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Abstract — The parasitic exploitation of WiFi signals for 

passive sensing purposes is a topic that is attracting 

considerable interest in the scientific community. In an 

attempt at meeting the requirements for sensor compactness, 

easy deployment, and low cost, we resort to a non-coherent 

signal processing scheme that does not rely on the availability 

of a reference signal and relaxes the constraints on the sensor 

hardware implementation. Specifically, with the proposed 

strategy, the presence of a moving target echo is determined 

by detecting the amplitude modulation that it produces on the 

direct signal transmitted from the WiFi access point. We 

investigate the target discrimination capability of the 

resulting sensor against the competing interference 

background and we theoretically characterize the impact of 
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undesired amplitude fluctuations in the received signal that 

are determined by causes other than the superposition of the 

target echo, thereby including the waveform properties. 

Hence, we propose different solutions to address the 

limitations identified, characterized by different complexities, 

and we investigate their advantages and drawbacks. The 

conceived signal processing schemes are thoroughly validated 

on both simulated and experimental data, collected in 

different operational scenarios. 

I. INTRODUCTION 

In recent years, the steady proliferation of wireless 

devices has ensured that access points (APs) based on WiFi 

standards are now available in almost all private and public 

environments. This has motivated the development of 

strategies and solutions that enable the parasitic exploitation 

of these signals for short-range sensing purposes, in both 

indoor and outdoor areas, see e.g. [1]-[14] and the 

references therein. The implementation of radio-frequency 

(RF) based sensing solutions for public or private areas is 

very appealing since they are not affected by lighting 

conditions and they alleviate many privacy concerns and 

discomfort issues that cameras might cause. Specifically, 

RF radar sensors do not require any cooperation from the 

target, such as carrying a wearable device. Finally, the 

parasitic exploitation of existing RF sources provides 

additional benefits in terms of energy consumption and 

potential interference with pre-existing RF systems 

operating in the same area. For all these advantages, 

nowadays, the field of application of passive WiFi sensing 

solutions ranges from occupancy estimation, detection and 

localization of humans or small unmanned aerial vehicles 

(UAVs) [1]-[7], to the e-healthcare applications such as 

human gait recognition or breath detection [8]-[12]. 

However, most of the techniques proposed in the 

technical literature set strict requirements on the 

implementation of the WiFi sensor. As an example, 

approaches that rely on channel state information (CSI) 

extraction [4],[8]-[12] require a perfect knowledge of the 

adopted WiFi Standards and are limited to operation with 

orthogonal frequency division multiplexing (OFDM) 

signals. Moreover, they require accurate synchronization in 

both time, frequency, and phase. On the other hand, WiFi 

sensors based on passive radar (PR) approaches [1]-[3],[5]-

[7],[14]-[15] can, in principle, be operated with any 

waveform modulation and have the potential to increase the 

sensitivity of the sensor. However, they are typically limited 

by the high computational complexity and the requirement 
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for a reference signal. The former issue has been addressed 

in recent works [15]-[17] that have focused on the 

simplification of the PR processing chain with the purpose 

of streamlining the processing architecture and reducing the 

computational load. Still, the sensor requires a good copy of 

the transmitted signal to be available at the receiver since it 

not only provides a reference in the processing chain (e.g., 

for matched filtering) but also it inherently offers the 

required synchronization in time, frequency and phase. The 

requirement for a good reference signal can be 

accomplished according to different strategies: 

(i) if the AP is accessible, the reference signal can be 

directly extracted by means of a wired link. This 

makes available a very good copy of the transmitted 

signal but requires a dedicated receiving channel and 

additional infrastructure. 

(ii) The reference signal can be obtained using a dedicated 

antenna steered towards the AP. This strategy also 

requires a dedicated receiving channel but exploits a 

wireless link between the AP and the receiver. That 

simplifies the implementation but the collected signal 

could be affected by multipath. 

(iii) The reference signal can be obtained by demodulating 

and re-modulating the received signal packet. This 

strategy requires only one receiving channel but it 

needs knowledge of the employed IEEE 802.11 

Standard, it requires additional processing efforts, and 

it might be subject to reconstruction errors.  

(iv) An alternative approach is to limit the signal 

processing to a priori known portions of the physical 

layer protocol data unit (PPDU), e.g., the PHY 

Preamble, without requiring any dedicated receiving 

channel or reconstruction. However, using limited 

portions of the available signals implies SNR loss. 

Moreover, using a synthetic reference signal does not 

guarantee synchronization in time, frequency and 

phase with the main echo signal and ad hoc approaches 

must be implemented to restore the coherency [18]. 

 

The aforementioned solutions do not take into account 

key aspects required to facilitate the widespread use of 

WiFi-based sensors, such as low cost and low 

computational complexity, compactness and lightness, as 

well as the easy deployment and setup.  

In this paper, we take this perspective with the aim of 

enabling a WiFi sensing application that employs a simple, 

stand-alone and low-cost sensor that could be implemented 

with commercial off-the-shelf (COTS) hardware 

components and uses a WiFi passive sensing strategy whose 

aim is to detect targets without any attempt at isolating or 

regenerating the reference signal. In order to meet these 

requirements, we aim to detect the presence of a moving 

target in the scene by observing the amplitude modulation 

that it induces on the main source signal. This principle of 

operation exploits the interference amplitude pattern 

between the signal transmitted by the AP and multiple 

reflections from the environment.  The analysis of the target 

induced amplitude modulation not only provides 

information about its presence but also allows extraction of 

its Doppler signature across time. Therefore, in the 

following, we will refer to this approach as interference 

Doppler processing (IDP). Compared to the passive radar 

approach, this can be inherently considered as a reference-

free approach since it does not require knowledge of the 

signal transmitted by the AP.  

Amplitude-based approaches have been widely 

investigated in the technical literature. For instance, a 

similar concept is employed for non-coherent radar but it 

has also been applied to forward scatter radar (FSR) [19]-

[29]. Moreover, typical amplitude-based strategies used in 

WiFi Sensing are based on the Received Signa Strength 

Indication (RSSI) extraction [30]-[31]. Thus, it should be 

noted that although this work may have commonalities with 

several approaches considered in the general field of 

sensing, it represents an advancement with respect to each 

of these. The specific innovative aspects are better clarified 

in the following. 

The purpose of this work is twofold. First, we aim to 

adopt the considered principle of operation and investigate 

the proposed strategy for the application in hand. This latter 

point also includes identification and theoretical 

characterization of the main limitations of this approach 

inherently caused by the characteristics of the WiFi signals. 

It is well known, in fact, that the more the direct signal is 

constant over time, the higher is the ability of the proposed 

strategy to discriminate the presence of a target against a 

competing background based on the amplitude modulation 

only. This problem has been studied in [29] with reference 

to a DVB-T based passive FSR application, therefore we 

follow a similar procedure as the one used therein, however 

we extend the discussion in order to include real world 

aspects that are specific to the application in hand, thereby 

including the peculiar characteristics of the adopted 

waveforms of opportunity. This provides a broader 

discussion and a result that allows accurate prediction of the 

achievable performance for the proposed WiFi sensor. 

On the other hand, we propose possible solutions to the 

main identified limitations and, for each, we investigate 

advantages and drawbacks both in terms of performance 

and in terms of complexity. All strategies are tested and 

thoroughly validated on both simulated and experimental 

data. To this purpose, ad hoc acquisition campaigns have 
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been conducted by means of an experimental WiFi receiver 

developed at Sapienza University of Rome using different 

cooperative targets in order to mimic different application 

scenarios. 

The reminder of the paper is structured as follows. 

Section II introduces the signal model and the proposed IDP 

scheme. In Section III, we theoretically characterize the 

interference background level against which the target 

discrimination competes and we confirm the validity of the 

theoretical findings by application to both simulated and 

real-world WiFi data. In Section IV, we propose different 

solutions to the problems identified, being the discussion 

supported by simulated analyses, while Section V is devoted 

to a thorough experimental validation in real scenarios. 

Finally, Section VI reports our concluding remarks while 

mathematical details are reported in the Appendix.  

II. INTERFERENCE DOPPLER 

PROCESSING FOR WIFI SENSING 

A. Signal Model 

The considered scenario is depicted in Figure 1. During 

a given observation time, the transmitter (Tx), a WiFi AP, 

emits a train of consecutive packets. Let 𝑇𝑠
(𝑝)

 be the 

temporal duration of the pth packet, which is assumed to 

encompass an integer number of symbols, namely 

fundamental blocks of the signal, which depend on the 

adopted modulation. Specifically, the pth packet is 

composed by 𝑁𝑠𝑁𝑠𝑦𝑚
(𝑝)

= 𝑇𝑠
(𝑝)
𝑓𝑠   samples, being 𝑓𝑠 the 

employed sampling frequency, 𝑁𝑠𝑦𝑚
(𝑝)

 the number of 

symbols inside the pth packet and 𝑁𝑠 the number of samples 

inside each symbol. The signal received by the WiFi sensor 

(Rx) in Figure 1 contains the coherent superposition of 

different contributions, namely the direct signal transmitted 

by the AP and its 𝑁𝑅 multipath replicas caused by the 

reflections on stationary obstacles (e.g., walls, floor, and 

ceiling), the delayed and Doppler shifted echoes from 𝑁𝑇 

moving targets, as well as thermal noise.  

The discrete version of the complex baseband signal 

received for the pth WiFi packet emitted by the AP, is then 

written as 

𝑥𝑝(𝑙) =∑𝛼𝑟,𝑝

𝑁𝑅

𝑟=0

𝑠𝑝
(�̅�𝑟)(𝑙) 

+∑𝛽𝑞,𝑝 

𝑁𝑇

𝑞=1

𝑠𝑝
(𝜏𝑞,𝑝)(𝑙) e𝑗𝜑𝑞,𝑝(𝑙) + 𝑑𝑝(𝑙) 

 

𝑙 = 0,… , 𝑁𝑠𝑦𝑚
(𝑝)
𝑁𝑠 − 1 ;  𝑝 = 0, 1, … 

(1) 

 

where 

 

 
Figure 1. Sketch of the WiFi sensing scenario. 

• 𝑠𝑝
(𝜏)
(𝑙) is the resampled version of the waveform 

transmitted at the pth packet, i.e., 𝑠𝑝(𝑙), delayed by 𝜏. 

Note that the adopted notation also accounts for 

fractional delays. In this paper, the pth packet 

waveform is modeled as a zero-mean unitary power 

random process whose characteristics depend on the 

modulation scheme. 

• 𝛼𝑟,𝑝 are the complex amplitudes of the stationary 

contributions at the pth packet; specifically, 𝛼0,𝑝 is the 

amplitude of the direct signal, while 𝛼𝑟,𝑝 (𝑟 =

 1, … , 𝑁𝑅) is the amplitude of the rth multipath 

reflection. These parameters encode both the Tx 

power level and the propagation losses and they are 

assumed to be constant within the packet whereas 

they might vary across consecutive packets. 

• 𝜏�̅� is the delay of the rth stationary contribution; in the 

following, without loss of generality, we assume that 

the delay of the direct signal is zero, i.e., 𝜏0̅ = 0, and 

we measure the delays of all the other contributions 

with respect to it; 

• 𝛽𝑞,𝑝 and 𝜏𝑞,𝑝 (𝑞 =  1, … , 𝑁𝑇) are the complex 

amplitude and the delay of the qth target echo at the 

pth packet and, despite target movements, their 

variation is assumed to be negligible within the packet 

due to the typical duration of WiFi packets compared 

with the velocity of the targets of interest;   

• 𝜑𝑞,𝑝(𝑙) encodes the motion induced phase variation 

for the qth target echo at the pth packet, and it is 

defined as 𝜑𝑞,𝑝(𝑙) = 2𝜋
𝑅𝑞,𝑝(𝑙)

𝜆
, where 𝜆 is the 

wavelength and 𝑅𝑞,𝑝(𝑙) = 𝑅𝑇𝑥−𝑇𝐺𝑇𝑞,𝑝(𝑙) +

𝑅𝑅𝑥−𝑇𝐺𝑇𝑞,𝑝(𝑙) − 𝐵 is the relative bistatic range law of 

the qth target along the pth packet, being B the 

distance between the Tx and the Rx, and 
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𝑅𝑇𝑥−𝑇𝐺𝑇𝑞,𝑝(𝑙) and 𝑅𝑅𝑥−𝑇𝐺𝑇𝑞,𝑝(𝑙) the time-varying 

distances between the target and the Tx and between 

the target and the Rx, respectively. 

• 𝑑𝑝(𝑙) is the additive noise affecting the pth packet at 

the receiving sensor. It is assumed to be a white, zero-

mean complex Gaussian process with variance 𝜎𝐷
2, 

statistically independent of the source signal.  

 

With a passive radar approach, the presence of a moving 

target is detected by first removing the stationary 

contributions in (1) and then focusing the energy of the 

target echo by means of a matched filter or alternative 

techniques [1][15]. This approach requires the availability 

of a reference signal, namely a good copy of the transmitted 

signal, which also provides inherent time, phase and 

frequency synchronization  [18]. However, as previously 

discussed, such approach sets strong requirements on the Rx 

architecture, above all the need for at least two simultaneous 

and coherent receiving channels, thus increasing its cost 

[18]. 

Aiming at reducing the complexity of the WiFi sensor, 

we propose to adopt a reference-free approach. For this 

purpose, a possible strategy is to exploit an amplitude-based 

processing scheme where the presence of a moving target 

echo is detected by extracting the amplitude modulation that 

it produces on the direct signal from the AP. 

B. Interference Doppler Processing (IDP) Scheme 

Figure 2 sketches the main blocks of the processing 

scheme proposed for a WiFi sensor to detect the presence of 

moving target(s) against the stationary scene and to extract 

its instantaneous Doppler frequency, which is referred to as 

interference Doppler processing (IDP). It mirrors the 

approach adopted in FSR but it also includes appropriate 

modifications to make it effective against WiFi signals.  

First, the square modulus of the signal is extracted, thus 

discarding the phase information: 

𝑦𝑝(𝑙) = |𝑥𝑝(𝑙)|
2
 (2) 

Afterwards, based on the assumption that the amplitude 

modulation produced by the target is much slower that the 

signal Nyquist sampling rate, the output of Figure 2 

undergoes a low-pass filter (LPF) and downsampling 

(DWS) stage aimed at removing the high frequency 

amplitude variations due to the signal itself, to its multipath 

replicas and to the noise. We recall that we are dealing with 

a pulsed type transmission where the packet emission rate is 

still higher than Doppler frequency components of the 

targets of interest. Therefore, a very simple solution to 

implement this block with WiFi signals is to resort to an 

 

 
Figure 2. Block diagram of the IDP processing scheme. 

energy detector at packet level, namely an integrator, thus 

setting the cutoff frequency of the LPF equal to the inverse 

of the packet duration and the output sampling rate equal to 

the packet emission rate: 

𝑧(𝑝) = ∑ 𝑦𝑝(𝑙)

𝑁𝑠𝑦𝑚
(𝑝)

𝑁𝑠−1

𝑙=0

 (3) 

Once this stage has been performed, the sequence of 

samples 𝑧(𝑝), 𝑝 = 0,… ,𝑁𝑃 − 1, undergoes DC removal, 

aimed at cancelling the strongest stationary scene 

components, above all the direct signal from the AP: 

𝑧(̅𝑝) = 𝑧(𝑝) − 𝑧𝐷𝐶(𝑝) (4) 

where 𝑧𝐷𝐶(𝑝) represents the average value of 𝑧(𝑝), 

evaluated over an appropriate time window 𝑇𝐷𝐶  around the 

current sample. 

Finally, 𝑧̅(𝑝) undergoes a time-frequency analysis that 

provides as output the typical spectrogram where the 

presence of a target is detected via its Doppler signature. 

Specifically,  if the packet emission rate is constant over 

time, i.e., if 𝑇0
(𝑝+1)

− 𝑇0
(𝑝)
= ∆𝑇0    ∀𝑝, 𝑇0

(𝑝)
 being the time 

instant where the pth packet starts, a short-time Fourier 

transform (STFT) is implemented that operates against 

partially overlapped batches of 𝑇𝑆𝑇𝐹𝑇  seconds each, thus 

encompassing 𝑁𝑃 = ⌊𝑇𝑆𝑇𝐹𝑇/∆𝑇0 ⌋ samples: 

𝑤(𝑚) =  ∑ ℎ(𝑝)𝑧̅(𝑝0 + 𝑝)𝑒
−𝑗2𝜋

𝑚𝑝
𝑁𝑃

𝑁𝑃−1

𝑝=0

 (5) 

where 𝑝0 is the first packet of the considered batch and 

ℎ(𝑝) is an appropriate weighting function, used to keep the 

Doppler sidelobes level under control. 

Note that, in practical situations, the sequence 𝑧(̅𝑝) 

collects samples that are not taken at equally spaced time 

instants, being the sampling rate set by the random packet 

emission rate. In such case, a possibility is to resort to an 

appropriate interpolation stage, which basically yields a 

resampled version of the sequence 𝑧̅(𝑝). Provided that the 

original average packet transmission rate was high enough, 
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this approach still allows advantage to be taken of the fast 

Fourier transform (FFT) speed to evaluate the required 

output. Alternatively, a nonuniform discrete Fourier 

transform (NDFT) can be implemented at each batch. 

C. Example of IDP Results on Simulated Data 

To preliminarily investigate the effectiveness of the IDP 

for WiFi sensing, a simulated dataset has been generated for 

the scenario depicted in Figure 1. Specifically, a WiFi AP 

and the WiFi Rx are placed at two opposite corners of the 

simulated scene while one target crosses the baseline 

according to a non-rectilinear trajectory. A stream of OFDM 

modulated WiFi packets is simulated at the Rx containing 

the direct signal contribution, the signal backscattered by 

the moving target, as well as thermal noise. Note that, for all 

simulations reported in this article, the target is modeled as 

a point-like scatterer. To make the simulation more adherent 

to reality, more complex target models could be considered. 

However, this is out of the scope of this work because (i) 

depending on the target type and observation geometry, the 

employed model could significantly change (ii) the 

theoretical derivation and discussion would be considerably 

complicated but without changing the message of the paper 

since the main focus of this work is on the impact of the 

WiFi waveform. Nevertheless, the experimental results 

reported in Section V will highlight some aspects due to the 

true target response under different observation geometries. 

Table 1 
 Employed Simulation Parameters 

Parameter Value 

Carrier frequency (f0) 2.4 GHz 

Wavelength (λ) 0.1249 m 

Sampling frequency (fs) 20 MHz 

Packet repetition interval (PRI) 2 ms 

Modulation scheme OFDM 

Constellation  64-QAM 

OFDM useful symbol duration 3.2 𝜇𝑠 

OFDM Cyclical Prefix (CP) duration 0.8 𝜇𝑠 

Number of OFDM symbols per packet 20 

Packet duration 80 𝜇𝑠 

Considered scenario 
Single target, no 

multipath 

Target initial position (x0,y0,z0) (2,13,1) m 

Target initial velocity (vx,vy,vz) (0.8, -0.8,0) m/s 

Target constant acceleration (ax,ay,az) (0.1, 0, 0) m/s2 

Target signal-to-noise ratio (SNR) -15 dB 

Direct signal-to-noise ratio (DNR) 25 dB 

 

For the purpose of the following analysis, multipath 

reflection contributions are assumed negligible.  

Table 1 collects the set of parameters employed in the 

simulation. For simplicity, the direct signal-to-noise ratio, 

𝐷𝑁𝑅𝑝 = 𝜎𝐷
−2|𝛼0,𝑝|

2
, and the target signal-to-noise ratio, 

𝑆𝑁𝑅𝑝 = 𝜎𝐷
−2|𝛽0,𝑝 |

2
, are assumed constant across packets 

during the entire acquisition time of approximately 10 

seconds, i.e., 𝐷𝑁𝑅𝑝 = 𝐷𝑁𝑅 = 25 𝑑𝐵 and 𝑆𝑁𝑅𝑝 =

𝑆𝑁𝑅 = −15 𝑑𝐵, 𝑝 = 0,… ,𝑁𝑃 − 1; moreover, the OFDM 

packets are all of the same duration of 80 𝜇s. Note that the 

SNR values provided are defined over a frequency band 

used for the considered WiFi transmission Standard, in this 

case corresponding to 20 MHz.  

Figure 3 shows the result obtained with the IDP in the 

bistatic velocity-time plane. The processing scheme detailed 

in Section II.B has been applied with 𝑇𝐷𝐶 = 𝑇𝑆𝑇𝐹𝑇 = 1 s and 

a Hamming weighting function ℎ(𝑝) to control Doppler 

sidelobes. The spectrogram is reported for positive 

frequency values only (the results are symmetrical about 

zero since the input signal is a real-valued signal) and is 

scaled to a reference noise power level 𝜚𝐷 as expected at the 

output of the processing scheme [28]. Figure 3 demonstrates 

that, by applying the IDP strategy, the WiFi sensor can 

distinguish the presence of a moving target from the 

competing background and correctly measure the absolute 

value of the target Doppler frequency, or equivalently of the 

target bistatic velocity, i.e., |𝑣𝐵|, across time. 

Nevertheless, it is also worth noting that the background 

level against which the target must compete is quite high. In 

the considered case study, it appears at approximately 48.8 

dB above the reference noise level, which is expected to 

yield significant masking effects on weak target signatures. 

A similar problem was addressed in [28] with reference to 

broadcast radio and television transmissions, where it was 

shown that this level strongly depends on the modulation 

adopted by the signal that is being exploited as well as on 

the DNR. 

 
Figure 3. Results of the IDP on simulated data.  

The white line represents the true target trajectory mapped onto the 

absolute velocity - time plane. 
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In the following section we extend the analysis in [28]  

so that it can also be representative for WiFi signals. 

Moreover, we generalize the adopted hypotheses to include 

real-world effects that were not considered in the theoretical 

development in [28] and are shown to further degrade the 

performance. The theoretical characterization of the 

background level represents a key step in the identification 

of appropriate strategies to mitigate this issue in order to 

improve the performance of the proposed IDP in WiFi 

sensing applications. The points above will be addressed in 

Sections III and IV, respectively. 

III. BACKGROUND CHARACTERIZATION 

The background level at the output of the IDP chain is 

evaluated by computing the average power level of the 

spectrogram under the null hypothesis H0 (absence of 

targets), i.e., 𝐸{|𝑤(𝑚)|2|𝐻0}, where 𝐸{∙} denotes the 

expectation operator. As shown in [29], it is expected that 

the background level increases in the presence of random 

amplitude fluctuations in the received signal that are 

determined by causes other than the superposition of the 

target echo. Therefore, all possible sources of amplitude 

fluctuation should be properly modeled and included in the 

analysis. To this purpose we consider the signal at the pth 

packet, as written in (1), under the H0 hypothesis and 

assuming that the multipath contributions are negligible 

with respect to the direct signal: 

𝑥𝑝(𝑙) = 𝛼0,𝑝 𝑠𝑝(𝑙) + 𝑑𝑝(𝑙) 

𝑙 = 0,… , 𝑁𝑠𝑁𝑠𝑦𝑚
(𝑝)

− 1 ; 𝑝 = 0, 1, … 
(6) 

We make very general assumptions for the quantities in 

(6) in order to model real-world effects that are expected to 

limit the achievable performance. Specifically: 

• The direct signal amplitude 𝛼0,𝑝 associated with the pth 

packet is modelled as a random variable to encode the 

unpredictable variations in the Tx power level and 

propagation loss across packets. Such effect is expected 

to limit the performance of the IDP since this technique 

relies on the assumption that the direct signal 

constituites a stable power reference source. In 

constrast, if the direct signal power level varies across 

packets, the observed amplitude modulation cannot be 

solely attributed to the presence of a target that becomes 

more difficult to be detected.  Specifically, we assume 

𝛼0,𝑝 to be zero-mean with variance  𝑚𝛼,2 =

𝐸𝛼 {|𝛼0,𝑝|
2
} = 𝐷𝑁𝑅𝑎𝑣𝑔 𝜎𝐷

2 , where we have implicitly 

defined an average DNR across the processing time. 

Moreover, we define the parameter 𝜎𝐷𝑁𝑅
2 =

𝑚𝛼,4−𝑚𝛼,2

𝜎𝐷
4 , 

that encodes the DNR variance across packets and 

depends on the fourth moment of 𝛼0,𝑝, 𝑚𝛼,4 =

𝐸𝛼 {|𝛼0,𝑝|
4
}.  

• The number 𝑁𝑠𝑦𝑚
(𝑝)

 of symbols inside the pth packet is 

modelled as a random variable to encode the variable 

length of WiFi packets with first and second moments 

respectively given by 𝑚𝑁,1 = 𝐸𝑁{𝑁𝑠𝑦𝑚
(𝑝)
} and 𝑚𝑁,2 =

𝐸𝑁 {(𝑁𝑠𝑦𝑚
(𝑝)
)
2
}. As for the direct signal amplitude, this 

parameter affects the energy detection stage at packet 

level and determines an unwanted amplitude 

modulation in the output sequence 𝑧(𝑝) that might be 

responsible of a masking effect on the target echo. 

• The waveform 𝑠𝑝(𝑙) transmitted at the pth packet might 

show an inherent amplitude fluctuation depending on 

the the adopted modulation. In order to model the 

statistics of the corresponding process, we refer to the 

two most common modulation schemes used in WiFi 

Standards [32]. 

– For DSSS modulated packets, we write the waveform 

as 

𝑠𝑝(𝑙) = 𝑠𝑝(𝑞𝑁𝑠 + 𝑛) = 𝑐
(𝑝,𝑞)𝑏(𝑛) 

𝑞 = 0,… , 𝑁𝑠𝑦𝑚
(𝑝)

− 1,  𝑛 = 0,… ,𝑁𝑠 − 1 
(7) 

where index 𝑞 = ⌊𝑙/𝑁𝑠⌋ scans the symbols, while index 

𝑛 = 𝑙 − 𝑞𝑁𝑠 scans the samples within the symbol. In this 

case, the fundamental block in the waveform is given by 

the pseudo-noise Barker code 𝑏(𝑛) of length 𝑁𝑠 = 11, 

used to chip the baseband signal at 11 MHz. 𝑐(𝑝,𝑞) is the 

complex data transmitted at the qth symbol of the pth 

packet and is drawn from either a BPSK or a QPSK 

constellation (𝑀𝑐-PSK with 𝑀𝑐  =  2,4) with 

equiprobable symbols. It is worth noticing that, whilst the 

complex data stream can randomly take different values 

within the constellation, the waveform in (7) shows a 

contant modulus so that it does not contribute to 

undesired amplitude fluctuations on the received signal 

and it is expected to be the best performing in terms of 

background level. 

– For OFDM modulated packets 

𝑠𝑝(𝑙) = 𝑠𝑝(𝑞𝑁𝑠 + 𝑛 + 𝑁𝑐𝑝)

= ∑ 𝑐𝑘
(𝑝,𝑞)

𝑁𝑐−1

𝑘=0

𝑒
𝑗
2𝜋
𝑁𝑐
𝑘𝑛

 

𝑞 = 0,… , 𝑁𝑠𝑦𝑚
(𝑝)

− 1,  𝑛 = −𝑁𝑐𝑝, … , 𝑁𝑐 − 1 

(8) 

where 𝑞 = ⌊𝑙/𝑁𝑠⌋ scans the symbols and 𝑛 = 𝑙 − 𝑞𝑁𝑠 −

𝑁𝑐𝑝 scans the samples within the symbol. In this case, the 

number of samples within the OFDM symbol is equal to 
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𝑁𝑠 = 𝑁𝑐(1 + 𝜂), where 𝑁𝑐 is the number of subcarriers 

and 𝜂 = 𝑁𝑐𝑝/𝑁𝑐 is the fraction of useful symbol samples 

that is cyclically repeated at the beginning of each 

symbol, namely the cyclical prefix (CP). Note that, 

according to the 802.11 WiFi Standard [32], 𝑁𝑐 = 64 

while 𝜂 may take values equal to 1/4, 1/8 or 1/16. 

Different sub-carriers are assumed to be modulated by 

statistically independent streams of equiprobable 

symbols drawn from a constellation of dimension 𝑀𝑐.  

Specifically, 𝑐𝑘
(𝑝,𝑞)

 is the constellation symbol transmitted 

at the qth symbol of the pth packet using the kth 

subcarrier. We recall that, according to the 802.11 

Standard, the available constellations are BPSK (𝑀𝑐 =

2), QPSK (𝑀𝑐 = 4), 16-QAM (𝑀𝑐 = 16) , 64-QAM 

(𝑀𝑐 = 64).  

 

In both DSSS and OFDM cases, the constellation 

symbols {𝛾𝑚}𝑚=0,..,𝑀𝑐−1 of the adopted constellation map 

are properly defined in order to guarantee the unitary power 

characteristic for the resulting waveform 𝑠𝑝(𝑙). 

Specifically, in the DSSS case, such condition yields 𝐶 =
1

𝑀𝑐
∑ |𝛾𝑚|

2𝑀𝑐−1
𝑚=0 = 1, which in turn requires |𝛾𝑚| = 1,𝑚 =

0, . . , 𝑀𝑐 − 1, with the adopted BPSK or QPSK schemes. 

When OFDM signals are considered, we set the average 

power of the constellation as 𝐶 =
1

𝑀𝑐
∑ |𝛾𝑚|

2𝑀𝑐−1
𝑚=0  =1/𝑁𝑐. In 

addition, we define 

𝜇 =
1

𝑀𝑐𝐶
2
∑ |𝛾𝑚|

4

𝑀𝑐−1

𝑚=0

 (9) 

as the scaled fourth moment of the adopted constellation, 

which yields the values reported in Table 2. With the 

assumptions above, the theoretical background level at the 

output of the IDP chain is given by the following unified 

expression (see Appendix for detailed derivation):  

𝐸{|𝑤(𝑚)|2|𝐻0} = 𝜚𝐷 × {2𝐷𝑁𝑅𝑎𝑣𝑔 + 1 + 

𝐷𝑁𝑅𝑎𝑣𝑔
2 [𝜇 − 1 + 𝑔(𝜂)] + 

𝜎𝑁
2

𝑚𝑁,1

𝑁𝑠 [𝜎𝐷𝑁𝑅
2 + (𝐷𝑁𝑅𝑎𝑣𝑔 + 1)

2
] + 

𝜎𝐷𝑁𝑅
2 [𝑚𝑁,1𝑁𝑠 + 𝜇 − 1 + 𝑔(𝜂)]} 

(10) 

where 𝜚𝐷 denotes the output power level that is solely 

due to the noise at the Rx, namely the value that would be 

measured in the absence of direct signal, i.e., 𝜚𝐷 =

𝜎𝐷
4𝑚𝑁,1𝑁𝑠 ∑ ℎ2(𝑝)

𝑁𝑃−1
𝑝=0 . As a consequence, the remaining 

factor represents the background-to-noise ratio, namely 

𝐵𝑁𝑅 = 𝐸{|𝑤(𝑚)|2|𝐻0}/𝜚𝐷 .  

The function 𝑔(𝜂) in eq. (10) depends on the adopted 

constellation via the parameter 𝜇 but it takes non-zero 

(positive) values only in the presence of a CP, i.e., for 𝜂 >

0, thus reflecting the background increment expected due to 

the cyclical repetition of signal fragments within the 

waveform. Its expression is reported in Table 2 for the 

considered waveforms of interest. 

Eq. (10) generalizes the result in [29] by introducing 

additional effects that were not considered before and 

provides an appropriate tool that can be exploited also for 

the case of pulsed transmissions as WiFi signals.  

 Table 2  

Expressions for 𝝁 and 𝒈(𝜼). 

Modulation 𝝁 𝒈(𝜼) 

DSSS 1 0 

O
F

D
M

 

BPSK  

(𝑀𝐶 = 2) 
1 𝜂 (𝜇 − 3 +

3

(𝜂 + 1)
) 

QPSK  

(𝑀𝐶 = 4) 
1 𝜂 (𝜇 − 2 +

2

(𝜂 + 1)
) 

16-QAM 

(𝑀𝐶 = 16) 
1.320 𝜂 (𝜇 − 2 +

2

(𝜂 + 1)
) 

64-QAM 

(𝑀𝐶 = 64) 
1.381 𝜂 (𝜇 − 2 +

2

(𝜂 + 1)
) 

 

In particular, it shows that the BNR at the output of the 

IDP scheme takes a minimum value equal to approximately 

2𝐷𝑁𝑅𝑎𝑣𝑔 but it might experience a large increase 

depending on (i) the transmitted waveform and employed 

modulation, via 𝜇 and 𝑔(𝜂), since these determine the 

inherent amplitude fluctuation in the waveform;  (ii) the 

fluctuation of the packets length and specifically of the 

number of symbols included in the employed packets, 

described by 𝜎𝑁
2/ 𝑚𝑁,1 = (𝑚𝑁,2 −𝑚𝑁,1

2 )/ 𝑚𝑁,1; (iii) the 

fluctuation of the direct signal power level, described by 

𝜎𝐷𝑁𝑅
2 . This theoretical expression is validated against 

experimental data in Section V. In the remainder of this 

Section a thorough analysis is reported against simulated 

data. This allows us to better understand the effects of 

different parameters that can be individually simulated. To 

this purpose, we consider three case studies, separately 

addressed in the following. 

1) Case study A 

In Case Study A, we investigate the effect of packet 

length fluctuation within the processing interval while 

removing the signal amplitude fluctuations due to other 

effects. Therefore, we assume that the DNR is constant 

across packets, i.e., 𝜎𝐷𝑁𝑅
2 = 0 (and 𝐷𝑁𝑅𝑝 = 𝐷𝑁𝑅𝑎𝑣𝑔 =

𝐷𝑁𝑅), and we set 𝜇 = 1 and 𝑔(𝜂) = 0, which correspond 
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to a constant amplitude waveform, e.g., DSSS modulated 

WiFi packets. Accordingly, eq. (10) becomes 

𝐸{|𝑤(𝑚)|2|𝐻0} = 𝜚𝑑 × 

{2𝐷𝑁𝑅 + 1 +
𝜎𝑁
2

𝑚𝑁,1

𝑁𝑠(𝐷𝑁𝑅 + 1)
2} 

(11) 

To validate this expression, we simulate streams of 

DSSS packets with variable lengths. To this aim, the 

number of symbols inside each packet is drawn from a 

discrete uniform distribution with mean value 𝑚𝑁,1and 

variance 𝜎𝑁
2. Different values of these two parameters are 

used in order to obtain different values for the ratio 𝜎𝑁
2/𝑚𝑁,1 

in (11). The received signal is simulated according to (6) for 

a target-free and multipath-free scenario. Then, it is sent in 

input to the IDP scheme and the BNR is numerically 

evaluated from the output Doppler-time map. In Figure 4, 

we report the results as a function of the DNR. Different line 

styles and colors represent the theoretical results for 

different values of 𝜎𝑁
2/𝑚𝑁,1, while different colored 

markers represent the BNR measured on simulated data. As 

is apparent, the simulation results confirm the correctness of 

the theoretical formula in (11).  

When 𝜎𝑁
2 = 0, the last term in (11) is null therefore the 

BNR is at its lowest value equal to 

𝐵𝑁𝑅𝑚𝑖𝑛 = 2𝐷𝑁𝑅 + 1 ≅ 2𝐷𝑁𝑅 (12) 

As 𝜎𝑁
2/𝑚𝑁,1 grows, the last term in (11) becomes 

progressively larger. In other words, the higher is the 

amplitude fluctuation due to the varying packet length, the 

lower is the system capability of discriminating a target 

from the competing background.  

 

 
Figure 4. BNR versus DNR for different 𝜎𝑁

2/𝑚𝑁,1 values. 

In particular, the BNR deviates from the 2𝐷𝑁𝑅 level 

even for very small 𝜎𝑁
2/𝑚𝑁,1 values. As an example, with 

the considered discrete uniform distribution for 𝑁𝑠𝑦𝑚
(𝑝)

, the 

case 𝜎𝑁
2/𝑚𝑁,1 = 10

−4 (blue line) is representative of a 

fluctuation of less than [±1] symbol around an average 

value of 𝑚𝑁,1 = 6000 symbols. Finally, we notice that, for 

𝜎𝑁
2/𝑚𝑁,1 ≥ 10−2, the BNR grows proportional to the 

square of the DNR since the last term in (11) becomes the 

dominant term in the range of typical DNR values 

considered. The analysis above reveals that the BNR is 

very sensitive to packet length fluctuation. However, an 

easy approach to solve this issue is to crop all packets to a 

common length. This obviously implies some losses in 

terms of target SNR since part of the available energy on 

receive is discarded. However, target detection is expected 

to largely benefit from the resulting control of the BNR 

which typically represents the limiting factor. Actually, the 

capability of detecting moving targets is jointly limited by 

the background level and the noise contribution via the 

signal-to-background-plus-noise ratio SBNR=S/(B+N). 

However, in the considered application we have shown that 

the background level is typically much higher than the 

noise floor, especially when amplitude modulated signals 

are used. By rewriting the SBNR as SBNR= (S/N)/(B/N+1) 

= SNR/(BNR+1), it is well apparent that the BNR term 

represents the degrading factor with respect to the original 

SNR when BNR>>1, therefore, if a sufficient SNR is 

available, the capability of mitigating the BNR might be 

critical for target detection. 

Therefore, in the following, we will assume that 

𝑁𝑠𝑦𝑚
(𝑝)

= 𝑁𝑠𝑦𝑚, 𝑝 = 0,… , 𝑁𝑃 − 1.  

2) Case study B 

In Case Study B, we investigate the effect of the direct 

signal amplitude fluctuation on the output background by 

keeping constant the packets duration, i.e., 𝜎𝑁
2 = 0, and the 

waveform amplitude, i.e., using a DSSS packets. With these 

assumptions, eq. (10) becomes 

𝐸{|𝑤(𝑚)|2|𝐻0} = 𝜚𝑑 × 

{2𝐷𝑁𝑅𝑎𝑣𝑔 + 1 + 𝜎𝐷𝑁𝑅
2 𝑁𝑠𝑦𝑚𝑁𝑠} 

(13) 

In Figure 5, we report the BNR versus 𝐷𝑁𝑅𝑎𝑣𝑔 for 

different values of 𝜉 = 𝜎𝐷𝑁𝑅/𝐷𝑁𝑅𝑎𝑣𝑔 (denoted by 

different colors) for two different 𝑁𝑠𝑦𝑚  values, represented 

with different line styles.  

From Figure 5, the following comments apply: 

• For 𝜉 = 0, namely when 𝐷𝑁𝑅𝑝 = 𝐷𝑁𝑅𝑎𝑣𝑔, the BNR 

level is the minimum achievable and equal to 2𝐷𝑁𝑅𝑎𝑣𝑔 

regardless of 𝑁𝑠𝑦𝑚.  
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• For limited 𝜉 > 0,  we can identify a 𝐷𝑁𝑅𝑎𝑣𝑔 value 

from which the BNR curve deviates from the minimum 

obtainable value and rapidly grows. Moreover, the 

higher is 𝑁𝑠𝑦𝑚, the lower is the 𝐷𝑁𝑅𝑎𝑣𝑔 value where 

the deviation occurs.  

• For higher 𝜉 > 0,  the BNR curve never reaches the 

lower 2𝐷𝑁𝑅𝑎𝑣𝑔 bound within the ranges of DNR 

values considered in this analysis. Moreover, for a fixed 

𝜉, the higher is 𝑁𝑠𝑦𝑚, the higher is the BNR. 

• Finally, all simulation results match the corresponding 

theoretical expressions, meaning that the formula in 

(13) is able to correctly predict the performance in all 

cases. 

 

 
Figure 5. BNR versus DNR for different 𝑁𝑠 and 𝜉 values. 

3) Case study C 

In Case Study C, we assume that both the DNR and the 

packet lengths are constant across packets, i.e., 𝜎𝐷𝑁𝑅
2 = 0 

(𝐷𝑁𝑅𝑝 = 𝐷𝑁𝑅𝑎𝑣𝑔 = 𝐷𝑁𝑅) and 𝜎𝑁
2 = 0, and we study the 

impact of the different WiFi waveforms on the output 

background. Accordingly, eq. (10) can be written as 

𝐸{|𝑤(𝑚)|2|𝐻0} = 𝜚𝑑 × 

{2𝐷𝑁𝑅 + 1 + 𝐷𝑁𝑅2[𝜇 − 1 + 𝑔(𝜂)]} 
(14) 

In Figure 6, we report the theoretical BNR vs DNR 

curves for different modulation schemes and different 

constellations, identified by different colors and linestyles. 

In all cases, the simulated packets are composed of 𝑁𝑠𝑦𝑚 =

 5 symbols, however as correctly predicted by Eq. (14), 

under the considered hypotheses, the BNR does not change 

with the packet duration.  

The results in Figure 6 show that: 

• the BNR obtained with DSSS packets is equal to 2DNR 

(solid black curve) since, for a constant amplitude 

waveform, the second term in (11) is equal to zero. 

• With OFDM modulated signals, the BNR is much 

larger than the one of the black curve. 

• When the OFDM packets use a 16-QAM or a 64-QAM 

constellation (dot-dash blue or dotted magenta curve), 

the measured BNR is approximately equal to 𝐷𝑁𝑅2 (as 

observed for the example in Figure 5).   

• In contrast, when the employed OFDM constellation is 

either a BPSK or a QPSK (dashed red or dotted green 

curves), the obtained background level is up to 10 dB 

lower than the 𝐷𝑁𝑅2 level. In other words, smaller 

constellation schemes imply smaller fluctuations in the 

resulting waveform amplitude that is encoded in a 

smaller 𝜇 value, equal to 1 for both BPSK and QPSK. 

Actually, from (14) we observe that with such value for  

𝜇, the BNR deviates from the lower bound of 2DNR 

only because of the presence of the CP, whose effect in 

encoded in 𝑔(𝜂). In fact, with BPSK and QPSK 

constellation, the energy associated to the useful portion 

of any OFDM symbol would be constant regardless of 

the transmitted data. The fluctuation in the sequence 

𝑧(𝑝) at the output of the packet energy extractor is only 

due to the fractions of OFDM symbols cyclically 

extended to build the CP.  

 

 
Figure 6. BNR versus DNR with variable waveform. 

Based on the theoretical findings and analyses reported in 

this Section, it is evident that the best performing condition 

for the IDP scheme is given by a contant amplitude source 

signal at the input of the STFT stage. We have 

demonstrated that DSSS modulated packets show 

favourable conditions, and only yield a BNR increase when 

the DNR is not strictly constant over time. In contrast, we 

have shown how the use of OFDM modulated packets 

could significantly increase the output BNR, potentially 

preventing small targets from being detected. The 

following Section presents possible solutions to handle this 

issue.  
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IV. BACKGROUND REDUCTION 

STRATEGIES 

Two approaches are proposed in this Section to lower 

the average background level obtained when exploiting 

OFDM modulated WiFi transmissions. First, we separately 

address them in the following subsections; then, we 

compare them by application against simulated data, under 

different operative conditions. 

A. IDP with Signal - based Background Cancellation 

In [29] an effective approach is presented to mitigate 

the background level when exploiting DVB-T signals as 

waveforms of opportunity for an amplitude-based sensing 

system. This approach, named Signal-based Background 

Cancellation (SBC), exploits the knowledge of the 

transmitted signal, possibly reconstructed from the 

received signal itself, to remove its effect on the observed 

background by direct subtraction from the DC-free 

amplitude signal. We refer the interested reader to [29] for 

a comprehensive description.  

In Figure 7 the IDP including an SBC stage is sketched 

and will be referred to as the SBC-IDP in the following.  

Notice that the SBC in [29] can be easily applied to the 

WiFi case by assuming that the energy variation across 

transmitted WiFi packets is known at the receiver, up to a 

scale factor. This is obtained in Figure 7 by means of a 

rough reconstruction from the received signal. Under the 

hypothesis that the main contribution to the background 

level is the direct signal from the AP, the subtraction of the 

reconstructed signal prior to the STFT is expected to reduce 

the background level down to that observed for a constant 

amplitude waveform.  

 

 
Figure 7. SBC-IDP processing scheme. 

This is shown in Figure 8 that reports the result of the 

SBC-IDP when applied on the same simulated dataset used 

in Section II.C. Notice that the considered case study 

includes equal length packets transmitted with a constant Tx 

power level; therefore, the background level observed in 

Figure 3 was only due to the waveform properties. By 

comparing Figure 3 and Figure 8, the advantage of the SBC-

IDP solution is evident as the target SNR stays the same 

while the average background level decreases to 

approximately 28 dB (i.e., 2·DNR), namely as per a 

constant-amplitude waveform. The result in Figure 8 

demonstrates the effectiveness of the proposed solution to 

lower the BNR level when OFDM waveforms are exploited. 

 
Figure 8. Result of the SBC-IDP. 

However, a few additional considerations are in order. 

(i) SBC-IDP requires a partial knowledge of the 

transmitted WiFi signal. Specifically, the waveform 

energy at packet level should be available or computed 

from a reasonably good copy of the transmitted 

waveform, which in turn can be obtained according to 

the different strategies mentioned in the introduction. 

Figure 7 shows the case when the signal is 

reconstructed via demodulation and remodulation 

[32], thus preserving the "reference-free" 

characteristic of the proposed scheme. 

(ii) Despite the SBC approach requires the reconstruction 

of the transmitted waveform, we observe that such 

signal is not used as a reference for 

time/phase/frequency synchronization since the IDP 

inherently relies on amplitude information only. 

Therefore, compared to the case of the reference signal 

used in passive radar, the implementation of this 

additional block yields looser requirements on the 

quality of the regenerated signal.  

(iii) In this simulated analysis, we assumed a perfect copy 

of the transmitted signal to be available. In practical 

scenarios, reconstruction errors are likely to corrupt 

the available signal, especially when the DNR 

degrades or when the target contribution in the 

received signal becomes larger. Whilst a limited 

number of errors may be tolerated, the increase in the 

error rate would obviously prevent the possibility to 

correctly reconstruct the energy variation of the source 

signal across packets and in turn to effectively reduce 

the corresponding background level. 

(iv) Despite not considered in the reported simulated 

results, also slow variations in the Tx power level 
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could be tracked and mitigated with this approach by 

properly selecting the parameters of the SBC. 

B. WiFi PHY Preamble based IDP  

The application in hand also suggests the possibility of 

an alternative simple solution that maintains the reference-

free characteristic of the IDP approach while guaranteeing 

the desired reduction of the BNR also for amplitude 

modulated waveforms. Based on the theoretical findings of 

Section III, in the absence of Tx power level fluctuations, 

we observe that in order to achieve the 2·DNR lower bound 

for the BNR, it is sufficient that the energy across packets is 

kept constant. In turn that can be obtained by selecting and 

using only time-invariant and data-independent portions of 

the transmitted packets. This possibility is readily offered by 

OFDM WiFi packets that, based on the WiFi Standards 

[32], encompass three main fields (see Figure 9): (i) the 

PHY Preamble, which is a priori defined and is used for 

synchronization and channel estimation purposes; (ii) the 

Signal, which is composed by a single OFDM symbol and 

contains information on the transmission mode for the 

payload; (iii) the data that encloses the transmitted 

information and might have a variable number of OFDM 

symbols. Therefore, we investigate the possibility of 

limiting the application of the IDP approach to the time-

invariant PHY Preamble portion of the packet and refer to 

this approach as the WiFi PHY Preamble based IDP (WPP-

IDP). We observe that, with this position and assuming that 

the Tx power level variations are negligible, the signal at the 

output of the energy detector can be written as: 

𝑧(𝑝) = 𝐷𝑁𝑅𝑎𝑣𝑔 𝜎𝐷
2 ∑ | 𝑠𝑝(𝑙)|

2

𝑁𝑃𝑟𝑒𝑎𝑚𝑏𝑙𝑒−1

𝑙=0

+ ∑ |𝑑𝑝(𝑙)|
2
 

𝑁𝑃𝑟𝑒𝑎𝑚𝑏𝑙𝑒−1

𝑙=0

 

+ 2√𝐷𝑁𝑅𝑎𝑣𝑔 𝜎𝐷
2 ∑  ℜ{ejarg{𝛼0,𝑝}  𝑠𝑝(𝑙)𝑑𝑝

∗(𝑙)}

𝑁𝑃𝑟𝑒𝑎𝑚𝑏𝑙𝑒−1

𝑙=0

 

(15) 

denoting ℜ(·) as the real part of (·) and being the first 

term on the r.h.s. the major contributor to the background 

level when the DNR is high enough. However, this term  is 

constant across packets since the summation is limited to 

the invariant preamble fragment, meaning that such term 

can be effectively cancelled by the DC removal stage of 

Figure 2 without any additional processing stage. 

 

 
Figure 9. OFDM modulated WiFi packet. 

Clearly, we observe that this solution is effective as 

long as the Tx power level fluctuations are negligible. 

However, the analysis in Section III.B has shown that such 

effect becomes apparent only at very high values of the 

average DNR.  

 Figure 10 shows the results for the simulated dataset 

exploited for both Figure 3 and Figure 8, where it is evident 

that the average BNR level is comparable to that of Figure 

8, approximately 28 dB, which corresponds to the 2·DNR 

lower bound. As expected, the main drawback of this 

approach is the loss on the target signature obtained by 

limiting the processing to a small portion of the WiFi 

packet. Specifically, the maximum peak level in Figure 8 is 

equal to 67.3 dB while that of Figure 10 is equal to 60.2 dB.  

  
Figure 10. Result of the WPP-IDP. 

In fact, as reported in Table 1, the employed simulated 

dataset is composed of 20 OFDM symbols while the PHY 

Preamble only includes 4 OFDM symbols, therefore an 

SNR loss of approximately 7 dB is observed. It is worth 

mentioning that, when small OFDM constellations are 

employed, namely BPSK or QPSK, an additional solution 

is possible to lower the background level. In fact, we have 

shown in Section III that those constellations have 𝜇 = 1 

such as the DSSS modulated packets [see eq.(9)]. Therefore, 

the only factor responsible for a higher BNR level is the 

presence of the CP, whose effect in encoded in 𝑔(𝜂)  [see 

Eq.(40) of the Appendix].  

This observation suggests that, for packets using these 

constellations, it is sufficient to remove the CP samples at 

each OFDM symbol for the background level to reach the 

lower bound of 2·DNR. Note that this solution would allow 

keeping a larger packet length with respect to the use of the 

WPP-IDP, therefore obtaining lower SNR loss at the packet 

level. However, depending on the employed WiFi Standard, 

limiting the processing to BPSK or QPSK modulated 

packets might significantly reduce the packet rate and, in 

turn, the target integration gain.  
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C. Comparative analysis against simulated data 

Table 3 reports the results obtained with the two 

described strategies when applied against the same 

simulated dataset employed in Section III for Figure 6. 

Specifically, the SBC-IDP and the WPP-IDP approaches 

are compared in terms of achievable BNR when applied to 

a stream of OFDM modulated WiFi packets employing a 

64-QAM constellation, namely the constellation that yields 

the highest BNR level with the original IDP. The results in 

Table 3 confirm the effectiveness of both strategies to 

achieve the desired lower bound of 2·DNR for the BNR 

level. A further comparison is reported in Figure 11, where 

the three different strategies are compared when applied to 

the simulated scenario described in Table 1 for three 

different DNR values while keeping the input SNR 

constant.  

Table 3  
BNR obtained with IDP, SBC-IDP and WPP-IDP for a 

stream of OFDM modulated WiFi packets with 64-QAM 

constellation. 

DNR IDP SBC-IDP WPP-IDP 

10 dB 19.72 dB 13.25 dB 13.14 dB 

20 dB 38.46 dB 22.94 dB 23.02 dB 

30 dB 58.43 dB 33.13 dB 32.91 dB 

40 dB 77.97 dB 42.98 dB 42.94 dB 

50 dB 98.36 dB 53.19 dB 53.01 dB 

 

As evident with the original IDP scheme, the higher the 

DNR is, the lower is the capability of discriminating the 

targets against the background despite the target signature 

amplitude increases. This is due to the larger increase of the 

BNR that follows a square law as a function of the DNR. In 

fact, for a DNR of 40 dB, the target signature is buried in 

the map background and would no longer be detected. By 

either applying the SBC-IDP or the WPP-IDP, the average 

background level is correctly lowered. Clearly, as 

mentioned above, the limited complexity of the WPP-IDP 

is traded for a higher SNR loss due to the use of a small 

portion of the available packet. Note that these results have 

been obtained with a simulated dataset where the multipath 

contributions are negligible. In practice, especially in indoor 

scenarios, the signal reflections from the walls, the floor and 

the ceiling might not be negligible and might jeopardize the 

WiFi sensing application. To investigate the robustness of 

these strategies to multipath, let us first consider a scenario 

where the multipath contribution is limited to a single 

multipath ray (𝑁𝑅 = 1) with the same power level of the 

direct signal, and delayed by 𝜏1̅.  

Therefore, the received signal in this case is written as:  

𝑥𝑝(𝑙) = 𝛼0,𝑝𝑠𝑝(𝑙) + 𝛼1,𝑝𝑠𝑝
(�̅�1)(𝑙) + 𝑑𝑝(𝑙) 

𝑙 = 0,… , 𝑁𝑠𝑦𝑚
(𝑝)
𝑁𝑠 − 1 ;  𝑝 = 0, 1, … 

(16) 

 IDP SBC-IDP WPP-IDP 
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Figure 11. Output of IDP, SBC-IDP and WPP-IPP strategies for different DNR values. 
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and we assume that 𝛼1,𝑝 = |𝛼0,𝑝|𝑒
𝑗[2𝜋

�̅�1𝑐

𝜆
+𝜋]

. The 

amplitudes are set so that each ray taken separately has a 

power level DNR = 25 dB above noise. The power level of 

their superposition, namely after coherent summation, 

appears DNReq dB above noise and this value depends on 

the phase of the multipath ray, which in turn depends on the 

delay 𝜏1̅.  

In Figure 12(a) and (b) we report the measured BNR 

versus a grid of delay values associated with the multipath 

ray. More specifically, we compare the result obtained with 

conventional processing [Figure 12(a)], and the background 

reduction strategies [Figure 12(b)] namely the SBC-IDP 

(red, green, blue and magenta markers) and the WPP-IDP 

(light blue dots). Different colors and markers denote the 

different OFDM constellations employed for the simulated 

data generation. Moreover, the black curve represents the 

lower expected level, corresponding to twice the estimated 

equivalent DNReq in input.  

 

 
(a) 

 
(b) 

Figure 12. Measured BNR versus multipath reflection delay 𝜏1̅ 
with DNR = 25 dB: (a) IDP (b) SBC-IDP and WPP-IDP. 

 

The following observations are in order: 

• For negligible delay values, the multipath reflection 

represents a destructive interference for the direct 

signal. This is because the rays are assumed with equal 

power but with opposite phase. 

• When no background reduction strategy is applied, the 

measured BNR is very high and depends on the 

employed constellation, as demonstrated above for the 

multipath-free condition.  

• The SBC-IDP reduces the background contribution 

with respect to the conventional IDP only by few dBs 

[compare the equally colored markers in Figure 12(a) 

and (b)]. This is because the energy variation used to 

perform the SBC is no longer representative of the 

entire observed fluctuation on the received signal which 

also depends on the multipath contribution. 

• The WPP-IDP approach is able to reach the desired 

BNR level for all the considered delay values. In fact, 

although the considered samples are no longer identical 

to the transmitted signal, namely to the theoretical PHY 

Preamble described in the Standard, but also contain a 

delayed copy of it, provided that the stationary scene 

does not change over time, the energy of the considered 

portion will still be time invariant. 

 

The above analysis is extended in the following by 

considering a more realistic scenario where the received 

signal includes several multipath replicas. The considered 

geometry is depicted in Figure 13 where the position of the 

AP and the Rx are indicated together with the 𝑁𝑅 = 20 

multipath rays (in orange) obtained according to a ray 

tracing approach by including both the single-bounce 

reflection (dashed lines) and the double-bounce reflections 

(dash-dot lines) from the walls, the floor, and the ceiling. 

Three out of the four walls are assumed made of concrete 

while one is assumed made of glass, and the reflection 

coefficients are set accordingly [33]. Overall, we assume the 

multipath contributions to have a multipath-to-noise ratio 

(MNR) of 20 dB. 

Figure 14 shows the outcome of the IDP approach for 

the described simulated scenario, with or without a 

background reduction strategy.  

Note that, the overall signal has an average signal to 

noise level of 23.1 dB. The SBC-IDP [Figure 14(b)] 

decreases the background level with respect to the 

conventional IDP approach [Figure 14(a)] only of about 6 

dB, while the WPP-IDP [Figure 14(c)] yields a reduction 

of approximately 19.5 dB, obtaining a BNR of 

approximately 27.8 dB.  
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Figure 13. Sketch of the WiFi sensing scenario  

with multipath rays. 

It is worth recalling that the same SNR loss of 

approximately 7 dB observed comparing Figure 10 and 

Figure 8 is obtained with the WPP-IDP approach that only 

employs a small portion of the entire packet, in this case 

composed of 20 OFDM symbols. Finally, by measuring the 

ratio between the target peak and the average background 

level we get a signal-to-background ratio (SBR) that equals 

20.4 dB for the conventional IDP, 26.44 dB when the SBC-

IDP is applied and 33.01 dB when the WPP-IDP is used. 

This analysis confirms that such a simple solution is the 

preferred strategy especially in multipath limited scenarios. 

 

 

 
(a)      (b)      (c) 

Figure 14. IDP output for (a) IDP (b) SBC-IDP (c) WPP-IDP.  

V. EXPERIMENTAL VALIDATION 

In this Section, we demonstrate the effectiveness of the 

proposed IDP approach against real-world WiFi data; this 

also allows to investigate the practical benefits of the 

devised strategies to mitigate the background level. For the 

purpose of this analysis, an ad-hoc acquisition campaign 

was carried out and different datasets were collected, 

varying (i) the acquisition geometry (ii) the number and type 

of targets in the scene (ii) the employed WiFi Standard. For 

the sake of simplicity, subsection A focuses on datasets 

collected in a target-free scenario and is mostly intended to 

investigate the performance in terms of background control, 

while subsection B reports the results obtained against 

cooperative targets in order to understand the corresponding 

advantages in terms of detection capability. 

A. Experimental results on target-free data 

First, we consider experimental data collected in a 

disturbance-only condition and apply a simple IDP scheme, 

in order to experimentally demonstrate the validity of the 

theoretical BNR expression derived in Section III. To this 

purpose, we have employed three different IEEE 802.11 

standards and we have extracted DSSS modulated beacons 

from dataset #1, QPSK modulated OFDM symbols from 

the ACK signals of dataset #2 and 16-QAM modulated 

symbols from the ACK signals of dataset #3. With this 

approach we were able to test the validity of eq. (10) under 

different conditions in terms of employed modulation 

scheme. Additional details for each dataset are reported in 

Table 4. 

 
Table 4  

Disturbance-only datasets parameters. 

 Dataset #1 Dataset #2 Dataset #3 

Access Point 
D-Link 

DAP 1160 

TP-Link 

Archer 

VR600 

AC1600 

TP-Link 

Archer 

VR600 

AC1600 

Number of 

targets 
0 0 0 

Location Outdoor Indoor Outdoor 

Carrier 

Frequency  
2.472 GHz 2.472 GHz 5.18 GHz 

Employed 

IEEE 802.11 

Standard 

IEEE 

802.11b 

IEEE 

802.11n  

IEEE 

802.11ac  

Modulation  DSSS 
OFDM with 

16-QAM 

OFDM with 

QPSK 

Measured 

DNR 
31.5 dB 29.6 dB 30.1 dB 

 

As a first result, Figure 15 shows the output of the IDP 

scheme in the absolute bistatic velocity-time plane for the 

three described datasets. In each case, the IDP was applied 

with 𝑇𝐷𝐶 = 0.1 𝑠 and 𝑇𝑆𝑇𝐹𝑇 = 0.5 s. Moreover, we select 

𝑁𝑠𝑦𝑚 = 100 for DSSS beacons and 𝑁𝑠𝑦𝑚 = 2 for the 

OFDM ACK packets. Note that, since we only use 

signalling packets for the purpose of this analysis, their 

length is intrinsically constant over time. However, we 

recall that, based on the findings of Section III, if packets 

with different original lengths were employed, it would be 

preferrable to limit the packet duration to a constant 

number of symbols 𝑁𝑠𝑦𝑚. All the maps in Figure 15 are 

scaled for the expected 𝜚𝑑, in order for the noise level to be 
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around 0 dB and for the map values to represent the BNR. 

In all cases, the input average DNR was measured to be 

between 29.6 dB and 31.5 dB. From Figure 15, we can 

notice how the average power level largely differs 

depending on the employed modulation. In fact, we obtain 

BNR ≅ 32.6 dB, BNR ≅ 56.6 dB, and BNR ≅ 51.7 dB, for 

subfigures (a), (b) and (c), respectively.  

 

 

  
  (a)         (b)         (c) 

Figure 15. Output of the IDP on: (a) dataset #1 with 𝑁𝑠𝑦𝑚  = 100;  

(b) dataset #2 with 𝑁𝑠𝑦𝑚  = 2; (c) dataset #3 with 𝑁𝑠𝑦𝑚  = 2. 

To understand the BNR behaviour as a function of 

average DNR, we repeat this analysis by boosting the 

thermal noise power level in the received signal. 

Specifically, we add AWGN with gradually increasing 

power, thus emulating gradually decreasing 𝐷𝑁𝑅𝑎𝑣𝑔 

values, and we report in Figure 16 the BNR values 

measured on the final spectrograms after the application of 

the IDP. The results are shown in Figure 16 (a), (b) and (c) 

as black, blue and green colored markers for dataset #1, #2 

and #3, respectively. Moreover, in each subfigure, curves 

with different colors and line styles identify the 

corresponding theoretical BNR curve, obtained using 

eq.(10) by properly selecting 𝑁𝑠𝑦𝑚, 𝜇 and 𝑔(𝜂) depending 

on the considered datsaset and by fitting the 𝜉 value to the 

data. Finally, in all subfigures, we also report the 2𝐷𝑁𝑅𝑎𝑣𝑔 

bound as dashed-gray curve for comparison.  

The curves in Figure 16(a) are referred to dataset #1, 

composed by DSSS-only packets, and are obtained by 

limiting the packet duration to either 𝑁𝑠𝑦𝑚 = 100 or 

𝑁𝑠𝑦𝑚 = 1000 repetitions of the Barker code. We might 

observe that, as expected, for low DNRs, the two curves 

tend to look alike and equal to the dashed-gray one, i.e. the 

2𝐷𝑁𝑅𝑎𝑣𝑔 bound. Instead, the larger is the packet duration 

𝑁𝑠𝑦𝑚, the lower is the 𝐷𝑁𝑅𝑎𝑣𝑔 value where the BNR curve 

deviates from the dashed gray one and grows. This is 

because of the DNR fluctuation which has higher impact 

on longer PPDUs. Figure 16(a) further demonstrates the 

need to account for this power level fluctuation in the 

theoretical derivation reported in Section III, probably due 

to non idealities of the system, (e.g. instability of the 

commercial Aps, non constant sampling at the receiver), in 

order to obtain a very accurate prediction of the BNR.  

 
(a) 

 
(b) 

(c) 

Figure 16. Measured BNR vs 𝐷𝑁𝑅𝑎𝑣𝑔 for  

(a) dataset #1 (b) dataset #2 (c) dataset #3. 

However, Figure 16 (a) also confirms that, in the 

presence of limited DNR fluctuations and for typical 

𝐷𝑁𝑅𝑎𝑣𝑔 values, DSSS modulated packets do not require 

any strategy to lower the BNR level since this is largely 

comparable with the lower bound of 2 ∙ 𝐷𝑁𝑅𝑎𝑣𝑔. Blue and 

green curves and markers in Figure 16 (b) and (c), instead, 

respectively refer to datasets #2 and #3, both composed by 

OFDM modulated packets but employing different 

constellations. 

Observing them, two considerations are in order: (i) as 

expected, the measured BNR is much higher than that 

obtained in Figure 16(a) for DSSS modulated packets and 

does not reach the dashed gray curve for none of the 

considered DNR values (ii) although the DNR fluctuation 

is higher than that observed in the DSSS case, it has a 

smaller impact on the obtained results, both because the 
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packets are much shorter and because the major observed 

effect is related to the waveform, therefore the green and 

blue curves do not significantly differ from those shown in 

Figure 6, obtained with 𝜎𝐷𝑁𝑅
2 = 0. Figure 16 (b) and (c) 

also report additional colored markers showing the results 

obtained with the background reduction strategies 

proposed in Section IV. Note that, in order to enable the 

application of the SBC-IDP, during the experiments, the 

transmitted signal was extracted from the employed AP via 

a wired connection. For both the considered datasets, the 

use of a WPP-IDP based on 𝑁𝑠𝑦𝑚 = 2 OFDM symbols 

extracted from the PHY Preamble portion of the WiFi 

PPDUs (light blue markers) is the best performing solution 

and effectively reduces the measured BNR to the minimum 

achievable value, represented by the dash-dot black curve. 

In contrast, although the SBC-IDP (magenta markers) 

significantly reduces the measured BNR in both cases, the 

measured values lay on the black curve only for dataset #3 

[Figure 16(c)]. Note that, as reported in Table 4, dataset #2 

has been collected in an indoor area which is likely to be 

affected by higher multipath contributions that might 

jeopardize the effectiveness of the SBC strategy, as shown 

in Section IV. Finally, for dataset #3 [Figure 16(c)], orange 

markers are obtained by removing the CP from the QPSK 

OFDM symbols. As mentioned in Section IV, this solution 

is also able to effectively lower the BNR. However, we 

recall that (i) keeping 𝑁𝑠𝑦𝑚 constant, the CP-free solution 

offers a lower integration gain, since one-fifth of each 

OFDM symbol is discarded in the considered case; (ii) this 

solution would not be effective against symbols with larger 

constellations (with 𝜇 ≠ 1).  

B. Experimental results on data including target 

echoes 

The test data illustrated in this section have been 

collected using the same setup described above and listed in 

Table 4. Specifically, datasets #4 only include 802.11b 

DSSS modulated packets while dataset #5 is composed by 

OFDM modulated PPDUs. 

1) Results for tests with DSSS modulated packets 

Dataset #4 is composed by 802.11b beacons, with a 

nominal beacon interval of 3ms and has been collected with 

the experimental configuration sketched in Figure 17. It 

features one person, acting as cooperative target and 

walking along the direction described by the green arrow, 

namely along a linear trajectory, orthogonally crossing the 

Tx-Rx baseline approximately in its middle point (~10 m 

from both the AP and the Rx).  

 
Figure 17. Experimental geometries for dataset #4. 

Figure 18 shows the output of the IDP scheme applied 

to the collected signal, with 𝑁𝑠𝑦𝑚 = 100, 𝑇𝐷𝐶 = 0.5 s, 

𝑇𝑆𝑇𝐹𝑇 = 1 s and a Hamming tapering window for Doppler 

sidelobes level control. The results reported in Figure 18 

shows that the IDP processing can recognize the target 

signature throughout the entire trajectory, that spans a wide 

range of bistatic angles, from 180 degrees, when it crosses 

the baseline, up to approximately 70 degrees, when it stops 

moving. Note that, based on the intensity of the signature 

when the target stops moving, at about 16 s, it is expected 

that the target could be detected well beyond that limit. The 

high capability of recognizing the presence of a target is 

certainly favored by the low background level measured on 

the map which, as demonstrated above, is typically obtained 

with the employed DSSS modulation. In fact, note that for 

an average DNR of approximately 23.1 dB measured for 

this dataset, the average level competing with the target 

response is of approximately 30 dB (represented by the blue 

color in this figure).  

 

 
Figure 18. Experimental results for dataset #4. 

Finally, note that, compared with the results obtained on 

simulated data with a point-like target, the following 
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differences are apparent due to the real target response: (i) 

an enhancement of the response at the apex of the V-shaped 

Doppler signature, namely when the target crosses the 

baseline; (ii) a fading of target signature as its distance from 

the baseline increases; (iii) a modulation of the signature 

due to micro-Doppler effects caused by the periodic 

movement of the target's limbs. 

2) Results for tests with OFDM modulated packets  

The purpose of this last analysis is to investigate the 

capability of the proposed IDP technique to detect a small 

RCS target. To this end, a small drone (DJI Mavic Pro) was 

exploited as cooperative target. Note that the employed 

UAV is lightweight (about 730 g) with small size (about 30 

x 25 x 8 cm). The experimental configuration is sketched in 

Figure 19 and the employed setup is the same reported in 

Table 4 for dataset #3. Specifically, in the performed test, 

the small UAV gets close to the Tx-Rx baseline along an 

orthogonal trajectory, stops for 5 seconds, and then moves 

away. The results are reported in Figure 20, for 𝑇𝐷𝐶 = 0.2 𝑠 

and 𝑇𝑆𝑇𝐹𝑇 = 0.5 𝑠. Note that, in this case, we do not limit 

the processing to a single constellation, therefore we include 

both ACK and RTS packets characterized by QPSK and 16-

QAM data fields, respectively.  

 
Figure 19. Experimental geometries for dataset #5. 

By observing Figure 20, the following comments apply: 

1) When 𝑁𝑠𝑦𝑚 = 2 are extracted from the data portion of 

the PPDUs and no background reduction strategy is 

applied [Figure 20 (a)], the target signature is barely 

distinguished from the background level. 

2) When 𝑁𝑠𝑦𝑚 = 2 are extracted from the data portion of 

the PPDUs and the SBC approach is applied [Figure 

20 (b)], the improvement is tremendous and the target 

echo is easily distinguished for the entire trajectory.  

3) When 𝑁𝑠𝑦𝑚 = 2 are extracted from the PHY Preamble 

portion of the PPDUs, namely when a WPP-IDP 

approach is used [Figure 20 (c)], the target track is 

entirely visible. Still, the effects of some spurious 

packets are observed, especially between 4 and 6 s, 

which corresponds to deviations in the Tx power level. 

These are effectively estimated and mitigated with the 

SBC-IDP whereas the WPP-IDP relies on the ideal 

hypothesis of constant energy preambles. 

 

To elaborate further on the comparison between the 

SBC-IDP and the WPP-IDP, we should recall that the 

reference signal used to operate the SBC was made 

available in this case for analysis purpose; in a practical 

scenario, it should be reconstructed from the received signal 

and might be subject to reconstruction errors. Moreover, the 

need to reconstruct the transmitted waveform as well as the 

SBC-IDP overall require higher computational load than the 

WPP-IDP. Also, we recall that the SBC in the considered 

test is operated in a favorable condition since this dataset 

was collected in an outdoor scenario, where the multipath 

contributions are expected to be limited. On the other hand, 

for the purpose of this analysis, we have limited to 𝑁𝑠𝑦𝑚 =

2 OFDM symbols the packets portion processed in all cases; 

however, if the SBC-IDP is applied, the use of the entire 

WiFi packet is, in principle, possible, which could enable a 

higher target SNR. Overall, both the SBC-IDP and the 

 
                               (a)       (b)          (c) 

Figure 20. Output of the IDP technique for dataset #5 with  

(a) IDP with 𝑁𝑠𝑦𝑚 =  2 data symbols; (b) SBC-IDP with 𝑁𝑠𝑦𝑚 =  2 data symbols; (c) WPP-IDP with 𝑁𝑠𝑦𝑚 =  2. 
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WPP-IDP can be considered as effective solutions for BNR 

mitigation when OFDM signals are used and their benefits 

in term of capability of detection small targets is apparent. 

The best solution among the two might depend on the 

specific application. 

VI. CONCLUSIONS 

In this work, we have investigated the possibility of 

using a novel, reference-free and amplitude-based 

processing approach for WiFi based passive sensing. 

Specifically, we look for the presence of a moving target by 

observing the amplitude modulation that it produces on the 

direct signal transmitted from the WiFi AP across time.  

The main outcomes of this work are listed below: 

(i) The adaptation of the considered principle of 

operation to the application at hand. 

(ii) A theoretical characterization of the average 

disturbance level measured at the output of the 

proposed processing and competing with the 

target, taking into account real-world effects that 

are expected to limit the achievable performance, 

such as the waveform properties. 

(iii) Validation of the theoretical findings with both 

simulated and real WiFi data. 

(iv) The proposal of two possible solutions that 

address the identified issues, namely the SBC-IDP 

and the WPP-IDP, characterized by different 

complexity and achievable performance. 

(v) Extensive testing with experimental data 

employing different RCS targets and bistatic 

geometries. 

APPENDIX 

In this Appendix, we theoretically derive the 

background level at the output of the IDP scheme based on 

the signal model in (6) and subsequent definitions, under 

the null 𝐻0 hypothesis (target absent). To this aim, we 

follow a similar procedure as that used in [29] but the 

mathematical developments are extended in order to take 

into account realistic effects typical of the application under 

analysis. Specifically, we look for 𝐸{|𝑤(𝑚)|2|𝐻0} that, 

using (5), can be evaluated as: 

𝐸{|𝑤(𝑚)|2|𝐻0} 

= ∑ ∑ ℎ(𝑝)ℎ(𝑝′)

𝑁𝑃−1

𝑝′=0

e
−𝑗2𝜋

𝑚
𝑁𝑃

(𝑝−𝑝′)

𝑁𝑃−1

𝑝=0

× 𝐸{𝑧(̅𝑝0 + 𝑝)𝑧̅(𝑝0 + 𝑝′)} 

(17) 

where 𝐸{∙} denotes the statistical expectation with 

respect to all the considered random variables, i.e., 𝐸{∙} =

𝐸𝑁,𝛼,𝑠,𝑑{∙}. Assuming that different packets are statistically 

independent and that 𝑧𝐷𝐶 in eq. (4) is an unbiased estimate 

of 𝐸{𝑧(𝑝)}, 𝐸{𝑧(̅𝑝)𝑧̅(𝑝′)} = 0 when 𝑝 ≠ 𝑝′, and (32) 

simplifies as: 

𝐸{|𝑤(𝑚)|2|𝐻0} = ∑ ℎ2(𝑝)

𝑁𝑃−1

𝑝=0

𝐸{𝑧̅2(𝑝0 + 𝑝)} (18) 

We can write  

𝐸{𝑧̅2(𝑝)} = 𝐸{𝑧2(𝑝)} − 𝐸2{z(𝑝)} (19) 

where 𝐸{𝑧(𝑝)} and 𝐸{𝑧2(𝑝)} are the first and the 

second moment of 𝑧(𝑝), respectively. Based on definitions 

in eqs. (2) and (3), these are given by 

𝐸{𝑧(𝑝)}   = 𝐸𝑁 {∑ 𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑙)|
2
}

𝑁𝑠𝑦𝑚
(𝑝)

𝑁𝑠−1

𝑙=0 } (20) 

𝐸{𝑧2(𝑝)} = 

𝐸𝑁

{
 

 
∑ ∑ 𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑙)|

2
|𝑥𝑝(𝑙′)|

2
}

𝑁𝑠𝑦𝑚
(𝑝)

𝑁𝑠−1

𝑙′=0

𝑁𝑠𝑦𝑚
(𝑝)

𝑁𝑠−1

𝑙=0
}
 

 
 

(21) 

In order to rework eqs. (20)-(21), we write the moments 

of 𝑥𝑝(𝑙) as 

𝐸𝛼,𝑠,𝑑{𝑥𝑝(𝑙)} = 𝐸𝛼{𝛼0,𝑝}𝐸𝑠{𝑠𝑝(𝑙)}

+ 𝐸𝑑{𝑑𝑝(𝑙)} = 0 
(22) 

𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑙)|
2
} = 𝐸𝛼,𝑠,𝑑 {|𝛼0,𝑝|

2
|𝑠𝑝(𝑙)|

2
+

|𝑑𝑝(𝑙)|
2
+ 2ℜ{𝛼0,𝑝𝑠𝑝(𝑙)𝑑𝑝

∗(𝑙)}} = 𝑚𝛼,2 + 𝜎𝐷
2  

(23) 

where we used the assumption that the employed 

waveform 𝑠𝑝(𝑙) is a zero-mean unitary power random 

process and the disturbance is modeled as a zero-mean 

complex Gaussian process with variance 𝜎𝐷
2. Therefore, 

(20) can be simply evaluated as: 

𝐸{𝑧(𝑝)} = 𝑚𝑁,1𝑁𝑠(𝑚𝛼,2 + 𝜎𝐷
2) (24) 

Moreover, we can write: 
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𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑙)|
2
|𝑥𝑝(𝑙

′)|
2
} 

= 𝑚𝛼,4𝐸𝑠 {|𝑠𝑝(𝑙)|
2
|𝑠𝑝(𝑙′)|

2
} + 2𝑚𝛼,2𝜎𝐷

2

+ 𝐸𝑑 {|𝑑𝑝(𝑙)|
2
|𝑑𝑝(𝑙′)|

2
}

+ 4𝐸𝛼,𝑠,𝑑 {ℜ{𝛼0,𝑝𝑠𝑝(𝑙)𝑑𝑝
∗(𝑙)}

× ℜ{𝛼0,𝑝𝑠𝑝(𝑙
′)𝑑𝑝

∗(𝑙′)}} 

(25) 

In order to rework eq. (25), we recall that 

𝐸𝑑 {|𝑑𝑝(𝑙)|
2
|𝑑𝑝(𝑙′)|

2
} = {

𝜎𝐷
4      if 𝑙 ≠ 𝑙′

2𝜎𝐷
4    if 𝑙 = 𝑙′

 (26) 

and we compute the last expected value in (25) as  

𝐸𝛼,𝑠,𝑑 {ℜ{𝛼0,𝑝𝑠𝑝(𝑙)𝑑𝑝
∗(𝑙)}ℜ{𝛼0,𝑝𝑠𝑝(𝑙

′)𝑑𝑝
∗(𝑙′)}}

= {
0                     if 𝑙 ≠ 𝑙′
1

2
𝜎𝐷
2 𝑚𝛼,2     if 𝑙 = 𝑙′

  
(27) 

The larger order statistics of the random process 

modelling the waveform, instead, depend on the employed 

modulation scheme: 

– For DSSS modulated packets 

𝐸𝑠 {|𝑠𝑝(𝑞𝑁𝑠 + 𝑛)|
4
} = 𝐸𝑠 {|𝑐

(𝑝,𝑞)|
4
} = 𝐶2𝜇 = 1 (28) 

where we recall that index 𝑞 = ⌊𝑙/𝑁𝑠⌋ scans the 

symbols, index 𝑛 = 𝑙 − 𝑞𝑁𝑠 scans the samples within the 

symbol, 𝐶 represents the average power of the employed 

constellation, defined as 𝐶 =
1

𝑀𝑐
∑ |𝛾𝑚|

2𝑀𝑐−1
𝑚=0  and we used 

𝜇 = 1 since, in this case, either BPSK or QPSK 

constellations are adopted. 

𝐸𝑠 {|𝑠𝑝(𝑞𝑁𝑠 + 𝑛)|
2
|𝑠𝑝(𝑞

′𝑁𝑠 + 𝑛
′)|

2
} = 

{
𝑚𝑠,2
2 = 1,     if 𝑞 ≠ 𝑞′

𝐸𝑠 {|𝑠𝑝(𝑞𝑁𝑠 + 𝑛)|
2
|𝑠𝑝(𝑞𝑁𝑠 + 𝑛

′)|
2
} = 1,    if 𝑞 = 𝑞′

 
(29) 

– For OFDM modulated packets 

Assuming that the constellation is scaled so that the 

waveform is a unitary power process, i.e., 𝐶 = 1/𝑁𝑐, the 

fourth order moment of the transmitted waveform, can be 

expressed as  

𝐸𝑠 {|𝑠𝑝(𝑞𝑁𝑠 + 𝑛)|
4
}

=

{
 

 [
𝜇 − 3

𝑁𝑐
+ 3]    if 𝑀𝑐 = 2

[
𝜇 − 2

𝑁𝑐
+ 2]     if 𝑀𝑐 ≥ 4

 
(30) 

Furthermore, we can write 

𝐸𝑠 {|𝑠𝑝(𝑞𝑁𝑠 + 𝑛)|
2
|𝑠𝑝(𝑞

′𝑁𝑠 + 𝑛
′)|

2
} = 

𝐸𝑠 {|∑ 𝑐𝑘
(𝑝,𝑞)

𝑁𝑐−1

𝑘=0

𝑒
𝑗
2𝜋
𝑁𝑐
𝑘𝑛
|

2

|∑ 𝑐
𝑘′
(𝑝,𝑞)

𝑁𝑐−1

𝑘′=0

𝑒
𝑗
2𝜋
𝑁𝑐
𝑘′𝑛′

|

2

} 

= ∑ ∑ ∑ ∑ 𝐸𝑐 {𝑐𝑘
(𝑝,𝑞)

𝑐𝑟
(𝑝,𝑞)∗

𝑐
𝑘′
(𝑝,𝑞)

𝑐
𝑟′
(𝑝,𝑞)∗

}

𝑁𝑐−1

𝑟′=0

𝑁𝑐−1

𝑘′=0

𝑁𝑐−1

𝑟=0

𝑁𝑐−1

𝑘=0

× 𝑒
𝑗
2𝜋
𝑁𝑐
[(𝑘−𝑟)𝑛+(𝑘′−𝑟′)𝑛′]

 

(31) 

Based on  

𝐸𝑐 {𝑐𝑘
(𝑝,𝑞)

𝑐𝑟
(𝑝,𝑞)∗

𝑐
𝑘′
(𝑝,𝑞)

𝑐
𝑟′
(𝑝,𝑞)∗

}

=  

{
 
 

 
 
𝑚𝑐,4          if 𝑘 = 𝑟 = 𝑘′ = 𝑟′                            

𝐶2              if 𝑘 = 𝑟, 𝑘′ = 𝑟′, 𝑘 ≠ 𝑘′or              
                     𝑘 = 𝑟′, 𝑘′ = 𝑟, 𝑘 ≠ 𝑟                   

𝐶2               if 𝑀𝑐 = 2, 𝑘′ = 𝑘′, 𝑟 = 𝑟′, 𝑟 ≠ 𝑘   
𝑚𝑐,4          otherwise                                          

 
(32) 

eq. (31) can be reworked as follows 

𝐸𝑠 {|∑ 𝑐𝑘
(𝑝,𝑞)

𝑁𝑐−1

𝑘=0

𝑒
𝑗
2𝜋
𝑁𝑐
𝑘𝑛
|

2

|∑ 𝑐
𝑘′
(𝑝,𝑞)

𝑁𝑐−1

𝑘′=0

𝑒
𝑗
2𝜋
𝑁𝑐
𝑘′𝑛′

|

2

} = 

{
 
 

 
 [

𝜇 − 3

𝑁𝑐
+ 1 + 𝛿(𝑛 − 𝑛′, 𝑁𝑐) + 𝛿(𝑛 + 𝑛

′, 𝑁𝑐)]

                                                                         if 𝑀𝑐 = 2

[
𝜇 − 2

𝑁𝑐
+ 1 + 𝛿(𝑛 − 𝑛′, 𝑁𝑐)]      if 𝑀𝑐 ≥ 4

 

(33) 

where the 𝛿(𝑛 − 𝑛′, 𝑁𝑐) function accounts for the 

correlation of the samples inside the OFDM symbol with 

its repeated portion (CP). Moreover, the additional 

𝛿(𝑛 + 𝑛′, 𝑁𝑐) function in the 𝑀𝑐 = 2 case is due to the 

symmetry of the OFDM BPSK symbol, obtained as the 

IFFT of a real sequence.   
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Therefore, we have 

𝐸𝑠 {|𝑠𝑝(𝑞𝑁𝑠 + 𝑛)|
2
|𝑠𝑝(𝑞

′𝑁𝑠 + 𝑛
′)|

2
} = 

{
 
 
 

 
 
 

1   if 𝑞 ≠ 𝑞′

[
𝜇 − 3

𝑁𝑐
+ 1 + 𝛿(𝑛 − 𝑛′, 𝑁𝑐) + 𝛿(𝑛 + 𝑛

′, 𝑁𝑐)] 

                                                           if 𝑞 = 𝑞′,𝑀𝑐 = 2

[
𝜇 − 2

𝑁𝑐
+ 1 + 𝛿(𝑛 − 𝑛′, 𝑁𝑐)]   

                                                            if 𝑞 = 𝑞′,𝑀𝑐 ≥ 4

 

 

𝑛, 𝑛′ = −𝑁𝑐𝑝 , … , 𝑁𝑐 − 1  

(34) 

By substituting either eq. (34) or (29) and eqs. (26)-(27) 

in (25), we obtain: 

– For OFDM modulated packets  

𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑙)|
2
|𝑥𝑝(𝑙

′)|
2
} = 

𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑞𝑁𝑠 + 𝑛)|
2
|𝑥𝑝(𝑞

′𝑁𝑠 + 𝑛
′)|

2
} = 

{
 
 
 
 
 

 
 
 
 
 

𝑚𝛼,4 + 2𝑚𝛼,2𝜎𝐷
2 + 𝜎𝐷

4     if 𝑞 ≠ 𝑞′

𝑚𝛼,4 [
𝜇 − 3

𝑁𝑐
+ 1 + 𝛿(𝑛 − 𝑛′, 𝑁𝑐) + 𝛿(𝑛 + 𝑛

′, 𝑁𝑐)] + 

2𝑚𝛼,2𝜎𝐷
2 + 𝜎𝐷

4 + 𝛿(𝑛 − 𝑛′)(𝜎𝐷
4 + 2𝑚𝛼,2𝜎𝐷

2)   , if 𝑞 = 𝑞′,𝑀𝑐 = 2

𝑚𝛼,4 [
𝜇 − 2

𝑁𝑐
+ 1 + 𝛿(𝑛 − 𝑛′, 𝑁𝑐)] + 2𝑚𝛼,2𝜎𝐷

2 +

𝜎𝐷
4 + 𝛿(𝑛 − 𝑛′)(𝜎𝐷

4 + 2𝑚𝛼,2𝜎𝐷
2)   , if 𝑞 = 𝑞′,𝑀𝑐 ≥ 4

 

 

𝑛, 𝑛′ = −𝑁𝑐𝑝 , … , 𝑁𝑐 − 1 

(35) 

– For DSSS modulated packets 

𝐸𝛼,𝑠,𝑑 {|𝑥𝑝(𝑙)|
2
|𝑥𝑝(𝑙

′)|
2
}

= {
𝑚𝛼,4 + 2𝑚𝛼,2𝜎𝐷

2 + 𝜎𝐷
4     if 𝑙 ≠ 𝑙′

𝑚𝛼,4 + 4𝑚𝛼,2𝜎𝐷
2 + 2𝜎𝐷

4    if 𝑙 = 𝑙′
 

(36) 

 

 Therefore, eq. (21) becomes 

– For OFDM modulated packets and 𝑀𝑐 = 2 

𝐸{𝑧2(𝑝)} = (𝑚𝑁,2𝑁𝑠
2 +𝑚𝑁,1𝑁𝑠)(𝑚𝛼,4

+ 2𝑚𝛼,2𝜎𝐷
2 + 𝜎𝐷

4)

+ 𝑚𝛼,4𝑚𝑁,1𝑁𝑠 [
𝑁𝑠
𝑁𝑐
(𝜇 − 3)

+
4𝑁𝑐𝑝 + 𝑁𝑐

𝑁𝑠
] 

(37) 

– For OFDM modulated packets and 𝑀𝑐 ≥ 4 

𝐸{𝑧2(𝑝)} = (𝑚𝑁,2𝑁𝑠
2 +𝑚𝑁,1𝑁𝑠)(𝑚𝛼,4

+ 2𝑚𝛼,2𝜎𝐷
2 + 𝜎𝐷

4)

+ 𝑚𝛼,4𝑚𝑁,1𝑁𝑠 [
𝑁𝑠
𝑁𝑐
(𝜇 − 2)

+ 2
𝑁𝑐𝑝

𝑁𝑠
] 

(38) 

– For DSSS modulated packets 

𝐸{𝑧2(𝑝)} = 𝑚𝑁,2𝑁𝑠
2(𝑚𝛼,4 + 2𝑚𝛼,2𝜎𝐷

2 + 𝜎𝐷
4)

+ 𝑚𝑁,1𝑁𝑠(2𝑚𝛼,2𝜎𝐷
2 + 𝜎𝐷

4) 
(39) 

Then, we define 𝐷𝑁𝑅𝑎𝑣𝑔 =
𝑚𝛼,2

𝜎𝐷
2  ,  𝜎𝐷𝑁𝑅

2 =
𝑚𝛼,4−𝑚𝛼,2

𝜎𝐷
4 , 

𝜂 = 𝑁𝑐𝑝/𝑁𝑐 and we use (37)-(39) in (19). Finally, the 

obtained result is used in (17). By defining  

𝑔(𝜂) = 

 

{
 
 

 
 

0            for DSSS

𝜂 (𝜇 − 3 +
3

(𝜂 + 1)
)    for OFDM with 𝑀𝑐 = 2

𝜂 (𝜇 − 2 +
2

(𝜂 + 1)
)    for OFDM with 𝑀𝑐 ≥ 4

 
(40) 

with 𝜂 = 0.25, namely with the CP length tipically being 

one quarter of 𝑁𝑐, we obtain 

𝐸{|𝑤(𝑚)|2|𝐻0}

= {∑ ℎ2(𝑝)

𝑁𝑃−1

𝑝=0

}𝜎𝑁
2𝑁𝑠𝑚𝑁,1

× {2𝐷𝑁𝑅𝑎𝑣𝑔 + 1

+ 𝐷𝑁𝑅𝑎𝑣𝑔
2 [𝜇 − 1 + 𝑔(𝜂)]

+
𝜎𝑁
2

𝑚𝑁,1

𝑁𝑠 [𝜎𝐷𝑁𝑅
2 + (𝐷𝑁𝑅𝑎𝑣𝑔 + 1)

2
]

+ 𝜎𝐷𝑁𝑅
2 [𝑚𝑁,1𝑁𝑠 + 𝜇 − 1 + 𝑔(𝜂)]} 

(41) 

which corresponds to the expression in eq. (10). 
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