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Abstract—With the rapid development of Unpiloted Aerial
Vehicles (UAVs), also known as drones, in recent years, the need
for surveillance systems that are able to detect drones has grown
as well. Radar is technology with the potential to fulfill this task
and several previous publications show examples of radar detection
and classification schemes. The purpose of this paper is related
to the detection scheme used in these radars. Most surveillance
systems use a background subtraction and a threshold to detect
targets. This threshold often depends on a model of the radar noise
and the background, which is imperfect by nature. The approach
presented here uses a data driven machine learning algorithm that
is trained with measured background profiles of the radar and is
applied afterwards to the given background for target detection.
This scheme can in general be applied to any detection problem in
a fixed area, but is shown here with examples from measurements
of drones and persons. The results show that the chosen approach
gives better detection rates for low false alarm rates with real data
than background subtraction.

Index Terms—Autoencoder, Drone Detection, Machine Learn-
ing, Radar Surveillance, Target Detection
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I. INTRODUCTION

The reliable detection and recognition of small targets,
e.g. drones or persons, in heterogeneous clutter is still
a major challenge for radar systems. One of the main
applications, which drives research on this topic is airport
security. During the last years, an increasing amount
of airport closings due to drone incidents is observed
[1]. Famous examples are the attacks on Gatwick and
Heathrow airports in London, UK, in December 2018
and January 2019. In May 2019, Frankfurt Airport in
Germany was shut down for an hour because of a drone
sighting. These and other examples can be found in
[1] together with an overview on countermeasures and
different sensors, including radar, to track and identify
drones.

Because of this urgent need for a reliable detection and
classification system for small targets, a lot of research
was conducted over the last years on this topic. The used
methods and scenarios show a large variety, e.g. passive
radar [2], noise radar [3] or the detection of insect-like
size nano-drones [4]. An overview of machine learning
based methods for detection and classification can be
found in [5], which also shows approaches from acous-
tics, optics and radio frequency identification. Hardware
aspect to improve the sensitivity of radars to improve the
detection of small targets can be found for example in
[6] and [7]. The latter actually presents a system with
a similar processing as the one used in this work. It
should be mentioned that most of the radar research
is focused on classification of drones, often by micro-
Doppler signatures and kinematic features, e.g. [8], while
the detection is assumed to be done beforehand.

The radar examples mentioned above have in common
that they use a radar with a limited observation area and a
rather long integration time. The approach presented here
is limited to detection rather than classification, but uses
a rotating surveillance radar with a mechanical staring
antenna and the detection is based on a single snapshot,
i.e. the range profile created by a single pulse without
integration gain. This means that neighboring profiles are
not used and targets are detected in each range profile
individually. However, it is assumed that the background
of the measurement is known to the radar and therefore,
only changes must be detected.

The radar used in the work here is a surveillance
radar at a fixed position and the natural background is
assumed to be stationary with small variations due to wind
or other effects. These variations of the clutter should
be suppressed by the network, which is a contractive
autoencoder. An autoencoder is designed to reproduce
the input data at the output of the network and a so-called
code is generated as an intermediate result, which ideally
contains the entire information about the input signal [9].
Furthermore, the contractive autoencoder is designed to
be robust against small variations in the input signal. The
determination of the contractive term in the cost function
is a trade-off between clutter and false alarm suppression.
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Details about the network and the detection algorithm will
be given in section IV.

The reference methods that are used in this work are
mean and Gaussian background subtraction. For these
methods, a mean background range profile created by
the independently measured background range profiles
averaged over time is used to subtract it from new
data. In case of the Gaussian background subtraction, an
additional window is calculated to further suppress areas
with high variations in the background. This means that
measurements of the observed area without any targets
must be available. In this way, the targets must be detected
against the noise floor that is created by the variations of
the background in the radar data. However, over the last
years, several machine learning and artificial intelligence
methods have been presented for change detection [10].
Since these machine learning methods outperformed clas-
sical methods in many tasks, an approach based on neural
networks is chosen in this paper.

Beside the mentioned results on change detection,
machine learning and neural networks have also been
used for different detection tasks in radar. For example,
[11] trained a neural network to replace a Constant False
Alarm Rate (CFAR) detector and showed results for
simulations as well as real measurements. The difference
to the work here is the used network architecture and the
fact that we assume the background as known and thus
perform change detection. The replacement of a CFAR
algorithm by a neural network was also investigated by
[12] from a theoretical point of view. They showed that
the Neyman-Pearson Detector, i.e. the CFAR detector, can
be approximated by a neural network if squared error cost
function is used. Other work related to detection in the
radar domain is mainly focused on imaging radar with so
called single shot detectors, e.g. [13].

The method proposed here is a further development
of a proof of concept approach presented in a previous
paper of the authors [14]. The main changes compared
to the early version are the following. A contractive
term is included in the cost function and the targets in
this paper are persons and drones with high fluctuations
in the received echo. The detection in [14] was only
shown for two corner reflectors with a constant RCS.
Furthermore, two additional training steps called bias
freezing and target only retraining are introduced here.
The improvement in detection performance will be shown
in section V by a comparison of the presented algorithm
and a network as it was presented in [14].

The goal of the training process and the main contri-
bution of this work is to design a network that captures
the statistical properties of a given background and allows
a reconstruction of the input data where high peaks due
to background variations are suppressed. Therefore, the
network should allow a more reliable detection of targets
than the reference method. The evaluation of the detection
scheme is done by simulations, as well as measurements.
A description of the measured scenarios and the radar
system is given in the following section.

II. Radar System and Measurements

A. Radar System

This section presents the Scanning Surveillance Radar
System (SSRS). The system consists of a very compact
and low weight rotating radar front-end in 94 GHz
technology, a rotary unit, an optical camera, a system
computer, a radar back-end in the compact and rugged
PC/104 standard, a motor controller and a power supply.
Figure 1 shows a photograph and a block diagram of the
different elements of the system.

(a) Photograph

(b) Block diagram

Fig. 1. The Scanning Surveillance Radar System

The radar sensor, which is depicted in the block
diagram of Figure 1 (b) in the red box, consists of a
radar front-end, a slipring and a rotary unit. The slipring
transfers the signals of the rotating front-end to the back-
end (black box). Additionally, a camera (green box) and
the system computer (blue box) are connected to the back-
end. The back-end itself comprises the power supply with
12 V input voltage, the motor controller and a computer
for digitizing and system control. The system computer
is used to handle the data streams of the radar back-
end and the camera, to control the whole system, to
do the data processing and to visualize the processed
data. Furthermore, the visualization of the data can be
transferred via wireless network to up to 10 additional
observers.

1. Radar front-end
The radar front-end is mounted on a rotary unit. Figure

2 shows a photograph and a block diagram of the radar
front-end.
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(a) Photograph

(b) Block diagram

Fig. 2. The front-end of the SSRS

The signal generation unit of the radar front-end is
based on a Direct Digital Synthesis (DDS) chip, which
generates a highly linear chirp. The chirp bandwidth is
25MHz with a center frequency of 7.83333GHz. Addi-
tionally to the radar waveform, synchronization signals for
the radar back-end are generated. The center frequency
of 94 GHz with a bandwidth of 300MHz is reached
after frequency multiplication by 12. After a high power
amplifier with an output power of 100mW, the chirp
is separated into the signal for the two highly sensitive
mixers and for transmission via the Tx-antenna. The
system has three slotted antennae with an aperture of
16 cm and a narrow beamwidth of 1.3◦ each – one for
transmitting and two for receiving. The transmit chirp
and the two received chirps are mixed and the resulting
intermediate frequencies are filtered and amplified. A
slipring transfers these signals and some synchronization
signals to analog to digital converters located in the radar
back-end. Table I shows the technical specification of the
radar front-end.

TABLE I
Specifications of the radar front-end

Radar type FMCW
Operating frequency 94GHz
Maximum Radar bandwidth 1GHz
Maximum range resolution 15 cm
Output power 100mW
Slotted antenna 1.3◦ x 13◦

Physical dimensions 185× 145× 212mm3

Weight 8551.2 g

2. Radar back-end
The radar back-end is necessary to accomplish the

signal processing of the intermediate frequency and the

system control. Figure 3 shows a photograph and a block
diagram of the radar back-end.

(a) Photograph

(b) Block diagram

Fig. 3. The back-end of the SSRS

The radar back-end provides the digital signal pro-
cessing unit, the radar front-end, the camera and the
rotary unit with the necessary power. The digital signal
processing unit is based on the PC/104 standard and
consists of two analog to digital converters (ADC), a
digital I/O hardware (DIO) and a computer (CPU). The
ADC digitizes the analog intermediate signals coming
from the radar front-end. The DIO is used for timing -
and radar front-end control. Up to four different chirp
parameters can be chosen via the DIO. Additionally, the
power of the radar front-end can be controlled digitally.
The motor controller drives the rotary unit and triggers
the chirp sequence in every rotation. The CPU handles
the data of the ADC and DIO, communicates with the
rotary unit controller and is used as an interface between
the system computer and the radar back-end. Table II
shows technical specifications of the radar back-end. The
maximum measurement range depends on the chosen
bandwidth of the radar, since the number of samples is
fixed. The example shown in Table II shows the chosen
value for the measurement campaign. With the maximum
bandwidth of 1GHz shown in Table I, the maximum range
is thus reduced accordingly.

TABLE II
Specifications of the radar back-end

Maximum measurement range e.g. 256m at 300MHz bandwidth
Maximum image refresh rate 1.6 images per second
Sensor configuration 4 different chirps
Physical dimensions 345× 275× 320mm3

Weight 12904.5 g
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3. System computer
The system computer is a standard notebook and is

connected to the radar back-end and to the camera via
1 GBit/s Ethernet to transfer the raw data of the system.
Additionally, the system can be controlled with the system
computer’s graphical user interface. To create range-
Doppler-maps of the radar data, the system computer has
to perform two-dimensional fast Fourier transformations.
Moreover, the monopulse processing for 3 dimensional
localization (3D), the tracking of up to 4 targets on ground
or in the air, the Doppler analysis for classification, the
calibration and RCS analysis is done with this computer.
Furthermore, the PC visualizes the processed radar data -
and the camera images on the screen. Figure 4 shows the
data plot of the graphical user interface. In this example,
two targets (drones) are detected and tracked by the
software.

Fig. 4. Data visualization of the SSRS. The ring segment shows the
observed area with the tracked targets.

B. Measurement Campaign

This section describes the measurement setup con-
sisting of the correct configuration of the radar system,
the description of the measurement area and a list of the
measured objects.

Before doing the measurements, the radar system must
be configured correctly. Table III shows the parameter set
used for the measurements, whereby the parameters are
optimized for range Doppler processing in real-time.

TABLE III
Parameter set of the SSRS for the measurement setup

Radar frequency 94.252GHz
Radar bandwidth 300MHz
Range resolution 0.5m
Measurement update rate 1.6Hz
Velocity resolution 0.7m/s
Chirp repetition frequency 18.473 kHz
Maximum target speed ±52.92 km/h
Samples per Chirp 1024
Maximum range 256m
Sample frequency 19.32MHz
IF-Bandwidth 9MHz
Antenna Beamwidth 1.3◦ x 13◦

3D surveillance volume 256m ×46◦ × 18.5◦

The radar bandwidth of 300MHz results in a range
resolution of 0.5m. The velocity resolution of 0.7m/s
depends on the measurement update rate of 1.6Hz and the
antennae. The chirp repetition frequency of 18.473 kHz
leads to the maximum radial target speed of ±52.92 km/h.
The maximum range for this configuration is 256m and
the resulting maximum intermediate frequency is 9MHz.
Therefore, the required sampling frequency of the analog
to digital converter is 19.32MHz. The 3D surveillance
volume is 256m in range, 46◦ in azimuth and 18.5◦ in
elevation.

The measurements were conducted in the autumn of
2020 on a measurement area of the Fraunhofer FHR in
Wachtberg. Figure 5 shows a photograph of the measure-
ment area.

Fig. 5. Measurement area used for the measurements of drones with
the SSRS

The measurement area consists mainly of grassland
with a corner reflector in the back and a narrow road.

For the evaluation of the data, three data sets of the
full measurement that was conducted at this day are used.
These data sets are selected due to the exact knowledge
of the target positions, which are used later as ground
truth data. Two of these three scenarios actually show two
persons standing on the grassland. In one measurement,
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one person is holding a corner reflector with an RCS
of 10m2. The remaining scenario consists of two drones
hovering at the same position one above the other. The
two drones are a DJI Phantom and a DJI Mavic, which
both are categorized as micro drones [1]. These micro
drones are typically small with a weight of less than 2 kg
and possess a small Radar Cross Section (RCS), which
makes the detection more demanding [5], especially close
to the ground that produces a large echo itself. The weight
of the Mavic is actually below 1 kg, i.e. 895 g with a
diagonal length of 380mm. The Phantom possesses a
weight of 1216 g and a diagonal of 350mm without rotor1.
Both drones are depicted in Figure 6. An overview of the
data that is used in this work is given in the following
section.

(a) DJI Phantom III (b) DJI Mavic

Fig. 6. Drones used in the measurements

III. Data Description

As it was already mentioned in the introduction,
measurements of drones and persons are available to
validate the algorithm. Additionally, a simulation is used
to create a scenario with known background and targets
with a larger dynamic variation than in the measured data.

A. Simulated Data

The first data set consists of simulated High Range
Resolution (HRR) profiles, which consists of a total of
5 000 background profiles and 50 000 profiles with targets.
The background profiles always contain four point targets
at fixed positions, each of which with a variation of ±10%
in amplitude. These four scattering centers represent fixed
targets in the background that can cover small targets. The
nominal amplitudes of these scattering centers are 0.5603,
0.4632, 0.8954, and 0.3857 respectively. The variation in
each of the scattering centers is similar to the variation
that is observed in the measured data described later. For
the larger part of the data, one to a maximum of three
targets with random amplitude at random position are
added to this background. The amplitudes of the scattering
centers in the test data is equally distributed between 0.1
and 1. Examples of both types of profiles are shown in
Figure 7, where for the profiles with targets, these are
included as red circles at the corresponding position. The

1The information about the weight and size of the drones is from the
website of the manufacturer.

input data of the network are the profiles drawn in blue.
The radar parameters of this simulation are set to the
values given in Table III, i.e. a carrier frequency of 94.252
GHz and a bandwidth of 300MHz. However, since this
is a solely signal processing based simulation and phase
information is not used here, these profiles can also be
created with any other setting of parameters. The range
scaling would change with other parameters, but the input
of the autoencoder, i.e. the profile with its amplitude
values would be the same. The simulated data is created
in MATLAB using a basic stretch processing simulation
with point targets similar to the simulation provided by
[15].

(a) Background

(b) Background with targets

Fig. 7. Examples of the simulated HRR profiles. Plot (a) shows the
simulated background, which consists of four scattering centers plus

noise. Plot (b) shows this background with targets at random position
and with random amplitude labeled by a red circle.

In the simulated background profiles in Fig. 7 (a), four
constant targets with slightly varying amplitude around
the nominal value mentioned above can be seen. In
the profiles with targets in Figure 7 (b), three typical
scenarios are depicted. In the top profile, two isolated
and relatively strong scattering centers can be seen. In
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the middle profile, two very weak targets and one strong
target are present. The second weak target around 48m
is additionally covered by the strong background target
next to it. These types of targets certainly represent the
most difficult targets to detect. In the third profile, a target
coincides with a background scattering center, increasing
the amplitude at this point. The other two scattering
centers in the third profile appear close to each other as
a single target spread over several range cells.

From the 50 000 profiles with targets, 45 000 were used
in addition to the background profiles to train the network
and 5 000 were used to test the algorithm.

B. Measured Data

Several scenarios with drones and people were mea-
sured, as it was described in section II. To validate the
method, two measurements with people and one with
drones are used, since the targets did not move during
these measurements and thus exact knowledge about
their location is available. To calculate the average back-
ground, two measurement runs are used in which only
the background without targets was measured, resulting
in 395 range profiles of a specific angle without targets.
To increase this amount of data, peaks with a random
amplitude and a random position are included in the
background profiles. These peaks represent ideal point
targets that do not move, i.e. no Doppler information is
added to the target. As mentioned above, the targets in
the chosen data also do not move and thus produce no
usable Doppler information. The rotation of the blades
of the drones is not considered here. The choice of only
peaks and no other targets in the training data is based on
the purpose of the algorithm, i.e. the detection of small
targets.

Examples of background measurements and back-
ground with artificial targets can be seen in Figure 8.
The magnitude of the range profiles is normalized to the
maximum value that appeared during the complete mea-
surement campaign, therefore the magnitude of the chosen
range profiles with the rather small targets are comparably
low. The maximum amplitude of an artificially added
point target is 0.4, which is comparable to the last profile
in Figure 8 (b). The smallest value of the added point
targets is 0.01, which is comparable to the surrounding
clutter visible in the background. The amplitude values
are chosen to create targets in the expected dynamic range
of the measurements. This should allow a training of
the autoencoder to properly learn the reconstruction of
the scene with targets. In total, the amount of data is
increased by a factor of 20 with randomly positioned
peaks in the background data. Accordingly, a total of
20 new profiles are generated from each profile with
randomly selected targets. Finally, a total of 8 295 training
profiles are available.

As already mentioned, two measurements with per-
sons are used for evaluation, since in this case the exact
position of the target is known and thus a detection and

(a) Background

(b) Background with artificial point targets

Fig. 8. Examples of the measured HRR background profiles

false alarm rate can be calculated. In the first measure-
ment, the person is holding a corner, which is the reason
why the person is very clearly visible in the profiles shown
in Figure 9 (a). This measurement is only used to evaluate
if the method works in principle and if the network has
learned the scene correctly. It can be considered as a
toy example in this context. The second measurement
was made without the corner reflector and corresponds
therefore to the real measurement situation. In the latter
case, the person is already very difficult to be recognized
by a human observer in the measured profiles sometimes.
Examples of both measurements are shown in Figure 9,
where in the measurements without corner reflector the
area of the target is marked with red lines.

The profiles without corner reflector in Figure 9 (b)
show how weak the echo of the person is in the measured
profile and how large the variation is. In the upper profile,
the echo is still quite strong, while in the middle profile
it is practically invisible. In the lower profile, the echo
is comparable to an echo of the background immediately
behind the target. The measurements with corner show a
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(a) Person with Corner Reflector

(b) Person without Corner Reflector

Fig. 9. Examples of the measured HRR profiles with person. The
person, i.e. the target that has to be detected, is between the two red

lines in plot (b). In plot (a), the target is at the same position, but
clearly visible due to the strong echo of the corner reflector.

sharp increase at the position of the target, which makes
the target clearly visible. The target was a male person
that was supposed to not move during the measurement
and stand as still as possible.

A second example with nonmoving targets of the
measurements described in section II is the scenario with
the two drones hovering at the same position. In this case,
it is also possible to calculate false alarm and detection
rates, since the targets do not move and thus ground truth
information is available. Some examples of the measured
HRR profiles are given in Figure 10. The range cells of
the two drones are again marked by two red lines to show
the variability of these two targets and the dynamic of
the target is comparable to the scenario with the person.
Since Doppler is not considered in this investigation, the
rotation of the blades is not exploited for detection. The
two drones are depicted in Figure 6.

It should although be mentioned again that no in-
tegration is used to emphasize the targets in the pro-

files. This would be possible since the targets did not
move, but the absence of any motion is only to generate
ground truth information about the position without any
additional tracking. In general, the algorithm is able to
detect moving targets, as long as the background does
not change significantly.

Fig. 10. Examples of the measured HRR profiles of the scenario
with two hovering drones. The targets are in the area between the two

red lines.

IV. Proposed Detection Scheme

The detection scheme presented in this paper is
based on a neural network called autoencoder, which
is described in section A. The detection algorithms are
described in sections B and C.

A. Autoencoder

One property of machine learning methods is auto-
matic feature extraction in measured data, which elim-
inates the need for time consuming manual analysis
and selection of features. This property is also called
representation learning [16] and an autoencoder uses it
to create a code as internal representation of the input
data. The output of a basic autoencoder should be the
same as the input value, i.e. a reconstruction based on
the internal representation. The dimension of this code
defines the basic structure of the autoencoder. In case of a
dimension smaller than the dimension of the input signal,
the autoencoder is called undercomplete. In this case, an
intrinsic data compression is applied, which results very
likely in an imperfect reconstruction. The basic structure
can be seen in Figure 11.

In this work, undercomplete autoencoders are used,
since on the one hand the required computation time
is reduced, and on the other hand the mentioned data
compression should increase the robustness against noise.
The actual size of the used autoencoder will be given
below.
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Fig. 11. General structure of an undercomplete Autoencoder.

Figure 11 also shows that an autoencoder essentially
consists of two elements, an encoder and a decoder. The
encoder generates the code from a given input signal,
while the decoder tries to reconstruct the input signal from
the code. Both elements can be formally represented as

f(x) = h = ϕf (Wfx+ bf ) (1)
g(h) = y = ϕg(Wgh+ bg), (2)

where the variables Wf and Wg represent the weights and
bf and bg the bias of the neural network. These are the free
parameters of the network, which have to be determined
during training.

The functions ϕf (·) and ϕg(·) represent the acti-
vation functions of the neural network and determine
the range value of the code and of the reconstruction.
In the networks used here, the leaky Rectified Linear
Unit [17] (leaky ReLU) is used to avoid a stop of the
backpropagation at neurons with a negative output, which
would result in dead neurons.

Further details on these activation function, the used
training algorithm called Adam, and on the general struc-
ture of neural networks can be found in textbooks such
as [9].

Two detection schemes are proposed for the datasets,
which are introduced in the following subsections.

B. Detection Scheme for the Simulated Data

In this work, we exploit a neural network that is
inspired by [18]. It is a 1-dimensional fully-convolutional
autoencoder, with a number of sixteen layers, where
the encoding and decoding part are symmetric to each
other. On the one side, the encoder is comprised of three
blocks, where each block contains two 5x1 convolutional
layers followed by LeakyReLU activation functions. The
kernels are chosen of size five so that sufficient amount of
correlation between adjacent range bins in the profiles is
captured by the network. For comparison purposes, kernel
sizes three and seven have been tested and concluded
that deterioration in the detection results is noted for
the former kernel size, however there was no difference
obtained in the latter case, when compared to size five.
A larger kernel size than the one selected here would

be necessary in cases such that bandwidth of the radar
waveform is increased, given that the range resolution
reduces. The spatial dimensionality inside the blocks is
preserved, i.e. there is no present stride component. Nev-
ertheless, the downsampling step is performed in between
the blocks by the use of strided convolution. On the
other side, the upsampling in the decoder is achieved by
the use of transposed convolution. One important part of
the network are the skip connections; the high resolution
feature maps of the encoder are fetched to the decoder to
allow fine grained details being recovered in the detection.
The chosen architecture achieves good generalization to
unseen data and, therefore, avoids the overfitting issue.

A scheme for the detection network is given in Fig-
ure 12, where C is the cost function defined as the mean
squared error (MSE) between the reconstruction y and
the target amplitude A. The network is trained for 100
epochs and the number of samples fed to the network,
i.e. the batch size is set to 32.

Fig. 12. Detection scheme of the simulated data.

The actual detection takes place in the reconstructed
profiles with a threshold value. Unfortunately, the auto-
matic determination of the threshold value could not yet
be solved satisfactorily, which is why the detection and
false alarm rates are presented here using a variation of
the threshold value and the common Receiver Operating
Characteristic (ROC) curves. The detection algorithm
performed in the case of simulated data can be described
as following:

1) A set of labels that contains the amplitude of the
targets in the data is created.

2) The autoencoder is being fed with the training set
of profiles to learn adequate parameters.

3) The loss function that is used, MSE calculates the
squared distance between the reconstructions and
the new set of labels.

4) An unknown test profile is fed into the trained
autoencoder.

5) Threshold detection is performed in the reconstruc-
tion.

C. Detection Scheme for the Measured Data

Due to the lack of sufficient amount of training sam-
ples in this dataset, our convolutional autoencoder does
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not generate the desired results in detection. Therefore,
a different approach is chosen for the measured dataset.
The autoencoder used in this case is fully connected
and has a much lower number of layers, namely two.
The code layer possesses 343 neurons, which is about
75% of the input size. This compression ratio was de-
termined experimentally and gave a good compromise
of reconstruction quality and noise robustness. However,
an extensive parameter grid search, also for the other
parameter mentioned later on, might give a different
structure with a better performance.

The chosen activation functions are respectively leaky
ReLU at the encoder and a linear at the decoder side.
The linear activation function in the decoder allows a
reconstruction of arbitrary input values, but since the used
data is magnitude data, a rectified function like the leaky
ReLU would also be possible. However, the initialization
with random weights for the training might give some
dead neurons in this case at the output of the network.
That would take much more iterations than with the linear
activation function to change these neurons to a positive
output value. Therefore, the linear activation function is
preferred in the output layer during the training. Never-
theless, in the application, the linear activation is replaced
by a ReLU function to remove unwanted negative values
in the output signal. The reason for this will be given
below.

The cost function of the basic autoencoder is presented
in the following parts.

1. Contractive Autoencoder
The used variation is called contractive autoencoder

and, as it was already mentioned in section I, is designed
to give a code that is invariant to small changes in the
input data [19]. Therefore, it should be robust against
noise and the number of false alarms should be decreased.
The principle of this autoencoder is shortly described by
the used cost function

C(x) =
1

2
||y − x||22 + λ||Jf(x)||2F , (3)

which consists of two terms. The first term represents
the quality of the reconstruction, which is always part of
an autoencoder cost function. Either in this form, i.e. the
squared error, or in a different one, e.g. a cross entropy
term. The second term represents the squared Frobenius
norm of the encoder’s Jacobian matrix, i.e. the sum of
the squared partial derivatives of the code layer’s neurons
with respect to the input data

||Jf(x)||2F =
∑
i,j

(
∂hj(x)

∂xi

)2

. (4)

Thus, a high value of this term represents a large
change in the code with a change in the input data. The
calculation of the Jacobian matrix and its derivative is of
the same complexity as the standard backpropagation [19]
and a part of the backpropagation can actually be reused
in the calculation of the Jacobian and its gradient.

The determination of the weight λ of the contractive
term in the cost function of network is a crucial step in
design of the network. A large weight would suppress
clutter with high variations, but would also suppress
small targets. A weight that is too small would create
many false alarms, since small variations in the clutter
could trigger detections. In this work its determination
is done in an adaptive way that keeps the ratio of the
two terms constant. Thus, the two cost terms 1

2 ||y − x||
2
2

and ||Jf(x)||2F are first determined and then λ is chosen
so that the first and second summation terms of the cost
function are in a fixed ratio. This allows the training to
focus on the reconstruction and weigh the contracting
property as specified. Moreover, the ratio of these two
terms is increased during the training phase in order to
control the priorities of the network. This allows to focus
on the reconstruction at the beginning of the training and
increase the relevance of the contractive term towards the
end. In our implementation, the ratio started with a value
of 10−4 and is increased by 3% at the end of each epoch.
The training time was set to 100 epochs. These values
were chosen experimentally.

In [19] it was also shown that the contraction happens
mainly around the given training examples and that areas
away from the training samples in input space possess less
contraction. This is necessary to achieve a useful feature
extraction instead of a global scaling effect. This behavior
confirms the intention of a robust feature extraction, but
shows also the need for representative training data. This
geometric interpretation of a contractive autoencoder can
be used to describe the algorithm in the way that the
contraction happens around the clutter in the scene, since
this is already present in the background data. The new
targets should be outside this contraction area and should
be present in the reconstruction. The artificial targets in
the training data create also a contraction outside the
background data, but are necessary to allow a proper
reconstruction in the expected dynamic range. To empha-
size the targets again in the reconstruction, a retraining
described below is performed without the contractive
term. Further information on the geometric interpretation
of this kind of autoencoder can be found in [19].

2. Bias Freezing
A deviation from the commonly used training methods

is the use of the bias in the decoder of the network.
Usually, the bias is a free parameter and is learned during
training. However, since the system used here is designed
for a given background, the background averaged over
time is used as bias and cannot be changed during
training. After training, the bias is removed from the
network and only deviations from the mean background
should be reconstructed. This is similar to the idea of
background subtraction, but the input data is processed by
the autoencoder, which should have learned the statistical
properties of it. Furthermore, the contractive autoencoder
should reduce the variations in output due to the behavior
described above. In case of background subtraction, the
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variation in the output is simply the difference to the mean
value.

To the knowledge of the authors, this is the first
time that this freezing method is used for a detection
algorithm. Other publication freeze complete layers or
nodes to accelerate the training [20] and later remove
nodes without significant influence on the output [21].

3. Retraining of the Autoencoder
To further improve the denoising behavior of the

network, another training step is performed after the bias
has been removed. For this second training, the input data
is again the background data with artificial targets as it
was shown in Figure 8 (b). Opposite to the first training,
the target output of the network is not the input data
anymore, but a vector with only one nonzero element
at the position of the included target that contains the
amplitude of that scattering center. After this ”target
only” retraining, the network shows an improved clutter
suppression. A comparison of the detection performance
with and without this retraining will be given in Section
V.B.

For this retraining, the learning rate is reduced from
10−3, which was used in the first training to 10−4 and
the contractive term in the cost function is removed. The
reduced learning rate is used to create only small changes
in the network, since the actual reconstruction has already
been learned in the first training. The contractive term has
been removed, since an analysis of the output after the
first training has shown the desired clutter reduction, but
also a reduced amplitude of unknown targets in the test
data. Therefore this term has been removed to increase
the dynamic in the data again.

It was already mentioned above that the activation
function of the output layer is changed to a ReLU function
for testing. The reason for this change are the negative
output values, which are produced after the bias term
is removed. These negative values are not relevant for a
detection and are thus discarded. For a better comparison
between the created profiles, the negative output values
of the reference method, i.e. the background subtraction,
are also set to zero.

As an example, the reconstruction of a later used range
profile is depicted in Figure 13. This Figure shows the
original profile with the corresponding profiles created
by mean background subtraction and the reconstruction
by the autoencoder. The profile contains a single target,
which is clearly visible in both detection profiles. The
profiles in Figure 13 (b) and (c) have been normalized
to the interval [0, 1] for a better comparison between
them. In the calculation of the actual result, the profiles
are not normalized. The amplitude of the original profile
in Figure 13 (a) is still normalized to the maximum
value that appeared in the measurement campaign. The
difference between the autoencoder reconstruction and the
background subtraction can be seen in the areas without
targets, which shows for the autoencoder output an almost
constant noise, while the noise in the background subtrac-

tion decreases with increasing range. Therefore, the mean
background subtraction method might create more false
alarms close to the radar and the autoencoder at the end of
the observed range. Nevertheless, since the magnitude of
the background subtraction method is significantly higher
in areas without target than for the autoencoder method,
the former is more likely to create false alarms. The
influence of the Gaussian background subtraction will be
shown in Section V.B together with an analysis of the
target to background dynamic for the measured data.

(a) Test profile

(b) Autoencoder Reconstruction

(c) Background Subtraction

Fig. 13. Measured profile with autoencoder reconstruction and mean
background subtraction

Before the results are presented, the algorithm for the
measured data is summarized briefly:

1) An averaged background is determined from the
independently measured background data.

2) The decoder bias is initialized with the averaged
background and cannot be changed during the
training.

3) The autoencoder is trained with the available train-
ing data, i.e. the free parameters of the network are
determined.

4) The bias of the decoder is set to zero.
5) A second training with a reduced learning rate and

no contractive term is performed with a desired
target only output.

6) An unknown test profile is fed into the trained
autoencoder.
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7) Threshold detection is performed in the reconstruc-
tion.

The autoencoder is applied to a single profile of the
ring segment, which is measured by the radar and shown
in Figure 4. Therefore, if this algorithm is used for the
full scene, each azimuth angle requires the training of
an independent autoencoder. In principle, the training of
a single autoencoder for a two-dimensional input is also
possible, but since the amount of available training data
is very limited and the size of such a network would be
very large, the proposed solution is preferred. A graphical
representation of the algorithm is depicted in Figure 14,
where the decoder function is shown without activation
function ϕ(·) during training, since a linear activation
function is used. For testing, a ReLU activation function
is used to remove unwanted negative values.

Fig. 14. Graphical flowchart of the algorithm. The mean value of the
measured background profiles are used during training in the decoder
and is removed for testing. The output shows a reconstruction of a test

profile without the bias and in the lower right corner, the actual
detection result is depicted.

V. Results

In this section, we present the results obtained with
our data. The results will be mostly presented as ROC
curves for the different data sets. These curves are calcu-
lated in the way that the number of range cells multiplied
with the number of range profiles gives the number of
possible detections. The number of correctly detected
targets divided by the number of possible detections
gives the detection rate Pd. The number of detections
outside the target positions divided by the number of
possible detections gives the false alarm rate Pfa and
the combination of Pd and Pfa defines one point in the

ROC curve. The detection itself is a basic fixed threshold
detection over the full range profile and is performed for
2.000 thresholds. The signal to noise ratio is not varied for
the simulated data and also not estimated for the measured
data. It is taken as given here.

A. Simulated Data

The ROC curve for the entire data set is shown in
Figure 15, i.e. the detection and false alarm rate averaged
over all targets of the test data set. The ROC curve of the
mean background subtraction is shown in blue and the
curve of the autoencoder is printed in black.

(a) ROC curve

(b) Logarithmic ROC curve

Fig. 15. ROC curves of the simulated data

The proposed method with the autoencoder performs
better than the reference for low false alarm rates. As it
can be seen in Figure 15 (a), the black curve is above
the blue curve of the background subtraction and closer
to the vertical axis, which means that there are fewer
false alarms created for a certain detection probability. To
take a closer look at this case, we show the logarithmic
ROC curve in Figure 15 (b). The autoencoder has already
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generated some detections before the first false alarms
appear, and it continously achieves a higher detection rate
for low false alarm rates than the background subtraction.
The superiority of the autoencoder is clearly visible for
Pfa < 0.02. For high false alarm rates, i.e. Pfa > 0.02,
the methods are comparable. However, the black curve
of the autoencoder is slightly higher and the targets
are detected earlier than in the reference method. These
results are supported by the values of the area under the
curve (AUC), which are 0.9764 for the autoencoder and
0.9632 for the background subtraction.

B. Measured Data

To evaluate the results of the measured data, two
different measures are used. The first one is a comparison
of the peak signal to clutter ratio (SCR) in the output
profiles. To calculate this ratio, the highest value of the
target area is divided by the maximum of the area without
target

SCR =
max

(
ytarget area

)
max

(
yno target area

) . (5)

This ratio is calculated here for the mean background
subtraction and the autoencoder reconstruction and after-
wards a comparison is done to determine the gain of
the proposed method. In Table IV a summary of the
results is given for mean background subtraction (BS)
and the autoencoder (AE). For each data set, i.e. corner,
person and drones, the following parameter are given:
the minimum SCR SCRBS

min and SCRAE
min, the maximum

SCR SCRBS
max and SCRAE

max, the mean SCR SCR
BS

and
SCR

AE
, the number of profiles with the maximum out-

side the target area #{yBS
fa } and #{yAE

fa }, and the average
gain of the autoencoder reconstruction compared to the
background subtraction SCR

AE

gain = SCR
AE
/SCR

BS
.

TABLE IV
Comparison of the SCR for backgound subtraction (BS) and

autoencoder reconstruction (AE)

Corner Person Drones

SCRBS
min 7.02 0.10 0.05

SCRAE
min 12.30 0.03 0

SCRBS
max 41.11 6.36 8.73

SCRAE
max 36.26 11.67 9.60

SCR
BS

18.64 1.83 1.84

SCR
AE

24.30 3.19 2.85

#{yBS
fa } 0 35 30

#{yAE
fa } 0 21 17

SCR
AE
gain 1.39 1.67 1.71

The results show that the autoencoder reconstruction
possesses a higher target to background dynamic in av-
erage, although the minimum SCR is close or exactly
zero in the two relevant data sets. However, in case of
the challenging targets, i.e. the drones and the person, the
maximum and the mean SCR is clearly increased with
a gain of 67% and 71% respectively. Furthermore, the
number of profiles with the maximum value outside the
target area is clearly reduced from 35 to 21 and 30 to 17
cases. These numbers can be explained with the behavior
of the network that was shown in the example in Figure
13.

To evaluate the influence of the noise floor that is
visible in the autoencoder reconstruction, ROC curves for
the different data sets are calculated for a detection with
a fixed threshold. In Figure 16 the ROC curves for the
corner and person data set are shown. The ROC curve of
the background subtraction is shown as dashed red line
and the curve of the autoencoder is printed in black. As it
was mentioned in Section I, the detection results using the
algorithm from [14] applied on this scene is also shown
here in the blue curve.

(a) Person with Corner Reflector

(b) Person without Corner Reflector

Fig. 16. ROC curves of the measured profiles with persons
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As it can be seen from the ROC curves, the detection
method works perfectly in the case of the corner reflector
for the algorithm presented here and the mean background
subtraction. The target is detected in all measurements
without triggering any false alarms. The algorithm from
[14], which was presented as a proof of concept to show
that a detection with this kind of algorithm is possible in
principle, has already some problems with the corner data
and is falling far behind in the data without the corner.
The latter is also the more interesting case and it can be
seen that the black curve of the autoencoder is below the
dashed red curve of the background subtraction. For a
closer look at the areas of small false alarm rates, the
ROC curves for the person without corner are plotted
with a logarithmic x-axis in Figure 17. The blue curve of
the former method is not shown anymore since it is not
competitive and the red curve is now plotted as a solid
line, since the overlap with the black curve is reduced.

Fig. 17. Logarithmic ROC curves of the measured profiles with
persons. The plots begin at the false alarm rate that corresponds to a

single false alarm in the test data.

The curves show that for the autoencoder, the first
false alarm appears after the target has been detected in
more than 60% of the profiles. In case of background
subtraction, the detection rate is below 50% when the
first false alarms appear. The numerical value around 2 ·
10−5 corresponds to a single false alarm for the given
number of range cells in all test range profiles. Up to
a detection rate of 90% and low false alarm rates, the
autoencoder is above the background subtraction. Around
a false alarm rate of 10−2, both methods are comparable
and for high false alarm rates, the background subtraction
is clearly better. This is also confirmed by the AUC, which
is 0.9915 for the background subtraction and 0.9841 for
the autoencoder. The high number of false alarms in the
autoencoder reconstruction are created by the higher noise
floor in the recontruction profiles shown in Figure 13. For
low thresholds, this noise floor causes a large number
of false alarms compared to the background subtraction
method.

Next, the results obtained for the drones test case
are shown. In this case, the linear ROC curve in Figure
18 (a) shows a comparable behavior of the proposed
method and the mean background subtraction, although
the 100% detection rate is achieved earlier with the mean
background subtraction. The algorithm from [14] is again
not competitive. For better visualization, the ROC curve
is shown in Figure 18 (b) in logarithmic scale similar to
the example above. The absolute detection rate is lower
compared to the example above, but the autoencoder
reconstruction gives around 20% more detections when
the first false alarms appear and is above the background
subtraction curve up to a false alarm rate of almost 0.1.
The AUC is comparable to the example above, 0.9906
for the mean background subtraction and 0.9882 for the
autoencoder method.

(a) ROC curve two drones

(b) Logarithmic ROC curve two drones

Fig. 18. The resulting ROC curve of the scenario with two hovering
drones

It was already mentioned above that Gaussian back-
ground subtraction is used as additional reference method.
The implementation here is an adapted version of [22] that
calculates a window g(r) for each range profile depen-
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dent on the standard deviation of the known background
data. To calculate the window, the profile created by the
mean background subtraction is divided by the standard
deviation of the background data. Afterwards, two thresh-
olds are used to identify a range cell as foreground or
background. If the ratio at range cell ri is larger than
the foreground threshold M , the window gets the value
1, i.e. g(ri) = 1. If the ratio is below the background
threshold m, the range cell is considered as background
and g(ri) = 0. If the ratio is between these two thresholds,
an intermediate value is calculated. For further details, the
reader is referred to [22].

For the results here, the thresholds are chosen as given
in the original paper as m = 1 and M = 2.5. After
the window is calculated, it is multiplied with the profile
created by the mean background subtraction for a stronger
suppression of the areas with large variations in the back-
ground. The original algorithm uses a moving window to
calculate the mean background to adapt to a changing
background. Since the background in the scenario chosen
here is fixed, but shows some fluctuations, the standard
deviation is calculated only once with the independently
measured background data.

This kind of window function can also be applied to
the autoencoder reconstruction to suppress the noise in the
autoencoder output. Therefore, the standard deviation in
the reconstructions of the background data is calculated
and a window is calculated in the same way with the
same parameters as above. For the autoencoder, the stan-
dard deviation is calculated in the reconstruction, since
the nonlinear processing of the autoencoder changes the
statistics of the data. In case of the mean background
subtraction, the standard deviation does not change.

Results with the Gaussian detection window for the
person and drone data are shown in Figure 19 as loga-
rithmic ROC curves together with the results from above.

The results with the Gaussian window are twofold, the
detection rates for low false alarm rates are improved,
but the AUC is reduced. The values of the AUC for
the different cases are summarized in Table V and for
a further evaluation of the results, some exemplary plots
are shown in Figure 20 and 21 for a relatively weak echo
of the drone data and a comparably strong echo of the
person data, respectively.

TABLE V
Comparison of the AUC for backgound subtraction (BS) and

autoencoder reconstruction (AE) with and without Gaussian window

Person Drones

AE 0.9841 0.9882

AE with Gaussian window 0.9670 0.9777

BS 0.9915 0.9906

BS with Gaussian window 0.9893 0.9790

The example of the drone explains the higher number
of false alarms for a given detection rate at the begin of the

(a) Logarithmic ROC curve person

(b) Logarithmic ROC curve two drones

Fig. 19. Influence of the Gaussian detection window on the
detection results

ROC curves. The high peaks at the begin of the profile in
Figure 20 (b) are higher than the actual target between the
two red lines and will trigger false alarms in the threshold
detection. These high peaks remain in the profile in plot
(c) of the Figure, which shows the profile of plot (b) after
the application of the clutter suppression window. In the
reconstruction of the autoencoder in plot (d), the actual
target is the maximum of the profile, since the clutter
area at the begin of the profile is already suppressed by
the contractive behavior of the network. The application
of the Gaussian window in the autoencoder reconstruction
is shown in plot (e). This profile has the maximum still
at the position of the target, but the small peaks along the
remaining part of the profile are suppressed. The situation
is comparable in the profile of the person in Figure 21,
although the target is the actual maximum in all profiles.
The very low values along the noise floor are changed to
a value of zero and the higher peaks in the clutter area
remain unchanged at the same position or are reduced in
amplitude.
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(a) Input profile

(b) Background Subtraction

(c) Background Subtraction with Gaussian window

(d) Autoencoder Reconstruction

(e) Autoencoder Reconstruction with Gaussian window

Fig. 20. Drone profile with autoencoder reconstruction and
background subtraction

(a) Input profile

(b) Background Subtraction

(c) Background Subtraction with Gaussian window

(d) Autoencoder Reconstruction

(e) Autoencoder Reconstruction with Gaussian window

Fig. 21. Person profile with autoencoder reconstruction and
background subtraction
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The reduction of very small values to zero is the
reason for the reduction of the AUC. In case of such a
weak echo that the target cannot be seen in the clutter,
e.g. the second profile in Figure 9 (b), the actual target is
reduced to a value of zero and is not detected anymore,
even with very low thresholds. Without the application
of the Gaussian window, these very low values raise
the detection rate for low thresholds and thus high false
alarm rates. To quantify the reduction of the clutter peaks
using the Gaussian window, the SCR described above is
calculated also for the data of the drones and the person
without corner generated with the windows. The results
are given in Table VI with the results of the autoencoder
labeled with the superscript GAE and the results of the
Gaussian background subtraction labeled with GBS.

TABLE VI
Comparison of the SCR for backgound subtraction (GBS) and

autoencoder reconstruction (GAE) with Gaussian window

Person Drones

SCRGBS
min 0.0 0.0

SCRGAE
min 0.0 0.0

SCRGBS
max 9.4 12.85

SCRGAE
max 15.3 12.36

SCR
GBS

2.58 2.52

SCR
GAE

4.46 3.55

#{yGBS
fa } 29 28

#{yGAE
fa } 13 15

SCR
GAE
gain 1.73 1.41

A comparison of Table VI and IV shows an improve-
ment in all values except the minimum SCR, which is now
0 for all cases. This is the confirmation that in at least one
case the range cell containing the target is reduced to zero.
The maximum value is in case of the drone data actually
higher for the Gaussian background subtraction than for
the autoencoder. However, the mean value and the number
of profiles with the maximum outside the target range cell
is significantly higher for the autoencoder reconstruction.

To evaluate the gain in performance for the different
stages of the algorithm presented here, a detection result
is also shown for the autoencoder without the retraining
described above. In Figure 22, the ROC curves calculated
after the first training of the autoencoder is shown with
the two ROC curves of the previous plots. These curves
show a clear improvement, especially for low false alarm
rates with the increasing training effort proposed here.
The curve of the autoencoder created with the algorithm
of [14] is shown only for completeness.

(a) Logarithmic ROC curve person

(b) Logarithmic ROC curve two drones

Fig. 22. ROC curves of the different autoencoder training levels

These examples show the potential of this data-driven
machine learning method. With measured data, the results
can be improved for low false alarm rates, which was also
confirmed by the simulated data.

VI. Discussion and Conclusion

In [14], a preliminary stage of this algorithm was
presented, which was intended as a proof of concept.
With the measurement performed here, the method was
significantly improved, allowing an increase in detection
performance compared to the chosen reference methods
for low false alarm rates. However, the method needs
further development to bring it closer to an operational
scenario. An open and important point is the created noise
floor in the output profiles. These noise peaks give many
false alarms for very low thresholds, while the increased
SCR gives better detection rates for the more relevant
low false alarm rates. Furthermore, the autoencoder itself
can be improved, e.g. an overcomplete variant, i.e. an
autoencoder with a code dimension larger than the input
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dimension, with further restrictions in the cost function
would be possible. It was observed that the network
structure that was used with the simulated data does not
converge with the measured training data. It is assumed
that the reason is the lack of training data, which allowed
only the training of a very basic two-layer fully connected
autoencoder network. However, the bias freezing and the
retraining for denoising improved the networks detection
rates that the overall performance was above the reference
method for low false alarm rates.

Another possible option to improve the performance
is the combination of background subtraction in areas of
constant clutter and autoencoder reconstruction in areas
with high variations. However, it is not possible to say
how the network reacts if the target appears in these
areas with high variations, since the target positions were
at rather stable clutter areas during the measurements.
Related to clutter suppression, the contractive behavior
of the autoencoder has clear benefits in areas with high
fluctuations in the background, but the higher noise floor
creates more false alarms in stable background areas.
This behavior should be considered in the design of a
systematic approach. Furthermore, the scenario used here
is, at least for a surveillance radar, a short range appli-
cation. If this method should be used for example at an
airport, the instrumented range must be larger and in this
case it is almost impossible to measure the background
without any targets. In this case, the background cannot
be determined exactly and an uncertainty must be taken
into account. Another open point is the adaptation to a
change in the background, e.g. removed containers or
trees that have been cut. At the moment, the only option
is to perform a new training with new measurements of
the new background. There is not yet an option for an
on-the-fly adaptation to a change in the background.

These are only some of many points where the method
can be further improved and therefore this method re-
mains a part of our future research.
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