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Abstract—For multichannel airborne radars, wide-area ground-
moving target indication (WGMTI) processing can quickly ob-
tain the dynamic distribution of moving targets in a wide area,
which holds considerable significance in many fields. Nevertheless,
the WGMTI mode suffers from the interference of powerful
ground clutter, which frequently submerges slow-moving targets
and causes many false alarms in subsequent moving target de-
tection. Space–time adaptive processing (STAP) can successfully
suppress clutter, but its performance depends critically on the
available training samples. Consequently, an effective STAP method
characterized by fast processing and a small sample size for
WGMTI application in multichannel airborne radars must be de-
veloped. In this paper, a subarray-level sparse recovery STAP (SR-
STAP) processing framework is proposed for multichannel airborne
radars. First, the characteristics of the subarray-level received
clutter are discussed in detail. Second, on the basis of this analysis,
we further designed a joint space–time dictionary and developed a
separable tensor-based sparse Bayesian learning (STSBL) method.
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In this method, two-stage decomposition is proposed to ensure that
large-scale data can be degraded into small-scale data in processing,
which significantly improves computation efficiency. Finally, the
effectiveness of the proposed STSBL-STAP method in WGMTI
processing was verified using real measurement data obtained from
a developed dual-channel Ku-band airborne radar.

Index Terms— Airborne radar, sparse recovery space-time
adaptive processing (SR-STAP), wide-area ground moving target
indication (WGMTI), subarray.

I. INTRODUCTION

As a hot topic in engineering application, synthetic
aperture radar ground-moving target indication (SAR-
GMTI) for airborne radars has received extensive at-
tention globally. SAR-GMTI can simultaneously offer
relevant geomorphic information and moving target lo-
cations to clients with limited observation. Thus, it is
important in many fields, such as commercial remote
sensing and traffic monitoring [1]–[3]. To quickly obtain
the results of large-area SAR-GMTI, combined with the
advanced electronic beam scanning capability of an active
electronically scanned array (AESA), a wide-area GMTI
(WGMTI) working mode has been proposed by scholars
[1]. This proposed method can achieve fast wide-area
moving target detection at the cost of low-resolution
SAR imaging. WGMTI processing, influenced by the
motion of the platform, suffers from strong ground clutter.
Additionally, slow-moving targets are easily submerged
by the spread of Doppler clutter in this situation, which
causes severe performance loss in the subsequent moving
target detection stage. Existing airborne radar clutter
suppression techniques mainly include displaced phase
center antenna (DPCA) [4], along-track interferometer
(ATI) [5], and space-time adaptive processing (STAP) [6].
Compared to the strict requirements of DPCA and ATI
in engineering, STAP has relaxed implementation con-
ditions. Additionally, with the wide use of multichannel
radar systems in recent years, STAP has been successfully
applied in many multichannel radar systems and can
verifiably achieve better clutter suppression than the other
two methods.

STAP is a space–time two-dimensional filter that
mainly takes advantage of the distribution property of
clutter. It adaptively estimates the clutter covariance ma-
trix (CCM) to calculate the optimal filter weight us-
ing the neighbor range samples of the cell under test
(CUT). Thus, it is suitable for a dynamically changing
clutter environment. Nevertheless, STAP assumes that
different training samples are independent and identically
distributed (IID) with each other. The RMB rule [7],
developed by Reed et al., proves that the number of
IID training samples required to keep the average loss
below 3 dB is twice the system degrees of freedom
(DoFs). However, the real environment often appears
as a heterogeneous distribution. In some extreme cases,
every adjacent range cell has an entirely different clutter
distribution [8], challenging the acquisition of adequate
secondary data in STAP. Therefore, overcoming the prob-
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lem of training sample shortage is an important research
direction in the STAP field.

In recent decades, numerous STAP methods have
been developed to address the above problem. Gener-
ally, most of these methods can be roughly classified
into three types: reduced-dimensional (RD), reduced-rank
(RR), and direct data domain (DDD). For RD-STAP [9],
[10], a reduced-dimension transformation matrix was first
applied to the original echo data to convert the full-
dimension domain to the local data domain. Subsequently,
the conventional STAP method for RD data was per-
formed. Hence, the required number of training samples is
reduced to twice the RD DoFs. Generally, RD-STAP often
involves transformation among the element, pulse, beam,
and Doppler domains. The advantages and disadvantages
of these four domains are carefully analyzed in [9].
By contrast, the RR-STAP method uses the low-rank
characteristic of the CCM and projects the signal onto its
subspace [11], [12]. Subsequently, it reduces the training
sample number to twice the clutter rank. However, owing
to the huge computational burden of eigenvalue decompo-
sition and uncertain clutter rank numbers in nonhomoge-
neous environments, such STAP methods are not used in
practical engineering. The last type is DDD-STAP, which
aims at extreme conditions [13]. It specifically constructs
the available training samples using a space–time sliding
window in CUT. The advantage of DDD-STAP is that it
eliminates the requirement of neighbor training samples,
but the performance degradation caused by aperture loss
during its use is inevitable. Although the RD-STAP and
RR-STAP methods can effectively reduce the training
sample number, their requirements are still hard to satisfy
in variable environments. DDD-STAP only needs a single
sample, but its performance and calculations are unac-
ceptable in real applications. Therefore, a small sample
condition and a high-performance STAP method are still
required in engineering.

With the rapid development of compressive sensing
(CS), signal sparsity has gradually aroused the attention
of many scholars [14]. The CS theory proves that a
sparse signal can be accurately recovered with a sample
number below the Nyquist sampling theorem. Inspired
by the CS theory, sparse recovery techniques has been
introduced in the field of radar signal processing [15]–
[17], and correspondingly, sparse recovery STAP (SR-
STAP) methods have been developed by researchers to
estimate CCM with few training samples,even in a single
sample [18]–[23]. Owing to the coupling characteristic
of clutter space–time, it sparsely distributes in the angle-
Doppler two-dimensional domain, which means that the
clutter signal is satisfied with the sparsity assumption [24],
[25]. According to the different solution algorithms, SR-
STAP can be roughly separated into three types: greedy,
convex relaxation, and Bayesian algorithms. The first
type of algorithm only searches the best-matched single
atom in each iteration until the number of atoms reaches
the preset threshold, for example, orthogonal matching
pursuit [26]. Greedy algorithms have low complexity,

but their result is a local optimal solution, and recovery
performance is severely affected by dictionary correla-
tion. Thus, it is unsuitable for the SR-STAP application,
where the space–time dictionary has high coherence. A
more commonly used method is convex relaxation, which
converts the nonconvex sparse problem formulation to the
`1-norm problem or its equivalent form [27], [28], and
solves it with the help of the convex optimization method.
Typical of the prime-dual interior point method and the
gradient descent method, the drawback of this method is
that it relies heavily on selecting parameters [29], which
cannot exactly be determined in advance. Compared to
the methods mentioned above, the Bayesian type recasts
the sparse problem as a maximum a posteriori estimation
(MAP) and estimates the sparse coefficients with their
mean value [30]. For instance, sparse Bayesian learning
(SBL) obtains the sparsest solution by imposing different
prior distributions in the MAP [31]. The study [32]
demonstrates that SBL can achieve a sparser solution than
the above two types of methods. Although SR-STAP has a
significant advantage in reducing the sample requirement,
it requires huge time resources in optimization, especially
in large data sizes. This is the major constraint of SR-
STAP for real applications.

To accelerate the calculation of SR-STAP algorithms,
some strategies have been put forward in recent years.
From our view, these methods include two classes: the
RD dictionary and fast-optimal algorithms. The size of
the discrete dictionary directly determines the scale of
processing. Thus, replacing the original dictionary with
its RD form can effectively reduce computation. A classic
route involves extracting grids of clutter areas with prior
knowledge [33]–[35]. The other route is similar to the
idea of RD-STAP; a data-independent transformation is
applied in the dictionary to realize RD operation [36].
When these two routes are compared, it can be seen that
although the first route reduces the number of atoms,
the second route reduces the size of the atoms. The
shortcoming of such methods is that RD performance
loss exists during recovery. For fast-optimal algorithms,
it usually takes a better simple processing structure to
replace the complex original methods and thus to achieve
an improvement in speed (e.g., fast SBL method) [37].
However, these methods often need to weigh between
performance and speed. To achieve a high-efficiency algo-
rithm without a performance loss, our research group first
introduced the tensor processing structure in SR-STAP
[18], and the results demonstrated that the computation
loading of SR-STAP solving can be accelerated by several
orders of magnitude. It is important to note that tensor-
based processing is independent of algorithm assump-
tions, which means that there is no degradation in clutter
suppression of tensor-based SR-STAP. However, there is
still a distance from the tensor-based SR-STAP algorithm
to its real-time realization because of its relatively large
optimization time.

Additionally, we found that existing SR-STAPs are
all focused on element-level processing. Almost all real
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airborne radar system processes are at the subarray level
[38], [39]. The reason is summarized as follows: for
achieving long-range target detection, a large array with
many antenna elements is required by airborne radars.
However, such huge data processing is unrealizable in
real-time systems because of limited hardware resources.
Therefore, subarray-level (also called subchannel) signal
processing is necessary for the application. This means
that subarray-level SR-STAP research has more practical
significance.

Driven by the aforementioned challenges, we propose
a basic framework for subarray-level SR-STAP. To our
knowledge, there has never been a detailed discussion of
this. Initially, a fast separable tensor-based SBL (STSBL)
processing structure was developed to solve the subarray-
level SR-STAP problem. Subsequently, combined with
the real measured data from our developed dual-channel
airborne radar system, we verified the effectiveness of
the proposed method in WGMTI processing. The main
contributions of this work are summarized as follows:

• On the basis of multi-channel airborne radar echo
model, we expand the conventional element-level
SR-STAP problem to the channel-level, and establish
its corresponding optimal mathematic model with a
tensor form. This provides a solution for the difficult
that element-level cannot be effectively applied in
the real multi-channel airborne radar application.

• For multi-channel SR-STAP application, the tradi-
tional uniform space-time dictionary will produce
huge time consumption in optimization procedure
due to its large space-time freedom. For this purpose,
we proposed a joint dictionary design method, which
can achieve the same recovery performance as dense
uniform dictionary with fewer atoms by combing
the multi-channel clutter distribution characteristics,
and the same time, it keeps the space-time separable
property of dictionary. This way can effectively
relieve the subsequent processing pressure.

• To make full use of the joint dictionary, a sep-
arable tensor-based SBL method is developed for
simultaneously solving multiple dictionary SR-STAP
problem. The proposed method separates the original
tensor SR-STAP problem into multi sub-problem,
and approximately independently performs the sub-
problems in each iterations, thus can further improve
the computational efficiency than the conventional
SBL methods, and its unique separable structure also
makes it more suitable for the realization in the
existing multicore processors.

• Existing SR-STAP studies less involve the SR-STAP
performance in real measurement data. In this arti-
cle, the echo data sampled by our developed dual-
channel airborne radar is used to verify the perfor-
mance of the proposed STSBL-STAP methods in
the whole WGMTI processing. From the process-
ing results, it fully demonstrates that the proposed
channel-level SR-STAP can achieve an acceptable

clutter suppression ability with very few samples
compared with the conventional STAP method.

It is necessary to explain that the proposed separable
tensor-based SR-STAP is distinguished from our previous
study [18], [31], [40] in following two aspects:

1) Regarding the goal, in [31], our research group
first introduced the SBL method in the SR-STAP
application. The results showed that SBL methods
accurately estimate clutter distribution with very
few training samples. Subsequently, in [40], our
goal was to further improve the performance of
SBL with clutter block structure prior knowledge,
which we called prior block SBL (PBSBL). Unlike
the above two methods, in [18], our research
direction turned to a fast algorithm for improving
performance because of the real hardware resource
constraint. We first proposed a tensor-based SBL-
STAP (TSBL-STAP). However, its computation
loading is still huge compared with the require-
ments of real applications. Note that the above
methods are all focused on element-level appli-
cation. In this paper, we further combine tensor-
based processing with a parallel idea and give a
more practical processing separable structure of
TSBL-STAP for subarray-level application, which
we call the STSBL-STAP method.

2) Regarding the application, limited by the con-
ventional vector-based structure, SBL-STAP and
PBSBL-STAP are only suitable for small-scale
dictionaries. Compared to these two methods, the
TSBL-STAP proposed in [18] is specially designed
for large-scale dictionary applications, which can
separate a large-scale matrix calculation into mul-
tiple small-size matrix operations with the prop-
erty of the Kronecker product. In this article,
the proposed STSBL-STAP is aimed at multiple
independent dictionaries, which can be realized
simply by dividing the space–time plane. In other
words, STSBL-STAP has two decompositions. The
first is to separate a large dictionary into multiple
medium dictionaries, and the second is to decom-
pose the medium dictionary matrix into multiple
small matrices. Therefore, it is more suitable for
real parallel processing core applications.

The remainder of this paper is organized as follows.
Section II describes the signal model of a planar subarray-
level multichannel airborne radar. In Section III, a detailed
analysis of the subarray-level clutter spectrum and clutter
rank is discussed, and in Section IV, the tensor-based
subarray-level SR-STAP problem formulation is devel-
oped. Subsequently, a joint dictionary design method and
STSBL realization are provided. In Section V, we briefly
introduce our WGMTI processing framework. Sections VI
and VII are the results of the simulation experiment and
the real measurement experiment, respectively. Finally,
the conclusions are deduced in Section VIII.
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Notations: Throughout this paper, we use nonbold
case letters, bold lowercase letters, and bold uppercase let-
ters to denote scalars, column vectors, and matrices, e.g.,
x, x, X . Double line body R, C mean the real number
domain and complex number domain. The superscripts
(·)∗, (·)T , and (·)H represent the conjugate, transpose, and
conjugate transpose operation, respectively. |·| denotes the
absolute operator. (·)−1 is the inverse of matrix. diag(·)
is the diagonalization of the vector. I is a diagonal matrix
with Ii,i = 1.

II. The Mathematics Model of a Multichannel
Airborne Radar

The illumination geometry of multichannel airborne
radar is depicted in Fig. 1. Assume that the aircraft
platform locates at (0, 0, H) and moves along the x-axis
with a constant velocity vp. A multichannel airborne radar
is mounted under the fuselage and keeps working in the
side-looking mode (i.e., the angle between the antenna
array and flight direction θp = 0◦). For the antenna array,
it is assumed to be a uniform planar array (UPA) that
contains M and N elements in rows in columns, and the
distance of any two adjacent element is d. Commonly,
such a large number of elements would receive huge echo
data and cause a challenge in the subsequent processing.
A common choice is to merge multiple elements into
a subarray and to process the data at the channel level
[38]. In numerous subarray construction methods, the uni-
form non-overlap subarray is often a common choice in
practical airborne radar systems for its simple realization
structure. Following this choice, the UPA is uniformly
split into Ns channels along the azimuth direction.

Fig. 1: Geometry model of a multichannel airborne radar.

Supposing that the carrier frequency is fc, then the
transmitted linear frequency modulation (LFM) signal is

given as

s (t) = rect

(
t

Tp

)
exp

[
j2π

(
fct+

µ

2
t2
)]

(1)

where

rect(
t

Tp
) =

1, if − Tp
2
≤ t ≤ Tp

2
0, otherwise

where Tp is the pulse width in each pulse period; µ =
B/Tp represents the signal chirp rate; B is the working
bandwidth. During each coherent processing interval, the
multichannel airborne radar transmits K LFM waveform
pulses to the target region with a fixed pulse repetition
frequency (PRF) fr.

Let the target azimuth angle and elevation angle be θ
and ϕ, respectively. With the first-order Taylor approxima-
tion, the slant range of the constant-velocity ground target
and the (n,m)th element can be approximately expressed
with

Rn,m (tk) ≈ Rn,m0 − d (ncosφ+m sinϕ)

+

(
vr − vpcosφ+

ndvp
Rn,m0

)
tk (2)

where Rn,m0 represents the initial slant range, vr is the
target radical velocity, and φ denotes the cone angle. tk
denotes the slow-time.

With a short delay time, the echo is collected by the
received array. Passing a series of preprocessing steps, the
baseband echo signal of the (n,m)th received element is
as follows:

xn,m (t, tk) = σ̂ω (tk) sinc

[
B

(
t− 2Rn,m (tk)

c

)]
× exp

[
−j 4π

λ
Rn,m (tk)

]
(3)

where σ̂ represents the complex amplitude in the range-
compression target and λ = c/fc is radar wavelength.
ω(·) is the slow-time window. sinc(·) is sinc function. By
substituting Eq. (2) into Eq. (3), and organize the relevant
term with its discrete form (i.e., tk = k/fr). The Eq. (3)
can be simplified as

xn,m (l, k) = σ̃ (l, k) exp

(
j

4πv

λ
k

)
× exp

[
j

4πd

λ
(ncosφ+m sinϕ)

]
(4)

where σ̃ (l, k) = σ̂0ω (k) sinc [B (t− 2Rn,m0 /c)] is the
complex reflection of the target; l ∈ 1, · · · , L is the l-
th range sample point, and L is the total number of range
gates in every pulse; v = (vr − vpcosφ+ ndvp/R

n,m
0 )

is the radical velocity of the relative target. To further
synthesize the channel-level signal, it needs to incorporate
a multi-element echo. As the partition rule mentioned
before, each channel contains MNsn elements, where
Nsn = N/Ns, so the channel echo can be described as
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follows:

xns
(l, k) =

nsNsn∑
n=1+(ns−1)Nsn

M∑
m=1

wn,mσ̃ (l, k) exp

(
j

4πv

λfr
k

)
× exp

[
j

4πd

λ
(ncosφ+m sinϕ)

]
(5)

where wn,m is the element weight coefficient. In our radar
system, direct synthesis is used here.

The above description is the received point target
signal of multichannel airborne radar. In a real environ-
ment, a physical echo mainly involves three parts: clutter,
moving target, and noise [9].

For the l-th range cell, the clutter from different
directions (azimuth and elevation) can be modeled as
follows:

xcns
(l, k) =

nsNsn∑
n=1+(ns−1)Nsn

M∑
m=1

∫
θ

∫
ϕ

σ̃ (l, k, θ, ϕ)exp

(
j4πvk

λfr

)
× exp

[
j

4πd

λ
(ncosφ+m sinϕ)

]
dθdϕ (6)

Restricted by the array structure design and sweep
mode, θ ∈ (−π/2, π/2] and ϕ ∈ (0, π/2]. Additionally,
the clutter is mainly composed of static ground targets,
hence its radical velocity only depends on the aircraft
platform, i.e., v ≈ vpcosϕ cos (θ + θp). σ̃ (l, k, θ, ϕ) is
related to the spatial state of moving targets, it is often
simulated with independent random distribution [41].

The targets can emerge at any location with an un-
known initial velocity, so the multi-targets model can be
expressed as

xtns
(l, k) =

nsNsn∑
n=1+(ns−1)Nsn

M∑
m=1

Nt∑
nt=1

σ̃nt (l, k)exp

(
j

4πvnt

λfr
k

)
× exp

[
j

4πd

λ
(ncosφ+m sinϕ)

]
(7)

where vnt is the relative nt-th target radical velocity.
Noise is mainly caused by the radar hardware system,

which leads to random fluctuation interference for real tar-
get signals. As a common assumption, a zero mean Gaus-
sian white noise with a variance of σ2, i.e.,xnns

(l, k) ∼
N
(
0, σ2

)
is considered throughout this paper.

Combining the clutter, target, and noise models before,
for a single-range piece, the discrete vectorization echo
data can be rewritten as follows:

x = xt + xc + xn

= TH
Nt∑
nt=1

γnt

[
sa (θnt , ϕr)⊗ se (ϕnt)⊗ sd

(
fnt

d

)]
+ TH

Nr∑
nr=0

Nc∑
nc=1

γnr,nc
s (θnc

, ϕnr
) + THxn (8)

where γnt and γnr,nc denote the complex amplitude of
targets and clutter patches. s (θnc , ϕnr ) ∈ CNsK×1 is
two-dimensional space-time steering vector and it can
be separated as azimuth steering vector sa (θnc , ϕnr ),

elevation steering vector se (ϕnr
) and temporal steering

vector sd (θnc
, ϕnr

), that is,

s (θnc
, ϕnr

) = sa (fnc,nr
a )⊗ se (fnr

e )⊗ sd
(
fnc,nr

d

)
(9)

where

se (fnr
e ) = [1, · · · , exp [jπ (M − 1) fnr

e ]]
T

sa (fnc,nr
a ) = [1, · · · , exp [jπ (N − 1) fnc,nr

a ]]
T

sd
(
fnc,nr

d

)
=
[
1, · · · , exp

[
jπ (K − 1) fnc,nr

d

]]T
where fnc,nr

a = 2dcosϕnrcosθnc/λ, fnr
e = 2dsinϕnr/λ

and fnc,nr

d = 2vcosϕnrcosθnc/ (λfr) are the normalized
azimuth frequency, elevation frequency, and Doppler fre-
quency respectively. Nr represents the range ambiguity
number. fnt

d = 2vnt/ (λfr) denotes the Doppler fre-
quency of moving targets. T ∈ RNMK×NsK is a subarray
transformation matrix, which can be decomposed as the
Kronecker product of N × Ns azimuth transformation
matrix T a, M × 1 unit elevation transformation matrix
T e, and Doppler transformation T d, that is,

T = T a ⊗ T e ⊗ T d (10)

where

T a =



11 0 · · · 0
...

...
. . .

...
11 0 · · · 0
0 12 · · · 0
...

...
. . .

...
0 12 · · · 0
...

...
...

...
0 0 · · · 1Ns

...
...

. . .
...

0 0 · · · 1Ns



,T d =

 1 · · · 0
...

. . .
...

0 · · · 1



where the number of “1” in each column of T a is Nsn.
Note that when the beam points non-normal direction, the
element of the T a should be updated with its correspond-
ing steering vector value. The covariance matrix is

R = E
{
xxH

}
= Rt +Rc +Rn (11)

where Rn = σ2I ∈ CNsK×NsK denotes the noise
covariance matrix. Regarding the target covariance matrix
Rt and CCM Rc, they can be further expressed as
follows:

Rt =

Nt∑
r=1

|γnt
|2
(
THsnt

sHnt
T
)

Rc =

Nr∑
nr=0

Nc∑
nc=1

|γnr,nc |
2 (
THsnr,ncs

H
nr,nc

T
)

(12)

For the target-free case, the covariance matrix should
be updated as R = Rc + Rn, also called the clutter
plus noise covariance matrix. The optimal STAP filter is
derived from the linear constraint minimal variance rule,
which can be described as follows:

w = µR−1so (13)
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where so is the target space-time steering vector and µ =
1/sHo R

−1so is the normalized factor.

III. Analysis of Subarray-Level Clutter

A. Subarray Clutter Space–Time Distribution
Property

A multichannel radar usually adopts a wide-
transmitting and narrow-receiving mode, thus a grating
lobe inevitably emerges in channel-level application be-
cause the distance ds of the adjacent synthesis channel
is bigger than λ/2. The deviation between the main lobe
and the h-th grating lobe [39] is

fa − fao = ±h, h = 1, 2, · · · (14)

where fa = Nsnd cos θ cosϕ/λ. The azimuth angle of the
h-th grating lobe can be inverted by

θ̂ = arccos

(
cosθo ±

hλ

Nsndcosϕo

)
(15)

Fig. 2 gives a clutter spectrum comparison results,
where the parameter setting is as follows: N = 8, M = 6,
and K = 8. In subarray processing, 2 × 2 channels are
synthesized in rows and columns. Compared to these
two spectrums, it can be found that the subarray-level
clutter spectrum in Fig. 2(b) includes many grating-lobe
clutter components, which holds the same distribution
characteristics as the main lobe clutter.

(a) (b)

Fig. 2: Comparison of the clutter spectrum: (a) element
level, (b) subarray level.

This phenomenon can be explained as shown in Fig. 3.
When the space–time beam scans point ”A” its synthesis
clutter is mainly composed of the original clutter in the
cross-curve area. For the Doppler beams, the main clutter
is located in the sidelobe and has less contribution to the
final result. However, for space beams, the main clutter
may be exposed in the grating-lobe area, and then may
lead to an increase in clutter power. Note that the same
analysis holds for other cases, such as clutter periodic
extension and non-side-looking mode.

More fundamentally, the above angle-Doppler spec-
trum is a projection from the 3D space to the 2D plane
[42]. Consequently, to better understand the impact of
channel synthesis, Fig. 4 displays the three-dimensional
clutter spectrum of the full element and subarray. From
these results, the effect of channel synthesis can be

Fig. 3: The mechanism of the grating-lobe clutter.

summarized as follows: a series of clutter (similar to
the main clutter distribution) appears regularly in the 3D
space.

(a) (b)

Fig. 4: Comparison of the clutter spectrum: (a) element
level, (b) subarray level.

B. Subarray Clutter Rank Property

The clutter rank plays an important role in STAP
because it determines the required DoFs of effective
clutter suppression. On the basis of [43] and [38], we
further give an estimation formula of planar subarray
clutter rank as follows:

rc = min (M,Nr)

(
Ns +

β

Nsn
(M −Nw)

)
Nw (16)

where

Nw = min

(
Nsn,

Nsn
gcd (mod (β,Nsn) , Nsn)

)
where gcd() represents the greatest common divisor and
mod() is the modulus after division. Fig. 5 exhibits a
clutter rank estimation result of different subarray levels
(Ns = 2 and 4) and full elements in the same condition
as in the last section, where Nr = 2. It is proven from
the knee of the eigenvalue curve that the theoretical
estimation is consistent with the simulation. This also
illustrates that the available DoFs of the channel level
are significantly smaller than the element level, which
means that some degree of performance loss is inevitable
in subarray-level STAP clutter suppression.
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Fig. 5: The clutter rank results of the different subarrays.

IV. Fast Subarray Sparse Recovery STAP Method

A. Tensor Mathematics Foundation

A brief review of tensor algebra is provided in this
subsection. X ∈ Ci1×i2×···iN denotes N -order (also
called N -mode) tensor, and in represents the element in
nth mode. VI1{·} denotes the tensor vectorization opera-
tion, and its subscript means the rearrangement size. Anal-
ogously, MI1,I2{·} and TI1,I2,··· ,IN{·} are matricization
and tensorization operation, respectively. GI1,I2,··· ,IN{·}
represents the dimension exchange operation. Then, the
Hadamard product and division are denoted as Z =
X � Y and Z = X � Y . The inner product and
outer product are 〈X ,Y〉 and X = s1 ◦ s2 ◦ · · · ◦ sIN .
(X×nS)i1,i2,··· ,p,···iN represents the n-mode product and
‖X −Y‖F is the tensor Fibonacci norm.

B. Subarray Tensor Sparse Recovery STAP Problem
Formulation

Recalling Section III, the original clutter was con-
tinuously distributed in the whole angle-Doppler plane.
Accordingly, to construct the appropriate overcomplete
space–time dictionary, the entire 2D plane is first dis-
cretized into some grids. Suppose that the grid resolution
is narrow enough to approximately represent the actual
clutter locations; then, combined with Eq. (8), the clutter
signal can be further expressed as follows:

x = THSγ + n̂ (17)

where n̂ = THn and γ = [γ1, γ2, · · · , γNsKd
]
T denotes

the sparse coefficients.. S = Sa ⊗ Se ⊗ Sd is the
overcomplete space–time dictionary, and Sa, Se, and
Sd , respectively, represent the azimuth space dictionary,
elevation space dictionary, and Doppler dictionary. For a
full-element SR-STAP application, S is composed of its
corresponding space–time steering vector in the divided

grids. However, owing to the subarray synthesis opera-
tion, the above dictionary construction is unsuitable for
subarray applications. Therefore, it is necessary to find
a more appropriate dictionary basis. In this article, the
RD space–time steering vector is adopted to establish
the dictionary, and the realization detail is discussed in
Section IV.C. Subsequently, with tensor transformation
operations, Eq. (17) can be rewritten as follows:

X = H×1Ŝa×2Sd + N (18)

where X = TNs,K,L {x}, H = TNa,Kd,L {γ} and N =
TNs,K,L {n̂} are the tensor forms corresponding to the
original variables, and Na and Kd are the atom numbers
of the azimuth space dictionary and Doppler dictionary,
respectively. Note that Se is ignored here because of the
azimuth dual-channel synthesis and Ŝa is the subarray
azimuth dictionary. The goal of the tensor-based SR-
STAP is to explore the sparest solution of H as much
as possible, and its mathematical problem model is

min
H
‖MNaKd,L {H}‖2,1

s.t.
∥∥∥X −H×1Ŝa×2Sd

∥∥∥2

F
≤ ε (19)

where ‖·‖2,1 is the combination of `2-norm and `1-
norm; specifically, execute `1-norm in a column and `2-
norm in a row. ε can be regarded as a threshold to
adjust the acceptable noise level. Another commonly used
expression of Eq. (19) is the unconstrained form:

min
H
‖MNaKd,L {H}‖2,1 + ρ

∥∥∥X −H×1Ŝa×2Sd

∥∥∥2

F
(20)

where ρ is the penalty coefficient. Finally, the CCM
estimation was calculated as follows:

R̂ = Sdiag

{
1

L

L∑
l=1

VNaKd

{
|H:,:,l|2

}}
SH + δI (21)

where δ is the diagonal loading term [44]. For simplifying
the analysis, let S = Ŝa ⊗ Sd in the subsequent section.

C. Construction of a Prior-Aided Subarray Dictionary

The traditional uniform dictionary has a simple im-
plementation. However, as the grid resolution increases,
the number of atoms increases exponentially, which leads
to a huge computation load in a practical SR-STAP
application. In this section, a joint dictionary is developed
to achieve a better compromise between grid number and
performance.

1. Uniform Subarray Space–Time Dictionary
Generally, a grid resolution factor (GRF) β is adopted

to adjust the grid resolution, that is, Na = βaN in the spa-
tial dimension and Kd = βdK in the temporal dimension.
Hence, the space–time dictionary of the uniform subarray
Su ∈ CNsK×NaKd is given as follows:

Su =
[
s
(
f1
a , f

1
d

)
, s
(
f2
a , f

2
d

)
, · · · , s

(
fNa
a , fKd

d

)]
(22)
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where s
(
fna
a , fkdd

)
∈ CNsK is the subarray-level

space–time steering vector corresponding to the na-th
and kd-th in the azimuth–Doppler plane, and it can be
calculated with

s
(
fna
a , fkdd

)
=
[
T̂
H

a sa (fna
a )
]
⊗ sd

(
fkdd

)
(23)

It should be noted that each atom corresponds to a
unique space transformation matrix T̂ a. Moreover, Eq.

(23) only considers the azimuth multichannel airborne
radar model mentioned in Section II. As for other sub-
array configurations (e.g., overlapping subarray and non-
uniform subarray), the proposed dictionary construction
is still working. In addition, if the subarray contains a
pitch scanning function (planar subarray), the elevation
transformation matrix T̂ e can be constructed in the same
way.

T̂ a =


1 ej2πf

na
a · · · ej2π(Na−1)fna

a 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 ej2πf

na
a · · · ej2π(Na−1)fna

a · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

... · · ·
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 · · · 1 ej2πf

na
a · · · ej2π(Na−1)fna

a


T

The drawback of Su can be summarized as follows:

1) Compared with clutter region grids, noise area
grids contribute a little to recovery. Unfortunately,
owing to the sparsity of clutter distribution, most
existing grids in the dictionary are noise area grids,
and this will be more noticeable in large-scale
input data [34];

2) The actual clutter region is continuous, and their
locations often fall outside the divided grids. Thus,
the grid mismatch effect is commonly unavoid-
able when applying a discrete dictionary [45].
Increasing the GRF can effectively mitigate the
performance degradation caused by mismatches.
However, because of the uniform segmentation in
the 2D space, many useless grids will occupy huge
hardware resources in the estimation.

Recently, some nonuniform dictionary construction
methods have been proposed to resolve the dilemma
of a uniform dictionary. Nevertheless, such nonuniform
dictionaries again introduce other questions while improv-
ing performance. One important problem is the coupling
of space and time dimensions (i.e., the two dimensions
are no longer independent because the divided grids are
directly selected in the angle-Doppler domain). Conse-
quently, the 2D space–time dictionary cannot be decom-
posed in its independent dimension, which leads to many
fast realization structures losing effectiveness. Addition-
ally, a complicated two-dimensional grid segmentation
method brings additional time costs.

2. Clutter Dictionary
To retain the separable ability of the space–time

dictionary, the rule that must be satisfied is that the seg-
mentation should be executed in each dimension, which
means that the design freedom is reduced from NaKd

to Na + Kd. Consequently, the rational selection of the
division density of different areas with finite DoFs be-
comes a crucial problem in space–time dictionary design.
In [46], a simple but potent idea is proposed by selecting

the appropriate fd based on the prior radar parameter.
Drawing on this concept, we propose a new design
method for the grating-lobe clutter ridge dictionary.

a. Azimuth Dimension
The first step is to lock the distribution region of the

grating-lobe clutter. According to the analysis in Section
III.A, the h-th grating-lobe space frequency relative to the
main lobe clutter is as follows:

fa = fao +
hλ

Nsndcosϕo
(24)

To further reduce complexity, the sparsely sampling
of sidelobe clutter area is achieved by the subsequent
uniform dictionary, in the clutter dictionary construction,
only consider the powerful main lobe clutter area and
its corresponding grating-lobe clutter area, which is a
reasonable assumption in application because the strong
clutter is primarily caused by these areas. Simultaneously,
to reasonably allocate dense sampling points in the focus
area, we introduce a nonlinear transformation function
and adopt it to select the appropriate sampling points.
The sampling transformation function can be expressed
as follows: y = exp (a |x− x0|)

x = x0 ±
log (y)

a

(25)

where a and x0 are the adjustable parameters used to ad-
just the function shape and location of the center sampling
point. Fig. 6 compares linear and nonlinear sampling; the
sampling points in y and x are the linear and nonlinear
sampling results, respectively. Subsequently, with the help
of a nonlinear sampling function, dense sampling near the
main clutter and grating-lobe clutter area can be achieved
in construction.

b. Doppler Dimension
For the Doppler dimension, a reasonable sampling

strategy takes dense sampling in the main clutter area and
sparse sampling in other areas concerning the main beam
region. The method that we implemented was the inverse
of nonlinear space domain sampling. A detailed realiza-
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Fig. 6: Comparison of linear and nonlinear sampling.

tion list is as follows: 1) uniformly dividing the azimuth
angle in the range from -1 to 1 with Kd points; 2) with the
help of nonlinear transformation function, converting the
uniform space sampling points to nonuniform sampling;
and 3) getting the mapping results from space domain to
Doppler domain by the relation between fd and fa, that
is,

fd = β

facosθp
2d

λ
− sinθp

√(
2d

λ
cosϕ

)2

− f2
a

 (26)

Fig. 7 shows the result of the dictionary construction
of the grating-lobe clutter ridge for the dual channel,
where the black dot is the sampling point in the 2D plane.

Fig. 7: An example of a grating-lobe clutter ridge dictio-
nary.

3. Joint Dictionary
The traditional dictionary uniformly samples the

space–time plane, but its useless grids waste many cal-
culation units. By contrast, the ridge dictionary of the
grating-lobe clutter decreases the grid number at the cost
of reducing the sampling in the nonclutter region, which
may cause potential instability in recovery. To combine
the advantages of both dictionaries, a joint dictionary is
provided as follows:

S = Su ∪ Sc =
[
Su Sc

]
(27)

where Sc represents the clutter dictionary. As expected,
in this way, a rough Su with Sc can achieve the same
recovery performance as a dense Su. The hardware that is
occupied by useless noise grids is reduced and partially
converted to effective clutter grids. The whole flow of
establishing a joint dictionary is summarized in Algorithm
1.

Algorithm 1: Joint Dictionary Construction

1 Clutter Dictionary:
2 Step 1: Calculate the fa by Eq.(24) ;
3 Step 2: Calculate the nonlinear sampling

locations in the grating-lobe by Eq.(25) ;
4 Step 3: Calculate the space and Doppler

sampling points ;
5 Step 4: Generate the Sc by Eq.(23) ;
6 Uniform Dictionary:
7 Step 1: Divide space and Doppler grids

uniformly ;
8 Step 2: Generate the Su by Eq.(23) ;
9 Final step: S ;

D. Separable Tensor-Based Sparse Bayesian
Learning STAP

Let Ŝ
u

a ∈ CNs×Nu
a , Ŝ

c

a ∈ CNs×Nc
a , Sud ∈

CK×Ku
d ,Sud ∈ CK×Kc

d , Su = Ŝ
u

a⊗S
u
d and Sc = Ŝ

c

a⊗S
c
d.

Na = Nu
a +N c

a and Kd = Ku
d +Kc

d. Using Eq. (33), the
joint dictionary tensor subarray SR-STAP problem can be
modeled as follows:

min
Hu,Hc

‖[MNaKd,L {Hu} ;MNaKd,L {Hc}]‖2,1

s.t.
∥∥∥X −Hu×1Ŝ

u

a×2S
u
d −Hc×1Ŝ

c

a×2S
c
d

∥∥∥2

F
≤ ε (28)

where Hu and Hc are the sparse coefficient of the
uniform dictionary and clutter ridge dictionary, respec-
tively. Traditional SBL methods spend a huge amount of
time and resources on large-scale matrix multiplication
and inversion operations. In [18], tensor processing was
applied to decompose the large-size multidimensional dic-
tionary matrix into a series of small-size single-dimension
dictionaries. It can achieve a considerable improvement in
solving by three or four orders of magnitude, but for a
real application, it has the following problems:

AUTHOR ET AL.: SHORT ARTICLE TITLE 9

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3274104

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



• Computation loading: Although the dictionary di-
mension of the tensor-based SBL reduces from
NsK ×NaKd to Ns ×Na for Sa and K ×Kd for
Sd, it is still a large burden for the hardware; for
example, assuming that Ns = 8, K = 64 and β = 6,
then the whole data to be processed for a single-
range cell is β

(
N2
s +K2

)
≈ 2.5 × 104, which is

impossible to accept in real-time processing systems.
• Data Transfer: The problem of transmission delay is

not evident in small-scale data, but by increasing the
size of the input data, the time cost of this operation
will quickly rise even more than the calculation.

This motivated us to introduce the separable structure
and propose the STSBL, which is aimed at utilizing the
advantages of parallel processing to further speed up the
time of calculation and data transfer.

Suppose that Hu and Hc are satisfied with the com-
plex Gaussian distribution. Hence, the joint probability
distribution p (Hu|Γu) and p (Hc|Γ c) can be expressed
as follows:

p (Hu|Γu) =
1

πN
u
aK

u
dL
(∏Nu

a

i=1

∏Ku
d

j=1 Γ
i,j
u

)L
· exp

−
L∑
l=1

Nu
a∑

i=1

Ku
d∑

j=1

(∣∣H:,:,l
u

∣∣2 � Γu

)
i,j


p (Hc|Γ c) =

1

πN
c
aK

c
dL
(∏Nc

a

i=1

∏Kc
d

j=1 Γ
i,j
c

)L
· exp

−
L∑
l=1

 Nc
a∑

i=1

Kc
d∑

j=1

(∣∣H:,:,l
c

∣∣2 � Γ c

)
i,j


(29)

where Γ i,j
u and Γ i,j

c correspond to the variance of (i, j)
element in H:,:,l

u and H:,:,l
c . As described in Section II,

the noise obeys the complex Gaussian distribution with
zero mean and variance σ2, that is,

p
(
N |0, σ2

)
=

1

(πσ2)
NsKL

exp

{
− 1

σ2

L∑
l=1

‖N :,:,l‖2F

}
(30)

When combined with Eq. (30), the likelihood function
of X can be written as follows:

p
(
X |Hu,Hc, σ

2
)

=
1

(πσ2)
NsKL

· exp

−1

σ2

L∑
l=1

∥∥∥∥∥∥
X :,:,l

−H:,:,l
u ×1Ŝ

u

a×2S
u
d

−H:,:,l
c ×1Ŝ

c

a×2S
c
d

∥∥∥∥∥∥
2

F


(31)

Following the Bayesian rule, the posterior probability
p
(
Hu,Hc|X ,Γu,Γ c, σ

2
)

can be approximately decom-
posed as follows:

p
(
Hu,Hc|X ,Γu,Γ c, σ

2
)
∝ p

(
X |Hu,Hc, σ

2
)

× p (Hu|Γu) p (Hc|Γ c)
(32)

As expected, p
(
Hu,Hc|X ,Γu,Γ c, σ

2
)

also com-
plies with complex Gaussian distribution. Nevertheless,
it is difficult to process the problem with the tensor form.
Here, we adopt a similar route as our previous study [18]
(i.e., searching a tensor solution from its vector-based
expression). Let Γ = diag

([
VNu

aK
u
d

(Γu) ;VNc
aK

c
d

(Γ c)
])

and C = σ2I+SΓSH . Following separable dictionaries,
C can be further decomposed as follows:

C = Cc +Cu (33)

where
Cu =

σ2I

2
+MNsK,NsK{GNsK,Nu

a ,K
u
d
{Zu}×2Ŝ

u

a×3S
u
d}

Cc =
σ2I

2
+MNsK,NsK{GNsK,Nc

a,K
c
d
{Zc}×2Ŝ

c

a×3S
c
d}

(34)
where Zu = TNs,K,Nu

aK
u
d
{SuΓu} and Zc =

TNs,K,Nc
aK

c
d
{ScΓ c}. For the vector-based SBL, the so-

lutions of mean Ξ and variance Σ are

Ξ = ΓSHC−1MNsK,L {X}

Σ =
(
σ2SHS + Γ

)−1
(35)

Accordingly, Ξ can be expressed with its separable
form as follows:

Ξ = [Ξ c;Ξ u] (36)

where {
Ξ c = Γ cS

H
c C

−1MNK,L {X}
Ξ u = ΓuS

H
u C

−1MNK,L {X}
(37)

As for Σ , only its diagonal matrix is used in subse-
quent steps, and it can be expressed as follows:{

Σ c = Γ c − Γ cS
H
c C

−1ScΓ c

Σu = Γu − ΓuS
H
u C

−1SuΓu

(38)

Substitute its corresponding tensor processing with
Eq. (37). As a result, Ξ can be updated as Eq. (39). Wu =
TNu

a ,K
u
d ,NsK

{[
VNu

aK
u
d

(Γu) , · · · ,VNu
aK

u
d

(Γu)
]}

and
Wc = TNc

a,K
c
d,NsK

{[
VNc

aK
c
d

(Γ c) , · · · ,VNc
aK

c
d

(Γ c)
]}

,
and the repeatedly copying times is NsK. A
complete derivation of Eq. (39) is given in [18].

Ξ u = TNu
a ,K

u
d ,L

{
MNu

aK
u
d ,NsK

{
Wu �

[
TNs,K,NsK

{
C−1

}
×1(Sua)

H×2(Sud)
H
]}
MNsK,L {X}

}
Ξ c = TNc

a,K
c
d,L

{
MNc

aK
c
d,NsK

{
Wc �

[
TNs,K,NsK

{
C−1

}
×1(Sca)

H×2(Scd)
H
]}
MNsK,L {X}

}
(39)
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Subsequently, the sparse coefficient H can be esti-
mated with Ξ . The unknown parameters can be calculated
via the expectation maximization (EM) method. The EM
method can be described as follows:

Θ t+1 = arg max
Θ
∫ lnp (Y ,X|Θ) p

(
Y |X,Θ t

)
dX

(40)
where Θ represents the parameters to be estimated and
X is the hidden variable. With the help of Eq. (40), the

logarithm object function can be written as

Q
(
Γ , σ2

) ∆
= E

{
ln

[
p
(
X |Hu,Hc, σ

2
)

×p (Hu|Γu) p (Hc|Γ c)

]}
(41)

Substitute Eqs. (31) and (29) into Eq. (41), and the
concrete form of Eq.(41) in the proposed method can be
further written as follows:

Q
(
Γ , σ2

)
∝ −NsKLlnσ2 − 1

σ2

L∑
l=1

E
{∥∥∥X :,:,l −H:,:,l

u ×1Ŝ
u

a×2S
u
d −H:,:,l

c ×1Ŝ
c

a×2S
c
d

∥∥∥2

F

}
− Lln

(∏Nu
a

i=1

∏Ku
d

j=1
Γ i,j
u

)

−
L∑
l=1

Nu
a∑

i=1

Ku
d∑

j=1

(
E
{∣∣H:,:,l

u

∣∣2}� Γu

)
i,j

− Lln

(∏Nc
a

i=1

∏Kc
d

j=1
Γ i,j
c

)
−

L∑
l=1

 Nc
a∑

i=1

Kc
d∑

j=1

(
E
{∣∣H:,:,l

c

∣∣2}� Γ c

)
i,j


(42)

where

E
{
|H:,:

u |
2
}

= |H:,:
u |

2
+Du

E
{
|H:,:

c |
2
}

= |H:,:
c |

2
+Dc
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(43)

where Du = MNu
a ,K

u
d
{diag {Σu}} and Dc =

MNc
a,K

c
d
{diag {Σ c}}. Our goal is to acquire the max-

imum value of Q
(
Γ ,σ2

)
, which can be accomplished

by taking the first-order derivative of Γu, Γ c and σ2.
For Γ , its first-order derivation is as follows:
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)
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+
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Setting Eq. (44) equal to zero, Γi,j can be solved as
follows:

Γ̂
i,j

u =
1

L

∑L

l=1

∣∣H:,:,l
u

∣∣2 +Di,j
u

Γ̂
i,j

c =
1

L

∑L
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∣∣H:,:,l
c

∣∣2 +Di,j
c (45)

Similar to the processing procedure of Γ , the deriva-
tion of Q

(
Γ , σ2

)
regarding σ2 is

∂Q
(
Γ , σ2

)
∂σ2

=

∑L
l=1 E
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2
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(46)

And updated solution of σ2 is

σ̂2 =
1

NsKL

L∑
l=1

∥∥∥∥∥ X :,:,l −H:,:,l
u ×1Ŝ

u

a×2S
u
d
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c
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2
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+
Nc

a∑
i=1

Kc
d∑

j=1

(1−Dc � Γ c)i,j

 (47)

The proposed STSBL algorithm is summarized in
Algorithm 2.

E. Preliminary Discussion

1. Complexity Analysis
As in many earlier SR-STAP studies, only the mul-

tiplication time is considered in the following anal-
ysis due to its higher complexity in the application.
For the whole processing of the STSBL-STAP method,
it includes five different variables estimation i.e., C,
Ξ , Σ , Γ and σ2. By analyzing the operations of
these estimations, the time-consuming steps emerge
in the C, Ξ and Σ . Firstly, the calculation of Cc

mainly involves Zc and two times mode product oper-
ations (i.e., GNsK,Nc

a,K
c
d
{Zc}×2Ŝ

c

a×3S
c
d), the required

multiplication times of this step is (NsK)
2
N c
aK

c
d +

NsKN
c
aK

c
d+N2

sKK
c
dN

c
a+N2

sK
2Kc

d, thus its complexity
can be approximately evaluated with O

{
(NsK)

2
N c
aK

c
d

}
.
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Algorithm 2: STSBL-STAP

input : Ŝ
u

a , Sud , Ŝ
c

a, Scd and X
1 Initialize:Γ c = 1, Γu = 1 and σ2 = 10;
2 for p = 1 to Pmax do
3 Calculate Cu and Cc by eqn. (34);
4 Calculate C by eqn. (33);
5 Calculate Ξ c and Ξ u by eqn. (39);
6 Calculate Σ c and Σu by eqn. (38);
7 Calculate Γ c and Γu by eqn. (45);
8 Calculate σ2 by eqn. (47);
9 if ‖[Ξ p

c ;Ξ
p
u]‖2F /

∥∥[Ξ p−1
c ;Ξ p−1

u

]∥∥2

F
≤ µ

then
10 break;

11 Calculate R̂ based on eqn. (21) ;
output: R̂

TABLE I: The complexity of different methods

Methods Complexity

SBL O
{(
Nu

aK
u
d +Nc

aK
c
d

)3}
STSBL O

{
max

(
Nu

aK
u
d , N

c
aK

c
d

)
(NsK)2

}

As for Cu except for the dictionary, which has the
same processing flow as Cc, hence the complexity
of it is O

{
(NsK)

2
Nu
aK

u
d

}
. Now, different from the

previous research work, benefit from the advantages
of separable property, the final complexity of C is
O
{

max (Nu
aK

u
d , N

c
aK

c
d) (NsK)

2
}

. Then for Ξ c, two

times mode product (i.e.,TNs,K,NsK

{
C−1

}
×1Ŝ

c

a×2S
c
d),

one time matrix multiplication and Hadmard product are
executed in this step, the total multiplication time is
N2
sK

2N c
a + NsK

2N c
aK

c
d + NsKN

c
aK

c
d + NsKLN

c
aK

c
d,

because K � L in SR-STAP, hence its complex-
ity is O

{
NsK

2N c
aK

c
d

}
. Similar to the operation of

Ξ c, the complexity of Ξ u can be assessed with
O
{
NsK

2Nu
aK

u
d

}
, and thus the complexity of the Ξ is

O
{

max (Nu
aK

u
d , N

c
aK

c
d)NsK

2
}

. In the estimation of Σ c

and Σu, it should be noted that only the diagonal elements
are used in a subsequent operation, hence the com-
plexity of this step is O

{
max (Nu

aK
u
d , N

c
aK

c
d) (NsK)

2
}

.
From the above analysis, it can be obtained that
the complexity of the proposed STSBL method
is O

{
max (Nu

aK
u
d , N

c
aK

c
d) (NsK)

2
}

, which is far
smaller than the conventional SBL method with
large-scale dictionary S ∈ NsK×(Nu

aK
u
d +Nc

aK
c
d) (i.e.,

O
{

(Nu
aK

u
d +N c

aK
c
d)

3
}

).The complexity of different
methods is summarized in Table I.

2. General Application
The STSBL could use a novel separable processing

structure, and thus, it can effectively overcome the short-
age of the conventional SBL methods mentioned above.

Note that the core idea of the separable structure is dictio-
nary segmentation. Concretely, in SR-STAP applications,
this means the regional division of the angle-Doppler
plane.

• Remark 1: The selection of dividing methods can be
regular or irregular, which has no impact on the final
estimation accuracy but will increase the pressure
on multicore processing. This property gives great
flexibility to the application.

• Remark 2: In segmentation, there is no definitive
number constraint of a separable dictionary grid. In
other words, when the atom number of separable
dictionaries is one, the above structure can still work
effectively.

Fig. 8 presents an example of segmentation in 2D
space, where a 6 × 6 grid set is divided into nine
areas. The proposed division idea is not limited to the
space–time two-dimensional plane, and it is suitable for
applying multidimensional data, such as 3D echo data
(azimuth–elevation–Doppler).

Fig. 8: Region segmentation of the angle-Doppler grids.

The STSBL processing frame can guarantee that each
subdictionary can perform individually. An alternative
processing structure is shown in Fig. 9, and the entire
processing structure contains two stages. In the first stage,
Q block dictionaries are input to the multicore system
and C can be solved by the sum from C1 to CQ. In
the second stage, the original data S is separated into Q
block and input into every core to calculate Ξ , Σ , Γ
and σ2. It is shown that the most time-consuming step
is the calculation of Σ , which is O

(
NaKd(NsK)

2
)

.
Compared with the TSBL, the advantages of the STSBL
in application is the separable processing structure; hence,
its speed-up ratio can be approximately evaluated with
its processor number, that is, O

(
NaKd(NsK)

2
/Ncore

)
,

where Ncore is the number of cores. However, it is
important to point out that this ratio is ideal because
it ignores the effects of real hardware. In other words,
the real design should also consider an appropriate core
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number according to actual demand. Introducing this
processing technology (e.g., multicore DSP and FPGA),
the STSBL parallel processing structure can achieve a
further significant improvement in computation loading
compared with the TSBL.

Fig. 9: Generalized parallel processing structure of
STSBL.

V. Wide-Area GMTI with Fast Subarray SR-STAP

The WGMTI working mode aims to detect potential
moving targets and simultaneously mark them in the
SAR image; thus, it puts a high-level real-time process-
ing requirement on the hardware system and processing
algorithms. Under these constraints, conventional SAR
imaging algorithms, such as the range–Doppler algorithm
(RDA), chirp-scaling algorithm, and ωk algorithm, are
no longer suitable for the WGMTI application. A trade-
off selection is Doppler beam sharpening (DBS), which
has a simple processing structure with the help of FFT
algorithms. The whole WGMTI processing framework
of our developed radar system is depicted in Fig. 10,
which mainly contains four parts: data preprocessing,
DBS SAR imaging, clutter suppression and moving target
detection, and moving target relocation. Subsequently, the
realization of each stage will be briefly discussed. It is
necessary to clarify that in this paper, we focused on
the clutter suppression stage. For the detailed realization
of the other stage, the reader can refer to the relative
literature in each subsection.

A. Data Preprocessing

Influenced by the real environment and nonideal radar
system configuration, the actual Doppler center frequency
deviates from the ideal setting. Thus, the actual Doppler
center frequency must be estimated first [47]. Correlation
function estimation and energy balance are used as the
estimation methods for the Doppler center frequency.
Compared with the second type, the correlation function

is often applied in real radar systems because of its
simple implementation. Therefore, we adopt the corre-
lation function method in this step. The next step is pulse
compression. The purpose of this step is to improve the
range resolution by compressing the received LFM signal.

After pulse compression, a channel calibration tech-
nique should be performed to compensate for the un-
known gain/phase error between different received chan-
nels. Note that the performance of this step has a vital im-
pact on subsequent STAP clutter suppression. The classic
calibration is the adaptive channel balancing method [48],
which can be executed alternately. In most cases, three
iterations could meet the application requirement.

B. DBS Imaging and Stitching

Before the azimuth FFT operation, a range migration
correction (RMC) step should be performed to compen-
sate for the range cell change in moving targets caused
by the long-time observation [49]. Nevertheless, when the
target observation time is too short to cross a single-range
cell, the RMC step can be ignored to reduce complexity.
Subsequently, the azimuth FFT operation is applied in
the points pulse signal to generate the Doppler frequency
spectrum. Note that the ground clutter in the DBS imaging
stage represents the real geomorphology environment;
thus, it should be retained in the DBS imaging stage.
The next step is extracting the main Doppler region. The
reason for this operation is that only the main beam
illumination area has sufficient CNR to reserve a sharp
outline of the terrain. In an ideal case, a 3 dB width of
the main Doppler clutter area is extracted in imaging.
However, in the application, it usually adjusts a little
bigger than 3 dB to ensure that all powerful areas are
covered in processing. The final step is image stitching.
This operation mainly involves geometric mapping and
insertion. This operation maps the ground point from the
range–Doppler space to the geometric coordinate system.
It should be noted that the above is the result of the
original SAR image. For subsequent SAR image analysis,
some image preprocessing is required in the application
[50].

C. Clutter Suppression and Moving Target Detection

For an airborne radar, strong ground clutter would
significantly affect the performance of the detection of
moving targets. Therefore, clutter must be eliminated be-
fore the detection of the target. The SR-STAP method was
used to execute this operation. The processing flow can
be roughly divided into two steps: sample selection and
filtering. For the filter step, the proposed STSBL-STAP
was used to calculate the optimal filter coefficient, which
has been given an exhaustive description in Section III.
The sample selection strategy takes the sliding window.
For other window strategies, refer to [51].

The next step is the detection of moving targets. In this
step, it is crucial to choose an appropriate constant false
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Fig. 10: The WGMTI processing framework.

alarm rate (CFAR) algorithm following different applica-
tion environments. Although numerous CFAR algorithms
have been developed to process different application sce-
narios [52], in real applications, especially in large input
data size (e.g., hundreds of pulses and thousands of range
gates) conditions, too many complicated CFAR methods
are impossible to realize in real-time processing. Thus,
the cell averaging CFAR (CA-CFAR) is still an optimal
choice in the WGMTI mode. The common CA-CFAR has
two main types: one-dimensional and two-dimensional
CA-CFAR. 1D-CA-CFAR was performed in the range di-
mension, and its computational loading was the lowest of
these types. Compared to 1D-CA-CFAR, 2D-CA-CFAR
works in the 2D range–Doppler plane and requires a huge
computational load. A compromise of 2D-CA-CFAR is
to use the “+” window, which solves the threshold with
the elements of the cross part; thus, computation can
be further reduced. Additionally, a separable 1D-CA-
CFAR idea can be useful in engineering [53], which
cleverly decomposes 2D-CA-CFAR as two pieces of 1D-
CA-CFAR and individually performs in range dimension
and Doppler dimension. Considering computational effort
and time, 1D-CA-CFAR is chosen in WGMTI.

D. Target Parameter Estimation and Relocation

The target range can be directly inversed through the
location detected in the range–Doppler spectrum, but the
azimuth angle of moving targets cannot be calculated
similarly because of the unknown target initial velocity.
Thus, it needs to measure the actual azimuth angle to
relocate the moving targets in the true ground loca-
tion. The commonly used methods in engineering are
monopulse angle measurement [54] and the maximum
likelihood method [3]. In these methods, the maximum

likelihood method has the highest measurement accuracy,
but its large DoFs and huge calculation requirements
are unsuitable for the application of the dual-channel
radar system WGMTI mode. Fortunately, the accuracy
of the measurement of the conventional monopulse angle
is sufficient for application. It is easy to implement in
engineering. Once the actual azimuth angle of moving
targets is obtained, relocation can be executed in the next
step of measurement, marking the moving targets in the
DBS image. Here, single-cycle WGMTI processing has
been completed.

VI. Simulation Experiments

In this section, we mainly verify the performance
of STSBL-STAP in the subarray-level application, and
some performance evaluation experiments were carried
out in the form of simulations. The raw echo data were
generated based on the multichannel airborne radar model
that was described in Section II, and some relative radar
system parameters are summarized in the following: the
center frequency fc was Ku-band; the platform altitude
and velocity were 2000 m and 60 m/s, respectively; the
element spacing was λ/2; the PRF was set equal to
4v/λ; and the pulse number K, azimuth element number
N and elevation element number were 32, 24, and 6,
respectively. During the simulation, the radar main beam
was adjusted to point θ = 90◦ and ϕ = 5◦. Each range
cell was uniformly divided into 180 patches, and each
was satisfied with the Weibull distribution. The CNR
here was set at 60 dB, which corresponds to the real
environment. Additionally, the SBL results were used
for the comparison. All algorithms were executed with
a similar processing flow in MATLAB R2020b. The
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hardware configuration was a CPU eight core i9-9900KF
3.6GHz 460GFLOPS with 64 GB RAM.

A. Space-time Spectrum Estimation

In this experiment, the CCM estimation accuracy was
verified by the joint dictionary under the subarray syn-
thetic condition. Three common looking modes are chose
in here, which are side-looking mode (θp = 0◦), squint-
looking mode (θp = 30◦) and forward-looking mode
(θp = 90◦). For a joint dictionary, let the total grid number
be close to the β was 4 (i.e., the number of grids NaKd

was 12513). A minimum variance distortionless response
spectrum was applied to evaluate the performance of
recovery, which can be achieved as follows:

P (fs, fd) =
1∣∣∣sH (fs, fd) R̃
−1
s (fs, fd)

∣∣∣ (48)

Unless otherwise stated, the training sample L was
6, and the initialization parameter values of the SBL-type
algorithm throughout the experiments were the following:
σ2 = 10, µ = 10−3 and Pmax = 50.

Fig. 11 shows the spectrum estimation result of two
synthesis channel numbers (i.e., Ns = 24 and 2). Com-
pared to the joint dictionary spectrum estimation result
with the original clutter space-time spectrum, it can be
known that the proposed method can achieve a good
performance at the element-level. Then, with gradually
decreasing synthesis channel numbers, as in the analysis
before, the number of grating-lobe clutter ridges is rapidly
increasing. In this scene, the joint dictionary can still hold
an acceptable estimation accuracy. This is benefited from
the property that the joint dictionary can adjust denser
sampling in the main clutter area. The above result implies
that the joint dictionary is effective in channel-level SR-
STAP applications.

B. The Signal-to-Clutter-Plus-Noise Ratio (SCNR)
Loss

In this section, the clutter suppression ability of the
different synthesis numbers is further tested using the
STSBL-STAP method. Additionally, a commonly used
post-Doppler STAP method [51] in engineering is added
for better comparison, in which the three Doppler chan-
nels are jointly utilized in processing. In addition, accord-
ing to the RMB rule, setting L = 30 and 160 respectively
represent the sufficient sample condition of the Post-
Doppler method at the channel-level and element-level.
And the SCNR loss is used as a performance evaluation
criteria [9], that is,

SCNR Loss =
σ2
n

NK

∣∣wHso
∣∣2

(wHRw)
(49)

The parameter setting is the same as in the last ex-
periment, and to reduce the effect of random fluctuation,
all curves are the average result of multiple Monte Carlo
trials.

TABLE II: Grid size

SBL STSBL

β = 2 Nsbl = 3185 Nc = 1562, Nu = 1530
β = 3 Nsbl = 7081 Nc = 4046, Nu = 3185

β = 4 Nsbl = 12513 Nc = 6864, Nu = 6120

β = 5 Nsbl = 19481 Nc = 9686, Nu = 9605
β = 6 Nsbl = 27985 Nc = 13370, Nu = 13635

Fig. 12shows the SCNR loss results of different meth-
ods in three looking modes. The post-Doppler STAP had
the worst clutter performance in the severe shortage of
training samples. With increasing the sample number, its
performance has significant improvement, however, even
in this condition, the performance of the Post-Doppler
method is still lower than SR-STAP method. Conversely,
the SR-STAP methods have excellent clutter suppression
ability even in such sample conditions. STSBL has a
narrower notch than SBL due to an appropriate sam-
pling strategy. Subsequently, with the subarray synthesis
(Ns = 2), Fig. 12(d)-(f) gives the SCNR loss result of
different methods in Ns = 2. As analyzed earlier, grating-
lobe clutter causes performance degradation of STAP
methods. Nevertheless, the SBL and STSBL methods are
still effective at the subarray level. Furthermore, it can be
found that STSBL-STAP is several dB higher than SBL
whether in the main or non-main clutter region, which
illustrates the validity of the STSBL method.

C. Running Time

In the final simulation experiment, the computation
loading of the proposed STSBL method was assessed with
its running time. As listed in Table II, under the condition
of Ns = 2, N = 24, K = 32 and L = 6, the size of a
conventional space-time dictionary is set from β = 2 to
6 (i.e. Nsbl = 3185 to 27985). Subsequently, to make
a fair comparison, the joint dictionary is adjusted such
that the number of atoms is close to its corresponding
conventional dictionary. As shown in Fig. 13, the speed of
STSBL was significantly reduced compared with the SBL
method. For example, SBL requires 9540.632 s in β = 6,
but STSBL only needs 2.655 s, which is approximately
3600 times faster than SBL. Our test here is only executed
in MATLAB software. The powerful advantages of the
proposed separable structure can be further exploited in
processing tools, such as DSP and FPGA.

VII. Real Measurement Experiments

In this section, we used real measurement data to
verify the clutter suppression performance of the pro-
posed STSBL in WGMTI processing. This flight exper-
iment was performed in October 2021, and the obser-
vation area was in Xiangyang, a city in the province
of Hubei in China. Fig. 14 shows the flight route,
which begins at

(
112◦54

′
E, 31◦975

′
N
)

and ends at
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(a) Ori:Ns = 24 (b) STSBL:Ns = 24 (c) Ori:Ns = 2 (d) STSBL:Ns = 2

(e) Ori:Ns = 24 (f) STSBL:Ns = 24 (g) Ori:Ns = 2 (h) STSBL:Ns = 2

(i) Ori:Ns = 24 (j) STSBL:Ns = 24 (k) Ori:Ns = 2 (l) STSBL:Ns = 2

Fig. 11: Spectrum estimation results of different methods. (a)-(d) side-looking mode, (e)-(h) squint-looking mode,
(i)-(l) forward-looking mode.

TABLE III: Radar system parameters

Parameters Symbols Values

Carrier frequency fc Ku-band
Bandwidth B 20MHz

PRF fr 3000Hz
Pulse number K 256

Channel number Ns 2
Platform altitude H 2500m
Platform velocity vp 60m/s

Azimuth angle θo 90◦

Elevation angle ϕo 10◦

(
112◦63

′
E, 31◦975

′
N
)

. The Ku-band echo data were
recorded with our developed dual-channel radar system,
and the main radar system parameters are summarized in
Table III. As shown in Fig. 15, the radar was installed
under the airborne platform, and a special design radome
was applied to avoid the impact of the outside environ-
ment. The antenna array was a UPA with 16 elements in
a row and 32 elements in a column. The received original
echo data of these elements were directly synthesized by
double channel output. In the flight experiment, the radar
worked in the side-looking mode and illuminated the left

area of the airplane platform. The real measurement data
from the 77th cycle were selected for the experiment,
composed of 15 beam positions. Every beam position was
extracted from 1000 range gates for testing. The following
is a formal analysis.

Fig. 16(a) shows the range–Doppler spectrum of echo
data. The strong clutter occupies the most Doppler bins in
the entire two-dimensional space, and only the powerful
targets in the pure area can be effectively identified
in the original data. Subsequently, Fig. 16(b) gives a
phase image of this beam position. After the operation
of channel balance, there is good channel consistency
between Channels 1 and 2, which provides a good basis
for subsequent clutter suppression. In STAP, a successive
sliding window (from range bin 1 to 1000) is taken
to select the training samples. If there were no special
instructions, four samples were used for STSBL-STAP
and post-Doppler STAP. Other parameters’ initialization
is the same as in the simulation experiments.

In the first experiment, the estimation ability of the
STSBL in real measurement data was evaluated following
the space–time spectrum results of the different samples.
Fig. 17(a)-(c) are the 566th range gate estimation results
of the traditional maximum likelihood (ML) methods
(R̂ = XXH/L) with L = 4, L = 60 and L = 1000.
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(a) side-looking mode (b) squint-looking mode (c) forward-looking mode

(d) side-looking mode (e) squint-looking mode (f) forward-looking mode

Fig. 12: The SCNR loss results from different methods: (a)-(c) full element and (d)-(f) Ns = 2.

Fig. 13: The running time of different methods.

The ML method has a slow convergence speed; thus, it
cannot achieve a good estimation with a small sample
number. Once the sample number is adequate (see Fig.
17(c)), the actual space–time clutter distribution is similar
to the simulation result in Section V. Compared to ML
(Fig. 17(d), the STSBL can effectively estimate the clutter
even in L = 4, and the accuracy continuously rises with
the addition of the samples (see Figs. 17(e) and (f)). This
means that the sparse recovery is suitable for the dramatic
change in environment application.

In the second experiment, we checked the clutter sup-
pression performance of STSBL-STAP with the average

Fig. 14: The diagram of flight route.

Doppler residual power:

P r (k) =
1

L

L∑
l=1

P (l, k) (50)

As shown in Fig. 18, the original main clutter area
is approximately 60 Doppler bin width. Additionally, it
should be noted that sidelobe clutter severely affects target
detection. After clutter suppression, post-Doppler STAP
and STSBL-STAP can effectively reduce the main clutter
area to approximately ∆K ≈ 40 Doppler bin, which is
less than its original result. The nonmain clutter area,
such as the sidelobe clutter, is also well suppressed by
STAP. Comparing these two methods, they can have a
similar performance in the main clutter area. However, in
other areas, STSBL-STAP seems to have a better result
than post-Doppler STAP (performance improvement of
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Fig. 15: The flight experiment platform and radar system.

(a) (b)

Fig. 16: The results of echo data. (a) range-Doppler spectrum. (b) the phase difference between two channels.

several dB). This is because four training samples for
post-Doppler STAP are inadequate in the application.

To clarify the clutter suppression performance of
STSBL, the whole range-Doppler processing results of
different methods are displayed in Fig. 19. Through the
clutter suppression operation, it can be seen that the main
clutter has a significant reduction. Compared the STSBL-
STAP methods with the conventional Post-Doppler meth-
ods, it has a better suppression in sidelobe clutter area
than other methods. Then for better comparison, the local
area results are given in Fig. 20. Due to the heterogeneity
of the range training sample, the Post-Doppler directly
lost the effective target components. As for the STSBL-
STAP method, it can still hold an effective target while

suppressing the clutter. The above results demonstrate that
STSBL-STAP is highly suitable for the heterogeneous
environment. In addition, it should be pointed out that it
seems that the Post-Doppler method has a similar clutter
suppression ability in the L = 4 and L = 30. However,
as shown in Fig. 21(a), the result of post-Doppler STAP
processing in sample shortage would generate many iso-
late peaks after clutter suppression, which may cause lots
of false target points. This is because the estimation of
conventional STAP methods has latent instability given
a shortage of training samples. When more samples are
supplemented, as shown in Fig. 21(b), the processing
result becomes smooth compared to Fig. 21(a).
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(a) L = 4 (b) L = 60 (c) L = 1000

(d) L = 4 (e) L = 60 (f) L = 1000

Fig. 17: The spectrum estimation of different training sample numbers: (a)-(c) are the results of the original echo,
and (d)-(f) are the results of STSBL.

Fig. 18: Average Doppler residual power.

Finally, to evaluate the effectiveness of STSBL-STAP
in GMTI processing, the whole beam positions echo
data of the 77th cycle were used for the experiment.
According to the radar system parameters, the range
resolution was 6 m and the whole imaging range was
approximately 6 km. Fig. 22(b) shows the wide-area DBS
image stitching result, and Fig. 22(a) is a screenshot of
the real environment from Google Earth. Compared to
the DBS image result with its corresponding real envi-
ronment, the basic image texture is clear and satisfies the

requirement of the WGMTI mode. It should be pointed
out that contrary to conventional SAR imaging, WGMTI
requires fast imaging and moving target detection in a
wide area; thus, the image is often rough. Subsequently,
Fig. 22(c) shows the WGMTI processing result without
clutter suppression. Many isolated moving targets are
shown to distribute throughout the whole image area;
this is a normal phenomenon in WGMTI processing. The
reasons are as follows: (1) to obtain accurate ground
information, the CFAR threshold is set a little lower than
that of the other modes; and (2) for a large imaging
area, lots of moving targets may exist. In WGMTI, we
are concerned about the moving targets that appear on
the road. Fig. 22(d) presents the WGMTI results after
clutter suppression. Compared with Fig. 22(c), it can
be seen that many false alarm targets caused by strong
clutter are rejected in Fig. 22(d). A local area detection
result of the road area is extracted in Fig. 23. Fig. 23(a)
is a local screenshot of the real environment, and Fig.
23(b) is the moving target detection result without clutter
suppression processing. Fig. 23(c) and (d) are the results
of post-Doppler STAP and STSBL-STAP, respectively. As
previously analyzed, many false alarm targets are detected
in Fig. 23(c) because of the unstable estimation. From
a comprehensive perspective, the STSBL-STAP method
performs better than the traditional post-Doppler STAP
method in small sample conditions
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(a) Post-Doppler STAP:L=4 (b) Post-Doppler STAP:L=30 (c) STSBL-STAP

Fig. 19: The clutter suppression results of different methods.

(a) Ori (b) Post-Doppler STAP:L=4

(c) Post-Doppler STAP:L=30 (d) STSBL

Fig. 20: The local clutter suppression results of different
methods.

(a) L = 4 (b) L = 30

Fig. 21: The range-Doppler results of post-Doppler STAP
in different sample numbers.

VIII. Conclusions

In this paper, a general subarray-level SR-STAP
framework was proposed for multichannel airborne radar
applications. Specifically, a joint space–time dictionary
was designed, combining the subarray-level clutter prop-
erty to achieve improved recovery. A novel separable SR-

STAP structure was presented on this basis. This structure
aims to decompose the large-size optimal problem into
multiple suboptimal problems and reduce the data dimen-
sion for fast processing. Therefore, the proposed method
can be applied in practical engineering through multi-
core programming technology. The processing results of
the real measurement data obtained from our developed
airborne radar illustrate that in WGMTI application, the
proposed STSBL-STAP method has significant advan-
tages compared to the conventional post-Doppler STAP
in small sample conditions. In the future, the engineering
implementation of the proposed STSBL-STAP method in
WGMTI will be our main focus in follow-up studies.
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(c) WGMTI without clutter suppression

(d) WGMTI

Fig. 22: The moving target detection result of WGMTI in the 77th cycle.
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(a) Optical image (b) Without clutter suppression
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Fig. 23: Local area detection results of different methods.
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