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This paper presents road-map–assisted standoff tracking of a
ground vehicle using nonlinear model predictive control. In model
predictive control, since the prediction of target movement plays an
important role in tracking performance, this paper focuses on
utilizing road-map information to enhance the estimation accuracy.
For this, a practical road approximation algorithm is first proposed
using constant curvature segments, and then nonlinear
road-constrained Kalman filtering is followed. To address
nonlinearity from road constraints and provide good estimation
performance, both an extended Kalman filter and unscented Kalman
filter are implemented along with the state-vector fusion technique
for cooperative unmanned aerial vehicles. Lastly, nonlinear model
predictive control standoff tracking guidance is given. To verify the
feasibility and benefits of the proposed approach, numerical
simulations are performed using realistic car trajectory data in city
traffic.
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I. INTRODUCTION

Surveillance, and subsequent tracking, of a stationary
or moving ground target of interest is one of the important
capabilities of UAVs (Unmanned Aerial Vehicles) since it
is essential to increase an overall knowledge of the
surrounding environment [1–3]. To produce appropriate
surveillance data to be used by UAVs, a ground moving
target indicator (GMTI) is a well-suited sensor due to its
wide coverage and all-weather, day/night, and real-time
capabilities [4]. From these sensor data, such as range,
azimuth, or elevation of the target with respect to the
sensor location (along with appropriate target dynamics), a
certain level of accurate estimation could be obtained
using conventional filtering techniques. However, as
ground target tracking is a challenging problem due to the
uncertainty of the target maneuvers, all available
information sources should be exploited: its own sensor
data, data from other UAVs, and contextual knowledge
about the sensor performance and the environment. In
other words, information fusion is required to improve the
estimation accuracy.

In particular, in many applications for ground target
tracking, the majority of ground vehicles are moving on
road networks for which topographical coordinates could
be known with a certain accuracy. Such road-map
information can be used for improving the quality of
tracking significantly by constraining the state of the
ground target of interest, especially in its position,
velocity, and acceleration within the road geometry. This
is known as a road-constrained target tracking problem,
and there are largely three categories of techniques for
making use of the information about the roads. The first
one is the postprocessing correction technique, which runs
a tracking algorithm first without the road information,
and correction is then applied. Tang et al. [5] and
Kanchanavally et al. [6] proposed a Bayesian filtering
method with the hospitability map, which provides a
likelihood for each point proportional to the ability of a
target to move at that location. Along with this approach,
Kassas et al. [7] added the concept of a synthetic
inclination map, which describes how the target will be
synthetically inclined to move in different directions with
a certain velocity component. The second one is the
preprocessing of target state or sensor measurements.
Road information is exploited by defining the target state
in road coordinates and performing transformations
between the road and ground coordinate system to
consider the sensor measurements in the filter update step
[8, 9]. Herrero et al. [10] proposed the preprocessing of
sensor measurements with map restriction. Moreover, they
introduced a map-tuned interactive multiple model (IMM)
structure, which consists of constant speed, a longitudinal
acceleration model, and a curvilinear model incorporating
map information. The third one is a constrained filtering
framework. Dan et al. [11] proposed Kalman filtering with
state equality constraints and used road information as
equality constraints. Zhang et al. [12] used a
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pseudomeasurement approach, which treats the road
constraints as additional fictitious measurements based on
the work of Tahk and Speyer [13]. To deal with a road
network that has road junctions and crossing of several
roads, the variable structure IMM filtering concept was
also proposed by [14, 15]. Even though the particle filter
might result in better tracking performance depending on
the situation, particularly for a highly nonlinear system
and non-Gaussian noise as described in [16, 17], it would
require a significant computational cost. Since this paper
considers the use of small and low-cost UAVs rather than a
single UAV with high computation power, this paper
mainly uses Kalman filter–based algorithms.

Having estimated target information, UAVs should be
able to keep a certain distance from the moving target with
prescribed intervehicle angular spacing in order to track it
without being noticed and at the same time to acquire
accurate target information. The certain relative distance
from the target is called the standoff distance, and
therefore this approach is known as standoff target
tracking. For this standoff tracking problem, Lawrence
[18] first proposed the application of Lyapunov vector
fields for standoff coordination of multiple UAVs. This
Lyapunov vector field guidance (LVFG) was further
investigated by Frew et al. [19, 20] and Summers et al.
[21] to include phase keeping as well as standoff distance
tracking. They invented a decoupled control structure in
which the speed and rate of heading change are separately
controlled for the standoff distance and phase angle
keeping, respectively. Similarly, Kingston et al. [22] used
the vector field approach; however, they introduced a
sliding mode control and orbit radius change without
velocity change for phase-keeping of multiple UAVs.
Yoon et al. [3] applied the stabilization of a spherical
pendulum to the conical motion of the aircraft motion in
order to obtain the standoff tracking guidance commands.
Oh et al. [23] used the solution of differential geometry
between the UAV and the target, which provides rigorous
stability along with its inherent simplicity. Oh et al. [24]
also introduced cooperative standoff tracking of groups of
multiple targets using Lyapunov vector fields and an
online local replanning strategy. Kim et al. [25] applied a
receding horizon model–based predictive control by
combining heading and speed control in a decentralized
manner. Wise and Rysdyk [26] surveyed and compared
the different methodologies for standoff tracking: These
were the Helmsman behavior, Lyapunov vector field,
controlled collective motion, and model predictive control.

This paper presents road-map–assisted standoff
tracking of a moving ground vehicle using nonlinear
model predictive control (NMPC) based on our previous
work [25]. In the previous work, the NMPC method was
able to contribute toward acquiring optimal performance
in terms of standoff tracking performance and fuel
consumption compared with using the existing decoupled
guidance structure. However, in this sort of model
predictive control, since the prediction of the target
movement plays an important role in the tracking

performance, this paper focuses on utilizing road-map
information to enhance the target estimation accuracy.
There are not many works on road-constrained estimation
using real road-map data in the literature, and
road-constrained estimation has rarely been dealt or
combined with target tracking guidance, even though a
ground vehicle of interest is moving only on the road in
many cases. Having this in mind, this paper firstly
proposes a practical road approximation algorithm using
constant curvature segments. Secondly, to exploit road
information for precise target estimation, nonlinear
road-constrained Kalman filtering is applied using a
pseudomeasurement approach. Furthermore, to address
nonlinearity of road constraints and provide good
estimation performance, both an extended Kalman filter
(EKF) and unscented Kalman filter (UKF) are
implemented along with the state-vector fusion technique
for cooperative UAVs. Lastly, nonlinear model predictive
control standoff tracking guidance is explained briefly, and
numerical simulations with a pair of UAVs are performed
using realistic car trajectory data in city traffic in the
United Kingdom. In the simulation results, the effect of
improved estimation accuracy on the tracking guidance
performance is analyzed for both broadly used LVFG and
the proposed NMPC guidance.

The overall structure of this paper is given as follows.
Section II contains a definition of the UAV dynamic
model, the ground target, and the sensor model considered
in this study. Section III explains the road-constrained
tracking filter design and sensor fusion utilizing the road
approximation technique. Section IV explains the
decentralized structure, definition of performance index
and constraints, and nonlinear model predictive controller
design for cooperative standoff tracking. Section V
presents numerical simulation results of a standoff
tracking scenario using realistic ground vehicle trajectory
data. Lastly, conclusions and future works are given in
section VI.

II. PROBLEM FORMULATION

A. UAV Dynamic Model

Assuming each UAV has a low-level flight controller
such as a stability/controllability augmentation system for
heading and velocity hold functions, this study aims to
design guidance inputs to this low-level controller for
standoff target tracking. Consider a two-dimensional UAV
kinematic model [25] as:

⎛
⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

v̇

ω̇

⎞
⎟⎟⎟⎟⎟⎠ = f (x, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v cos ψ

v sin ψ

ω

− 1

τv

v + 1

τv

uv

− 1

τω

ω + 1

τω

uω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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where x = (x, y, ψ , v, ω)T are the inertial position,
heading, speed, and yaw rate of the UAV, respectively; τ v

and τω are time constants for considering actuator delay;
and u = (uv , uω)T are the commanded speed and turning
rate constrained by the following dynamic limits of
fixed-wing UAV:

|uv − v0| ≤ vmax (2)

|uω| ≤ ωmax (3)

where v0 is the nominal speed of the UAV. The continuous
UAV model in (1) can be discretized by Euler integration
into:

xk+1 = fd (xk, uk) = xk + Tsf (xk, uk) (4)

where xk = (xk, yk, ψk, vk, ωk)T, uk = (uvk , uωk)T, and Ts is
a sampling time.

B. Ground Target and Sensor Model

General target tracking filters have traditionally been
developed for monitoring aerial targets such as airplanes,
missiles, and so on. Although ground vehicles move with
much lower speeds than aerial targets, they often perform
irregular stop-and-go maneuvers with a much smaller turn
radius. The constant-velocity model usually used for radar
target tracking is thus unsuitable for tracking ground
vehicles, and hence an acceleration or jerk model is a
more suitable candidate. Considering general car behavior,
because the jerk is not negligible, but the acceleration can
be best modelled using a piecewise constant profile over a
specific duration of time, a good model to apply to the
tracking of ground targets is the acceleration dynamics
model [25]. This acceleration model defines the target
acceleration as a correlated process with a decaying
exponential autocorrelation function, which means if there
is a certain acceleration at a time t, then it is likely to be
correlated via the exponential at a time instant t + τ . A
discretized system equation for this acceleration model for
a ground vehicle is thus expressed in the form:

xt
k = Fkxt

k−1 + ηk (5)

where the state vector is xt
k = (xt

k, ẋ
t
k, ẍ

t
k, y

t
k, ẏ

t
k, ÿ

t
k)T ,

and where ηk is a process noise, which represents the
acceleration characteristics of the target. The state
transition matrix Fk is given by:

Fk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Ts � 0 0 0

0 1
(1 − e−αTs )

α
0 0 0

0 0 e−αTs 0 0 0

0 0 0 1 Ts �

0 0 0 0 1
(1 − e−αTs )

α

0 0 0 0 0 e−αTs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where � = (e−αTs + αTs – 1)/α2, and α is a correlation
parameter that models different classes of targets: a small

α for targets with relatively slow maneuvers and a high α

for targets with fast and evasive maneuvers. The details of
the covariance matrix Qk, the process noise ηk, and other
characteristics of this model can be found in [27, 28].

In addition, this study assumes the UAVs are equipped
with a GMTI sensor to localize the position of the target.
Because the measurement of GMTI is composed of the
range and azimuth of the target with respect to the radar
location, the actual measurements are the relative range
and azimuth with respect to the position of the airborne
UAV. Note that in the present paper, the range rate
measurement is not considered. The radar measurement
zk = (rk, φk)T can be defined as the following nonlinear
relation using the target position (xt

k, y
t
k)T and the UAV

position (xk, yk)T as:

zk =h(xt
k) + νk =

⎛
⎜⎜⎝

√
(xt

k − xk)2 + (yt
k − yk)2

tan−1 yt
k − yk

xt
k − xk

⎞
⎟⎟⎠+νk (7)

where νk is a measurement noise vector, and its noise
covariance matrix is defined as:

V [νk] = Rk =
[

σ 2
r 0

0 σ 2
φ

]
(8)

III. ROAD-CONSTRAINED TRACKING FILTER

To make use of road-map information for the
estimation of a target traveling on a road, it is required to
express the road map as a certain type of mathematical
equation. This section first presents a road approximation
algorithm using constant curvature segments and then
applies it to one of the constrained estimations based on
Kalman filtering along with decentralized sensor fusion
using multiple UAVs.

A. Road Approximation Using Constant Curvature
Segments

To generate the road using onboard sensor
measurements or approximate the real road from a given
road map, this study uses constant curvature segments. In
this approach, assuming that some vertices on the road can
be obtained, those vertices are connected by arc segments
of constant curvature by introducing an intermediate point
with C1 contact (which represents that the first derivative
is continuous), as shown in Fig. 1. The curved line (arc)
between the two vertices represents the curved nature of
the real road. The mathematical details of the construction
of the curvature segments between vertices can be found
in [29].

The entire road map can then be modelled by a set of
road segments ri, where i ∈{1, . . . , nr}, and for each road
segment, the center position of the curve and its curvature
are given by the approximation algorithm. Fig. 2 illustrates
the road approximation using the UAV sensor and constant
curvature segments. As the UAV acquires some points on
the road from the visual image sensor (marked as a cross
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Fig. 1. Arc segments connecting two vertices with C1 contact at
intermediate vertex. Two arc configurations are possible with same

(orientation 2) or opposite (orientation 1) sign of curvature.

Fig. 2. Illustration of road approximation process using UAV visual
sensor.

in Fig. 2), the road is generated and extended successively.
If a new point lies on or around the tangent line of a
previous point, the road can be approximated as a straight
line. Especially in the case that road information is not
given in some area, the efficiency of this approach can be
of interest, since only some of the points on the road and
corresponding segment curvature by the algorithm are
required to approximate roads quite close to real roads.
This can be readily exploited for the precise estimation of
the succeeding ground target on the road.

Fig. 3 shows a sample road network of Devizes,
Wiltshire, United Kingdom, together with geographic

Fig. 3. Sample road network with GIS satellite data overlaid
(Google Map).

Fig. 4. Road approximation using constant curvature segments.

information system (GIS) satellite data. Information for
the road of interest, represented as the blue line, is
assumed to be known in this study. Figs. 4–5 show the
approximated road and curvature for each road segment
using some of the known points on the road. Apparently,
the more vertices that are used, the better is the fit to the
road. However, since too many road segments might cause
performance degradation in the constrained estimation, the
appropriate number of vertices on the road needs to be
determined to get a reasonable fit considering the
road-network structure.
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Fig. 5. Curvature of each road segment.

B. Road-Constrained Estimation

Now, assuming that the ground vehicle moves along a
given road map consisting of nr road segments, the
two-dimensional (2-D) position of the vehicle should lie
on one of the segments. This can be expressed as the
following constraint:

ri(x
t
k, y

t
k) = 0 (9)

where ri(·) denotes the ith road segment, which can be
modeled as a straight line, arc, or polynomials. For
example, if the road is straight, the above road constraint
can be expressed as:

ri(x
t
k, y

t
k) = tan θ · xt

k − yt
k = 0 (10)

where θ is a given road direction. In this study, since the
road is approximated using constant curvature segments,
as explained earlier, the road constraint is obtained as:

ri(x
t
k, y

t
k) = (xt

k−xi,ct )
2 + (yt

k−yi,ct )
2−

(
1

κi

)2

= 0 (11)

where (xi,ct, yi,ct) and κ i are the center position and the
curvature of the ith road segment, respectively.

Typically, there are two ways to deal with the road
constraint in a constrained filtering framework. One is to

Fig. 6. Different ways to handle road constraints in constrained filtering
framework.

use the road as equality constraints [12], and the other is to
use the concept of a directional process noise [15], which
represents uncertainty components along and orthogonal
to the road, as illustrated in Fig. 6. In Fig. 6a, the error
bound of a position estimate using conventional filtering
with Gaussian noise is represented as a circle, and
unconstrained estimate x̂unconst is projected onto the road,
resulting in a better estimate x̂const . In Fig. 6b, the process
noise uncertainty Qconst is represented as an ellipsoid
considering the higher motion uncertainty along the road
and the smaller uncertainty orthogonal to the road,
compared to Qunconst, which is represented as a circle. This
study uses a pseudomeasurement method, one of the
constrained Kalman filtering algorithms, which treats the
equality constraints as additional fictitious or
pseudomeasurements [13]. Unlike other approaches, such
as the maximum probability method and the projection
method [11], this approach has the advantage of enabling
consideration of the degree of constraint adherence, by
monitoring the magnitude of the additional
pseudomeasurement noise variance. The
pseudomeasurement model using road constraints can be
written as:

z
ri

k = hri
(xt

k) + ν
ri

k (12)
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where z
ri

k = 0, hri
(xt

k) = ri(xt
k), and ν

ri

k is assumed to be a
zero mean white Gaussian noise with covariance
R

ri

k = (σ road
r )2, which accounts for the uncertainty of road

constraints. Then, the previous real measurement model
(7) is augmented by adding the pseudomeasurement to
give:

za
k = ha(xt

k) + νa
k (13)

where za
k = [zk z

ri

k ]T , ha(xt
k) = [h(xt

k) hri
(xt

k)]T , and
νa

k = [νk ν
ri

k ]T . The measurement noise covariance is also
augmented to be Ra

k = diag(Rk, R
ri

k ). Considering that
ha(xt

k) is nonlinear, the localization of a target can be done
by using the EKF with the augmented measurement
equation, which will be called the
measurement-augmented EKF (MAEKF), in the
form:time update:

xt
k|k−1 = Fkxt

k−1|k−1 (14)

P t
k|k−1 = FkP

t
k−1|k−1F

T
k + Qk (15)

measurement update:

υk = za
k − ha(xt

k|k−1) (16)

Sk = HkP
t
k|k−1H

T
k + Ra

k (17)

xt
k|k = xt

k|k−1 + P t
k|k−1H

T
k S−1

k υk (18)

P t
k|k = (I − P t

k|k−1H
T
k S−1

k Hk)P t
k|k−1 (19)

where the notation k|k − 1 and k|k represent a predicted
state (and covariance) at time step k from the previous step
k − 1 and an updated state at time step k using the
predicted state k|k − 1, respectively. The output matrix Hk

is a Jacobian of ha with respect to the time-update state
xt

k|k−1. As a target is moving from one road segment to
another, an appropriate segment on which the target is
traveling is selected, based on its estimated or a priori
target position, its error covariance, and the road-network
information as:[

xri
e − xt

k|k−1

yri
e − yt

k|k−1

]T [
P

t,pos

k|k−1

]−1
[

xri
e − xt

k|k−1

yri
e − yt

k|k−1

]
< ε (20)

where (xri
e , yri

e ) is the end position of the ith road segment,
ε is the gate threshold parameter, and P

t,pos

k|k−1 is the position
submatrix of the prediction covariance P t

k|k−1. Here, a
current road segment is updated to the next segment once
the above condition is satisfied.

In the case that nonlinearity of the road segment is
severe, since the EKF based on linearization can result in
poor performance, this study also designed the UKF, and
we compared the results between those two filtering
methods. Road constraints can be incorporated into the
UKF by treating it as a pseudomeasurement in a similar
way as in the EKF, but without linearization of constraints,
which provides better accuracy. The UKF is a filter for

nonlinear systems that uses sigma points approximating a
given probability density function [30]. Among various
UKF methods dealing with pseudomeasurements, an
equality constrained UKF (ECUKF) is adopted in this
study, considering its reasonable performance and
computation time [31]. In the ECUKF, at each update step,
the stated estimate of the unconstrained UKF is combined
with the constraints, which are treated as
pseudomeasurements, to obtain a constrained a posteriori
UKF estimate. This constrained estimate is then used as
the initial condition for the next time step.

C. Data Fusion for a Network of UAV Sensors

Since this study assumes that two UAVs carry out the
cooperative standoff tracking of a ground moving target,
each UAV’s GMTI sensor can get its own measurement
and execute the tracking filter algorithm separately. After
each UAV receives the other’s estimation via
communication link, it can run a decentralized sensor
fusion to enhance the tracking accuracy. This study simply
adopts the following simple convex combination
state-vector fusion [32], which is one of the simplest and
easiest to implement state-vector fusion algorithms and
assumes that the cross covariance between two track
estimates can be ignored, and each individual track is
independent [33, 34].

x̂t
k = xt

k|k + P t
k|k(P t

k|k + P
p

k|k)−1(xp

k|k − xt
k|k) (21)

P t
k = P t

k|k − P t
k|k(P t

k|k + P
p

k|k)−1P tT
k|k (22)

where xp

k|k and P
p

k|k represent the state and error
covariance estimations of the pair of UAVs. It is assumed
that the communication bandwidth is wide enough to
transmit the state (6 × 1) and covariance matrices (6 × 6)
in both directions between the pair of UAVs, and the
clocks of the UAVs are synchronized for track-to-track
fusion. Subsequently, x̂t

k in (21) will be used as the initial
value of the state for the model prediction of a target for
nonlinear model predictive control at each sampling point.

IV. MODEL PREDICTIVE COORDINATED STANDOFF
TRACKING

The nonlinear model predictive coordinated standoff
tracking (NMPCST) [25] decides a control input sequence
for N sampling times:

Uk = {u0, u1, · · · , uN−1} (23)

that minimizes the following performance index for
maintaining the distance between a UAV and a ground
target as well as a relative phase angle between UAVs.

J = φ(r̃N , d̃N ) +
N−1∑
k=0

L(r̃k, d̃k, uk) (24)

φ(r̃N , d̃N ) = 1

2
(pr r̃

2
N + pdd̃

2
N ) (25)
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L(r̃k, d̃k, uk) = 1

2

{
qrr̃k + qdd̃2

k + rv

(
uvk − v0

vmax

)2

+ rω

(
uωk − v0

rd

ωmax

)2}
(26)

where

r̃k = r2
d − |rk|2

r2
d

(27)

d̃k = rT
k r

p

k + |rk‖rp

k |
r2
d

(28)

with rk and rp

k representing the relative vectors from the
target position to the positions of the current UAV and its
paired UAV, respectively, and where rd is the desired
standoff distance from the UAVs to the target position, v0

is the nominal speed of the UAVs, and v0
rd

is the nominal
angular velocity. Here, pr, pd, qr, qd, rv , and rω are
constant weighting scalars. The relative geometry between
the UAV, the paired UAV, and the ground target is shown
in Fig. 7.

In (28), d̃k is derived from the inner product of rk and
rp

k as 〈rk, rp

k 〉 = rT
k rp

k = |rk‖rp

k | cos �θk , where
�θk = |θp

k − θk| with the phase angles of the UAV
positions with respect to the current target location. If the
phase difference �θ k is ideally maintained as π radian,
the above equation is rearranged since cos π = −1 as
rT

k rp

k + |rk‖rp

k | = 0. Therefore, if the left-hand side of the
above equation is minimized, the maintenance of the
phase angle can be achieved between a pair of UAVs [25].
To apply this technique to a different phase angle between
UAVs other than 180 degrees, 1

2qd�θ2
k can be used instead

of 1
2qd d̃

2
k . For example, to compensate for the

measurement error in the azimuth of one UAV by the
small range measurement error of the other UAV, a user
can select 90 degrees as a target phase difference between
the UAVs.

By incorporating the dynamics of the UAVs in (4) and
admissible control input ranges described in (2)–(3) as
equality and inequality constraints, an augmented
performance index can be derived as:

Ja = φ(r̃N , d̃N ) +
N−1∑
k=0

[
L(r̃k, d̃k, uk)

+ λT
k+1{fd (xk, uk) − xk+1}

+ 1

2
μvlvkS

2
v (uk) + 1

2
μωlωkS

2
ω(uk)

]
(29)

where Sv(uk) = |u1k−v0|−vmax

vmax
≤ 0, Sω(uk) = |u2k |−ωmax

ωmax
≤ 0,

λk is a Lagrange multiplier, and μv and μω are penalty
function parameters. Here, lvk , and lωk are defined to avoid
unnecessary computation for satisfying inequality
constraints:

l∗k =
{

0, S∗ ≤ 0

1, S∗ > 0
(30)

Fig. 7. Relative geometry between UAV, paired UAV, and ground target.

Let us define a Hamiltonian as:

Mk
�= L(r̃k, d̃k, uk) + λT

k+1fd (xk, uk) + 1

2
μvlvkS

2
v (uk)

+ 1

2
μωlωkS

2
ω(uk) + 1

2
μclckS

2
c (xk) (31)

The variation of the augmented performance index is
represented as:

dJa =
(

∂φ(r̃N , d̃N )

∂xN

− λT
N

)
dxN +

N−1∑
k=1

[(
∂Mk

∂xk

− λT
k

)
dxk

+ ∂Mk

∂uk

duk

]
+ ∂M0

∂x0
dx0 + ∂M0

∂u0
du0 (32)

By selecting the Lagrange multipliers as:

λT
N = ∂φ(r̃N , d̃N )

∂xN

(33)

λT
k = ∂Mk

∂xk

for k = N − 1, . . . , 0 (34)

the variation of Ja is changed to:

dJa =
N−1∑
k=0

∂Mk

∂uk

duk + λT
0 dx0 (35)

Substituting duk to minimize Mk into (35) as

duk = −�k

∂Mk

∂uk

T

(36)

gives the following decreasing variation of Ja.

dJa = −
N−1∑
k=0

�k

∂Mk

∂uk

∂Mk

∂uk

T

+ λT
0 dx0 (37)

Therefore, the control input can be updated using (36)
as:

ui+1
k = ui

k − �k

∂Mk

∂uk

T

for k = 0, . . . , N − 1 (38)

where i is the index of iteration, and �k is the step size.
Derivation of the required Jacobians and definitions such
as ∂φ(r̃N ,d̃N )

∂xN
and ∂Mk

∂uk
can be found in detail in [25].

Each UAV runs the above optimization routine in flight
in a decentralized way at each sampling. When the
measurement on the target comes in, each UAV performs
the target localization and then shares the control/state of
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TABLE I
Simulation Parameters

Parameter Value Unit

α 0.6 N/A
σ a 0.66 m/s2

θd π rad
v0 40 m/s
rd 500 m
rc 30 m

vmax 10 m/s
ωmax 0.2 rad/s
τ v , τω 1/3 s

N 4 (equivalent to 2 s) N/A
(pr, pd, qr, qd, rv , rω) (2e5, 1e6, pr/N, pd/N, 1e2, 5e1) N/A

μv , μω 1e3 N/A
ε 0.8 N/A

Fig. 8. State-vector fusion results based on EKF.

the UAVs and their state/covariance estimation
information of the target via communications.

V. NUMERICAL SIMULATIONS

This section carries out numerical simulations using
the proposed road-map–assisted NMPCST for a moving
ground vehicle. The vehicle trajectory data, acquired at
2 Hz from an S-Paramics [35] traffic model using the

Fig. 9. State-vector fusion results based on road-constrained ECUKF.

Devizes map as previously shown in Fig. 3, are used to
generate the GMTI measurements, composed of relative
range and azimuth angle with respect to the position of the
UAV. Generated GMTI measurements of a pair of UAVs
were mixed with the white noise having the following
standard deviations: UAV1 (σ r, σφ) = (20 m, 7 degrees)
and UAV2 (σ r, σφ) = (30 m, 5 degrees). Note that false
alarms and missed detection in low Doppler or cluttered
areas for the GMTI sensor are considered in this study. For
performance analysis, we used Monte Carlo simulations
with a hundred independent runs and then averaged the
results, unless otherwise stated. The other parameters
needed for NMPCST can be found in Table I.

First, Figs. 8–9 display the estimated position and
velocity of a ground target using the state-vector fusion
based on the EKF and the road-constrained ECUKF,
respectively, from single run results. Table II shows the
mean tracking errors in position and velocity among
different filtering methods. Apparently, the EKF and the
UKF using the decentralized sensor fusion based on the
state-vector fusion of two UAVs shows better performance
than that using only a single UAV, and the
road-constrained ECUKF with data fusion provides the
best estimation accuracy. In addition, Figs. 10–12 display
NMPCST simulation results, including the relative
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TABLE II
Performance Comparison with Different Estimation Methods Averaged Over a Hundred Monte Carlo Simulations

Single UAV Multiple UAVs (State-Vector Fusion)

Unconstrained Unconstrained Road-Constrained

Mean error EKFUAV,1 EKFUAV,2 EKFmulti UKFmulti MAEKFmulti,c ECUKFmulti,c

Position (m) 20.7141 17.5897 14.4868 14.2238 7.7811 7.3599
Velocity (m/s) 3.7757 3.4465 3.2418 3.3099 2.1498 2.0651

Fig. 10. Nonlinear model predictive standoff tracking simulations
results.

trajectories of the UAVs with respect to the ground
vehicle, standoff tracking error, phase angle difference
between UAVs, and control input histories. Note that
high-frequency control inputs are required to be followed
by the UAVs for both velocity and turning rate, which are
hard to achieve in practice. Even though actuator time
delay (τ v , τω) in a UAV kinematic model is used in order
to simulate this effect, more detailed control requirements
will be investigated in future work.

To verify the feasibility and benefits of the proposed
approach, the same scenarios explained above were tested
for broadly used LVFG [19] as well as NMPCST. Here,
the LVFG uses a decoupled one-step feedback control
structure [19]: the heading control for maintenance of
standoff distance, which guides the UAV onto the

Fig. 11. Nonlinear model predictive standoff tracking simulations
results.

generated stable orbit around a target, and the speed
control for phase angle maintenance on the same orbit.
Meanwhile, the NMPC guidance utilizes the coupled
optimal control commands computed over the receding
horizon time steps, thus relying more on the target
estimation accuracy. Table III compares tracking guidance
performance for standoff distance and phase keeping
between LVFG and NMPCST using either the EKF or the
road-constrained ECUKF. It is worthwhile to note that the
performance improvement of NMPCST with changing
estimation method from the EKF to the ECUKF is more
remarkable than that of LVFG, since NMPCST uses
predicted target information to a certain future time
explicitly.
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Fig. 12. Nonlinear model predictive standoff tracking simulations
results.

TABLE III
Tracking Performance with Different Estimation Methods Averaged

Over a Hundred Monte Carlo Simulations

LVFG NMPCST

Mean error EKFmulti ECUKFmulti,c EKFmulti ECUKFmulti,c

Standoff distance (m) 16.0767 12.9999 13.4243 9.5025
Phase keeping (deg) 13.0413 12.8627 12.5695 11.1718

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented the road-map–assisted
standoff tracking of a moving ground vehicle using
nonlinear model predictive control, and particularly
focused on using road-map information to enhance target
estimation accuracy. First, a practical road approximation
algorithm was proposed using constant curvature
segments, and to exploit road information for precise
tracking of a target, nonlinear road-constrained Kalman
filtering using a pseudomeasurement approach was
applied. To address nonlinearity of road constraints and
provide good estimation performance, both the EKF and
the UKF were implemented along with the state-vector
fusion technique. In the numerical simulation results as to
standoff target tracking, the effect of improved estimation

accuracy on the tracking guidance performance was
analyzed for both LVFG and the proposed NMPC
guidance. In brief, this study verified the impact of the
proposed approach on the standoff tracking guidance
performance, and this can be a foundation technique for
intelligence, surveillance, target acquisition, and
reconnaissance (ISTAR) applications in military and
police enforcement domains.

Extension of the proposed road-constrained filtering to
the variable structure IMM filter concept [14, 15] will be
followed as future work, which can consider multiple
roads at junctions and different vehicle models to assign
the target to the corresponding road segment correctly
when there are ambiguities or unreliable sensor
measurements. Additionally, more options for the phase
angle difference between UAVs, including 90 degrees, will
be tested for obtaining better coordinated estimation
performance.
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