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Abstract— Radar sensor networks are today widely used in
the field of autonomous driving and for generating high-precision
images of the environment. The accuracy of the environmental
representation depends to a large extent on the accurate knowledge
of the sensor’s mounting orientation. Both the relative orientation
of the sensors to each other and the relative sensor orientation in
relation to the vehicle coordinate system are determining factors.
For the first time, the orientation estimation of the radar sensors of
a network is possible exclusively on the basis of radar target lists
without additional localization and orientation devices such as an
IMU or GNSS. In this work, two algorithms for determining the
orientation of incoherently networked radar sensors with respect
to the vehicle coordinate system and with respect to each other
are derived and characterized. With the presented algorithms
orientation accuracies up to 0.25◦ are achieved. Furthermore, the
algorithms do not impose any requirements on the positioning or
the orientation of the radar sensors, such as overlapping field of
views (FOVs) or the detection of identical targets. The presented
algorithms are applicable to arbitrary driving trajectories as well
as for point targets and extended targets which enables the use in
regular road traffic.

Index Terms— chirp-sequence radar sensors, ego-motion esti-
mation, orientation estimation, radar imaging sensors, radar sensor
networks, self-calibration

I. INTRODUCTION

MODERN high-level systems for autonomous driving
are based on highly precise environmental recognition as
well as accurate speed and position information, which
can be estimated very robustly with lidar sensors, cameras
or radar sensors, respectively [1], [2]. The focus of
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research in this area has changed only in recent years from
the use of a single sensor system to the use of multiple
sensors working cooperatively, especially in the field of
radar sensors [3], [4]. In order to ensure high precision,
both intrinsic error influences such as incorrect array
calibration and extrinsic error influences such as incorrect
orientation of the sensors, must be minimized. While there
are various effective calibration methods for intrinsic error
sources, [5], [6], [7], methods for extrinsic calibration are
often costly or linked to certain prerequisites [8]. They
exist in great diversity especially for both cameras [9],
[10] and lidar sensors [11], [12].
In contrast, the approaches for radar sensors are usually
based on many requirements. It has already been shown
in [13] that the orientation of radar sensors mounted
on a car can be determined with high precision based
on ego-motion estimation. Furthermore, the orientation
estimation can be extended for radar sensors with a
2D angle estimation [14]. However, this orientation esti-
mation method requires an additional time-synchronized
inertial measurement unit (IMU). A different approach
to estimate the orientation of the radar sensors is based
on the usage of high-precision environmental maps [15],
wherein the current vehicle position and high-precision
environmental maps must be available, which are gen-
erated by lidar and camera sensors [16], [17], [18] and
global navigation satellite systems (GNSSs) [8]. In [19]
it was shown that the accuracy of orientation estimation
can be significantly improved using corner reflectors as
radar targets. However, the position of the targets must
be known. Approaches to estimate the orientation of
the radar sensors on the car without using additional
systems are based on the detection of identical targets
and lead to rather inaccurate orientation estimates. For
this purpose overlapping field of views (FoVs) of multiple
radar sensors are required [20], [21] which limits the
positioning flexibility of the individual radar sensors.
Using the algorithms presented in this paper, it is possible
to estimate the orientation of N radar sensors (N≥2)
relative to the vehicle coordinate system and in relation
to the other radar sensors mounted on the same car. The
algorithms are the first ones achieving this solely based
on target lists and known relative sensor positions. The
benefit of this approach is on the one hand, that no
additional systems like GNSS or IMU are required for
the estimation. On the other hand, the ego-motion based
approach has no constraints regarding the positioning of
the radar sensors, thus no overlapping FoV of the sensors
and no multi-frame target detection are required.
The paper is organized as follows: the sensor setup and the
basic steps of signal processing are presented in Sections
II and III. The fundamentals of ego-motion estimation
are presented in Section IV. Based on this, Section V
describes two algorithms to determine the orientation of
all sensors. The evaluation based on measurements as well
as various robustness analyses are described in Section
VII. The result of a Monte-Carlo simulation to analyze
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the sensor position dependent estimation accuracy of the
sensor orientation is described in Section VIII.

II. Concept and System Architecture

The general concept consists of distributed chirp-sequence
modulated MIMO radar sensors, which are used as an
incoherent but time-synchronized network. The chirp-
sequence radar sensors used transmit sequences of fast
frequency-modulated continuous-wave (FMCW) ramps.
Each chirp sequence consists of R FMCW ramps, which
have a bandwidth of fB, a ramp time of Tc, and a ramp
repetition time of Tr [22], [23]. The time synchronization
of all radar sensors of the network enables a simple
interference avoidance as soon as the center frequency
of all radar sensors is shifted by at least the IF bandwidth
with respect to each other [24]. This time synchronization
also enables a joint evaluation of all target lists for the
orientation estimation.
The most relevant measurement quantities, which can be
determined with such radar sensors are radial velocities
vrn,m, angles of arrival ϕs

n,m and distances rn,m in the
sensor coordinate system (s) for the n-th sensor and the
m-th target. These quantities can be determined with N
radar sensors (n≤N ) for all Mn detected targets (m≤M )
of each individual sensor n.
The system setup comprises multiple radar sensors, which
are installed around a vehicle with an unknown orientation
φc
1, . . . , φ

c
N in the vehicle coordinate system (c). A possi-

ble sensor configuration is shown in Fig. 1 for N=7 radar
sensors and one target t1. A wide spatial distribution of
sensors provides a more accurate ego-motion estimation
and a more flexible evaluation of the measurement results
regarding the positioning and the number of sensors in
Section VII and VIII.
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Fig. 1: Radar network with N=7 radar sensors in violet
with orientations φc

n to be estimated. Vehicle coordinate
system [xc, yc] in blue, dashed and corresponding velocity
components in red, solid lines. Sensor coordinate system
of S5 in black [xs, ys] and an exemplary detected target
t1 with an AoA of ϕs

5,1 and a range of rs5,1.
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Fig. 2: Signal flow chart for extracting every sensor’s tar-
get list (green) and estimating its orientation φc

1, . . . , φ
c
N

(blue) for N radar sensors (S1, ..., SN ) based on ego-
motion estimation (red).

III. Processing Chain

An overview of the signal processing chain is depicted
in Fig. 2. The first steps are performed individually for
each sensor and are illustrated as green boxes in Fig. 2.
The raw data from N time-synchronized incoherently-
connected radar sensors are stored, processed indepen-
dently and transformed into the frequency domain using
a fast Fourier transform (FFT). The relevant target infor-
mation is extracted by using a constant false alarm rate
(CFAR) algorithm, subsequent peak detection, and angle
of arrival (AoA) estimation and is stored in individual
target lists (TL). These basic signal processing steps for
all N sensors are shown in Fig. 2 in green. In contrast,
the blue elements describe the procedure of the orientation
estimation algorithm and are described in more detail in
the later part of this work.
Based on the individual target list of each sensor, station-
ary targets are filtered out and used for a precise esti-
mation of the vehicle’s proper motion, which is depicted
in Fig. 1 as red box. The intrinsic velocity of a vehicle
is generally described by the two velocity components vx
and vy as well as the yaw rate ω, which is shown in Fig. 1.
Based on ego-motion estimation and random sample
consensus (RANSAC)-filtering, a genetic optimization
algorithm (GA) is applied afterwards to estimate the
orientation φc

1, . . . , φ
c
N of all N radar sensors which is

depicted as orange box in Fig. 2. Therefore, first the basics
of the ego-motion estimation are derived.

IV. Ego-Motion Estimation

The three velocity components vx and vy as well as
the yaw rate ω are estimated using a radar sensor network
with at least two radar sensors (N>2) based on target
lists [25], [26], [27]. The following model describes the
relationship between one sensor and the measured target
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information vrn,m, ϕs
n,m and the ego-velocity.

−vrn,1
−vrn,2

...
−vrn,M


︸ ︷︷ ︸
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cos
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)
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)
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)
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·
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Sn

·

ω
vx
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(1)

Here, xc
n and ycn denote the sensor positions and ϕc

n,m

the AoA relative to the vehicle coordinate system. These
relative AoAs are calculated with

ϕc
n,m = ϕs

n,m + φc
n (2)

in order to transform the angles from the sensor coor-
dinate system ϕs

n,m to the vehicle coordinate system, in
which case φc

n is the z orientation of the sensors on the
vehicle, as shown in Fig. 1.
If more than one radar sensor (N>1) is used, the equa-
tions can be converted into a system of linear equations,
and thus, the velocity vector of the vehicle’s motion Vp

can also be unambiguously determined with the help of:
Vr

1

Vr
2

...
Vr

N


︸ ︷︷ ︸

Vr

=


A1 · S1

A2 · S2

...
AN · SN


︸ ︷︷ ︸

M

·

ω
vx
vy


︸ ︷︷ ︸
Vp

. (3)

Equation (3) can be solved in the least square sense for
the desired velocity vector Vp with the Moore-Penrose
inverse (+).

Vp = M+ ·Vr (4)

The vehicle speed is determined based on stationary tar-
gets using the dependency described in (3). For estimating
the vehicle’s speed, at least two sensors must detect a
total of at least three targets to allow velocity estimation
for all three degrees of freedom (DoFs). Since (3) is
only valid for stationary targets, non-stationary targets
as well as false detections have to be filtered out. These
outliers, which do not satisfy the searched motion model,
are filtered out in the following using a random sample
consensus (RANSAC) algorithm [28].

A. RANSAC-Filtering

To provide a reliable and robust ego-motion estima-
tion outliers must be filtered out for example with an
iterative RANSAC-algorithm with I iteration steps. For
this purpose, in each iteration step i≤I of the RANSAC
algorithm, the velocity model Vi

p is estimated based
on three randomly chosen targets from the target lists
(TL1, ...,TLN ) and subsequently the difference D to all
measured radial velocities Vr is determined.

Di =
∣∣M ·Vi

p −Vr

∣∣ (5)

Subsequently, the quality of the velocity estimate is
assessed on the basis of the number of inliers K in

(6). Inliers indicate targets that have a smaller velocity
error than a suitable threshold T regarding the currently
estimated motion model. The threshold has to be chosen
in a way that a majority of all real stationary targets
are within the threshold despite measurement inaccuracies
and noise. To ensure this, a threshold of T=0.1 m

s is
chosen for the evaluation. This iterative RANSAC process
is described by

K = argmax
i≤I

(
J∑

j=1

1(Di
j<T)

)
(6)

where Dj describes the j-th element (j≤J , J=O(D)
where O describes the cardinality) of the vector D with

D =
[
D1 D2 . . . DJ

]T
(7)

and 1 specifies the indicator function with:

1(Dj<T ) =

{
1 Dj ≤ T

0 otherwise.
(8)

The model which fits best to the current measurement,
and thus has the most inliers, corresponds to the most
probable velocity vector VK

p of all I iteration steps.
Since the RANSAC filtering is based on I iteration steps
and three randomly chosen targets, VK

p only describes
the best estimate based on three stationary targets but not
based on all stationary targets. To improve the velocity
estimation, the vehicle velocity is estimated again based
on all targets that satisfy the model within the threshold
tolerance T for the velocity vector VK

p .

V. Orientation Estimation

According to the equation of the velocity model (1)
and the subsequent conversion to the vehicle coordinate
system (2), it is evident that the velocity estimate is
significantly dependent on the orientation of the sensors.
Thus, the quality of the velocity estimation described
in (1) is used to determine the most likely velocity for
a given combination of sensor orientations φs

1, . . . , φ
s
N .

Therefore, the algorithm can be extended to estimate not
only the velocity vectors, but also the orientation of all
radar sensors installed on the vehicle. The approach is
shown as a schematic in Fig. 2 in the orange-filled area
and is explained in more detail in the following.

A. Basic Orientation Estimation (BOE)

For the purpose of orientation estimation, a function
is initially set up that reflects the quality of the velocity
estimation for different sensor orientations φc

1, . . . , φ
c
N .

This can be achieved by extending (5) for arbitrary sensor
orientations φc

1, . . . , φ
c
N , which determines the difference

of all targets to a given velocity vector VK
p and given

sensor orientation φc
1, . . . , φ

c
N .

Di, φ = Di (φc
1, . . . , φ

c
N) =

∣∣M (φc
1, . . . , φ

c
N) ·Vi

p −Vr

∣∣
(9)
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Fig. 3: Representation of the ground truth motion and
the ego-motion estimation based on detected targets of a
simulated straight line drive for sensors with the ground
truth sensor orientations φGT= [φ1 φ2] = [0◦ 90◦] and
the corresponding inliers.

Based on equation (9), identical to the ego-motion estima-
tion, the most probable vehicle speed VK

p for a specific
orientation of the radar sensors φ is estimated by using
the RANSAC algorithm described in (6) another time.

K = argmax
i≤I

(
J∑

j=1

1(Di,φ
j <T)

)
(10)

However, since the most likely sensor orientation
φc
1, . . . , φ

c
N is now of interest rather than the most likely

vehicle velocity, equation (10) must be extended by a
further minimization over all possible orientation angles
φc
1, . . . , φ

c
N . The most probable sensor orientation is given

once the number of inliers is maximal, which is described
by the following equation:

φest = argmin
(φc

1,...,φ
c
N)

(g) (11)

g =
1∑

F

max
i≤I

(∑J
j=1 1(Di,φ

j <T)

) (12)

This principle is illustrated by Fig. 3a and 3b
based on a radar sensor network with N=2 sensors.
The two sensors have a ground truth orientation of
φGT= [φ1 φ2] = [0◦ 90◦] and detect arbitrary targets. The
x-axis represents the angle of arrival in relation to the
vehicle coordinate system, and the y-axis represents the
measured radial velocity. Each point represents a target,
detected by sensor S1 (black) or sensor S2 (blue).
A RANSAC-based ego-motion estimation with the ground
truth sensor orientations as shown in Fig. 3a provides a
robust velocity estimate based on many inliers (red filled),
which lie within an appropriate threshold (turquoise).
These inlier represent stationary targets (black for sensor
1, blue for sensor 2) that correspond to the velocity model.
Once the estimation is performed based on identical
targets but with incorrect sensor orientations, as shown
in Fig. 3b, an ego-motion estimation, depicted as green
line in Fig. 3b, can still be performed in this scenario,
but it differs from the correct velocity estimation which
is depicted as violet line in Fig. 3b. The blue targets
are the same one as the ones depicted in Fig 3a but
with a different calculated AoA in relation to the vehicle
coordinate system due to the orientation of the sensor.
In addition, the estimate does not have the same quality
because the number of inliers has been significantly
reduced since the inliers only include targets of the second
sensor which is depicted in blue. As a result of the
reduced number of inliers, the value for the error function
of g in (12) increases from g=1/57 to g=1/33, resulting in a
less accurate and more implausible ego-motion, and thus
a more improbable orientation estimate.
Since the orientation does not change during a mea-
surement run over several frames F , multiple frames
can be used for improved robustness. Therefore, the
optimal velocity is estimated for each frame based on the
sensor orientations φc

1, . . . , φ
c
N and the resulting number

of inliers is determined. Numerical minimization of the
function g with a GA yields the orientation of the sensors.
To solve the general mathematical problem unambigu-
ously, the vehicle velocity estimation must be restricted to
a maximum of two degrees of freedom ω and vx, whereby
vy is not estimated and is assumed to be 0. Therefore (1)
is simplified to:


−vrn,1
−vrn,2

...
−vrn,M
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Vr
n

=


cos
(
ϕc
n,1

)
sin
(
ϕc
n,1

)
cos
(
ϕc
n,2

)
sin
(
ϕc
n,2

)
...

cos
(
ϕc
n,M

)
sin
(
ϕc
n,M

)


︸ ︷︷ ︸
An

·
[
−ycn 1
xc
n 0

]
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Sn

·
[
ω
vx

]
.

(13)

This equation of motion can still be used to describe both
a straight-line and a curved trajectory. Once the trajectory
has no curves and is only linear, the equation of motion
(13) can be further simplified to estimate only the vx
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component, reducing the DoFs even further.
−vrn,1
−vrn,2

...
−vrn,M


︸ ︷︷ ︸

Vr
n

=


cos
(
ϕc
n,1

)
cos
(
ϕc
n,2

)
...

cos
(
ϕc
n,M

)


︸ ︷︷ ︸
An

·
[
vx
]

(14)

Since a straight-line trajectory with ω=0 is difficult to
realize in reality, this simplification is used exclusively
for evaluation and comparison of straight-line trajectory
and curved trajectory in Section VII.
The restriction to a maximum of two DoFs results from
the fact that as soon as there is only a linear motion of
the car (only vx and vy) an identical sensor orientation
offset of h degree for all N sensors still leads to a linear
motion of the car, but the cars movement vector is rotated
by h degree. This results in different velocity estimates
for different sensor orientations. The problem in this case
is that this incorrect speed cannot be distinguished from
the correct speed, since the number of inliers is identical
in both cases.
This problem can be clearly seen in Fig. 1. For a vehicle
having only vx velocity, a local vsx velocity in sensor
coordinates is estimated for the sensor S4 according to
equation 1. Once the vehicle velocity is not restricted
to vx and ω only, and the orientation of the sensors
has to be estimated, the sensor S4 could also have the
orientation of S6, and thus be rotated by 90◦. In this case,
a local vsx velocity of the sensor is still estimated in sensor
coordinates, but this results in a vy velocity in vehicle
coordinates. This ambiguity can thus only be resolved by
restricting the vehicle motion in vx and ω. Since vehicles
drift only minimally even while cornering [29] and thus
vy≈0 holds, in the following the velocity vector to be
estimated is restricted to vx and ω analogue to (13) to
eliminate the ambiguities of the orientation estimation.
As the orientation estimation is based on the quality of
the ego-motion estimation the solution of the orientation
estimation is unambiguous as soon as the local velocity
of each sensor (vsx and vsy) can be determined unambigu-
ously. This is guaranteed as soon as each of the N sensors
detects at least M=2 targets [25], [26], [27].

B. Advanced Orientation Estimation (AOE)

This type of orientation estimation (BOE) described in
(12) is limited with respect to its maximum achievable
accuracy, as can be seen in Fig. 3c. If the sensor S2

has only a small orientation deviation from the ground-
truth orientation (for improved illustration ∆φ2=10◦),
all targets are still detected as inliers (for the chosen
threshold). Because of that, the function g has an identical
quality factor with g=1/57 for both correct (Fig. 3a) and
incorrect orientations (Fig. 3c). The minimization of the
function g and thus the estimated sensor orientation is
randomly distributed around the ground truth orientation
within a small tolerance, the chosen threshold for ego-

motion estimation, which is shown in the later measure-
ment section VII.
In order to provide a more robust and consistent estimate
of orientation, an even finer orientation search based on
a least-square optimization of the velocity errors can be
performed after applying the basic orientation algorithm
described in Section V. Since the maximum number of
inliers, which corresponds to the minimum of the function
g, is known from the previous estimation calculated with
(12), the errors between the estimated radial velocity and
the measured radial velocity are minimized for all inliers.
The boundary conditions are the number of inliers known
from (12), which is described by the following equation

φest = argmin
(φc

1,...,φ
c
N)

(∑
F

J∑
j=1

1(Di,φ
j <T) ·D

2
j

)∣∣∣∣∣
min

(φc
1,...,φc

N)
(g)

.

(15)
This deviation is exemplarily shown in orange in Fig. 3c
for one target. This LSQ-based optimization yields the
more precise motion estimation and therefore the more
precise and reliable orientation estimation. Moreover, rel-
ative to numerical minimization deviations, a more robust
and unambiguous orientation estimation can be provided,
which reliably yields similar results and is shown in
Section A.

VI. Measurement Setup

The measurement setup to verify the theoretical
derivations is shown in Fig. 4 and consists of seven inco-
herently connected chirp-sequence radar sensors [24]. The
measurement setup corresponds to the sketch in Fig. 1.
The sensors are mounted approximately equiangularly
around the vehicle in 45◦ steps, providing a 360◦ field
of view (FoV). The ground truth of the sensor positions
relative to the vehicle coordinate system were determined
using a Trimble tachymeter.

Fig. 4: Experimental system setup with seven chirp-
sequence radar sensors mounted on a car.

The measurement run was performed on a parking lot
with not only stationary targets but also non-stationary tar-
gets such as moving cars or pedestrians, which are filtered
out using the RANSAC algorithm described in Section
IV. No additional targets such as corner reflectors were
set up in the parking lot. Thus, the following evaluations
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TABLE I: Used Radar Parameters for Ego-Motion-Based
Self-Calibration.

Parameter Value
S1 S2 S3 S4

Start frequency (GHz) 77.22 77.25 77.28 77.34

Approx. Orientation φc
n (◦) −135 −90 −45 0

S5 S6 S7

Start frequency (GHz) 77.37 77.40 77.43
Approx. Orientation φc

n (◦) 45 90 135
Bandwidth 3.07GHz

Ramp repetition time 67 µs
Sampling frequency (IQ) 10MHz

Number of ramps (per Tx) 128
Max. unambiguous velocity 4.823 m

s
Number of transmitters 3
Number of receivers 4
Measurement rate 37Hz

are based exclusively on extended targets (vehicles, trees,
wooden fences, branches, gravel, and lampposts). For
the time synchronization of the radar sensors an external
trigger is used. In combination with a small variation of
the sensors’ start frequencies, the time synchronization
can be used for interference suppression between the
sensors [30]. Due to identical radar parameters, apart from
the start frequency of each sensor, the transmit ramps
of all sensors have a constant frequency offset between
each other. Thus, no intersection between the ramps and
therefore no interference in the IF band is to be expected.
The radar parameters are listed in Table I.
The ground truth orientations of the sensors have been
determined using an IMU-based algorithm. It was shown
that with the help of an IMU the orientation of radar
sensors can be estimated with an accuracy of about 0.05◦

[13]. Thus, the accuracies of the algorithm described in
this work are compared to the orientation estimates from
[13]. These are assumed as ground truth values in the
following.

VII. Measurement Results

At first, the basic orientation estimation algorithm
described in (12) and the advanced orientation estimation
algorithm described in (15) are compared to each other.
Afterwards, the robustness with respect to the number of
sensors, the number of frames, the sensor orientation and
sensor positioning are investigated and verified based on
measurements and simulations.

A. Comparison of Orientation Estimation Algorithms:
BOE vs AOE

In Section V two different methods for the orientation
estimation based on target lists were presented: first, the
BOE algorithm which maximizes the number of inliers
as described in (12), and second the AOE algorithm, an
approach to minimize the squared error between the found
inliers and the estimated velocity (15).

The results of a measurement run with a straight-line
trajectory, N=7 sensors and F=1000 frames are shown
in Fig. 5.

0 10 20 30 40 50
0

0.2

0.4

0.6

Trial

A
ve

ra
ge

E
rr

or
(◦

)

Fig. 5: Average orientation estimation accuracy for N=7
sensors and F=1000 frames based on the BOE algorithm
(blue) and the AOE algorithm (red).

In order to show the advantages of the least square based
AOE-method (red curve) compared to inlier number based
BOE-method (blue curve) described in Section V, 50
trials of the identical measurement run were performed.
In Fig. 5 it can clearly be seen that as soon as only the
number of inliers is used for the orientation estimation,
the results of the orientation estimation vary, although
the same number of inliers was always found using the
GA. This has already been visualized in Fig. 3c. The
variance depends on the chosen threshold T , which in
turn has to be adapted to the quality of the measurements
and thus to standard deviations σvr and σϕ. Using the
BOE algorithm, the orientation of the sensors can be
determined with an accuracy of 0.34◦ on average, with
a standard deviation of about 0.1◦. In contrast to this, the
least square based AOE method (red curve) provides a
reliable and constant (within the numerical minimization
limits) solution, which is better with only 0.26◦ deviation
and thus about 33% more accurate.
In relation to an orientation estimation based on high-
precision maps , which achieves an orientation accuracy
of about 0.5◦ for each sensor [15], the error can be
reduced by a half with the algorithm presented in this
work. A comparison with the angle estimation accuracy of
the radar sensors illustrates the quality of the orientation
estimation algorithm.
The standard deviation of the angle estimation of the used
radar sensors, which have an aperture size in azimuth
direction of 4λ corresponds to σΦ≈1.2◦ for a target with
an SNR of 40 dB and can be calculated with [31]

σΦ =
∆Φ3dB

1.6
√

2 (SNR)
. (16)

The presented orientation estimation algorithm enables
an orientation estimate exclusively based on target lists
which is significantly more accurate than the angular
accuracy of the radar sensor.
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B. Comparison of Different Trajectories

According to Section V, the described algorithms are
only limited by the condition that the lateral vehicle
velocity must be zero (vy=0). Since this can be assumed
corresponding to [29] also for curved trajectories, the
algorithm is applicable for both straight-line and curved
trajectories.
The average orientation errors for a different number of
sensors and different trajectories is shown in the following
Fig. 6. In each case, 50 different trials with a length of
F=1000 frames were evaluated.
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Fig. 6: Average orientation estimation error for different
number of sensors, and trajectories.

For the straight-line trajectory, only the x-component of
the velocity vector Vp was estimated according to (14),
whereas for the curved trajectory, the velocity components
vx and ω are estimated according to (13).
Analogously to Fig. 5, it is noticeable how the least square
based AOE solution method provides accuracy advantages
in all categories compared to the inlier number-based
BOE solution method. Moreover, it can be seen in Fig. 6
that for a straight trajectory, as the number of N sensors
increases, the estimation error improves only marginally
from 0.30◦ with N=2 to 0.26◦ with N=7. For curved tra-
jectories, the estimate improves significantly from 4.65◦

with N=2 to 0.28◦ with N=7 sensors.
In particular, the relatively poor estimation for N=2
sensors with curved trajectories is remarkable, which is
shown and investigated in more detail in the follow-
ing Fig. 7. This represents the logarithmic error of the
function g for straight-line and curved trajectories and
different number of sensors.
All figures in Fig. 7 are based on identical measured raw
data from a straight-line trajectory with F=1000 frames.
Fig. 7a and 7b plot the error function g logarithmically for,
N=2 and N=7 sensors, respectively, with only sensors S1

(x-axis) and S2 (y-axis) shown. The minimum of the func-
tion in both cases can be clearly seen at approximately
φ1=234.5◦ and φ2=271.5◦. However, it is noticeable that
once multiple sensors are used as in Fig. 7b, a much
sharper and clearer minimum exists, thus resulting in a
more precise and robust orientation estimate.
Once the identical straight-line trajectory is evaluated
with the two DoF vx and ω, and thus for arbitrary
trajectories, significant differences can be detected. The
results for N=2 sensors is depicted in Fig. 7c whereby
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(a) Straight trajectory, N=2.
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(b) Straight trajectory, N=7.
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Fig. 7: Logarithmic representation of the error function g
for straight-line trajectories (top) and curved trajectories
(bottom) and N=2 sensors (left) and N=7 sensors (right).
x-axis corresponds to the orientation φ1 of sensor S1 and
y-axis corresponds to the orientation φ2 of sensor S2 in
degrees for the measurement setup from Fig. 4.

the result for N=7 sensors is shown in Fig. 7d. As soon
as only two sensors are used for the self-calibration,
there is no definite global minimum of the function g
but several minima, which all have similar values of the
function g. All sensor orientations with similar minima
of the function g have the property that the relative angle
between the sensors, is still estimated correctly and thus
the angular offset ∆φ is almost identical for both sensors.
This is shown accordingly in Fig. 7c by mark A for
the ground truth orientation, and mark B for a possible
estimated orientation.
Thus, even with two sensors, the relative orientation of
the sensors to each other can be estimated very well
for curved trajectories, but precise orientation estimation
relative to the vehicle coordinate system is highly error-
prone. Since these figures represent the error function
of a straight-line trajectory for the solution based on an
arbitrary trajectory with the two DoFs, vx and ω according
to (13), the problem is of mathematical nature and not
trajectory related. However, as soon as more than N=2
sensors are used, as shown in Fig. 7d for N=7 sensors,
a definite minimum and thus a definite orientation of the
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sensors in relation to the vehicle coordinate system can
be determined for curved trajectories as well.
It should be noted that this phenomenon is not due to
curved trajectories, but due to ambiguities in the ego-
motion based orientation estimation with two degrees of
freedom. Therefore, as seen in Fig. 7c, the phenomenon
can also be detected for straight-line trajectories with
2DoF velocity estimation.
Since the algorithm is based on ego-motion estimation and
not based on the detection of identical targets, it is not
necessary to evaluate multiple frames, which also allows
online calibration.

C. Online Calibration

Since the orientation of all sensors on the vehicle does
not change during a measurement of several frames, the
orientation can also be performed on the basis of several
frames, which leads to an integration gain. The average
error ∆φ for the joint estimation of N=7 sensors is shown
in Fig. 8 for 100 different sub sequences. Since it was
shown in Section A that the accuracy can be improved
using the AOE compared to the BOE algorithm, only the
AOE method is shown.
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Fig. 8: Average orientation estimation error for different
numbers of evaluated frames and trajectories.

The integration gain from evaluating multiple frames
can be seen for both the straight trajectory with 1 DoF
motion estimation and the curved trajectory with 2 DoF
motion estimation. According to the previous findings
from Section A and B, the evaluation of multiple frames
provides significantly more advantages for the curved
trajectory than for the straight trajectory due to the more
ambiguous solution of the problem. However, depending
on the required precision, the sensor orientation φc

n can be
estimated independently of the trajectory even with only
one frame to at least 1◦.
Furthermore, it becomes apparent that the orientation esti-
mation has a bias error of approximately 0.26◦ regardless
of the number of sensors (Fig. 6) and regardless of the
frames evaluated (Fig. 8). There are three main factors
causing this offset:

• Incorrect measured sensor position
• Incorrect internal radar calibration
• Elevated targets

TABLE II: Used Simulation Parameters.
Figure No. of Sensors Sensor Position of Trajectory

Fixed Sensors (m)
9a 2 (3|0) curve
9b 2 (0|1) curve
9c 2 (3|0) straight
9d 3 (3|0), (0|1) curve

Incorrectly measured sensor positions lead to incorrect
conversion from the sensor coordinate system to the vehi-
cle coordinate system, especially in the case of curved tra-
jectories. Furthermore, incorrect internal calibration leads
to a nonlinear error in the AoA estimation. Ultimately,
the algorithm is based on the assumption of non-elevated
targets (θ=0◦). With 1D angle estimation as used for the
radar sensors employed, incorrectly estimated angles of
arrival are the consequence for elevated targets. Once
these errors do not occur a bias-free orientation estimation
is possible as shown in Fig. 9 for simulation results.

VIII. Quality Criteria for Optimal Sensor Placement

The accuracy of the orientation estimation does not
only depend on the trajectory, the number of sensors and
the algorithm used, but also on the sensor constellation.
In order to investigate the influence of the sensor con-
stellation, a total of four different sensor configurations
with two or three sensors as well as straight and curved
trajectories, were evaluated according to Table II. Due to
the large number of position and orientation possibilities,
the valuation is based on simulation data.
The error of the orientation estimation by applying the
AOE algorithm for multiple sensor configurations is il-
lustrated in Fig. 9 for F=200 evaluated frames and 250
Monte Carlo trials with randomly generated target lists.
All subfigures 9a, 9b, 9c and 9d indicate possible sensor
positions and sensor orientations and the corresponding
logarithmic average orientation estimation error in degree
of all N sensors of the network. The x- and y-axes
correspond to the vehicle coordinate system according
to Fig. 1 and thus denote the xn and yn position of
the respective sensor with respect to the origin of the
vehicle coordinate system, at the center of the rear axle.
All subfigures in Fig. 9 represent consequently a car with
dimensions 5.5m× 2.5m, which is clarified exemplarily
with a smaller car in Fig. 9c.
In order to reduce the complexity of the simulation,
the orientation of the sensors is calculated according to
the relative distance between sensor and vehicle rotation
point:

φn = atan2 (xn, yn) . (17)

The function atan2 is the four-quadrant 2-argument
ambiguity-free arctangent. This corresponds to an omni-
directional view of the sensors and is shown in Fig. 9c as
an example for a sensor S2,v in white. Thus, each xc

n and
ycn pixel corresponds to a sensor position and to a sensor
orientation corresponding to a specific sensor orientation.
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(a) Curved trajectory with N=2 and S1 = (3|0).
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(b) Curved trajectory with N=2 and S1 = (0|1).
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(d) Curved trajectory with N=3 and S1 = (3|0), S2 = (0|1).

Fig. 9: Average logarithmic orientation error for different trajectories, sensor poses S1, S2, S3, and number of sensors.
The position and orientation of all N−1 fixed sensors are indicated by arrows. The N -th sensor is variable and is
located at the xc

n and ycn position of the vehicle in the vehicle coordinate system and represents the logarithmic
average orientation estimation error.

Since the structure of all subfigures is identical, the
structure is described exemplarily according to Figure 9c.
Figure 9c describes the orientation estimation accuracy for
a radar sensor network with N=2 sensors, whereby the
N -th sensor is variable with respect to position and ori-
entation, and all other N−1 sensors are fixed positioned
and orientated. The fixed sensors are always shown as
triangles. In Fig. 9c, this is sensor S1 at the front of the
hood. The N -th sensor SN (in Fig. 9c exemplary S2,v) is
located at arbitrary xc

n and ycn positions. The z-value at
which the N -th sensor is located describes the averaged
logarithmic orientation estimation error of all N radar
sensors in this network. In that case, the average error
for the fixed sensor S1, which is always located at the
front of the vehicle in Figure 9c, and the variable sensor
S2, which is located for example at the rear left bumper
is −1=̂0.1◦.
Fig. 9a illustrates the average orientation error for
a sensor network consisting of N=2 sensors for a
curved trajectory, where one sensor is located at position
[xc

1, y
c
1]=[3m, 0m] with orientation φ1=0◦. The second

sensor is arbitrarily positioned and oriented at position
xc
n and ycn according to Fig. 9a. The average orientation

estimation error for both sensors and all 250 Monte Carlo
trials per combination is plotted logarithmically at the
position of the second sensor. The colorbar of the z-axis
reflects errors between 0.1◦ and 3.1◦.
Fig. 9a shows that as soon as sensor S2 has a similar
y component as sensor S1 with ycn≈0, the orientation
error is highest. According to (1), the motion model of
each sensor has only a vcx and vcy component, which in
combination with N sensors can be transferred into the
motion model of the car with Vp=[ω, vx, vy].
This transfer only works if at least N=2 radar sensors
are used, otherwise the system of equations is under-
determined. According to (1), the robustness of the par-
titioning of sensor speeds into vehicle speeds is propor-
tional to the distance between sensors. Since vy=0 holds
for the vehicle velocity in y-direction, only the difference
of the yn-component is significant. Similar y components
lead to a broad minimum of the function g according to
Fig. 7c, which leads to less accurate absolute orientation
estimates.
As soon as the sensor S2 is positioned near the rotation
point [0, 0] of the vehicle, the orientation of both sensors
can be estimated much better, since the yaw rate with
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respect to the sensor S2 is decoupled according to (1).
Furthermore, it can be seen that the estimation yields the
best result as soon as both sensors are oriented in different
directions with an orientation difference of φ2=± 90◦.
The identical phenomenon can also be seen in Fig. 9b for
a curved trajectory in which the sensor S1 is located on
the left side of the vehicle [x1, y1]=[0m, 1m] and exhibits
an orientation of φ1= + 90◦. As soon as the two sensor
orientations to be estimated have similar y-positions, the
accuracy of the orientation estimation decreases.
The orientation estimation of the sensors can be signif-
icantly improved as soon as the vehicle has only a vx
velocity and thus only a straight trajectory exists. As
soon as this is ensured, a simplified motion model can
be used for motion estimation according to (13). This
is shown in Fig. 9c for a fixed sensor S1 at position
[x1, y1]=[3m, 0m]. Here, almost independent of the po-
sition and orientation of the second sensor, a precise
orientation estimate can be guaranteed with an accuracy
smaller than 0.1◦.
Since a yaw rate of ω=0 can’t be ensured in reality, and
the algorithm is to be applied in arbitrary scenarios, there
is also the possibility to estimate the orientation of all
sensors in the network with higher accuracy with the help
of a third sensor, which is shown in Fig. 9d. Here, the two
fixed sensors are located at positions [x1, y1]=[3m, 0m]
and [x2, y2]=[0m, 1m]. Especially compared to Fig. 9a
and Fig. 9b, an almost position-independent estimation
quality can be obtained even for curved trajectories. The
average orientation estimation accuracy for this sensor
constellation with N=3 sensors is approximately 0.25◦.

IX. CONCLUSION

Two sequential algorithms for an efficient orientation
estimation of distributed radar sensors on a vehicle have
been presented in this work. It was shown that for both
straight-line and curved trajectories, the orientation of
all radar sensors in the network can be estimated solely
based on target lists. The optimal sensor positioning to
achieve the best orientation estimates was presented and
evaluated using a Monte-Carlo simulation for different
networks. In addition, it was demonstrated by measure-
ment studies to what extent the estimation improves with
increasing number of sensors or increasing number of
evaluated frames. It was shown that the orientation of
the sensors can be determined with an accuracy of up
to 0.26◦ exclusively based on arbitrary chosen targets for
straight and curved trajectories. This is significantly more
accurate than the standard deviation of the angle estimate
of the radar sensor used. The independence towards all
additional sensors like IMU or GNSS as well as the
arbitrary positioning and orientation of the radar sensors
without any restrictions or overlapping field of views
allows the utilization in many application areas.
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