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Biased Estimators for Spinning Antenna DOA
Measurements

We propose biased estimators to find the direction of arrival of
emitters present in the mainlobe of a spinning antenna-based
electronic intelligence system. The proposed estimators were
constructed by using Bayesian techniques and by performing a
linear transformation and an affine transformation on the maximum
likelihood estimator. From a Monte Carlo simulation and
experimental results, we demonstrate that the proposed estimators
outperform the limit set by the popular performance benchmark, the
Cramér-Rao lower bound.

I. INTRODUCTION

Electronic intelligence (ELINT) is a subfield of signals
intelligence, whose objective is to intercept and analyze
hostile noncommunication radio frequency (RF)
emissions, primarily from radars, to determine the
capabilities and vulnerabilities of the adversaries [18, 46].
Extending the range at which an emitter signal can be
detected and its relevant instantaneous parameters can be
measured by an ELINT system is of the utmost
importance. This is because an ELINT system must be
able to intercept distant emitters, even if they are not
aimed at friendly assets, well before the adversary can
detect the ELINT system platform or site [13, 46]. This
requirement was easy to achieve until emitters started to
incorporate pulse compression and low probability of
intercept techniques [13].

The use of a spinning high-gain directional antenna is
a simple and cost-effective method of extending the
detection range of an ELINT system [17]. However, the
accuracy of estimating the direction of arrival (DOA) is
degraded when using this antenna architecture [19]
because of the partial spread of the intercepted pulses
across the antenna mainlobe and the wide antenna
beamwidth [22–26]. The very high pulse densities
expected in the environment and the agility of the
emitters’ waveforms may overwhelm the ELINT system
and lead to a large number of missing pulses [17, 31],
which consequently result in the partial spread of the
intercepted pulses across the antenna mainlobe. The wide
beamwidth of the spinning antennas used in ELINT
systems is necessary because of the conflicting design
parameters of the spinning antenna. For example, the size
of the antenna aperture needs to be constrained to
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TABLE I
Specifications of Existing Spinning Antenna (Rockwell Collins,

ANT-1040A Airborne Spinning Direction-Finding Antenna) [22]

Frequency (GHz) Beamwidth (deg) Gain (dBi)

0.5–2 85 6.5
2 24 10.5
4 12 14.5
8 6 16.5

12 4 19
40 3 23

Spin rates (rpm)

0–200

maintain a reasonable size of the motor and to enable fast
spinning so that the angular dimension is searched more
quickly [16]. The small aperture size increases the antenna
beamwidth, which in turn increases the speed of searching
the angular dimension but reduces the antenna gain (i.e.,
reducing the ability to detect weak signals) [19]. A good
compromise can be achieved at high frequencies.
However, at low frequencies, the beam will be very wide
because of the small aperture size. Table I summarizes the
major parameters of an existing spinning antenna.

Although the use of a spinning (mechanical scanning)
directional antenna is an old technique, it remains highly
prevalent and is still used in many modern ELINT systems
(see [47]). Examples of such systems are the Thales
Meerkat-S ELINT system [48] and the Exelis ES-5080
ELINT system [49]. Other antenna configurations that are
commonly used in ELINT systems are the phase
interferometer and time difference of arrival [13, 47]. A
phased array antenna might appear to be an ideal
replacement for the spinning antenna, because electronic
steering is conceptually appealing to eliminate mechanical
motion, and it provides fast beam steering and control over
the beam shape. However, there are a number of critical
factors with the phased array approach. First, ELINT
intercepts are not time critical; i.e., a delay in an intercept
caused by the mechanical scanning of the antenna is
acceptable [18, 46]. Therefore, the use of fast electronic
beam steering is not critical for the success of the mission.
Second, several wideband arrays are needed to achieve full
azimuth coverage and to cover the required operating
frequency range (0.5–40 GHz). Thus, the use of electronic
beam steering is cost prohibitive and challenging to
implement. Third, wideband beamforming networks
(analog, digital, or optical) are required and a sufficient
number of radiating elements per array are needed to
achieve the desired antenna gain, which further
complicates the design and raises the cost. These factors
clearly indicate that mechanical scanning (spinning)
suffices and that the use of electronic steering is not
critical for the success of the mission. Finally, it is
noteworthy that in some state-of-the-art platforms, such as
the Typhoon aircraft and the F-35 aircraft, the electronic
support measure (ESM) systems (ESM is somewhat
related to ELINT [18, 46]) have dedicated antennas and

exploit the active electronically scanned array of other
systems available on the same platform (the electronic
counter measure system and the radar).

To our best knowledge, no DOA estimators for
spinning antenna-based ELINT systems have been
reported in the literature, although spinning antenna-based
DOA estimators were reported for other applications
(mainly radar). In mechanically scanning radars, the two
approaches to DOA estimation are the moving window
(MW) approach [20] and the antenna amplitude
modulation approach. The latter exploits how the
mechanical scanning of the antenna impresses an
amplitude modulation on the signals, which are
backscattered by the target [1–7]. The MW approach
exploits multiple detections at the same time on target to
find the DOA [20]. The antenna amplitude modulation
approach outperforms the MW approach, at the cost of
more computational load [3], and is based on unbiased
estimation via the maximum likelihood (ML) principle.
This approach was first described by Swerling [7]. In [5,
6], approximate estimators based on this approach were
proposed. Farina et al. [1, 2] extended the work on the
antenna amplitude modulation approach to consider the
DOA estimation of multiple targets. Then, researchers
introduced high-resolution estimation methods that can
resolve targets separated by less than the spinning antenna
beamwidth. High-resolution DOA estimators that require
multiple antenna scans to resolve targets were proposed in
[27–30, 34–36], and high-resolution DOA estimators that
can resolve targets using a single antenna scan were
proposed in [4, 37–42]. The main drawback of the
high-resolution estimators is that a full spread of the
captured pulses across the antenna mainlobe and a large
number of pulses and/or a high signal-to-noise ratio (SNR)
are required to resolve targets. Modern ELINT systems
employ digital channelization; hence, they can resolve
emitters separated by less than the antenna beamwidth in
the spatial domain using the emitters’ frequencies [13].
Therefore, the high estimation accuracy property is more
important than the high-resolution property when
selecting a DOA estimator for ELINT applications.

The aforementioned estimators perform adequately
with regard to the estimation accuracy (i.e., the mean
square error [MSE]) for their applications. Moreover, the
MSEs of some of these estimators have been shown to
attain the popular performance benchmark for unbiased
estimation, the Cramér-Rao lower bound (CRLB) [14].
However, we show in this work that the performance limit
set by unbiased estimation bounds (i.e., the CRLB and the
Barankin bound [BB]) is not adequate for the kinds of
scenarios that spinning antenna-based ELINT systems
might encounter, i.e., when the antenna beamwidth is wide
and the number of pulses is low and/or the SNR is low or
when the intercepted pulses are partially spread across the
antenna mainlobe. In this work, we therefore adopt the
theory of biased estimation [9–12] to obtain DOA
estimators that will be better with regard to MSE and that
will outperform the performance limit set by unbiased
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Fig. 1. Architecture of spinning antenna-based ELINT system.

estimation bounds. We thus present DOA estimators,
which exploit how the variance of an estimator can be
made smaller at the expense of increasing the bias, while
ensuring that the overall MSE is reduced [8]. These
proposed DOA estimators exploit the knowledge of the
antenna mainlobe pattern and were constructed using the
techniques described in [9–12] in conjunction with
Bayesian estimation techniques [14]. We use a Monte
Carlo simulation and real data to evaluate the performance
of the proposed estimators and to compare the
performance of the proposed estimators with estimation
performance bounds.

The rest of this paper is organized as follows: The
system description and the problem model are introduced
in Section II. In Section III, we present the unbiased
estimation performance bounds for the problem model.
The ML estimator is discussed in Section IV, whereas the
biased ML estimators are presented in Section V. The
Bayesian estimator and the Bayesian Cramér-Rao lower
bound (BCRLB) are presented in Section VI. In Section
VII, the performance of the proposed estimators is
evaluated by means of a Monte Carlo simulation and
compared with the performance bounds. Experimental
results are presented in Section VIII. Final conclusions are
reported in Section IX.

II. SYSTEM DESCRIPTION AND MATHEMATICAL
MODEL

Consider the ELINT system shown in Fig. 1, which
consists of an instantaneous frequency measurement
(IFM) receiver, a spinning high-gain antenna channel, and
an omnidirectional (Omni) antenna channel; the two
channels feed into digital channelized receivers. The IFM
receiver provides a rapid indication of the presence of an
emitter and roughly identifies the frequency of the
intercepted signals so that the RF frontends feeding the
digital receivers are steered into the active portion of the

Fig. 2. Normalized antenna gain plot of two-channel spinning antenna
system illustrating antenna beamwidth θB and unambiguous width θum.

frequency spectrum. The Omni antenna channel provides
full coverage of the field of view and measures the actual
amplitude of the captured signal. In addition, the scanning
patterns of the intercepted emitters are captured by the
Omni antenna channel, which enables the system
processor to exclude the scanning patterns from the
measurements made by the spinning antenna channel so
that the DOA can be estimated accurately.

As shown in Fig. 2, the relative gains of the two
antenna channels are adjusted to position the Omni
antenna channel gain between the spinning antenna
mainlobe and its sidelobe levels [16]; thus, mainlobe
detection is declared only when the spinning antenna
channel output is greater than the Omni antenna channel
output, which in turn must be greater than the levels of the
spinning antenna sidelobes and backlobes [16]. The
angular width of the mainlobe at the points where the
spinning antenna channel output exceeds the Omni
antenna channel output is called the unambiguous
width θum.

Digital channelization is accomplished by the receiver
by applying a short time Fourier transform (STFT) to the
digitized signal. The STFT is equivalent to an array of
adjacent finite impulse response filters [15]. If a signal
presence is detected in one of the STFT parallel outputs,
then the signal parameters (amplitude or complex
amplitude, antenna boresight angle, frequency, modulation
on pulse, time of arrival [TOA], pulse width, etc.) are
measured and packed into the pulse descriptor word
(PDW).

Different PDWs produced within a time frame T are
grouped by the system processor based on their frequency
and pulse width. The system processor estimates the DOA
for each group and assigns the groups to a specific emitter
based on the DOA, frequency, and pulse width. The system
processor also takes into account the frequency agility of
emitters; thus, it checks for groups with equal DOA and
pulse width to assign those groups to the relevant emitter.
This processor performs other functions too, such as
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emitter tracking and identification and determination of
pulse and burst repetitions intervals. ELINT systems also
have the ability to digitally downconvert the intercepted
signals to baseband for fine analysis and to store the
signals for offline analysis [13]. More information about
the architecture of modern ELINT systems and the signal
processing chain is available in [15, 13, 32].

The spinning antenna, with an azimuth beamwidth θB ,
scans in the azimuth plane at angular velocity ωR . The
scanning induces amplitude modulation on the received
signal; thus, the DOA can be estimated by correlating the
received signal amplitude to the receiver spinning antenna
pattern G. The N complex amplitudes captured by the
spinning antenna mainlobe during the time on the emitter
are collected in an N-dimensional column vector Z; the nth
component is

[Z]n = b G (θET , [θ B O]n) + [d]n; n = 1, . . . N (1)

where b = bR + jbI is the intercepted signal complex
amplitude, modeled as a deterministic parameter, and bR

and bI are the real and imaginary parts of the complex
amplitude b. In addition, θET is the DOA of the
intercepted emitter, d is the global disturbance (thermal
noise, interference, etc.), and the N-dimensional column
vector θ B O is the antenna boresight angle vector. Using
the following equation, θ B O relates to TOA:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[θ B O]n = [θ B O]1 + ωR[�T O A]n

�T O A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
[T O A]2 − [T O A]1

...

...
[T O A]n − [T O A]1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

The vector notation of (1) is given by the following:

Z = S + d = ba (θET , θ B O) + d (3)

The N-dimensional disturbance complex vector d has a
Gaussian probability density function (pdf) with zero
mean and a known N × N-dimensional covariance
matrix R = E{dd H} = σ 2

d M, where ( )H is the
conjugate-transpose operator, σ 2

d is the total disturbance
power, and M is the normalized covariance matrix. In this
work, we assume that the disturbance consists of complex
zero-mean white Gaussian noise that has a covariance
matrix R = σ 2

d I , where I is the identity matrix. The nth
component of the N-dimensional emitter steering vector
a(θET , θ B O) is as follows:

[a (θET , θ B O)]n = G (θET , [θ B O]n) ; n = 1, . . . N (4)

Finally, the pdf of Z conditioned to b and θET is as follows:

PZ/S(Z; b, θET ) = 1

πN det(R)
exp

[−[Z−a(θET , θ B O)b]H

× R−1 [Z − a (θET , θ B O) b]
]

(5)

The aforementioned problem formulation is similar to that
derived by Farina et al. in [1, 2], when they studied the

Fig. 3. Plots of Rician distribution versus equivalent Gaussian
distribution at different SNR values. (a) SNR = 3 dB. (b) SNR = 7 dB.

estimation of radar targets’ DOA by using the ML
estimator.

Modern ELINT systems can digitally downconvert the
intercepted signals to baseband [13], which in principle
implies that the complex amplitude can be measured.
However, measuring the intercepted signal’s complex
amplitude can be challenging because of the uncertainty of
the intercepted signal’s modulation scheme and errors in
estimating the carrier frequency. It is common for
practical ELINT systems to measure the amplitude
[ζ ]n = (Re{[Z]n}2 + Im{[Z]n}2)

1
2 of the intercepted signal

rather than the complex amplitude [Z]n [13, 15, 17, 19,
32]. Therefore, DOA estimation using the intercepted
signal amplitude when the Gaussian disturbance d is
statistically independent (i.e., white Gaussian noise) is
investigated. The amplitude [ζ ]n of the nth component
of the N-dimensional complex amplitude vector
Z ∈ CN (ba(θET , θ B O), R) is Rician distributed:

P[ζ ]n/[Z]n

(
[ζ ]n; β, θET

)
= 2[ζ ]n

σ 2
d

exp

[
− (

[ζ ]2
n + β2 [a (θET , θ B O)]2

n

)
σ 2

d

]

× I0

(
2[ζ ]nβ[a (θET , θ B O)]n

σ 2
d

)
(6)

where I0 is the modified zeroth-order Bessel function of
the first kind and β = (b2

R + b2
I )

1
2 is the magnitude of the

complex amplitude b. Re{ } and Im{ } are the real and the
imaginary of the complex quantity, respectively. The
dependency of a(θET , θ B O) on θET and θ B O was omitted
from the following sections for ease of notation.

As shown in Fig. 3, the Rician distribution can be
approximated to a Gaussian distribution to simplify the
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derivation of estimators. This is because the Rician
distribution of ζ is equivalent to the Rayleigh distribution
when there is no signal and is approximately Gaussian

with mean mζ
∼= (a � aβ2 + σ 2

d

2 )�
1
2 at moderate to high

SNR, where at very high SNR the mean becomes
mζ

∼= βa. This equivalent Gaussian distribution has a

covariance matrix C = σ 2
d

2 I and a pdf given by the
following expression:

Pζ /Z (ζ ; β, θET )

= 1√
2πN det (C)

exp

[
− 1

2

[
ζ −

(
a � aβ2 + σ 2

d

2

)� 1
2
]T

×C−1

[
ζ −

(
a � aβ2 + σ 2

d

2

)� 1
2
]]

(7)

where � is the Hadamard product or element-wise
multiplication [33], ( )T is the transpose operator, and ζ is
the N-dimensional captured amplitudes column vector.
Similar approximations to the Rician distribution were
reported by Lie et al. [29].

III. PERFORMANCE BOUNDS FOR UNBIASED
ESTIMATION

A. The CRLB

The CRLB is presented here to determine the
performance limit that could be achieved for the possible
scenarios that spinning antenna-based ELINT systems
might encounter. Moreover, the CRLB is used to calculate
the transformation parameters of the proposed biased ML
estimators.

1) Complex Amplitude Case: The data vector Z is
complex Gaussian distributed, with mean mZ = E{Z} =
(bR + jbI ) a and covariance matrix R. The 3 × 1 unknown
parameter vector is ϑ = [θET bR bI ]T . The elements of
the 3 × 3 Fisher information matrix are obtained as

[ J]ij = 2Re

{
∂mH

Z

∂[ϑ]i
R−1 ∂mZ

∂[ϑ]j

}
; i, j = 1, 2, 3 (8)

∂mZ

∂[ϑ]i
=
⎧⎨
⎩

(bR + jbI ) aθ

a
j a

(9)

where aθ is the gradient, with respect to θET , of the
vector a.

2) Amplitude Case: The data vector ζ is modeled as
real Gaussian distributed with mean mζ = E{ζ } ∼=
(a � aβ2 + σ 2

d

2 )�
1
2 and covariance matrix C. The 2 × 1

unknown parameter vector is ϑ = [θET β]T . The elements
of the 2 × 2 Fisher information matrix are obtained as
follows:

[ J]ij =
{

∂mT
ζ

∂[ϑ]i
C−1 ∂mζ

∂[ϑ]j

}
; i, j = 1, 2 (10)

TABLE II
Simulation Setups Used to Plot CRLB Curves with Different Parameters1

CRLB θB = θum θET N PRIωR [θ B O ]1 [θ B O ]N

1 30◦ 15◦ 16 1.875◦ 0◦ 28.125◦
2 30◦ 15◦ 8 3.75◦ 0◦ 26.25◦
3 10◦ 5◦ 16 0.625◦ 0◦ 9.375◦
4 10◦ 5◦ 8 1.25◦ 0◦ 8.75◦

Parameters listed are spinning antenna beamwidth θB , unambiguous width θum,
emitter DOA θET , number of pulses N, the product of the pulse repetition interval
and angular velocity (PRIωR), and antenna boresight angle vector θ B O .

Fig. 4. Plots of CRLB{θ̂ET } with different parameters, as given in
Table II.

∂mζ

∂[ϑ]i
=

⎧⎪⎨
⎪⎩

β2 a � aθ �
(

a � aβ2 + σ 2
d

2

)� −1
2

β a � a �
(

a � aβ2 + σ 2
d

2

)� −1
2

(11)

The CRLBs are given by the diagonal elements of J−1,
i.e., CRLB([ϑ]i) = [ J−1]ii .

Plots of the CRLB for both cases, with different
parameter values as listed in Table II, are shown in Fig. 4.
The results obtained clearly show that the CRLB is poor
when the antenna beamwidth is wide and the number of
pulses is low and/or the SNR is low. The accuracy of
estimating the DOA can be improved by increasing the
bias to reduce the variance while ensuring that the overall
MSE is minimized. This can be achieved by either using
Bayesian estimators or introducing a bias to the unbiased
estimator.

B. The BB

Any unbiased estimator exhibits the threshold effect,
in which the MSE performance of the unbiased estimator
deviates substantially from the CRLB below a certain
SNR; thus, the use of the CRLB to predict the performance
of the estimator below the threshold point is not valid [44].
The BB is significantly tighter than the CRLB at low SNR
values [44], and is presented here to determine the SNR
threshold point. The BB on the MSE of any unbiased
estimator of ϑ is given by the diagonal elements of the
matrix �; i.e., BB(ϑ i) = [�]ii . Here, � is [44]

� = T
(

D − 11T
)−1

T T (12)
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TABLE III
Simulation Setups Used to Plot BB Curves with Different Parameters1

Setup θB = θum θET N PRIωR [θ B O ]1 [θ B O ]N

1 30◦ 15◦ 4 7.5◦ 0◦ 22.5◦
2 30◦ 15◦ 32 0.9375◦ 0◦ 29.0625◦

Parameters listed are spinning antenna beamwidth θB , unambiguous width θum,
emitter DOA θET , number of pulses N, the product of the pulse repetition interval
and angular velocity (PRIωR), and antenna boresight angle vector θ B O .

Fig. 5. Plots of CRLB{θ̂ET } and BB{θ̂ET } with different parameters,
as given in Table III. (a) Setup 1. (b) Setup 2.

and the matrix T is defined as

T = [
ϑ1 − ϑ, ϑ2 − ϑ, . . .ϑp − ϑ

]
(13)

where ϑ i , i = 1 . . . p are called test points and chosen to
maximize the right-hand side of (12). The vector 1 is of
size P whose elements are equal to 1. The elements of the
Barankin matrix D are given as follows [45].

1) Complex Amplitude Case:

[D (ϑ)]ij = exp
[
2Re

{
(mZ (ϑ) − mZ (ϑ i))

H R−1 (mZ (ϑ)

− mZ
(
ϑ j

))}]
; i, j = 1, 2, . . . p (14)

2) Amplitude Case:

[D (ϑ)]ij = exp
[(

mζ (ϑ) − mζ (ϑ i)
)T

C−1(mζ (ϑ)

− mζ

(
ϑ j

) )]
; i, j = 1, 2, . . . p (15)

Plots of the BB with different parameter values, as
listed in Table III, are shown in Fig. 5. Results in Fig. 5
show that the threshold effect occurs at a very small SNR
value, even when the number of pulses is low.

IV. THE ML ESTIMATOR

The ML estimator is an unbiased classical estimator in
which the parameter of interest (DOA) is assumed to be
deterministic but unknown.

1) Complex Amplitude Case: The ML estimator is
obtained by maximizing the pdf given in (5) with respect
to the deterministic parameters b and θET . The ML
estimator is given by the following expressions [1, 2]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
b̂ = aH R−1 Z

aH R−1a

θ̂ET = arg max
θET

∣∣ZH R−1a
∣∣2

aH R−1a

(16)

2) Amplitude Case: The ML estimator is obtained by
maximizing the log-likelihood of (6) with respect to the
deterministic parameters β and θET . After some
simplification, the ML estimator is given by the following
expression:

(
θ̂ET , β̂

) = arg max
β,θET

N∑
n=1

(
log I0

(
2[ζ ]nβ[a]n

σ 2
d

)
− β2 [a]2

n

σ 2
d

)
(17)

This estimator requires the solution of
two-dimensional (2D) nonlinear maximization and the
computation of the Bessel function. A simpler estimator
can be found using the equivalent Gaussian pdf given in
(7). The ML estimator for the approximated model is
obtained by maximizing the pdf given in (7). After some
simplification, the ML estimator is given by the following
expression:

(
θ̂ET , β̂

)= arg max
β,θET

[
2ζ T

(
a � aβ2 + σ 2

d

2

)� 1
2
]

−
[(

a � aβ2 + σ 2
d

2

)� 1
2
]T [(

a � aβ2 + σ 2
d

2

)� 1
2
]

(18)

This estimator also requires the solution of 2D
nonlinear maximization, but it is easier to implement than
the 2D Rician ML. The complexity can be reduced by
using a suboptimal estimator for β to reduce the estimator
to a one-dimensional problem. The mean equals mζ

∼= βa
at a high SNR, and then the equivalent Gaussian pdf
becomes as follows:

Pζ /Z (ζ ; β, θET )

= 1√
2πN det (C)

exp

[
−1

2
[ζ − βa]T C−1 [ζ − βa]

]
(19)

Then, the suboptimal estimator for β is found by
maximizing the pdf given in (19) with respect to β. After
some simplification, the estimator for β is given by the
following:

β̂ = aT ζ

aT a
(20)
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Finally, the ML estimator for θET is given by the
following expression:

θ̂ET = arg max
θET

⎡
⎣2ζ T

(
a � a

∣∣∣∣ aT ζ

aT a

∣∣∣∣
2

+ σ 2
d

2

)� 1
2
⎤
⎦

−
⎡
⎣(a � a

∣∣∣∣ aT ζ

aT a

∣∣∣∣
2

+ σ 2
d

2

)� 1
2
⎤
⎦

T⎡
⎣(a � a

∣∣∣∣ aT ζ

aT a

∣∣∣∣
2

+σ 2
d

2

)� 1
2
⎤
⎦

(21)

V. BIASED ML ESTIMATORS

A. Linear Bias

The performance of an unbiased estimator (the ML
estimator) can be improved by introducing a linear bias
[10]. The linearly transformed ML estimator is given by
[10]

θ̂b = (1 + m) θ̂u (22)

where θ̂u is the unbiased estimator (ML estimator) and m
(−1 ≤ m < 0) is a transformation parameter, which
introduces a bias to the unbiased estimator. The MSE for
the biased estimator θ̂b is given by [10]

MSE
(
θ̂b

) = (1 + m)2var
(
θ̂u

) + m2θ2 (23)

where var( ) is the variance of an estimator. The value of
m that minimizes the overall MSE, trading an increase in
bias for a decrease in variance, is found by solving the
following minimax equation [10]:

m = arg min
m

max
θ

{
MSE

(
θ̂b

) − MSE
(
θ̂u

)}
(24)

Here, θ lies in the following interval:

[θ B O]N − θum

2
≤ θ ≤ [θ B O]1 + θum

2
(25)

The interval specified by (25) can be written as quadratic
constraint Q [10]:

Q = {
θ : θT A1θ + 2 b1θ + c1 ≤ 0

}
(26)

In our case, the values of A1, b1, and c1 are as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1 = 1

b1 = − [θ B O]N + [θ B O]1

2

c1 =
(

[θ B O]N − θum

2

)(
[θ B O]1 + θum

2

) (27)

The procedure described in [10] is followed to solve
(24); the first step is to curve fit the CRLB to the following
quadratic form [10]:

CRLB (θ) = B1θθT BT
1 + (

C1θzT
1 + z1θ

T CT
1

) + A

(28)
The optimal value of m is given by the following equation
[10]:

m = −S (�, w) (S (�, w) + �)−1 (29)

Here, S(�, w) is given by [10]

S (�, w) = B1�BT
1 + (

C1w
T zT

1 + z1w CT
1

) + A (30)

where � and w are the solutions to the following
semidefinite programming problem (SDP) [10]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Y,w,�

T r (Y )

s.t.

[
Y S (�, w)

S (�, w) S (�, w) + �

]
≥ 0

[
� w

w 1

]
≥ 0

�A1 + 2wb1 + c1 ≤ 0

(31)

The OPTI Toolbox [21] was used to solve (31).
In the case of a constant CRLB [10],

m = − CRLB

CRLB + V 2
(32)

where V is the upper limit of the interval specifying θ .

B. Affine Bias

The MSE can be further reduced by introducing an
affine bias of the form [11]

θ̂b = (1 + m) θ̂u + u (33)

where m and u are transformation parameters that
introduce a bias to the unbiased estimator θ̂u (the ML
estimator). The MSE for the biased estimator θ̂b is given
by the following [11]:

MSE
(
θ̂b

) = (1 + m)2var
(
θ̂u

) + (mθ + u)2 (34)

The values of m and u that minimize the overall MSE,
trading an increase in bias for a decrease in variance, are
found by solving the following minimax equation [11]:

(m, u) = arg min
m,u

max
θ

{
MSE

(
θ̂b

) − MSE
(
θ̂u

)}
(35)

The interval, where θ lies, is defined in (25).
The procedure described in [11] is followed to solve

(35); the first step is to curve fit the CRLB to the quadratic
form specified by (28) [11]. The optimal values of m and u
are given by the following equations [11]:

m = −S (�, w)
(
S (�, w) + � − wwT

)−1
(36)

u = 1

1 − wT (S (�, w) + �)−1w
S (�, w)

× (S (�, w) + �)−1 w (37)

Here, S(�, w) is given by [11]

S (�, w) = B1�BT
1 + (

C1wzT
1 + z1wCT

1

) + A (38)
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where � and w are the solutions to the following SDP
[11]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Y,w,�

T r (Y )

s.t.

⎡
⎢⎣

Y S (�, w) 0

S (�, w) S (�, w) + � w

0 w 1

⎤
⎥⎦ ≥ 0

[
� w

w 1

]
≥ 0

�A1 + 2wb1 + c1 ≤ 0

(39)

The OPTI Toolbox [21] was used to solve (39).
In case of a constant CRLB, m and u as follows [11]:

m = − CRLB

CRLB + bT
1 b1 − c1

(40)

u = − CRLB

CRLB + bT
1 b1 − c1

b1 (41)

VI. THE BAYESIAN ESTIMATOR

In the Bayesian estimation of deterministic
parameters, the deterministic parameters are treated as if
they were random, but the randomness is only introduced
through observations and prior distributions are adopted to
impose certain constraints [43]. A Bayesian estimator for
a deterministic parameter trades bias for variance in an
attempt to reduce the overall MSE; thus, it outperforms the
efficient unbiased estimator (i.e., the unbiased estimator
that attains the CRLB) on average, but it may perform
poorly for certain values of the unknown parameter [14,
43]. Such poor performance is because of the substantial
increase in the bias, which can be avoided by accurately
setting the prior pdf parameters so that proper bias is
introduced, thereby ensuring improved performance [14,
43]. In this work, we have used the minimum mean square
error (MMSE) estimator to estimate the DOA.

A. The MMSE Estimator

The MMSE estimator is a popular form of Bayesian
estimation techniques. The closed form of this estimator
can be found if both the measurement and the prior pdfs
are Gaussian [14]. This closed form is given by

E (ϑ |X) = μ + �HH
(
H�HH + �

)−1
(X − Hμ) (42)

where X is an N × 1 data vector, H is a known N × K
matrix, ϑ is a K × 1 unknown vector with prior pdf
N (μ, �), and d is an N × 1 noise vector with pdf
CN (0, �).

1) Complex Amplitude Case: Using local
linearization approximation around the prior mean, (5)
and (42), the MMSE estimator of the 3 × 1 parameter

vector ϑ = [θET bR bI ]T is

ϑ̂ =Re
{
μ + �HH

(
H�HH + R

)−1
(Z−mZ (μ))

}
(43)

where μ is the prior mean μ = [θμ bμR bμI ]T . The
columns of the matrix H and the diagonal elements of the
diagonal matrix � are given by the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[H]:1 = (
bμR + jbμI

)
aθ

(
θμ, θ B O

)
[H]:2 = a

(
θμ, θ B O

)
[H]:3 = ja

(
θμ, θ B O

)
[�]11 = v2

[�]22 = (
bμR − bvR

)2

[�]33 = (
bμI − bvI

)2

(44)

We found through a Monte Carlo simulation that the
values of the prior Gaussian pdf parameters that result in
the best estimate of θET are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θμ = [θ B O]1 + [θ B O]N − [θ B O]1

2

v = 1

2
(θum − ([θ B O]N − [θ B O]1))

bμR = Re

{
a
(
θμ, θ B O

)H
R−1 Z

a
(
θμ, θ B O

)H
R−1a

(
θμ, θ B O

)
}

bμI = Im

{
a
(
θμ, θ B O

)H
R−1 Z

a
(
θμ, θ B O

)H
R−1a

(
θμ, θ B O

)
}

bvR = Re

{
a
(
θμ + v, θ B O

)H
R−1 Z

a
(
θμ + v, θ B O

)H
R−1a

(
θμ + v, θ B O

)
}

bvI = Im

{
a
(
θμ + v, θ B O

)H
R−1 Z

a
(
θμ + v, θ B O

)H
R−1a

(
θμ + v, θ B O

)
}

(45)

where θμ is the average of the angle of the antenna
boresight at the first intercepted pulse and the angle of the
antenna boresight at the last intercepted pulse, v is the
unambiguous width minus the span of the intercepted
pulses across the unambiguous width, and bμR , bμI , bvR ,
and bvI are the complex amplitude parts that are
calculated at angles θμ and θμ + v.

2) Amplitude Case: Following the same procedure
used for the complex amplitude case, the MMSE estimator
of the 2 × 1 parameter vector ϑ = [θET β]T is

ϑ̂ = μ + �HT
(
H�HT + C

)−1 (
ζ − mζ (μ)

)
(46)

where μ is the prior mean μ = [θμ βμ]T . The columns of
the matrix H and the diagonal elements of the diagonal
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matrix � are given by the following:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[H]:1 = β2
μa � aθ �

(
a � aβ2

μ + σ 2
d

2

)� −1
2

[H]:2 = βμa � a �
(

a � aβ2
μ + σ 2

d

2

)� −1
2

[�]11 = v2

[�]22 = (
βμ − βv

)2

(47)

The dependency of a(θμ, θ B O) and aθ (θμ, θ B O) on θμ

and θ B O was omitted from (47) for ease of notation. Both
θμ and v are obtained using (45), and βμ and βv are given
by the following:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βμ = a
(
θμ, θ B O

)T
ζ

a
(
θμ, θ B O

)T
a
(
θμ, θ B O

)
βv = a

(
θμ + v, θ B O

)T
ζ

a
(
θμ + v, θ B O

)T
a
(
θμ + v, θ B O

)
(48)

The justification for setting the prior pdf parameters is the
same as for the complex amplitude case.

B. The BCRLB

The BCRLB is presented here to determine the
performance limit of the MMSE estimator. The BCRLB is
given by the following [43]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

BCRLB
([

ϑ̂
]
i

) ≥ [
W I−1

B W
]
ii

; i = 1, . . . K

W = 1 + ∂ B
(
ϑ̂
)

∂ϑ
+ B

(
ϑ̂
) ∂ ln p (ϑ)

∂ϑ

T

I B = J + ∂ ln p (ϑ)

∂ϑ

∂ ln p (ϑ)

∂ϑ

T

(49)

1) Complex Amplitude Case: The bias B(ϑ̂) =
E{ϑ̂} − ϑ of the MMSE estimator is given by the
following:

B(ϑ̂) = Re
{
μ−ϑ+�H H(H�H H+R

)−1
(ba−mZ (μ))

}
(50)

The dependency of a(θET , θ B O) on θET and θ B O was
omitted from (50) for ease of notation. E{ } is the
expectation operator. The derivative of B(ϑ̂) with respect
to ϑ is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ B
(
ϑ̂
)

∂[ϑ]1

= Re
{

[−1 0 0]T + �H H
(
H�H H + R

)−1
(baθ )

}
∂ B

(
ϑ̂
)

∂[ϑ]2

= Re
{

[0 − 1 0]T + �H H
(
H�H H + R

)−1
(a)

}
∂ B

(
ϑ̂
)

∂[ϑ]3

= Re
{

[0 0 − 1]T + �H H
(
H�H H + R

)−1
(ja)

}
(51)

The dependency of a(θET , θ B O) and aθ (θET , θ B O) on θET

and θ B O was omitted from (51) for ease of notation. The
derivative of the prior pdf natural logarithm is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ ln p (ϑ)

∂[ϑ]1
= θμ − θET

[�]11

∂ ln p (ϑ)

∂[ϑ]2
= bμR − bR

[�]22

∂ ln p (ϑ)

∂[ϑ]3
= bμI − bI

[�]33

(52)

The matrices H and � are obtained using (44), and the
prior Gaussian pdf parameters are given by the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θμ = [θ B O]1 + [θ B O]N − [θ B O]1

2

v = 1

2
(θum − ([θ B O]N − [θ B O]1))

bμR = Re

{
a
(
θμ, θ B O

)H
R−1ba (θET , θ B O)

a
(
θμ, θ B O

)H
R−1a

(
θμ, θ B O

)
}

bμI = Im

{
a
(
θμ, θ B O

)H
R−1ba (θET , θ B O)

a
(
θμ, θ B O

)H
R−1a

(
θμ, θ B O

)
}

bvR = Re

{
a
(
θμ + v, θ B O

)H
R−1ba (θET , θ B O)

a
(
θμ + v, θ B O

)H
R−1a

(
θμ + v, θ B O

)
}

bvI = Im

{
a
(
θμ + v, θ B O

)H
R−1ba (θET , θ B O)

a
(
θμ + v, θ B O

)H
R−1a

(
θμ + v, θ B O

)
}

(53)

2) Amplitude Case: The bias B(ϑ̂) = E{ϑ̂} − ϑ of
the MMSE estimator is given by the following:

B
(
ϑ̂
) = μ − ϑ + �HT

(
H�HT + C

)−1

×
((

a � aβ2 + σ 2
d

2

)� 1
2

− mζ (μ)

)
(54)

The dependency of a(θET , θ B O) on θET and θ B O was
omitted from (54) for ease of notation. The derivative of
B(ϑ̂) with respect to ϑ is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ B
(
ϑ̂
)

∂[ϑ]1
= [−1 0]T + �HT

(
H�HT + C

)−1

(
β2a � aθ �

(
a � aβ2 + σ 2

d

2

)� −1
2
)

∂ B
(
ϑ̂
)

∂[ϑ]2
= [0 − 1]T + 
HT

(
H�HT + C

)−1

(
βa � a �

(
a � aβ2 + σ 2

d

2

)� −1
2
)

(55)

The dependency of a(θET , θ B O) and aθ (θET , θ B O) on θET

and θ B O was omitted from (55) for ease of notation. The
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TABLE IV
Simulation Setups Used to Evaluate Performance of Estimators1

Setup θB = θum θET N PRIωR [θ B O ]1 [θ B O ]N

1 30◦ 15◦ 32 0.9375◦ 0◦ 29.0625◦
2 30◦ 15◦ 16 1.2667◦ 0◦ 19◦
3 30◦ 15◦ 8 3.2857◦ 0◦ 23◦

Parameters listed are spinning antenna beamwidth θB , unambiguous width θum,
emitter DOA θET , number of pulses N, the product of the pulse repetition interval
and angular velocity (PRIωR), and antenna boresight angle vector θ B O .

derivative of the prior pdf natural logarithm is as follows:⎧⎪⎪⎨
⎪⎪⎩

∂ ln p (ϑ)

∂[ϑ]1
= θμ − θET

[�]11

∂ ln p (ϑ)

∂[ϑ]2
= βμ − β

[�]22

(56)

The matrices H and � are obtained using (47), θμ and v

are obtained using (53), and βμ and βv are given by the
following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βμ =
a
(
θμ, θ B O

)T
(

a � aβ2 + σ 2
d

2

)� 1
2

a
(
θμ, θ B O

)T
a
(
θμ, θ B O

)

βv =
a
(
θμ + v, θ B O

)T
(

a � aβ2 + σ 2
d

2

)� 1
2

a
(
θμ + v, θ B O

)T
a
(
θμ + v, θ B O

)
(57)

The dependency of a(θET , θ B O) on θET and θ B O was
omitted from (57) for ease of notation.

VII. PERFORMANCE ANALYSIS

The performance of the proposed estimators was
investigated by means of a Monte Carlo simulation in
terms of the MSE and compared to the unbiased estimation
bounds and the BCRLB. The MSE is defined as follows:

MSE = E
{(

θ̂ET − θET

)2
}

(58)

The simulations were performed with a Gaussian beam
shape for the spinning antenna and assuming ideal
detection and amplitude measurement by the digital
receiver. The DOA θET , the complex amplitude b, and the
amplitude β are deterministic unknowns, while the
disturbance d is composed of complex white Gaussian
noise with zero mean and a known covariance matrix. The
simulation scenarios illustrated in Table IV were
performed, where simulation setups 2 and 3 represent the
partial spread of pulses across the antenna unambiguous
width scenarios:

In Fig. 6, the performance of the ML estimator in (21)
is compared to the performance of the ML estimator in
(17) for the first simulation setup. Fig. 6 clearly illustrates
that the approximation is good. The detailed simulation
results are shown in Figs. 7 to 12, which plot the estimation
bounds and the MSE, bias, and variance for the different

Fig. 6. MSE{θ̂ET } performance of ML-2D estimator versus
approximated ML estimator for first simulation setup. θB = θum = 30◦,
θET = 15◦, N = 32, PRI ωR = 0.9375◦, [θ B O ]1 = 0◦, and [θ B O ]N =

29.0625◦.

Fig. 7. MSE{θ̂ET } performance of estimators versus estimation bounds
for first simulation setup. (a) Transformed ML estimators and MMSE
estimator versus estimation bounds for complex amplitude case. (b)

Transformed ML estimators for complex amplitude case and amplitude
case versus estimation bounds. (c) MMSE estimator for complex

amplitude case and amplitude case versus estimation bounds. θB = θum

= 30◦, θET = 15◦, N = 32, PRI ωR = 0.9375◦, [θ B O ]1 = 0◦, and
[θ B O ]N = 29.0625◦.
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Fig. 8. Bias{θ̂ET }, var{θ̂ET }, and MSE{θ̂ET } of estimators for first
simulation setup. (a) Linearly transformed ML estimator. (b) Affine

transformed ML estimator. (c) MMSE estimator. θB = θum = 30◦, θET =
15◦, N = 32, PRI ωR = 0.9375◦, [θ B O ]1 = 0◦, and [θ B O ]N = 29.0625◦.

estimators versus the SNR. Three MSE performance
plots per simulation setup were plotted to avoid
cluttering the figures, and only the bias and variance of the
estimators that use the complex amplitude were plotted.

In Figs. 7 and 8, the first simulation setup is
investigated, which is a full-spread scenario. The
improvement in the MSE performance provided by the
affine transformed ML estimator and the MMSE estimator
is well evident, even when the SNR value is large. The
introduced bias dominates the MSE, and the variance
converges to zero. In Figs. 9 to 12, the second and third
simulation setups are investigated, which are
partial-spread scenarios. The affine transformed ML
estimator and the MMSE estimator provide excellent
improvement in MSE performance, but they are not as
significant as in the full-spread scenario. The introduced
bias increases as the SNR decreases, dominating the MSE
and forcing the variance to decrease.

The numerical results obtained show that the DOA
estimators did not experience the threshold effect even for

Fig. 9. MSE{θ̂ET } performance of estimators versus estimation bounds
for second simulation setup. (a) Transformed ML estimators and MMSE

estimator versus estimation bounds for complex amplitude case. (b)
Transformed ML estimators for complex amplitude case and amplitude

case versus estimation bounds. (c) MMSE estimator for complex
amplitude case and amplitude case versus estimation bounds. θB = θum

= 30◦, θET = 15◦, N = 16, PRI ωR = 1.2667◦, [θ B O ]1 = 0◦, and
[θ B O ]N = 19◦.

low values of N and SNR. These results are in agreement
with the BB not deviating from the CRLB. Moreover, the
numerical results show that the proposed biased estimators
outperform the unbiased estimation bounds for all possible
scenarios and that the MMSE estimator performance is
close to that of the BCRLB. The simulation results also
show that the affine transformed ML estimator and the
MMSE estimator provide the best performance for low
number of pulses and/or low SNR. Moreover, the
performance of the biased estimators is similar for both
cases (the complex amplitude case and the amplitude case)
because the MSE is dominated by the bias component
when the number of pulses is low and/or the SNR is low.
When compared to the affine transformed ML estimator,
the MMSE estimator does not require the computation
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Fig. 10. Bias{θ̂ET }, var{θ̂ET }, and MSE{θ̂ET } of estimators for second
simulation setup. (a) Linearly transformed ML estimator. (b) Affine

transformed ML estimator. (c) MMSE estimator. θB = θum = 30◦, θET =
15◦, N = 16, PRI ωR = 1.2667◦, [θ B O ]1 = 0◦, and [θ B O ]N = 19◦.

over a predefined grid; thus, the MMSE estimator has less
computational load and is easier to implement.

It was found that the optimal values of m and u
returned by (29), (36), and (37) always conform to the
optimal values of m and u for θ = [θ B O]1 + θum/2,
provided that the antenna mainlobe is symmetrical
around its peak. This means that m for the linearly
transformed ML estimator can be found directly by
using (32):

m = − CRLB

CRLB +
(

[θ B O]1 + θum

2

)2 (59)

It also means that m and u for the affine transformed
ML estimator can be found directly by using (40)
and (41):

Fig. 11. MSE{θ̂ET } performance of estimators versus estimation
bounds for third simulation setup. (a) Transformed ML estimators and

MMSE estimator versus estimation bounds for complex amplitude case.
(b) Transformed ML estimators for complex amplitude case and

amplitude case versus estimation bounds. (c) MMSE estimator for
complex amplitude case and amplitude case versus estimation bounds.

θB = θum = 30◦, θET = 15◦, N = 8, PRI ωR = 3.2857◦, [θ B O ]1 = 0◦,
and [θ B O ]N = 23◦.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m = − CRLB

CRLB + bT
1 b1 − c1

u = − CRLB

CRLB + bT
1 b1 − c1

b1

(60)

The dependency of CRLB([θ B O]1 + θum/2) on
[θ B O]1 + θum/2 was omitted from (59) and (60) for ease
of notation. Other simulation scenarios with different
parameter values were also performed, and the
conclusions obtained remain the same.

VIII. EXPERIMENTAL RESULTS

The proposed estimators were applied to real data
provided by Reutech Radar Systems [50]. The experiment
was realized by using a mechanically scanning L-band
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Fig. 12. Bias{θ̂ET }, var{θ̂ET }, and MSE{θ̂ET } of estimators for third
simulation setup. (a) Linearly transformed ML estimator. (b) Affine

transformed ML estimator. (c) MMSE estimator. θB = θum = 30◦, θET =
15◦, N = 8, PRI ωR = 3.2857◦, [θBO ]1 = 0◦, and [θ B O ]N = 23◦.

radar and a transponder beacon placed 10 km away from
the radar. The radar transmits a waveform, and then the
transponder beacon retransmits the radar waveform when
illuminated by the radar. The waveform is sequentially
frequency diverse across three frequencies, with 32 pulses
for each frequency at 4 kHz of pulse repetition frequency.
The rotation rate of the radar antenna is 30 rpm, and the
beamwidth is 7.3◦. The radar waveform is modulated by
the two-way radar antenna beam pattern, and the antenna
mainlobe is fitted to a Gaussian model.

The recorded data are shown in Fig. 13, where each
frequency is highlighted by a different color. The red patch
that is pointed at in the figure is used for DOA estimation to
emulate an extreme case of a partial-spread scenario. The
measured SNR is 15 dB. Synthesized white Gaussian noise
was injected into the recorded data to obtain different values
of the SNR. The MSE, bias and variance of the estimators
are shown in Figs. 14 and 15. Fig. 14 clearly shows
that the MMSE estimator and the affine transformed ML

Fig. 13. Data recorded using L-band radar and transponder beacon. θB

= θum = 7.3◦, θET = 134.9582◦, N = 32, [θ B O ]1 = 137.8015◦, and
[θ B O ]N = 139.2188◦.

Fig. 14. MSE{θ̂ET } performance of estimators versus estimation
bounds for data recorded using L-band radar and transponder beacon. θB

= θum = 7.3◦, θET = 134.9582◦, N = 32, [θ B O ]1 = 137.8015◦, and
[θ B O ]N = 139.2188◦.

estimator significantly outperform the unbiased estimation
bounds and that the MMSE estimator performance
is close to that of the BCRLB. There is no significant
bias introduced to the linearly transformed ML estimator
because of the large value of the azimuth angle, while the
slight deviation from the CRLB is because of mismatch
caused by the approximation of the ML estimator.

IX. CONCLUSION

In this work, biased DOA estimators of emitters
present in the spinning antenna mainlobe of an ELINT
system were proposed. These estimators were constructed
by using Bayesian estimation techniques and by
performing a linear transformation and an affine
transformation on the ML estimator. The performance of
the proposed estimators was investigated by means of
experimental studies and a Monte Carlo simulation as a
function of the SNR, the DOA, the number of pulses, and
the spread of pulses across the antenna unambiguous
width. We found that the proposed estimators
outperformed the performance limit set by the unbiased
estimation bounds and that the MMSE estimator

CORRESPONDENCE 1511



Fig. 15. Bias{θ̂ET }, var{θ̂ET }, and MSE{θ̂ET } of estimators for data
recorded using L-band radar and transponder beacon. (a) Linearly

transformed ML estimator. (b) Affine transformed ML estimator. (c)
MMSE estimator. θB = θum = 7.3◦, θET = 134.9582◦, N = 32, [θ B O ]1

= 137.8015◦, and [θ B O ]N = 139.2188◦.

performance is close to that of the BCRLB. In addition,
we found that the affine transformed ML estimator and the
MMSE estimator performed adequately for the possible
scenarios that spinning antenna-based ELINT systems
might encounter, i.e., when the antenna beamwidth is
wide, when the number of pulses is low and/or the SNR is
low, or when the intercepted pulses are partially spread
across the antenna unambiguous width.

This work can be extended to the field of radar, similar
to [1, 2], and to investigation of the performance of the
biased estimators when b is modeled as Gaussian
distributed random complex amplitude.
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