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This article presents the implementation of a multithreaded par-
allel architecture, which enables telescope-based optical unmanned
aerial vehicle (UAV) detection and tracking in real time. For effi-
cient image processing an accurate deep learning object detector
is complemented in parallel by a fast object tracker. A transition
strategy between detector and tracker is introduced based on the
tracker reliability, which improves the object localization accuracy
of the system. The deep learning algorithm initializes the tracker and
in the subsequent frames the reliability of the tracker is compared
to the confidence value of each newly detected object to determine
whether a reinitialization is necessary. The implemented architec-
ture successfully demonstrates the parallel combination of an FR-
CNN detector and a MEDIANFLOW tracker to achieve visual UAV
detection and tracking at 100 fps. The proposed reliability-based
strategy outperforms a purely detector and tracker-based strategy
by 6% and 14%, respectively, in terms of intersection over union
at a threshold of 0.5, in scenarios, when the target UAV is flying in
front of a complex background. In addition, the implemented parallel
architecture increases the probability for a flight path estimation,
which requires at least two localizations, by 49 %, when compared to a
nonparallel architecture. Field tests are conducted with the proposed
architecture using a telescope system demonstrating UAV detection
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and tracking at 100 fps in distances up to 4000 m in front of a clear
background.

[. INTRODUCTION

The usage of unmanned aerial vehicles (UAV)s has seen
an unprecedented growth in recent years due to their versa-
tility and manifold utility [1]. Along with many positive
operational scenarios, exploitation of the technology for
malicious activities poses a major threat to public safety.
Many incidents emphasize the enormous negative impact of
UAVs including drone sightings in the vicinity to an airport
inthe U.K. in 2022 [2], dangerous situations close to nuclear
facilities [3] and trafficking in and out of prisons or across
state borders [4], [5]. The mentioned examples illustrate
the dangerous potential of UAVs and show the necessity for
UAV detection systems to enable timely reconnaissance in
order to prepare appropriate defensive measures.

For the task of UAV detection different approaches exist
including RADAR [6], [7], radio frequency [8], acoustic [9],
and electro-optical detection [10]. Each of the mentioned
methods have their benefits and drawbacks. Therefore, of-
ten multiple sensors are combined to a multispectral UAV
detection system [11], [12]. However, most of these systems
ultimately rely on electro-optical sensors to perform object
classification, as visual images can easily be interpreted
by human operators or advanced computer vision algo-
rithms. To extend the operational range of an electro-optical
system, a narrow field of view (FoV) and a large optical
aperture are necessary, which can be achieved by using
telescopes [10]. To increase the situational awareness of
such a system to a larger area, dedicated mounts enable
pan and tilt motion [13]. The typically narrow FoV of a
few degrees coupled with high UAV velocities of more than
20 m/s require real-time computer vision-based detection
and tracking to maintain the UAV within the camera FoV.

Detection, for example in sense-and-avoid (SSA) sce-
narios between an aircraft and an UAV, is facilitated by
using morphological filters [14] paired with SVM classi-
fiers [15]. Other methods to detect moving objects are based
on optical flow [16] or background modeling [17]. However,
these traditional methods are often limited due to a high
false alarm rate making a reliable detection difficult. Deep
learning-based approaches offer an ameliorated detection
accuracy and extensive research has brought up a variety of
algorithms suited for the task, suchas YOLO [18],SSD[19],
FRCNN [20], or Retinanet [21]. Consequently, a lot of
recent research is conducted on deep learning-based UAV
detection [22], [23], [24]. In addition, object tracking can
be performed using deep learning by taking advantage of
bounding box regression for the prediction of the object
location within the next frame [25]. Siamase-based trackers
learn similarity functions between the desired target to track
and the search regions [26]. The improved accuracy comes
at the cost of an increased computational complexity, which
limits the achievable frame rates of these methods. Object
tracking as an autonomous task has been widely researched
and a variety of nondeep learning solutions exist for this
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purpose, which require less computational effort. Minimum
output sum of squared error (MOSSE) [27] and kernelized
correlation filter (KCF) [28] are examples of algorithms
running at high frame rates. These trackers use a correlation
filter to build a model of a selected object online and cor-
relate extracted features to locate the object in consecutive
frames. Channel and spacial reliability tracker (CSRT) [29]
offers an improved accuracy with a lower frame rate uti-
lizing correlation filters calculated in the Fourier domain.
Another example of a high-speed tracker is MEDIAN-
FLOW [30], which uses the Lucas—Kanade method [31] and
estimates an object position by examining the trajectories in
future and past frames. As a prerequisite, an initialization is
necessary, either by a human operator or dedicated detection
algorithm.

To improve the detection and tracking accuracy, various
strategies are explored to combine different algorithms.
A common approach is the combination of a detection
algorithm like background subtraction with a Kalman filter
to ensure an improved tracking performance [32], [33].
For SAA applications detecting moving airborne objects
on collision course is facilitated by extracting features from
warped difference images with subsequent binarization and
morphological filtration [34]. Ensuing creation of mea-
surement vectors through examination of multiple frames
enables object tracking via particle filtering [34] or using
hidden Markov model filters [35]. The SORT framework
is an example of a combination of a deep learning object
detector with a Kalman filter to improve the achievable
frame rates [36]. For SAA onboard of UAVs, a combina-
tion of YOLOvV2 with estimators is used, which creates
firm tracks by associating single frame detections over
different frames in close proximity to form firm tracks to
be then further processed by Kalman Filters [37]. Like-
wise, parallel execution on a multithreaded system enables
collaboration between trackers and detectors, whereas the
decision for the final bounding box is determined by either
trusting the detector, the tracker, or alternating between
the two. These methods, combining Tiny-YOLOV3 [38]
with SiamRPN [26], allow frame rates of up to 48 fps on
a workstation equipped with an Intel i7-6800 k CPU and
a NVIDIA Geforce GTX 1080Ti GPU [39]. Combining a
traditional tracker with a parallel verifier enables to improve
the performance on tracking failures by reinitializing the
tracker with a trusted and verified localization [40]. While
improving the overall tracking performance, these methods
solely rely on the object detector, disregarding the input
given by the trackers, which are usually very robust for
a short number of frames after initialization. As a conse-
quence, each miss-detection reinitializes the tracker and
causes a tracking failure. To allow a collaboration between
tracker and detector, a methodology is needed to determine,
whether a reinitialization of the tracker is necessary or if the
current track is more reliable than the detection.

The contribution of this article is the implementation
and experimental evaluation of a telescope-based system,
capable of detecting and tracking UAVs reliably at 100 fps.
A custom parallel architecture combines a slow and accurate
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deep learning object detector with a fast object tracker to
enable a high sampling rate of the UAV position, which
is necessary to precisely actuate the telescope mount. A
transition strategy is proposed to further improve the collab-
oration between detector and tracker based on the detection
probability and the tracker reliability. Field tests demon-
strate the detection and tracking capabilities of the proposed
system.

The rest of this article is organized as follows. Section 11
offers a detailed description of the system architecture and
methodology of the collaboration between a deep learning
detector and a traditional object tracker. Section III de-
scribes the implemented system, the utilized hardware, the
training dataset, and specifies how the neural networks are
trained. Section IV shows the experiments conducted and
results obtained. Finally, Section V concludes this article.

A. Parallel Architecture
II. SYSTEM DESCRIPTION

In this section, the proposed system architecture and
the concept to enable efficient collaboration between object
detection and tracking algorithm is presented. In order to
combine two algorithms together with a camera to achieve
high performance, a multithreaded approach utilizing sev-
eral CPU cores guarantees fast execution. Fig. 1 shows the
proposed system architecture consisting of various threads
running on different CPU cores. The communication be-
tween threads is implemented via shared buffer locations
within the memory, which use mutual exclusion to prevent
reading and writing to a buffer simultaneously. The cam-
era writes the acquired frames to a double frame buffer,
meaning it alternates between writing an image to two
different buffer spots. As a frame contains a lot of data,
writing and reading takes relatively long. To avoid a waiting
and blocking behavior, the double frame buffer enables
simultaneous reading from one and writing to the other
memory block.

The detector and tracker access the double frame buffer
to read new images, which they internally process to detect
and track objects. The detector, as a sophisticated algorithm,
requires more time to detect objects within a frame, and
thus, only manages to process every fifth camera frame,
which provides images at 100 fps. Upon detecting a UAV,
the tracker is initialized, which has been idle up to this
point. Once initialized, the tracker is capable of processing
every camera frame and provides object localizations also
on frames the detector does not process. The detector data
are used to correct and, if necessary, reinitialize the tracker.
Based on the timestamp of the frame, where the detection
and, in parallel, the tracking is conducted, the mount con-
troller sends the most recent localization as a pan and tilt
command to the telescope mount.

A. Reliability

The decision when to reinitialize the tracker, given a new
detection, is based on the confidence of the detection and
the reliability of the current track. Deep learning algorithms
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Fig. 1. Overview of the parallel architecture. The camera, which is
attached to the telescope, detector, tracker and mount controller are each
running on a separate thread and CPU. The camera provides frames to
the detector and tracker and the latter one is initialized by a new detected
object. Based on the most recent timestamp of the frame, where a tracked
or detected object is found, the mount controller sends pan and tilt
commands to the telescope mount.

provide a confidence value for each bounding box predicted
within an image, which is used to judge how certain the
algorithm is about each detection. Classical object trackers
like the mentioned KCF, MOSSE, or MEDIANFLOW, do
not provide such a value. To estimate a confidence for the
tracker, the reliability metric is used, which can be inter-
preted as the probability that a tracker is correctly tracking
a target n frames after the initialization. The reliability R is
given by [41]

R=¢e" (1
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Fig.2. ASA DDM100 mount and Meade Schmidt Cassegrain
telescope, used for target tracking and image acquisition [10].

where p is the normalized failure rate. The failure rate
for a tracker has to be determined a priori in supervised
manner and represents the track failures over time for a
given number of frames.

By comparing the confidence reported for each detec-
tion by the deep learning algorithm with the preconfigured
reliability value for the tracker, a mechanism is established,
which allows collaboration between tracker and detector
rather than consistently trusting either one of the two in
any situation. Therefore, the tracker is being reinitialized,
only if the confidence of a new detection is larger than the
currently reported reliability. During the initialization of the
tracker, the confidence reported by the detection is taken as
a starting value for the reliability, which then degrades as
the time passes according to (1).

[ll.  SYSTEM IMPLEMENTATION

The implemented system, as shown in Fig. 2, consists
of a Meade Schmidt Cassegrain telescope (LX200-ACF,
Meade Acquisition Corp., Watsonville, USA) with a focal
length of 2540 mm, which is mounted on a DDM100 (ASA
Astrosysteme GmbH, Neumarkt Austria). The system is
equipped with the Moment CMOS scientific camera (Tele-
dyne Photometrics, USA), which has a pixel size of 4.5 x
4.5 nm and is operated at a resolution of 1920 x 1100 pixels
at a frame rate of 100fps. The processing is done on a
PC equipped with an RTX 3080 GPU (Nvidia Corporation,
Santa Clara, California, USA) with 10 GB of GPU RAM,
an AMD Ryzen 3900 CPU (Advanced Micro Devices, Inc.,
Santa Clara, California, USA) with 24 threads on 12 cores
and 32 GB of RAM.
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Fig. 3. Each point represents the size of a bounding box, showing the
distribution of the bounding box sizes within the training dataset. The
bounding boxes are normalized to the image width and height.

A. Object Detection

For object detection region-based convolutional neural
network (FRCNN) [20], a state-of-the-art deep learning ob-
ject detection algorithm, is selected and trained, as it is one
of the most accurate object detectors. As a strategy for train-
ing, fine-tuning is applied, which starts the optimization
process from already pretrained network parameters. The
network is initialized with weights pretrained on the COCO
dataset, which consists of more than 300.000 images with
80 object categories [42]. The dataset is chosen, because
object classes within the dataset, like the airplane class,
are similar to UAVs. Based on this initialization, FRCNN,
equipped with a new detection head, is fine-tuned on the
custom UAV dataset.

The dataset used for fine-tuning contains 18 000 im-
ages, with approximately two thirds being taken from [10]
with additional images of UAVs being added from field
tests using the presented telescope and camera system. The
remaining 6000 images are taken from the Drone versus
Bird (DvB) dataset [43]. From this DvB dataset, which con-
sists of multiple UAV and bird videos, a random selection of
videos is set aside for experiments and from the remaining
videos two images per second are extracted for fine-tuning
to prevent overfitting by adding numerous similar images
to the training set. Fig. 3 shows the bounding box size
normalized to the image width and height of the whole
training dataset. Note, for the training and test dataset, only
images and videos are selected, that contain a single UAV,
as a different approach is necessary to track multiple UAV's
with a narrow FoV [44].

FRCNN [20], pretrained on the COCO-dataset, is fine-
tuned on the custom training dataset, whereas about 8 % of
the data is separated as a validation set and the remaining
data as training set. The fine-tuning process is conducted
for 40 epochs with a stepwise reduction of the learning
rate by a factor of 0.1 after 30 and 35 epochs, respectively.
The remaining hyperparameters for fine-tuning are shown
in Table I. Additional data augmentation via horizontal flip-
ping of the images further extends the size of the dataset to
prevent overfitting [45]. The models are compared after each
epoch and the best model according to the intersection over
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TABLE I
Parameters Used for Fine-Tuning Process of the Selected Object
Detection Algorithm

Algorithm | Learning rate | Weight decay | Momentum
FRCNN 0.0009 0.0007 0.9
1
=== MEDIANFLOW
=== KCF
0.8 MOSSE
206
=
& 0.4
02
0 ‘ ‘ i : ‘
0 5 10 15 20 25 30

Frame number

Fig. 4. Reliability of the selected trackers, which can be interpreted as
the probability that the algorithm is still correctly tracking the object after
a certain number of frames has passed.

TABLE II
Average Time Needed by Each Tracker
for Processing a Single Frame

Algorithm Processing time
MEDIANFLOW 6.7 ms
KCF 7.8 ms
MOSSE 1.1ms

union (IOU) with an overlap threshold of 50% is exported to
be used for inference. During the training process the best
performing model is exported at epoch 24 and achieved an
mAP(0.5) of 88.8% on the validation dataset.

B. Tracker Selection

In order to configure the object tracker reliability ac-
cording to (1), 12 videos, six with a clear and six with a
complex background, containing 6.554 frames, are used.
Each tracker is applied to the video sequences and the failure
rate, meaning when the IOU between tracker output and
ground truth label is below 10%, is recorded [41]. Upon
occurrence of such a track failure, the tracker is automat-
ically reinitialized via the ground truth label to the next
frame. The number of track failures is used to calculate the
normalized track failure rate p and together with (1), Fig. 4
is obtained for the KCF, MEDIANFLOW, and MOSSE
trackers. This calculated reliability based on (1) is used
within the reliability-based strategy to decide whether to
reinitialize the tracker with a new detected object or not.

Examining the time each tracker needs to process a
frame in Table II, all three trackers prove to be suitable for
the task, as the Moment camera is operated at a frame rate
of 100 fps. However, the MEDIANFLOW tracker proves to
be the most reliable from the tested trackers, as it maintains
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(a)

Fig. 5.

(b)

Two example images showing a drone in front of a (a) “clear” and (b) “complex” background. The green bounding box depicts the current

detector output, while the blue bounding box represents the tracker.

a higher reliability over time compared to the other trackers,
as seen in Fig. 4.

V. EXPERIMENTS AND RESULTS

For the experimental evaluation a test dataset is prepared
apart from the mentioned training dataset. The dataset con-
sists of videos taken from the Drone versus Bird challenge,
videos captured with the presented telescope setup and
simulated videos. The latter ones are generated by blending
an image of a drone into a video and simulating its flight
trajectory. The test video sequences are accounting for about
52.000 frames with a mean bounding box size of 132 x
55 pixels. The test dataset is categorized for the experi-
ments into two different categories. “Clear” contains video
sequences with images of a UAV in front of a mostly clear
background, consisting of blue sky or an evenly overcast
cloud cover as seen in Fig. 5(a). The second category,
“complex,” contains videos, where the UAV is in front of a
complex background like trees, buildings, or scattered and
high-contrast clouds, as in Fig. 5(b). The experimental data
only contain video sequences during daytime conditions.

A. Architecture Evaluation

For the evaluation of the architecture the achievable
frame rates, the IOU, and the center location offset (CLO)
are used as metrics [40]. The IOU metric gives a good esti-
mate of how accurate the predicted bounding box represents
the actual ground truth in terms of size and overlap and for
the application an IOU of 0.5 is considered a successful
object localization. The CLO on the other hand measures
the Euclidean distance between the centers of the predicted
and the ground truth bounding box. This metric shows how
accurate the algorithms are locating the object, which is an
important metric when trying to actuate and follow a UAV
with a telescope-based system [40]. Using the IOU of 0.5
and the mean bounding box size of the test dataset, a CLO
of 44 pixel is calculated and considered a successful object
localization.

OJDANIC ET AL.: PARALLEL ARCHITECTURE FOR LOW LATENCY UAV DETECTION AND TRACKING

TABLE III
Achievable Frame Rate of Each
Architecture Approach

Algorithm Frame rate
Proposed approach 100 fps
Detector-based 100 fps
Tracker-based 102 fps
Detector-only 21 fps

To evaluate the proposed reliability-based strategy, two
additional transition strategies are implemented [39]. The
first, a detector-based strategy, reinitializes the tracker on
every single detection by the deep learning algorithm. The
second, a tracker-based strategy, uses the detector for an ini-
tialization of the tracker and follows the tracker output until
the tracker fails, which occurs, for example, when the corre-
lation response of a track falls below a predefined threshold.
Upon tracking failure, the detector reinitializes the tracker
and the process continues. The proposed reliability-based
strategy, as stated in Section II, combines tracker and detec-
tor via the reliability and confidence and therefore, decides
whether a tracker reinitialization is necessarily based on the
reported probabilities. Apart from the transition strategies,
a detector-only approach is also evaluated, which consists
only of the deep learning detector without a parallel running
object tracker.

The analysis of the parallel architecture shows the main
advantage, which is the fast processing speed. Table III sum-
marizes the frame rates of the different transition strategies.
Using the detector-only strategy without any parallelization,
a frame processing speed of 21 fps is achieved, which can
still be considered as real time. However, in an application
like the tracking of fast and agile UAVs, it is desirable to
acquire many position measurements of the target UAV in a
short amount of time. The presented parallel architecture
offers an improvement by a factor of 5, as the system
is capable to provide the UAV position camera frames at
100 fps, which corresponds to the maximum frame rate
of the Moment camera at the specified resolution. The
tracker-based approach is negligibly faster than the other
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10U and CLO of applying the different transition strategies on the two test datasets at 100 fps with a “clear” and “complex” background. The

success rate shows the percentage of correct detections and tracks for the corresponding metric threshold, respectively. (a) Intersection over union
threshold. (b) Intersection over union threshold. (c) Center location offset threshold in pixel. (d) Center location offset threshold in pixel.

two methods, as it requires less tracker reinitializations and
is therefore, limited by the speed of the camera.

The results of the application of the different transition
strategies on the two test video datasets are depicted in
Fig. 6 with the success rate showing the probability of a
tracked or detected bounding box satisfying a given IOU
or CLO threshold. To obtain these results, the test videos
are fed frame by frame into the double frame buffer at a
frame rate of 100 fps. As mentioned, FRCNN is used as
the object detector, which initializes the MEDIANFLOW
tracker and the results are evaluated based on both tracker
and detector output. Evident for all investigated scenarios,
the nonparallel detector-only approach achieves the worst
results, as it does not process most of the frames due to the
low achievable frame rate, as seen in Table III. Fig. 6(a)
and (c) depict the IOU and the CLO, when applied to
the dataset with clear background. The results show, that
the proposed and the detector-based strategy score almost
equally, while the tracker-based solution performs poorly.
The first two transition strategies achieve similar results,
as the dataset containing the clear background leaves little
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room for the detector to make erroneous assumptions of
potential UAV locations and therefore, when a new de-
tected object is reported, the detector confidence is high.
As a consequence, for both transition strategies, an almost
equal amount of tracker reinitializations is reported. The
tracker-based transition strategy underperforms, as it solely
relies on the tracker, which might lose the drone and remain
tracking some proportion of background incorrectly. As the
detector does not correct the tracker until it fails, the result-
ing evaluations shows a degraded performance compared
to the other transition strategies.

Fig. 6(b) and (d) depict the results of video sequences,
where the UAV is flying in front of a complex background.
Again, the tracker-based strategy is severely outperformed
by the other transition strategies due to the same reasons
as before. In contrast to the previous example, the pro-
posed reliability-based strategy outperforms the detector-
based one. In the case of a complex background, always
trusting the detector results in a degraded performance, as
every miss-detection causes a tracker reinitialization. Using
the proposed reliability-based strategy, the tracker is only
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TABLE IV
10U and CLO From Fig. 6 Evaluated at an IOU Threshold of 0.5 and
a CLO Threshold of 44 Pixels

Proposed | Detector- | Tracker- | Detector-
approach based based only
IOU clear 0.65 0.64 0.50 0.17
10U complex 0.53 0.47 0.39 0.18
CLO clear 0.73 0.72 0.73 0.18
CLO complex 0.58 0.52 0.49 0.20

The latter threshold is determined by the mean bounding box size of the test
dataset and an IOU of 0.5. The best results are displayed in bold.

initialized via a detected object with a higher confidence
than the current tracker reliability. This reduces the amount
of tracker reinitializations, as detections with a lower
confidence than the current tracker reliability, are ignored.
Table IV evaluates the probability distributions shown in
Fig. 6 at an IOU threshold of 0.5 and CLO threshold of
44 pixels. For a clear background, the proposed and the
detector-based strategy score equally well both outperform-
ing the tracker-based strategy in terms of IOU with about
14%. For a complex background the proposed reliability-
based strategy outperforms the detector-based strategy in
terms of IOU and CLO by 6% and the tracker-based strategy
by 14% and 9%, respectively.

Finally, a major benefit of the parallel architecture is
analyzed, which is the improvement of the probability for a
UAV flight path estimation, when compared to a nonparallel
detector-only approach. A timely flight path estimation is
necessary to reduce reaction times of the telescope system
and enable correct pan and tilt motions of the mount to keep
the UAV within the FoV of the telescope. Considering the
worst case, a UAV (e.g., DJI Mavic 3) flying at maximum
speed of 21 m/s horizontally through the telescope FoV
remains visible only for a short amount of time depending on
the distance to the telescope system. In a distance of 4000 m
the horizontal FoV of the Meade telescope is 13.6 m, which
means the UAV remains visible for 648 ms. In a distance of
1000 m the FoV is reduced to 3.4 m and the time the UAV is
visible is 162 ms, as depicted in Fig. 7, by the vertical lines.
Within this timespan the system should localize the UAV at
least two times in order to estimate a flight path and keep
the UAV within the FoV by appropriate pan and tilt motions
of the telescope mount.

A prerequisite to determine the UAV flight path are at
least two successful localizations in two frames. Therefore,
the probability of two localization within a certain timespan
is evaluated. For the evaluation, video sequences are fed at
100 fps into the architecture and a UAV localization is con-
sidered successful at an IOU threshold of 0.5 or larger. The
probability is calculated as the number of video sequences,
where two successful localizations are achieved, compared
to the total number of video sequences.

Fig. 7 shows the results of comparing the reliability-
based approach, which is a parallel architecture combining
a detector and tracker, to a nonparallel and therefore less
complex detector-only approach. In contrast to the previ-
ously introduced detector-based strategy, for the detector-
only approach, no tracker is running in parallel and object
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Fig. 7. Probability of two correct UAV localizations, which are
necessary for a flight path estimation, within a given time span. The
parallel architecture using the reliability-based strategy is compared to a
nonparallel detector-only approach. The vertical lines show the minimum
duration a DJI Mavic 3 remains within the FoV of the system at different
distances.

localizations are determined solely by a detector. For both
test datasets, “clear” and “complex,” the parallel architec-
ture outperforms the detector-only architecture, in terms of
localization probability. Considering the mentioned worst-
case example of a DJI Mavic 3 flying at maximum speed of
21 m/s horizontally through the telescope FoV, the vertical
lines show the time the UAV remains within the FoV of the
system for various distances. In a distance of 1000 m the
UAV remains for 162 ms within the FoV and the probability
for two localizations using the parallel architecture is 78%
compared to 29% of the detector-only approach for the
“clear” dataset comparing the solid and dashed blue lines in
Fig. 7. For longer distances, e.g., 4000 m, the UAV remains
visible 648 ms and the probability increases to 95% and 84%
for parallel and detector-only approach, respectively, for the
“clear” case. For the “complex” test dataset, depicted by the
solid and dashed red lines in Fig. 7, similarly, the parallel
architecture achieves better results than the detector-only
approach.

Apart from the evaluation using the test video se-
quences, field tests are conducted demonstrating the ca-
pabilities of the proposed architecture and the telescope
system. The field tests are performed during daytime con-
ditions in a rural area with mostly forest and meadows in
the background but also some buildings. For the tests a DJI
Mavic 3 and a DJI Mini 2 are utilized as UAVs. The UAV
is tracked in front of a clear and complex background, as
depicted in Fig. 8, with the blue and green bounding boxes
showing the detector and tracker output, respectively. The
UAVs are flying up to the maximum speed of 21 m/s for the
DJI Mavic 3 and 16 m/s for the DJI Mini 2. During the field
tests, the distance of the UAV with respect to the telescope
system is determined through the UAVs internal global
navigation satellite system (GNSS) module. Different dy-
namic flight trajectories are tested with an emphasis on tan-
gential movement with respect to the telescope perimeter,
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Fig. 8. Two example UAV tracks captured with the proposed telescope system showing a track of the DJI Mavic 3 in front of a clear background in
distances between 2500 and 4000 m. (a) and the DJI Mini 2 in front of a complex background in a distance of 500 m (b). The blue and green boxes
visualize the detector and tracker bounding box, respectively.

as the focus is adjusted manually for the field tests. Tested
trajectories include the UAV flying at maximum speed in
horizontal and vertical direction, while being tracked by
the telescope. A second scenario involves the UAV entering
the FoV of the telescope with maximum speed to test the
automatic detection and tracking of a new object within the
FoV. Random flight trajectories are tested, whereas the pilot
controls the UAV at will up to the maximum UAV speeds
and accelerations. Finally, as depicted in Fig. 8(a) the UAV
is gradually flying away from the system, while the focus
is being adjusted manually, to determine the maximum
detection distance of 4000 m.

In summary, the proposed reliability-based transition
strategy outperforms the pure detector- and tracker-based
strategies by 6% and 14% in terms of IOU in a scenario
with a complex background. Furthermore, the implemented
parallel architecture allows object detection and tracking
at 100 fps, which improves the probability of two UAV
localizations, and therefore, the probability of a flight path
estimation. The proposed reliability-based parallel archi-
tecture improves the probability for two localizations by
49%, when compared to a detector-only architecture, given
a UAV is visible for at least 162 ms within the FoV of the
telescope system.

V. CONCLUSION

A telescope-based UAV detection and tracking system
has been developed, which combines FRCNN, an accurate
deep learning algorithm, with MEDIANFLOW, a fast object
tracker, to enable real-time UAV detection and tracking over
very long distances. The two algorithms collaborate and the
decision, if a reinitialization of the tracker is necessary is
based on the detection probability and tracker reliability.
The presented system allows to track UAVs at 100 fps and
outperforms a detector- and tracker-based strategy by 6%
and 14% in terms of IOU metric for complex backgrounds.
In addition, if the UAV is visible for at least 162 ms within
the FoV of the camera, the parallel reliability-based archi-
tecture outperforms a nonparallel detector-only approach
by 49% for obtaining at least two localizations to enable
flight path prediction. Furthermore, field tests have been
conducted with the presented architecture and the telescope
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system demonstrating UAV detection and tracking capabil-
ities up to a distance of 4000 m with a frame rate of 100 fps
in front of a clear background. Future work will consist of
integrating a second camera and telescope with a larger FoV
to the system together with a corresponding detector and
tracker to enable multi-FoV object detection and tracking.
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