 

This requires the STEP II to plan for a path that highly 

deviates from STEP I polygonal chain, which finally 

produces, for the selected case, a reduced path length. 

2) Computational time 

The computational time required to solve each STEP I 

solution is set by the user in the OMPL framework, indeed 

BIT* optimization runs until a timeout which has been set 

to 10 seconds in this specific case. Therefore, it does not 

strictly depend on the distance between the start and the 

goal point and can be set by the user trade-offing optimality 

(which requires computational time increase) and time-to-

solution. Is however clear that increasing scenario’s 

dimensions and complexity will penalize the solution 

optimality for a given timeout. As far as STEP II is 

concerned, computational time does mostly depend on the 

airspace density, and thus on the number and the dimension 

of obstacles the STEP I trajectories are in collision with 

(i.e., Δtc and dc). Results in terms of computational time 

obtained as a mean of 30 runs performed with an intel i7 

PC running MATLAB on Windows operating system at 

2.60 GHz are reported in table VI, by using the same sets 

of Δtc and dc reported in the previous section. It can be seen 

that computational time mostly increases with dc. 

Conversely, Δtc increase slightly affects the computational 

time. Finally, STEP III aims only at comparing the 

solutions and is thus very fast (in the order of 0.5 s). The 

final strategic solution can thus be obtained in about one 

minute in the considered case (i.e., 2.7 km distance between 

start and goal point), which is compliant with the off-line 

requirement of the conceived planning framework.  
TABLE VI 

STEP II COMPUTATIONAL TIME. 

Δtc (s) dc (m) 
Mean Computational time (s) 

D1 D2 D3 

10 

10 4.55 5.77 1.60 

15 7.62 6.97 2.74 

20 11.04 7.16 5.74 

20 10 5.02 5.79 1.82 

V. CONCLUSION 

This paper introduced a planning framework for 

rotorcraft flying in an unstructured urban airspace. The 

ability of the planner to deal with a significant amount of 

information (either static or time varying) is ensured by 

information synthesis and sequential trajectory building 

and refinement, carried out through STEP I and II. 

Handling in two separate steps static and time varying 

information allows guaranteeing that cost-effective 

solutions are resulting from STEP I. In addition, the usage 

of GNSS maps, further reduces the computational effort by 

preventing computationally slow information propagation 

(i.e., navigation state covariance) to be performed within 

both path building and path refinement steps. Dynamic 

constraints and maximum endurance of the vehicle are also 

accounted for during path construction. Energy 

consumption of the UAV has been derived with a 

simplified formula with respect to the one exploited in the 

open literature, but still using physical characteristics and 

geometric factor of the UAV, thus being potentially ready 

to be extended to several types of multirotor UAVs. 

Results demonstrate the effectiveness of the STEP I 

solution in dealing with multi-objective optimization and 

effectively shaping the trajectory geometry based on the 

weighting coefficients. The advantage of the RRT-based 

STEP II algorithm has been also investigated, by 

highlighting the local deviation property which allow 

preserving the cost of STEP I trajectory while still 

performing collision deconfliction with mobile obstacles. 

Finally, using GNSS maps instead of propagating 

navigation error along trajectory building generates several 

candidate solutions. This provides alternatives for the path 

solution without requiring the path planner to run several 
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times. The multi-constrained and multi-optimization nature 

of the planner, coupled with its modularity and low 

computational burden suggest this solution could be used 

as core algorithmic block for low altitude airspace 

management in Urban Air Mobility.  

Further works are also aimed at integrating the proposed 

methodology and developed information handling 

approaches within structured environments, with the aim of 

comparing the results of the current paper with those 

obtained within a structured airspace scenario. In addition, 

further updates of the planning algorithms could be 

envisaged so as to adapt to the technological improvements 

in maps information gathering, e.g., in terms of more 

detailed and 3D varying wind maps. Injecting more 

accurate wind information would allow reducing the 

margins relevant to the endurance, thus increasing the 

efficiency of flight operations.   
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