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Abstract—Range-Doppler images are widely used to classify
different types of Unmanned Air Vehicles (UAVs) because each
UAV has a unique range-Doppler signature. However, a UAV’s
range-Doppler signature depends on its movement mechanism.
This is why a classifier’s accuracy would be degraded if the
effect of the mechanical control system of UAVs wasn’t taken
into consideration, which may lead to a non-unique signature of
a UAV while in-flight. In this paper, a full-wave electromagnetic
CAD tool is used to investigate the effect of the control systems
of two quadcopters, a hexacopter, and a helicopter UAVs on their
range-Doppler signatures. A Mechanical Control-Based Machine
Learning (MCML) algorithm is introduced to classify the four
UAVs. Different Machine Learning (ML) algorithms were applied
to the generated datasets that considered the mechanical control
information of UAVs. The Convolutional Neural Networks (CNN)
algorithms provided robust performance reaching an accuracy of
higher than 90%.

Index Terms— UAV Control, Radar, Range-Doppler, Machine
Learning, Classification, Drones.

I. INTRODUCTION

DRONES, or Unmanned Air Vehicles (UAVs), are
widely used for illegal activities and terrorist attacks. For
example, in 2019, flights were delayed at an airport in the
UK due to drone sightings [1], [2]. In 2021, a terrorist
organization tried to assassinate the Iraqi Prime Minister
using drones [3], while in the same year, another terrorist
organization attacked an airport in Turkey [4]. In 2022,
a drone attack in the United Arab Emirates killed 3, and
injured 6 people [5]. Another drone attack at an airport in
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Saudi Arabia injured 12 people [6]. Most recently, many
flights were delayed in the UK after drone sightings in
the vicinity of an airport [7]. It is anticipated that the
mobility, cost and easy of operation of drones will be of
high appeal to highly organized narcotic cartels and even
individual drugs smugglers [8].

Most recently, the war in Ukraine demonstrated how
drones are affecting modern warfare. In this war, drones
were used for many tasks, from aerial surveillance to
missile defense [9], [10]. Drones are capable of carrying
explosives, dropping bombs, firing missiles, dropping
anti-tanks munitions, aerial photography, and they can be
used in Electronic Warfare (EW). This is why detection
and classification of drones at a distance is of critical
importance in order to have enough time to take necessary
counter-measures.

To detect drones, radar systems are typically preferred
in comparison to other systems. This is because radar
systems can work day and night and in all weather
conditions. They can also detect and track multiple
drones, track autonomous flights, and have the potential
to classify different targets when combined with Machine
Learning (ML) algorithms [11]–[16].

Range Doppler (RD) images are widely used to
classify radar targets [17]–[19]. Each drone has its own
set of unique RD signatures that depend on the drone’s
movement mechanism. Typically, drones have eight main
unique movements: the drone is able to throttle up, throttle
down, pitch forward, pitch backward, roll left, roll right,
yaw left, and yaw right. These different motions are
performed by changing individually the speed of each
rotor.

The RD signature of each movement of a drone differs
from the RD signature for the other movements. If a
classifier was trained on specific movements only, the
error in drones’ classification would be higher if the
classifier was tested on different movements from those
on which it was trained. This is the case in all previous
works, where ML algorithms were trained and tested
using the same datasets. These datasets simply did not
consider the effect of the mechanical control information
of the drones on their RD images.

Full-wave electromagnetic (EM) simulation software
can be used to generate radar drones’ datasets [20]. In this
work, Ansys High-Frequency Structure Simulator (HFSS)
[21], [22] is used to investigate the effect of the mechan-
ical control systems on the RD signatures of drones. For
validation, four different drones are considered in this
work: the MD-1000 quadcopter drone [23], the DJIFPV
quadcopter drone [24], the DJI S900 hexacopter drone
[25], and the Black Eagle 50 helicopter drone [26]. To
create RD images for the designed dataset, the Shooting
and Bouncing Rays SBR+ technique (in HFSS) is used.
It is an asymptotic high-frequency electromagnetic (EM)
simulator for modeling EM interaction [27]. In this work,
a 77 GHz FMCW radar, modeled in HFSS, was used
to generate the datasets, as short-range radars are widely
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Fig. 1: (a) Traditional Method. (b) Proposed MCML Method.

used because of their high accuracy in detecting RD
signatures.

The following is a summary of the contributions in
this article:

1) Generating radar datasets that contain drones with-
out constraints using full wave EM CAD tools.

2) Applying ML algorithms to the datasets generated
by full-wave EM CAD tools.

3) An investigation of the effect of the mechanical
control information of drones on the RD signatures
of drones and the accuracy of ML classifiers
is conducted. A Mechanical Control-Based Ma-
chine Learning (MCML) algorithm is proposed to
avoid degradation in ML accuracy when ignor-
ing the mechanical control information of drones.
Fig. 1 (a) shows the traditional method, while
Fig. 1 (b) shows the proposed MCML method.

4) An investigation and comparison between different
classifiers on radar drones’ datasets considering
the mechanical control information of drones is
presented.

The paper is organized as follows: in section II
the mathematical models of the control systems for the
quadcopter and the hexacopter drones are presented. In
section III, the radar parameters, the drones’ specifica-
tions, the simulation setups for different movements of
the drones, and the simulation results that contain the RD
signatures for different cases of the drones movements
are introduced. The classification results and a validation
of the MCML algorithm are shown in section IV. A
conclusion follows in section V.

II. MATHEMATICAL MODELS

This section describes the mathematical model of
the equations of motions for the quadcopter and the
hexacopter drones in different motions. The equations of
motions for the helicopter drone can be found in [28].

Fig. 2: The quadcopter frame body [29].

A. Quadcopter Equations of Motions

The quadcopter is controlled by changing the angular
velocities of the rotors. Basically, a quadcopter is a 4-
rotor helicopter. Its thrust to hover or throttle is provided
by the four rotors equally, while other movements can
be controlled by changing the motors’ speeds. The four
rotors of a quadcopter are arranged clockwise (CW) and
counter-clockwise (CCW) that work together to provide
stability, and all required movements. Quadcopters hover
in the air, throttle up and down, roll left and right, and
yaw left and right.

The body frame of a quadcopter is shown in Fig. 2
[29]. The forces and moments on a quadcopter are given
as [29], [30]:

Fi = Kf × ω2
i (1)

Mi = Km × ω2
i (2)

where Fi is the lifting force for each propeller, Mi is the
moment at each propeller, i = 1, 2, 3, 4, Kf and Km are
the aerodynamics force and moment constants, and ωi is
the angular speed for each propeller.

The resultant thrust by opposite propellers generates
moments in x and y axes, Mx and My:

My = (F2 − F4)× L (3)

Mx = (F1 − F3)× L (4)

where L is the length between the two propellers. mg is
the gravity force that acts in the opposite direction of the
thrust.

According to Newton’s second law of motion [30],
the linear and rotational motions of a quadcopter can be
expressed as:

Force = mass× linear acceleration (5)

Torque = inertia× angular acceleration (6)

Since inertia is the object’s resistance to change, while in
motion, as the momentum increases, the inertia increases.
The linear motion of a quadcopter is represented in (5),
while (6) represents the rotational motion.

When a quadcopter hovers, all the forces applied
on it must be in balance, which means the total lifting
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force equals its weight. Additionally, the conservation of
momentum gives:

mg = F1 + F2 + F3 + F4 (7)

The equation of motion for a hovering quadcopter is:

m
∂2r

∂t2
= F1 + F2 + F3 + F4 −mg = 0 (8)

where m is the mass of the quadcopter, and r is the
position.

For a quadcopter to throttle up and throttle down, its
equations of motion are given as:

m
∂2r

∂t2
=

{
F1 + F2 + F3 + F4 −mg > 0 F > mg

F1 + F2 + F3 + F4 −mg < 0 F < mg
(9)

where the total lifting force F = F1 + F2 + F3 + F4, in
addition, all moments = 0. On the other hand, in yaw
motions, all moments ̸= 0, while F = mg, then:

m
∂2r

∂t2
= F1 + F2 + F3 + F4 −mg = 0 (10)

IZZ
∂2ψ

∂t2
=M1 +M2 +M3 +M4 (11)

where the yaw, ψ, pitch, θ, and roll,vϕ, are called the
Euler angles [30]. These angles describe the angular
orientation of a fixed body with respect to a reference
frame. Due to the quadcopter symmetrical frame, the
inertia matrix I is given as:

I =

IXX 0 0
0 IY Y 0
0 0 IZZ

 (12)

Finally, in pitch and roll motions, all moments ̸= 0,
and mg < F . The pitch and roll angles must be nonzero;
this causes nonzero components of thrust in the horizontal
direction, which causes a resultant moment in the hori-
zontal plane. The equations of motion become:

m
∂2r

∂t2
= F1 + F2 + F3 + F4 −mg > 0 (13)

IXX
∂2ϕ

∂t2
= (F1 − F3)× L (14)

IY Y
∂2θ

∂t2
= (F2 − F4)× L (15)

B. Hexacopter Equations of Motions

Similar to the quadcopter drone, the hexacopter drone
is controlled by changing the angular velocities of the
rotors; however, it provides more flight time, and has the
ability to carry more load. It can be considered a 6-rotor
helicopter. Its thrust is provided by the six rotors equally,
while other movements can be controlled by changing the
motors’ speeds. A The rotors of a hexacopter are arranged
CW and CCW that work together to provide stability, and
all required movements for a hexacopter [31].

The body frame of a hexacopter is shown in Fig. 3
[32]. According to [30]–[32], the forces and moments on
a hexacopter follow equations (1) and (2).

Fig. 3: The hexacopter frame body [32].

The resultant moment for a hexacopter is given by:

M = r1F1 + r2F2 + r3F3 + r4F4 + r5F5 + r6F6 (16)

where Fi is the lifting force for each propeller, and ri
is the radius from the center of the hexacopter to each
propeller, i = 1, 2, 3, 4, 5, 6.

The equation of motion for a hovering hexacopter is
given as:

m
∂2r

∂t2
= F1 + F2 + F3 + F4 + F5 + F6 −mg = 0 (17)

For a hexacopter to throttle up and throttle down, its
equations of motion are given as:

m
∂2r

∂t2
=

{
F −mg > 0 F > mg

F −mg < 0 F < mg
(18)

where the total lifting force F = F1+F2+F3+F4+F5+
F6, all moments = 0. In yaw motions, all moments ̸= 0,
while F = mg, and the total torque in the z-axis can be
obtained by increasing/decreasing the CW rotors speeds
while decreasing/increasing the CCW rotors speed. The
equation of motion for the yaw motion is given as:

m
∂2r

∂t2
= F1 + F2 + F3 + F4 + F5 + F6 −mg = 0 (19)

Finally, in pitch and roll motions, all moments ̸= 0,
and mg < F . The pitch and roll angles must be nonzero;
this causes nonzero components of thrust in the horizontal
direction, which causes the resultant moment to be in
the horizontal plane. The pitch motion is achieved by
increasing/decreasing the rear rotors’ speeds while de-
creasing/increasing the front rotors’ speeds. Roll motion is
achieved by increasing/decreasing the side rotors’ speeds
while decreasing/increasing the other side rotors’ speeds.
The equation of motion becomes:

m
∂2r

∂t2
= F1 + F2 + F3 + F4 + F5 + F6 −mg > 0 (20)

The torques applied on the hexacopter body around the
roll, pitch, and yaw angles given by

τϕ =
3

4
Kfr(ω2

2 + ω3
2 − ω5

2 − ω6
2) (21)
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TABLE I: Used Radar Parameters.

Quantity Symbol Value
Center Frequency f0 77 GHz

Bandwidth BW 2 GHz
Range Resolution ∆R 0.075 m

Velocity Resolution ∆V 0.52 m/s
Maximum Range Rmax 60 m

TABLE II: Drones Dimensions.

Drone Type Dimensions
MD4-1000 Quadcopter A 1.136 m x 1.730 m x 0.495 m

DJIFPV Quadcopter B 0.178 m x 0.232 m x 0.127 m
DJI S900 Hexacopter Diagonal 0.9 m, Arm 0.358 m

Black Eagle Helicopter 2.65 m x 0.56 m, rotor 3.75 m

τθ = Kfr(−ω1
2 − ω2

2

4
+
ω3

2

4
+ω4

2 +
ω5

2

4
− ω6

2

4
) (22)

τψ = b(−ω1
2 + ω2

2 − ω3
2 + ω4

2 − ω5
2 + ω6

2) (23)

where b is a constant.
As shown in (1) and (2), by mechanically controlling

the speeds of the drones’ rotors, the behavior or movement
for the quadcopter and the hexacopter drones changes,
which also affects the RD signatures for these drones.

III. SIMULATION SETUPS

The radar parameters that were used in this work are
shown in Table I. Four different drones were modeled us-
ing HFSS, the MD4-1000 quadcopter drone, the DJIFPV
quadcopter drone, the Black Eagle 50 helicopter drone,
and the DJI S900 hexacopter drone. The dimensions for
these drones are shown in Table II. Fig. 4 (a). Fig. 4 (b)
show the DJI S900 hexacopter drone [25] and its model
in HFSS. The MD4-1000 quadcopter drone, the DJIFPV
quadcopter drone, and the Black Eagle 50 helicopter
drone shown in Fig. 5 are modeled using a similar
approach. HFSS test setups for the different movements
for the four drones are shown in Fig. 7 (a-d). The
radar, drones, drones’ moving directions, drones’ moving
speeds, and rotors RPM are all modeled using HFSS.
To throttle the drone up, the rotors must have the same
speed, which is modeled to be high enough to generate a
resultant thrust that exceeds the weight of the drone, while
to throttle down, the rotors’ speeds are modeled with a
lower speed as shown in Fig. 7 (a). To pitch the drone
forward, its back rotors must have higher speeds than the
front rotors, and vice versa to pitch the drone backward as
shown in Fig. 7 (b). To roll the drone left, the right rotors
must have higher speeds then the left rotors, and vice
versa to roll the drone right as shown in Fig. 7 (c). Each
rotor rotates in a different direction to the one beside it
to keep the drone stable. To yaw the drone left, the CCW
rotors must have higher speeds than the CW rotors, and
vice versa to yaw the drone right as shown in Fig. 7 (d).
For instance, Fig. 6 summarizes the different motions with
the rotors speeds for a quadcopter [33].

As shown in Fig. 7 (a), the drones are 30 m away
from the radar; they throttle up for a distance of 25 m,

(a)

(b)

Fig. 4: (a) The DJI S900 hexacopter drone [25]. (b) Its HFSS model.

(a)

(b)

(c)

Fig. 5: (a) The MD4-1000 quadcopter drone [23]. (b) The DJIFPV
quadcopter drone [24]. (c) The Black Eagle 50 helicopter drone [26].
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Fig. 6: Quadcopter control [33].

(a)

(b)

(c)

(d)

Fig. 7: HFSS test setups for the drones different movements. (a) Throttle
up and down. (b) Pitch forward and backward. (c) Roll left and right.
(d) Yaw left and right.

TABLE III: Generated Datasets.

Dataset Control Motions RD images
Dataset 1 Throttle and Pitch 1200 (300/drone)
Dataset 2 Roll and Yaw 1600 (400/drone)
Dataset 3 Throttle, Pitch, Roll, and Yaw 2800 (700/drone)
Dataset 4 Random all motions 3000 (750/drone)

with rotors’ speeds equal to 1500 RPM. They throttle
down with rotors’ speeds equal to 750 RPM. As shown in
Fig. 7 (b), the drones pitch forward towards the radar with
a fixed speed of 5 m/s, from 55 m to 5 m away from
the radar, with back rotors speeds equal to 1500 RPM
and forward rotors speeds equal to 750 RPM. Also, they
pitch backward with the same speed of 5 m/s from 5 m
to 55 m, with back rotors’ speeds equal to 750 RPM and
forward rotors’ speeds equal to 1500 RPM. The drones
roll left at 30 m away from the radar for a distance of 50
m. The right rotors’ speeds equal to 1500 RPM and left
rotors’ speeds equal to 750 RPM. They roll right with the
right rotors’ speeds equal to 750 RPM and the left rotors’
speeds equal to 1500 RPM, as shown in Fig. 7 (c). Finally,
as shown in Fig. 7 (d), the drones yaw left at 30 m away
from the radar with the CCW rotors speeds equal to 1500
RPM and the CW rotors’ speeds equal to 750 RPM. They
yaw right with the CCW rotors’ speeds equal to 750 RPM
and the CW rotors’ speeds equal to 1500 RPM.

Fig. 8, Fig. 9, and Fig. 10 show the effect of the
mechanical control information on the RD images of the
MD4-1000 quadcopter drone and the DJI S900 hexacopter
drone only as examples of the effect of the mechanical
control information of drones on their RD images. The
required radar datasets for the four drones were generated
using the RD images which were generated using Ansys
HFSS. The simulation setups used for all the different
cases in which the drones move are shown in Fig. 7 (a-d).
A 77 GHz FMCW radar was modeled in HFSS; its chosen
parameters are shown in Table I. The RD images for each
drone were extracted from HFSS to create the required
datasets. For each drone, 700 frames were extracted, with
a total of 2800 frames in the generated dataset. The
extracted frames were normalized, and a threshold was
applied to them.

In this work, four different datasets were utilized,
all of which were generated using Ansys HFSS and
contain the range-Doppler images pertaining to four types
of drones investigated in this study. The first dataset
comprises 1200 range-Doppler images, with 300 images
corresponding to each drone, and encompasses pitch
forward, pitch backward, throttle up, and throttle down
movements, as illustrated in Fig. 7 (a, b). The second
dataset comprises 1600 range-Doppler images, with 400
images for each drone, and encompasses roll left, roll
right, yaw left, and yaw right movements, as depicted
in Fig. 7 (c, d). The third dataset encompasses all types
of movements with varying speeds, and includes 2800
range-Doppler images, with 700 images for each drone.
The fourth dataset was employed to validate the proposed
approach. It includes range-Doppler images of the four
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: (a) RD image for throttle up quadcopter. (b) RD image for throttle down quadcopter. (c) RD image for pitch forward quadcopter. (d) RD
image for pitch backward quadcopter. (e) RD image for roll left quadcopter. (f) RD image for roll right quadcopter.

drones with randomized motions with varying speeds, as
illustrated in Fig. 16.

The number of range-Doppler images in each dataset
depends on the number of modeled motions and the
number of range-Doppler images for each motion. The
datasets are divided into 80% training set and 20% test
set. Table III presents a summary of the types of motions
in the four datasets utilized in this study, along with the
number of frames contained in each dataset.

IV. CLASSIFICATION RESULTS

Eight different ML algorithms were applied to the
dataset generated according to Fig. 7 (a-d) to investigate
and compare their performance on classifying the four
drones. The MD4-1000 quadcopter drone, the DJIFPV
quadcopter drone, the DJI S900 hexacopter drone, and the
Black Eagle 50 helicopter drone are denoted as Quad A,
Quad B, Hexa, and Heli respectively. The eight classifiers
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: (a) RD image for throttle up hexacopter. (b) RD image for throttle down hexacopter. (c) RD image for pitch forward hexacopter. (d) RD
image for pitch backward hexacopter. (e) RD image for roll left hexacopter. (f) RD image for roll right hexacopter.

are 3 different CNN algorithms, Support Vector Machine
(SVM), K-nearest neighbors (KNN), Naive Bayes (NB),
Random Forest (RF), and Decision Tree (DT) classifiers.

The classification accuracy for the eight ML algo-
rithms decreased when the mechanical control informa-
tion of drones were not taken into consideration, while
the eight ML algorithms performed well when they con-
sidered all the mechanical control information of drones

as shown in Fig. 12. CNNs are powerful algorithms that
are frequently used for radar targets classification [34],
[35]. Fig. 12 shows the accuracy of different machine
learning algorithms. The three most accurate algorithms
are the DopplerNet algorithm [34], denoted as CNN1,
the VGG16 algorithm [36], denoted as CNN2, and the
light CNN algorithm [37], denoted as CNN3. For a
more detailed investigation, the classification reports for
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(a) (b)

(c) (d)

Fig. 10: (a) RD image for yaw left quadcopter. (b) RD image for yaw right quadcopter.(c) RD image for yaw left hexacopter. (d) RD image for
yaw right hexacopter.

(a) (b)

Fig. 11: (a) A flowchart of the DopplerNet CNN algorithm. (b) Its confusion matrix when it was applied on the same dataset.

the three CNN classifiers are shown in Fig. 14 (a) and
Fig. 14 (b) when the mechanical control information of

drones was not taken into consideration and when it was
taken into consideration, respectively.
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Fig. 12: Different classifiers accuracy when considering/Not considering
the mechanical control information of drones.

(a)

(b)

Fig. 13: Confusion matrix for the DopplerNet CNN algorithm when
(a) Not considering the mechanical control information of drones. (b)
Considering the mechanical control information of drones.

The classification reports for the CNN classifiers focus
only on the quadcopters and the hexacopter drones as
the helicopter drone is easily differentiated because it
has larger Radar Cross Section (RCS) area than the
other drones. The three most accurate CNN algorithms
were modified to match the RD images dimensions. The
DopplerNet algorithm was found to have slightly higher
accuracy than the other two CNN algorithms. Therefore, it
was used to classify the four drones. A Maxpooling layer
is added to this algorithm to decrease its complexity to
avoid over-fitting. The flow chart for this algorithm, which
consists of eight layers, is shown in Fig. 11 (a).

According to the chosen range and velocity reso-
lutions shown in Table I, the input layer’s dimension
was 800 × 500. A convolutional layer with 32 filters,
a 3 × 3 kernel, and Relu activation function yields an
output having a size of 798 × 498 × 32. A Maxpooling,
2 × 2, layer follows the convolutional layer, its output
size is 399 × 249 × 32. A flatten layer is used to reshape
the previous feature map into a vector, its output size is
3,179,232. Four dense layers are used, three of them use
a Relu activation function with an output size of 64, and
the last one which is the output layer, uses a Softmax
activation function to calculate the probability of each of
the four classes. The algorithm hyperparameters are 10
epochs with batch size of 10 and Adam optimizer [38].
The DopplerNet algorithm was trained on dataset 1 yield-
ing an accuracy higher than 90% as shown in Fig. 11 (b).
When the trained algorithm is tested on dataset 2, its
accuracy dropped to 50.25% as shown in Fig. 13 (a). This
is the case for all previous works in which a ML algorithm
was trained and tested on the same dataset that did not
contain all possible mechanical control information, for
example [37], [39]–[49]. But, if the classifier was trained
on a dataset that covers all possible mechanical control
information as shown in Fig. 1 (b), its accuracy would
remain higher than 90% as shown in Fig. 13 (b), in this
case the classifier was trained on dataset 1 and dataset 2
combined and tested on dataset 3.

For additional validation, a completely different
dataset was generated using HFSS. The new dataset,
dataset 4, contains random motions of the four drones at
the following different rotors’ speeds: 1000 RPM, 2000
RPM, 300 RPM, and 800 RPM. The trained MCML algo-
rithm that covers all the mechanical control information
of drones was applied to this new scenario, yielding an
accuracy of at least 90%, as shown in Fig. 15. In the
state-of-the-art literature, ML algorithms were trained on
the hovering motion only of the drones, and few times
they were trained on the hovering and pitching motions
as reported in [37], [39]–[49].

A new scenario that contains random motions of the
four drones was modeled in Ansys HFSS to create a
dataset that contains range-Doppler images of the random
motions for the four drones as shown in Fig. 16. The
DopplerNet CNN classifier was trained on the hovering
and pitching motions was trained solely on the hovering
and pitching motions, following the approach employed
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(a)

(b)

Fig. 14: Comparison of the classification reports for the three different CNN algorithms used in this work when (a) Not considering the mechanical
control information of drones. (b) Considering the mechanical control information of drones.

in the current state-of-the-art literature [37], [39]–[49].
Then, the trained DopplerNet CNN classifier was applied
to the generated dataset according to the scenario shown

in Fig. 16, yielding an accuracy around 60%, as shown in
Fig. 17 (a). Finally, the MCML algorithm, that consider
all mechanical control information of drones, was applied
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Fig. 15: A Confusion matrix for applying the proposed MCML algo-
rithm to the new dataset.

Fig. 16: HFSS simulation setup for all motions scenario.

to the same dataset giving an accuracy exceeding 97%,
as shown in Fig. 17 (b).

The impact of the mechanical control information
on the range-Doppler images of a real quadcopter was
investigated using the AWR1443BOOST Texas Instru-
ments (TI) radar [50]. The AWR1443BOOST TI radar,
shown in Fig. 18 was used to generate range-Doppler
images of throttling up and pitching forward motions
for a DJI Phantom 3 standard quadcopter drone [51]
as a proof of concept. The AWR1443BOOST TI radar
operates at 76–81 GHz and possesses three transmitters
and four receivers. Owing to the radar’s internal Digital
Signal Processing (DSP), received signals can be pro-
cessed without the need for an external DSP system. To
capture the Analog-to-Digital Converter (ADC) data and
transmit it to a Personal Computer (PC), a DCA1000EVM
board [52] was employed. The AWR1443BOOST radar
configuration utilized for this investigation is presented in
Table IV.

TABLE IV: The AWR1443BOOST TI Radar Configuration.

Quantity Symbol Value
Center Frequency f0 77 GHz

Bandwidth BW 750 MHz
Range Resolution ∆R 0.2 m

Velocity Resolution ∆V 0.0694 m/s
Maximum Range Rmax 100 m

(a)

(b)

Fig. 17: A confusion matrix of applying the DopplerNet classifier on
the full motions scenario according to (a) the state-of-the-art literature.
(b) The proposed MCML method.

The DJI Phantom 3 standard drone was throttling up at
a distance around 25 m in front of the AWR1443BOOST
radar, as depicted in Fig. 19, then the DJI Phantom 3
standard drone started to pitch forward to the radar
with a speed of 1.5 m/s. Fig. 20 (a) and Fig. 20 (b)
show the range-Doppler images of the throttling up and
pitching forward movements respectively. These images
were obtained by applying a stationary clutter removal
algorithm, followed by a FFT on the fast-time axis of the
received signal to obtain the range information. A second
FFT was then applied to the slow-time axis of the signal to
extract the doppler velocity of the DJI Phantom 3 standard
drone.
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Fig. 18: The AWR1443BOOST TI radar (left in red) [50] and the
DCA1000EVM board (right in green) [52].

Fig. 19: Measurements setup of the DJI Phantom 3 standard quadcopter.

The range-Doppler images depicted in Fig. 20, which
are consistent with the range-Doppler images generated
for the MD4-1000 quadcopter using Ansys HFSS as
illustrated in Fig. 8 (a, c), highlight the strong dependence
of range-Doppler images of drones on their mechanical
control information.

V. CONCLUSION

The effect of the mechanical control information on
the range-Doppler images for two quadcopters, a hexa-
copter, and a helicopter UAVs was introduced. A full-
wave electromagnetic CAD tool is used to investigate
these effects. The range-Doppler signatures are demon-
strated to be highly dependent on mechanical control
information for each drone. The mechanical control in-
formation for the four drones was employed using eight
different classifiers to investigate their impact on clas-
sifying the four drones. The proposed MCML method
overcomes the degraded classification accuracy in case
the mechanical control information of UAVs was not
taken into consideration. The MCML method provides
classifier accuracy higher than 90%. High accuracy was
also achieved when the trained MCML algorithm was
applied to an unseen dataset containing random motions

(a)

(b)

Fig. 20: (a) RD image of a throttling up DJI Phantom 3 standard. (b)
RD image of a pitching forward DJI Phantom 3 standard.

of the four drones with different rotors’ speeds. Overall,
the proposed MCML method demonstrated superior accu-
racy when compared to state-of-the-art works employing
radars for drone classification.
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