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Abstract— Electric vehicle (EV) charging patterns are highly
uncertain in both location, time, and duration particularly in
association with the predicted high demand for electric mobility
in the future. An EV can be charged at home, at charging
stations near highway ramps, or on parking lots next to office
buildings, shops, airports, among other locations. Charging time
and duration can be fixed and continuous or flexible and
intermittent. EV user preferences of charging services depend
on many factors (e.g., charging prices, choice of destinations),
causing EV charging patterns to shift in real-time. Hence, there
is a need for a highly flexible EV charging network to support the
rapid adoption of the technology. This study presents a dynamic
scheduling scheme for EV charging facilities considering uncer-
tainties in charging demand, charger availability, and charging
rate. The problem is formulated as a dynamic programming
model that minimizes the travel and waiting costs and charging
expenses while penalizing overcharging attempts. An integrated
generalized Nash equilibrium technique is introduced to solve the
problem that incorporates a Monte Carlo tree search algorithm to
efficiently capture the uncertainties and approximate the value
function of the dynamic program. Numerical experiments on
hypothetical and real-world networks confirm the solution quality
and computational efficiency of the proposed methodology. This
study will promote EV adoption and support environmental
sustainability by helping users lower the charging spot search
burden via a real-time, user-adaptive optimizer. Stakeholders can
retrieve charger utilization and pricing data and get feedback on
their charging network policies.

Index Terms— Electric vehicle, dynamic programming, gener-
alized nash equilibrium, scheduling, Monte Carlo tree search,
shooting heuristic.

I. INTRODUCTION

ELECTRIC vehicles promise huge benefits to society
by supporting environmental sustainability and shifting

our energy consumption in the transportation sector toward
renewable sources. Predicted by Bloomberg [1], 55% of new
sales of automobiles world wide will be EVs by 2040. Rapid
adoption of EVs requires the development of a highly flexible
EV charging network [1], [2] with a wide variety of charging
service options at different locations to satisfy diversified
charging requests from EV users. Recent ongoing govern-
ment and industry plans to deploy charging infrastructure
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Fig. 1. EV user charging behavior given different charger types and user-
centric factors.

are promising and particularly, electric utilities support the
charging network expansions [3]. However, the market size of
charging infrastructure grows much slower than the charging
demand. On the other hand, recent advancements in battery
technology has improved EV driving range but the charging
rate of EVs still remains slow. For instance, typical EVs with
medium-sized battery (i.e., 16 − 24 kWh) are fully charged
within several hours with level 1 chargers. Fully charging
contemporary EVs with ∼50 kWh battery would still take
∼30 min, even with Level 3 fast chargers that benefit from
direct-current (DC). The majority of current EVs are not
capable of DC fast charging due to the connector types and
need to park in charging facilities for hours to recharge [4].
Long-term parking and charging periods, especially with a
static cost for each charging attempt, can accumulate unserved
EV users, particularly in high-demand areas. Therefore, the
charging network needs to be significantly expanded and prop-
erly managed to sustain the transition to EVs. The charging
facility scheduling problem is highly dynamic considering the
stochastic nature of EVs’ state-of-charge (SOC) and travel
plan, charger availability, and charging rate over time and
space. It is beneficial to develop a user-adaptive framework to
dynamically schedule the utilization of existing charging facil-
ities. The optimal schedule shall satisfy the charging demand
while minimizing the travel, charging, and waiting costs of
each individual user. The optimal charger allocation plans will
help share real-time data on the occupancy and waiting time
of charging facilities and expand their usage. Figure 1 presents
various factors that affect EV user decisions with respect to
charger choices. As indicated, two charger types at various
locations, each with a different pricing scheme, are offered.
Users choose chargers that match their criteria (e.g., proximity
to destinations, pricing scheme) and minimize their costs based
on their travel destinations.

This paper proposes a dynamic EV charging scheduling pro-
cedure under uncertain charging demand, charger availability,
and charging rate. The proposed problem is formulated as a
DP with dynamic user behavior and mixed-integer decisions
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that minimizes the total user costs, including (a) travel costs
and waiting time to start the service and (b) charging expenses.
The model aims to find the optimal charging duration and spot
assignment for each EV user over the planning horizon, given
their subsequent travel plans and reactions toward charging
prices and waiting time to get served. A generalized Nash
equilibrium (GNE) based technique, coupled with a Monte
Carlo tree search (MCTS), with an embedded consensus-based
coordination and shooting heuristic is implemented to deter-
mine the optimal schedule of EV chargers (i.e., the required
number of charging time periods) in parking areas and opti-
mally assign users to charging spots at each time period.
In particular, the methodology employs a stochastic look-ahead
technique that first models a GNE to distribute the problem to
EV user-level models. A consensus-based coordination scheme
is incorporated into the GNE procedure to push the user-level
solutions toward system-level optimality and find near-optimal
solutions. Then, an MCTS algorithm, with an embedded tree
policy and shooting heuristic, is implemented to reduce the
expanded search and approximate the value function of the
dynamic program. The tree policy evaluates the available
actions and estimates the value functions over time, while the
shooting heuristic predicts the value of recently added tree
nodes to the tree to determine optimal charging schedules
(i.e., number of time periods to charge and charging spot
assignments at each time period). The numerical results reveal
that the proposed algorithm can solve the problem efficiently.

The exposition of the papers follows. Section II will review
the existing literature on relevant service facility logistics.
Section III presents the model formulation. Section IV illus-
trates the methodology that integrates GNE and MCTS with
embedded tree policy and shooting heuristic. Numerical results
are detailed in Section V. And, Section VI summarizes the
concluding remarks.

II. LITERATURE REVIEW

This section summarizes the literature on (i) park & charge
scheduling, (ii) capturing stochastic effects, (iii) dynamic
control, and (iv) game-theoretic strategies, particularly in the
context of EV charging facility logistics.

A. Park & Charge Scheduling

Literature has shown park-and-charge studies that incor-
porate charging facilities into parking lots to avoid charging
complexities within trip chains. In particular, EVs get charged
while parked at a destination. For instance, [5] have proposed
an optimal recharge scheduling scheme for parking areas on a
daily basis to identify charging spot, time, and amount based
on EVs’ arrival and departure time, SOC, and travel range.
The proposed model aims to maximize the total (i) parking
lot revenue and (ii) number of served EVs (whose charging
requirements are satisfied by the departure time). The model
is formulated as a two-layered problem, where each layer
is optimized independently. Similarly, [6] have implemented
various scheduling algorithms (i.e., first come first serve,
earliest deadline first, shortest job first, and longest job first)
to design plug-in hybrid EV (PHEV) charging schedules,

where earliest deadline first outperforms the rest. The study
assumes a fixed charging rate to schedule PHEV chargers.
[7] have presented a real-time charge scheduling scheme
that accommodates demand response programs in a parking
facility. The response programs restore the balance between
charging demand and supply in a smart grid and optimize the
charging schedule. The optimization aims to simultaneously
(i) maximize the number of EVs selected for charging at
each time period and (ii) minimize the EVs’ utility payments
by choosing proper time slots to charge. The study applies
an on/off strategy for the charge scheduling as a binary
optimization problem. A hybrid technique is implemented
that combines a linear programming and a modified con-
vex relaxation. The proposed approach requires a significant
deployment cost to install chargers at all spots and apply
the on/off strategy. Furthermore, [8] has developed a fleet
charging and repositioning framework to satisfy the shared
electrified mobility demand. Given the location and capacity
of charging facilities by the network operator, the number
of relocated EVs will be determined within the region to
address the asymmetric demand. The problem is formulated as
a queuing-location model that aims to maximize the operator’s
expected annual profit while the facility deployment and EV
repositioning costs are minimized. The study does not incor-
porate the dynamic charging policy of each EV user in their
approach.

B. Capturing Stochastic Effects

A number of studies in the literature have evaluated possible
uncertainties in EV charging schedules. For example, [9] have
proposed a two-stage stochastic optimization model to sched-
ule EV charging under uncertain EV arrival time, charging
price, and charging demand upon arrival. The study aims
to optimize the charging loads by minimizing the expected
operational costs and the number of unserved users within
a fixed time-window captured from the arrival time of each
EV to the charging station. They have applied a Monte
Carlo based sample-average approximation technique and an
L-shaped method to solve the problem. The proposed model
does not account for the uncertainty in charging rates as it
may increase the number of unserved users due to insufficient
charge for their next trips. Reference [10] have proposed a
multi-layer time-space network to schedule a fleet of taxis,
including EVs and internal combustion engine vehicles with
advanced reservations. The problem is formulated as an integer
multi-commodity network flow assuming uncapacitated charg-
ing stations that require significant capital investments. The
study assumes a fixed charging time that impedes EV users to
have flexible charging schedules. On the other hand, [11] have
further considered the impact of vehicle-to-grid (V2G) tech-
nology on power distribution network operators that impose
changes in trip schedules when the V2G payments are high.
The scheduling problem is formulated as a bi-level optimiza-
tion program with the equilibrium activity patterns in the lower
level as a result of the upper-level pricing and AC power distri-
bution. The problem is solved using the method of successive
averages to find the local optimum. The proposed non-convex
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formulation has imposed challenges on finding system-level
optimal solutions.

C. Dynamic Control

Furthermore, [12] have developed a recharging policy to
determine the optimal amount to recharge at each charging
station. A dynamic model that uses forward recursion is
proposed to minimize total EV charging costs by reducing
the number of stops and avoiding overcharging attempts.
This study has implemented heuristic methods for continuous
charging along a path with equally-distant charging stations.
Additionally, [13] have proposed a dynamic programming
(DP) approach to determine the optimal routing and recharging
policy in a network with stochastic charging station availabil-
ity. The proposed model aims to minimize travel time, waiting
time, and charging costs. The state variables are the location
and SOC of EV users as well as charging station availability
at each time period. The optimal policy represents the amount
of charge needed at the current location and the route to the
subsequent charging stop. The proposed DP-based approach
uses an optimal priori policy for a grid network that reduces
the computational burden by dropping the station availability
state from the value function to simplify finding the feasible
paths. However, the problem is still intractable, and suffers
from a large state space as the set of feasible paths dynamically
changes due to the charging station availability that affects the
routing decisions. Reference [14] have introduced a recharging
station and routing problem under time-window constraints.
This study aims to minimize the number of employed EV
drivers and the total distance traveled for last-mile delivery
carriers. A hybrid heuristic approach integrating a variable
neighborhood search and a tabu search is proposed to find
near-optimal solutions. Reference [15] have incorporated the
driving range constraints and charging station capacity into
a scheduling problem for electric buses. A static model is
introduced as a buffer-distance strategy to address the trip time
stochasticity and reduce the en-route breakdown rate of electric
buses. Additionally, a dynamic model is used to update the
road traffic condition and continuously schedule the electric
bus fleet. However, the proposed branch and bound is unable to
solve large-scale cases, especially for the dynamic scheduling
strategy.

The introduction of uncertainties imposes additional com-
plexity to the problem. Literature has presented research
efforts on the implementation of DP approaches with discrete
state and action spaces [16], [17]. Additionally, existing efforts
utilize shooting heuristic (SH), introduced by Newell [18],
[19], to solve boundary value problems in DPs [20]. This
approach aims to reach a targeted final boundary state fol-
lowing a dynamic system. For instance, [21] have utilized
SH in a facility location and capacity acquisition problem
on a line with dense demand. The study presents a DP with
two-point boundary values and solves it with SH. Refer-
ence [22] have also applied a parsimonious SH algorithm to
smoothen the vehicle trajectories moving toward a signalized
intersection by controlling their acceleration profiles. In this
variation of SH, each infinite-dimensional vehicle trajectory
is introduced by a few segments of analytical quadratic

curves. The method builds a large number of vehicle tra-
jectories with physical restrictions, traffic signal timing, and
car following safety. Similarly, [23] have proposed a DP-SH
algorithm for a problem, including a connected automated
vehicle (CAV) trajectory optimization for an intersection con-
trol with a mixed traffic of CAVs and human-driven vehi-
cles. The SH generates near-optimal trajectories for vehicles
in a platoon, while DP adjusts traffic signals for a given
trajectory.

D. Game-Theoretic Strategies

Another category of research has approached the scheduling
problems using game-theoretic models. In particular, a gener-
alized Nash equilibrium (GNE) studies the inter-relationships
between system users as a Nash game, where the strategy
set of each player relies on the other players’ strategies [24],
[25], [26]. For example, [27] have formulated a revenue
management strategy for airline alliances as a Markov game
model, where the decision of one airline in interline itineraries
may result in a sub-optimal revenue for the alliance. While
the Markovian transfer price fails to coordinate an arbi-
trary alliance, the equilibrium acceptance policy is derived
using the value functions from each airline’s dynamic model.
The proposed methodology does not incorporate customer
feedback on airline pricing strategy. Furthermore, [28] have
proposed a microscopic railway traffic optimization model
to simultaneously control railway traffic in real-time while
minimizing passenger travel time. A Nash equilibrium is
achieved given the availability of information on train and
customer arrivals (e.g., first come first serve and timetable
with no delays). The proposed methodology does not consider
the stochasticity involved in information about future railway
states. Literature has shown the relationship between GNE and
quasi-variational inequalities (QVIs) [29]. For instance, [30]
have proposed a bi-level transit fare equilibrium model, where
the upper level represents a non-cooperative game between
multiple transit operators, modeled as a QVI, who adjust
the fare to maximize their own profits. The lower level
formulates a stochastic user equilibrium transit assignment
model.

E. Summary

The aforementioned studies have overlooked the uncertain-
ties in EV charging rates and the availability of charging
options for EV users with flexible arrival and departure times.
Table I summarizes the relevant contributions and research
gaps. This study aims to solve the dynamic EV charging
scheduling considering the uncertainties in charging demand,
charger availability, and charging rate. Given the dynamic user
behaviors and mixed-integer decisions, an integrated solution
technique is developed that includes (i) a GNE procedure with
a consensus-based coordination scheme to find near-optimal
charging schedules and (ii) a Monte Carlo tree search algo-
rithm with an embedded SH and a stochastic look-ahead
technique to reduced expanded search and approximate the
value function of the dynamic program. Next section presents
the proposed model formulation.
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TABLE I

SUMMARY OF RELEVANT LITERATURE

III. MODEL FORMULATION

This section proposes a dynamic scheduling plan for EV
charging facility utilization that assigns EV users to charging
spots based on their arrival time and subsequent travel plans.
Currently, charging facilities are able to show the real-time
occupancies and offer reservations to users using a website
or smartphone app to ensure that a spot is available when
a user arrives. The objective is to minimize total user costs
including (i) travel time from origins to charging facilities
and beyond to final destinations, (ii) waiting time at charging
facilities, and (iii) charging costs. Since the charging rate
generally slows down as SOC reaches battery capacity, users
are discouraged from staying for long hours for a full charge.
In fact, EV users are encouraged to leave chargers with enough
SOC according to their travel plans so that other users can
utilize the chargers. The proposed formulation incorporates
EV user reactions toward charging price and waiting time
at facilities into the dynamic scheduling framework based on
users’ subsequent travel plans.

Table II summarizes all the notations used in this paper.
We first introduce the physical and temporal elements of the
problem. Let T be the number of discrete time periods in the
planning horizon and � = {0, 1, · · · , T − 1} denote the times
at which users make charging decisions. We let J represent
the set of physical parking spaces, where each lot j ∈ J
offers a set of charging spots of type k ∈ K = {0, 1} over
time. A charger type k = 0 represents a slow charger, while
k = 1 indicates a fast charger. We define c jk to represent
the capacity of each charger of type k ∈ K at parking lot
j ∈ J . Let Ĵ t

j k denote the number of charging spots with
type k charger at j ∈ J that first become available at time
t ∈ �. Accordingly, Ĵ t = ⋃

j∈J,k∈K Ĵ t
j k represents the

spatial distribution of all newly recognized charging spots
at time t . Additionally, J t

j k denotes the number of charging
spots with type k charger already available in parking lot j
at time t before any new spot availability. Similarly, J t =⋃

j∈J,k∈K J t
j k represents the total number of charging spots

that are already available at time t . Hence, J t+ denotes the
total number of available charging spots at time period t , where
J t+ = J t + Ĵ t that includes all existing as well as newly
recognized charging spots. We introduce pt

jk to represent the
charging price of a spot with type k charger in lot j at time
t . Accordingly, P t represents the set of charging prices at
time t .

To monitor the EV user activities, we define D̂t for each
t ∈ � to denote the set of users that first arrive at parking
lots (i.e., cruise for available charging spots) in time period t .
Accordingly, Dt denotes the existing users at time t before the
new EV arrivals, i.e., D̂t , are included in the system. Similarly,
Dt+ indicates the set of available EV users at time t , including
the new users that just arrived; i.e., Dt+ = Dt ∪ D̂t . Let B̂t

represents the set of SOCs of EV users i ∈ Dt that first arrive
at time period t who cruise to find an available charging spot
given the occupancy σ t

j k of charger type k ∈ K located in
their preferred parking lot at j . Accordingly, Bt denotes the
SOC of available users at time t . Additionally, bt

i denotes the
SOC of EV user i at time t . We also define � t to illustrate
the set of parking durations (i.e., ψi ) of EV users i ∈ Dt at
time t . Furthermore, L̂t

j k denotes the expected average waiting
time of EV users targeting lot j with type k charger at time
t . Similarly, L̂t = ⋃

j∈J,k∈K L̂t
j k represents the set of newly

perceived waiting times at time t .
The state of the system St at time t is captured by the spatial

distribution of available charging spots and accompanying
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charging prices, distribution of charging demand along with
their SOC and parking duration, and expected waiting time to
get served; i.e., St = {J t ,P t ,Dt ,Bt ,� t ,Lt

}
.

We define the decision variables as follows. At each time
period t , EV user i ∈ Dt makes a decision yi jk on the
location and type of charger they plan to target. In other words,
yi jk = 1 if user i charges with type k charger in lot j , or
0 otherwise. Additionally, ni jk represents the decision variable
on maximum allowed charging duration to be determined at
time period t based on the users’ current SOC and subse-
quent travel plan. Thus, ni jk defines the charging duration
of user i with type k charger in a charging spot at parking
lot j .

We let O and � respectively define the set of EV travel
origins and destinations. EV user i ∈ Dt from origin o ∈ O
may arrive at a charging spot located in parking lot j at time
t ∈ � and take another trip to destination δ ∈ �. Hence,
the charging demand is defined by EVs’ travel origin and
destination, given their arrival time. EV users experience a
driving cost voj from origin o to charging spot located in
parking lot j as well as a driving cost μ jδ to final destination
δ ∈ � to complete their trip remainder. Note that μ jδ can
also be the driving cost of going back to travel origin (e.g.,
home). Besides, μ jδ can be zero if lot j is close enough to the
final destination. The impact of charging facility occupancy on
waiting time is captured as follows [31].

Lt
j k = e jk β j k(1− c−1

j k (σ
t
j k +

∑
i∈Dt

yi j k))
−1,

∀ j ∈ J, k ∈ K , t ∈ �, (1)

where e jk represents the time spent to find an available
charging spot of type k at lot j . Parameter β j k is a constant
that represents the reaction of drivers to shared information
on charging facility occupancies, where β j k = 1 when drivers
are fully aware of the updated occupancies, or 0 otherwise.
The proposed mathematical model optimizes total user costs
at time t , as

min
y,n

φt
i (y, n) =

∑
k∈K

∑
j∈J

(
θ(voj + μ jδ)+ θ �L̂t

j k

)
yi jk

+ αpt
jkni j k + α�(ψi − ni jk) (2a)

subject to ∑
k∈K

∑
j∈J

yi j k ≤ 1, ∀i ∈ Dt , (2b)

ni jk ≤ Myijk ,

∀i ∈ Dt , j ∈ J, k ∈ K , (2c)

bt+1
i ≥ bt

i + π(k + 1)yi jk,

∀i ∈ Dt , j ∈ J, k ∈ K , (2d)

bt
i +

∑
k∈K

π(k + 1)ni jk ≥ Qi ,

∀i ∈ Dt , j ∈ J, (2e)

yi jk +
∑
−i∈Dt

y−i, j k ≤ c jk − σ t
j k,

∀ j ∈ J, k ∈ K . (2f)

Objective function φt
i (y, n) in (2a) aims to minimize the

total costs imposed to user i ∈ Dt at time t ∈ � to travel
from origins to destinations with charging attempts en-route.
Given user i selects a charger of type k at lot j , the first
term defines (i) driving cost voj to parking lot j as well
as μ jδ from charging spot at lot j to destination δ, where
coefficient θ converts travel times to monetary values and
(ii) waiting cost for chargers to become available, where θ �
converts the expected average waiting time to monetary value.
The second term indicates charging expense obtained by price
pt

jk for the duration ni jk of parking, where α is a positive
coefficient that weighs the impact of the charging expense
in total costs imposed to EV users. Finally, the last term
defines a penalty for staying longer than charging demand
for the subsequent travel (i.e., overcharging penalty), where
α� represents the overcharging penalty factor, and ψi is the
parking duration of user i ∈ Dt . Note that if user complies
with the maximum allowed charging duration ni jk (i.e., ψi =
ni jk ) there will be no penalty. We observe an additional cost
if ψi > ni jk when user i stays longer than their charging
demand. Constraints (2b) ensure that each EV user can only
choose one charger at t . Constraints (2c) state that the charging
opportunity is only available at parking lots selected by users.
Constraints (2d) update the SOC, i.e., bt

i , of user i ∈ Dt at
time t , where π represents the charging rate in Kw per time
period. Constraints (2e) ensure that the SOC of user i exceeds
a certain threshold Qi before leaving the charging facility,
given the subsequent travel plan of user i . And, constraints (2f)
ensure the capacity of facility with charger types k at lot j is
not violated.

IV. SOLUTION TECHNIQUE

This section presents a hybrid solution technique that
incorporates a (i) generalized Nash equilibrium, (ii) Monte
Carlo tree search, and (iii) shooting heuristic into a stochastic
look-ahead technique to find the optimal charging duration
and spot assignment for each EV user over the planning
horizon, given their subsequent travel plans and reactions
toward charging prices and waiting time to get served. GNE
distributes the proposed optimization problem (2a)-(2f) to EV
user-level models given the strategy set of other EV users
as exogenous information. Therefore, each EV user solves
a lower dimension optimization problem more efficiently.
Then, a MCTS algorithm with an embedded tree policy is
applied to expand the tree search solely on promising branches.
Moreover, a shooting heuristic is implemented to estimate the
value of recently added tree nodes and determine the optimal
charging schedules.

A. Generalized Nash Equilibrium

The proposed problem in (2a)-(2f) suffers from a huge
state space St , particularly when the number of EV users
searching for available charging spots increases. Each EV user
seeks to minimize its costs in finding an available charging
spot, while the charger availability continuously changes due
to the actions (a.k.a. strategies) of other users in selecting
charging location and duration. The interaction among EV
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TABLE II

SETS, DECISION/STATE VARIABLES, AND PARAMETERS

users (i.e., system players) represents a non-cooperative game-
theoretic model in which players aim to maximize their own
benefits individually without setting any agreement on optimal
solutions. A Nash equilibrium is defined as a condition if no
player can maximize their reward by unilaterally changing

their strategy. According to the literature, this problem can
be formulated as a finite-dimensional variational inequality
(VI) [32], [33]. In particular, a GNE defines the proposed
non-cooperative game as quasi-variational inequalities (QVIs)
to address state-dependent strategy sets of other players [25].
The GNE distributes the proposed problem into univariate EV
user level optimization models. Each user solves a convex
optimization given the strategy set of other users as exogenous
information. Thus, the problem can be solved very efficiently.

The strategy set of system players is subject to dynamic
changes; e.g., un-occupied charging locations vary over time.
We apply a sequential penalty VI approach for QVIs, proposed
by [34], to address the complexities involved in the dynamic
strategy sets. We relax the general constraints (2f) that include
the decision variables of all users and incorporate them as a
penalty term into the objective function (2a) and then, solve a
sequence of penalized VIs, as follows. We let ρz be a positive
increasing parameter that satisfies ρz < ρz+1 and ui,z

j k as a
weight vector for relaxed constraints g(y) for each user i at
lot j with type k charger, where z is the iteration number of
GNE. Then, problem (2a)-(2f) can be reformulated for each
user i , given fixed (y, n) for other users, as

min
y,n

ϕt
i (y, n) =

∑
k∈K

∑
j∈J

(
θ(voj + μ jδ)+ θ �L̂t

j k

)
yi jk

+ α pt
jk ni j k

+ α�(ψi − ni jk)

+ ρ−1
z ui,z

j k exp(ρz gi
j k(y−i, j k , yi, j k)),

subject to (2b)− (2e). (3)

The objective function ϕt
i aims to minimize the total costs

(i.e., driving time to a charging spot, waiting time to get
an available charger, and charging expense) of each user at
each t , given an initial state S0; i.e., minimizey,n ϕ

0
i (y, n) +

E{∑t∈�\{0}minimizey,n ϕt
i (y, n)}.

Now, we propose a consensus-based coordination scheme to
push the user-level solutions toward system-level optimality;
i.e., to find near-optimal solutions. To this end, a penalty term
u + ρ g(y) with associated Lagrangian multipliers (ρ, u) is
defined that represents the violation of constraints (2f) based
on other EV users’ selected strategies. The proposed approach
updates the strategy set of users and estimates the Lagrangian
multiplier u as follows.

ui,z+1
j k ≡ max

(
0, ui,z

j k + ρz gi
j k(y−i, j k)

)
. (4)

EV users form a consensus on the location and duration of
charging attempts by exchanging information on available
spots over time.

B. Monte Carlo Tree Search

This section applies a DP technique to obtain the minimum
total cost for each user in an equilibrium condition. While
the GNE procedure described in Section IV-A distributes
the problem into user-level programs, the newly constructed
problems defined for each user still experience a huge state
space due to unknown uncertainties (i.e., stochastic charging
rate) that occur over the planning horizon. The main source
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of complexity arises in the value function estimation, where
we shall estimate the value of being in a particular state.
Literature shows various techniques to tackle the intractability;
for instance, [35], [36], [37], [38], [39] exclude a state variable
from the set of state variables and approximate the value
function with the remaining ones. There are also studies
that consider a limited number of time periods to simplify
the look-ahead model in the dynamic program [e.g., [40]
and [41]]. In this paper, the set of current waiting time Lt in
the state space is obtained by equation (1) using the occupancy
σ t

j k at each parking lot j for available users i ∈ Dt . Then, the

approximated value function Ṽ t+1(Bt+1,J t+1) only captures
the impacts of available charging spots and SOC of each EV.
The decision at each time t is made as

A∗t (St ) = argmin
y,n∈At (St )

(ϕt
i (Bt ,J t , y, n)+ Ṽ t+1(Bt+1,J t+1))

subject to (2b)− (2e). (5)

For notation simplicity, we let at represent all actions (i.e.,
selected charging spots, selected charger types, and the length
of each charging session) at each time t ∈ �. To ensure that
equation (5) is not unbounded, Theorem 1 denotes that the
value function Ṽ t

a (S
t
a) is confined by a lower bound (i.e., the

objective value of each user will not converge to −∞), and
actions (y, n) are attainable at each time t .

Theorem 1: Given the initial state S0, a lower
bound for value function Ṽ t

a (S
t
a) will be defined as

E[mina ϕ
t
i (Bt ,J t , a)], ∀t ∈ �.

Proof: See Appendix. �
We now define a tree policy to evaluate the available actions
and approximate the value function at each time t . Afterward,
a shooting heuristic is defined to estimate the value of the
recently added node in the tree search. These steps fulfill the
MCTS procedure, as follows.

1) Tree Policy: The huge state space in the proposed
problem, caused by the combination of feasible actions and
exogenous information at each time t , imposes an exponential
growth rate to the tree that makes the computation of value
function at each branch interactable. Therefore, we apply an
MCTS algorithm [41] with a look-ahead policy to (i) effi-
ciently estimate the value function and (ii) effectively capture
the uncertainties.

The MCTS algorithm generally consists of four steps [42],
[43]: selection, expansion, simulation, and back-propagation.
In this study, we first assign each user i to every parking lot
j with an available charging spot to generate the first level
of the tree. We solve (2b)-(2e), and (5) in the selection step
to (i) select the best charging allocation and duration actions
from the pool of possible actions and (ii) estimate their value
functions over iterations until we reach an expandable state.
In each leaf node, if a user is still not assigned to any spot, all
parking lots that are not fully occupied will be added to the
action set, where each is represented by a newly added branch
in the tree. We assume that EV users do not switch between
parking lots after the assignment, where one state is added to
the tree with the same charging spot of the same type. Then,
in the simulation step, the value of the added state is calculated
using SH to observe the impact of uncertain charging rates on

SOC through subsequent time periods (see Section IV-B.2).
Finally, the back-propagation step updates the value functions
of predecessor states based on the estimated value of recently
added states.

We acquire the exogenous information on unexpected aver-
age waiting time at the beginning of each time period t ∈ �,
where the stochastic information is added to the tree to capture
the uncertainties. In the look-ahead model, all variables are
indexed with t, t � to identify the time iteration t in the main
model and t � = t, . . . , t + H − 1 in the look-ahead model,
where H represents a limited time horizon as a threshold for
tree expansion (i.e., inner tree iterations). We apply a two-
stage look-ahead model to (i) update the estimation of value
function Ṽ t,t �(S̃t,t �) with the selected actions and (ii) com-
pute the post-decision Ṽ t,t �

a (S̃t,t �
a ) value functions that include

the effects of adding exogenous information, where S̃t =
{Bt , J t , P t }. Additionally, at state S̃t,t � , we let Ãt, t �(S̃t,t �)
denote the set of decisions, where Ãt, t �

e (S̃t,t �) defines the set
of decisions explored in the tree at time t � and its complement
set Ãt, t �

u (S̃t,t �) represents the unexplored decisions. Once the
action space (i.e., charging spot, type, duration) is set for
time t �, a sample of possible outcomes ω̃ ∈ �̃t, t �+1(S̃t,t �

a )
will be generated and fed into (1) to compute the expected
average waiting time of available users in each lot j , which
is unknown prior to time t . For the possible outcomes, we let
�̃t, t �+1(S̃t,t �

a ) represent all possible random events that can
take place at time t �+1, where �̃t, t �+1

e (S̃t,t �
a ) and �̃t, t �+1

u (S̃t,t �
a )

denote the explored and unexplored possible outcomes,
respectively.

The proposed stochastic MCTS framework has the com-
putational budget of N iterations (see more details in [37]).
At each time t , the current state St is captured to generate
a state S̃t, t � as a root node of the tree, generate the MCTS
algorithm, build a look-ahead model to estimate the value
functions Ṽ t+1, and return the vector of near-optimal actions
A∗t

at time period t . In the selection step, there is a trade-off
between exploiting the high-reward states and exploring the
states frequently ignored during the search, until we reach a
threshold of sufficient possible actions κ . Therefore, in the
selection step, we follow upper confidence-bounding (UCT)
for trees, defined in [42], as follows

ã∗t, t � = argmax
ãt,t �∈Ãt,t �

e (S̃ t,t �)

(
−(ϕ̃t (S̃t,t �, ãt,t �) + Ṽ t,t �

a (S̃t,t �
a ))

+ ι
√

lnN (S̃t,t �)

N (S̃t,t �, ãt,t �)

)
, (6)

where ι is an adjustable parameter to balance exploration
and exploitation, N (S̃t, t �) represents the number of visiting
states S̃t, t � , and N (S̃t, t �, ãt, t �) identifies the number of times
a decision ãt, t � is taken from state S̃t, t � during the tree search
process. Once decisions ãt, t � are made, the state of the system
will be updated, i.e., S̃t, t �

a , where we add a sample realization
of exogenous information to reach the next pre-decision state
S̃t, t � = ST ,a(S̃t, t �

a , W̃ t, t �+1). Here, ST ,a represents the tran-
sition function between the evolution of each two consecutive
state variables. In the simulation step, we develop an SH-based
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Fig. 2. Shooting heuristics with stochastic charging rates.

Algorithm 1 The SH Procedure

procedure SH(bt,t �
i )

Collect bt,t �
i , ni jk , Qi

Set ξ , bt,t �
i,γ ← bt,t �

i , and τ = 1
while γ < ξ
Generate ω̃γ for the required session length ni jk

for τ ≤ ni jk

Update bt,t �+τ
i,γ ← bt,t �+τ

i,γ + π(k + 1)yi jk

end
if bt,t �+n

i,γ < Qi

remove bt,t �+n
i,γ from the generated SOCs

end
end
Average bt,t �+τ

i ← bt,t �+τ
i,γ for all τ

approach to obtain an initial estimation for the newly added
tree nodes. In this step, we first generate a sample path
ω̃ ∈ �̃t, t �(S̃t, t �) to determine the level of information provided
for the users at time t . More details follow.

2) Shooting Heuristic: This section describes an SH to
estimate the value of the recently added node in the tree search.
After adding the node by allocating the charging facility
or identifying the charging duration at each time period t ,
we generate a sample path of charging rates for each EV that
will be followed in the subsequent time periods. Accordingly,
the SOC of each EV is updated by the average value of
sample charging rates. An infeasible solution is reported when
the EV cannot receive the required charge by the time of
leaving the facility (i.e., if ψi < ni jk is observed). We define
ξ as the number of iterations in SH. Figure 2 depicts all
attempts generated by sample charging rates over γ = 1, . . . , ξ
iterations.

Given bt,t �
i as the SOC of user i ∈ Dt at time t and

look-ahead time t �, the sample path ω̃γ denotes the charge
amount offered by the charging facility for (t, t �) at iteration
γ . The SOC of each EV (i.e., bt,t �

i ) is updated based on ω̃γ

values until we reach the parking duration ψi of user i ∈ Dt

(i.e., users i leaves the charging spot after ψi duration). The
proposed heuristic is described in Algorithm 1 as follows that
is embedded in the MCTS framework.

Fig. 3. GNE-MCTS general framework.

Figure 3 shows the general framework for GNE with
an embedded consensus-based coordination scheme and
incorporated MCTS-SH to solve the optimization prob-
lem (2b)-(2e), and (5) under the charging rate uncertainties.

Proposition 1 denotes that SH develops a feasible set of
SOC levels for an arbitrary path of charging rates, given
feasible values of bt,t �

i . Definition 1 supports Proposition 1
by introducing the quadratic cone of SOC values.

Definition 1: The quadratic cone of bt,t �
i defines the set of

sample SOCs based on variant charging rates following the
initial SOC as C

bt,t �
i
= {bt,t ��

i |bt,t ��−1
i + πyi j,0 ≤ bt,t ��

i ≤
bt,t ��−1

i + 2πyi j,1}, where t �� ∈ [t �,max ni jk) is generated
from ω̃γ .

Proposition 1: Given a feasible starting SOC value of bt,t �
i ,

the quadratic cone C
bt,t �

i
is not empty if and only if ψ−1

i (Qi −
bt,t �

i ) ∈ [π, 2π].
Proof: See Appendix. �

Lemma 1: Given any δ� ≥ 0 and a feasible starting SOC
value of bt,t �

i , if quadratic cone C
bt,t �+δ�

i
is not empty, then C

bt,t �
i

is not empty.
The distribution of a central optimization problem into EV

user level optimizations may introduce infeasible solutions
due to the relaxation of the user connection constraints.
Given charging location and duration decision pair (yz, nz)
is bounded, Proposition 2 shows that the solution obtained by
GNE with an embedded consensus-based coordination scheme
[e.g., [40], [44], [45], and [46], [47]] converges to the solution
of (2a)-(2f) for sufficiently large z.

Proposition 2: Given a non-empty C
bt,t �

i
, suppose the

relaxed constraints g(y) is continuously differentiable and
convex for each charging location and duration decision pair
(y, n). Let y∞i j k be the convergence subsequent at iteration
z. Then, y∞i j k is the solution to GNE with an embedded
consensus-based coordination scheme for the sequence of ρz
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and ui,z
j k , if the following hold:∑

k∈K

∑
j∈J

{
ηi

j k∇gi
jk(y
∞
i j k , y∞i j k)−Mν(2)j k

+ ν(3)j k π(k + 1)
}
+ ν(1)|J ||K | = 0, (7a)∑

k∈K

∑
j∈J

ν
(2)
j k −

∑
j∈J

ν
(4)
j π |K | = 0, (7b)

ηi
j k gi

j k(y
∞
i j k) = 0, ∀ j ∈ J, k ∈ K , (7c)

ν(1)(
∑
k∈K

∑
j∈J

yi j k − 1) = 0, (7d)

ν
(2)
j k (ni jk − M yijk − 1) = 0, ∀ j ∈ J, k ∈ K , (7e)

ν
(2)
j k (b

t
i + π(k + 1)yi jk − bt+1

i ) = 0, ∀ j ∈ J, k ∈ K ,

(7f)

ν
(3)
j k (Qi − bt

i −
∑
k∈K

π(k + 1)ni jk) = 0, ∀ j ∈ J, (7g)

ηi
j k ≥ 0, ∀ j ∈ J, k ∈ K , (7h)

ν(1) ≥ 0, (7i)

ν
(2)
j k , ν

(3)
j k , ∀ j ∈ J, k ∈ K , (7j)

ν
(4)
j ≥ 0, ∀ j ∈ J, (7k)

where ν(1), ν(2), ν(3), ν(4), and η denote the Lagrangian
multipliers of constraints (2b)-(2f).

Proof: See Appendix. �

V. NUMERICAL EXPERIMENTS

The solution technique proposed in Section IV is applied to
a hypothetical and a real-world case study to assess the com-
putational performance and solution quality. The methodology
is coded in Java and run on a desktop computer with octa-core
3.1 GHz CPU and 64 GB of memory. A Poisson distribution
is used to generate the initial charging demand pattern (i.e.,
users i ∈ Dt ) for five different time-of-days in a business day,
i.e., early AM, AM peak, mid-day, PM peak, and evening.
Additionally, we assume that the length of charging follows
an exponential distribution [48]. It is also assumed that the
charging rate at each facility follows a normal distribution with
the mean of nominal rate λ (i.e., 6.2 Kw for slow chargers and
12.5 Kw for fast chargers per time period) and the standard
deviation of 10%. The value of π is set to the charging rate
of slow chargers, i.e., 6.2 Kw. We call the CPLEX library in
JAVA to solve the optimization model in (2b)-(2e), and (5) at
each iteration.

A. Hypothetical Dataset

The proposed model in (2a)-(2f) and hybrid solution frame-
work is applied to a hypothetical network shown in Figure 4.
The network dataset includes 18 nodes and 58 links, where
charging facilities are deployed on nodes 6,7,15, and 16 with
5 chargers at each node. EV travel origin is assumed to be
from node 1, while nodes 8 and 11 are the destination nodes.
We have assumed a planning horizon from 8 AM to 5:30 PM
with 30 min time periods. The average vehicle arrivals over
different time-of-days are respectively assumed to be 20, 25,

Fig. 4. Hypothetical network.

Fig. 5. The change in the objective value ($).

20, 15, and 30 for early AM, AM peak, mid-day, PM peak, and
evening for a medium demand level. The low and high demand
levels are assumed to be half and twice the medium demand,
respectively. It is assumed that EV users start their travels from
origin o ∈ O, stop in parking lot j ∈ J , and leave chargers
(i) after reaching to a sufficient SOC for their subsequent
trips or (ii) when their maximum allowed charge duration
is reached. We assume parameter α in the objective function
to be 1. Additionally, the weight α� of charging expense for
staying longer at charging facilities is set to 0.1.

Figure 5 presents the sum of objective values (2a) of all
EVs choosing to charge over all time periods. We can observe
a decreasing trend in the total objective value with respect
to the GNE iterations that indicates EV users keep forming
consensus on optimal solutions. We observe considerable
reductions in the objective value when the number of iterations
increases from 1 to 4. However, the solution does not improve
significantly after iteration 4. As computational time has a
direct relationship with the number of iterations to reach
consensus, we use the iteration 4 results as a base for the
remainder of the algorithm, since no significant improvement
(i.e., less than 0.5%) is observed in the objective value
afterward.

We study the impact of the information exchange among EV
users toward reaching consensus in the proposed scheduling
technique. To this end, we assess the charging facility occu-
pancy over iterations of the algorithm. Figure 6 presents the
marginal occupancy of a facility located in the parking lot
at node 7 in consecutive iterations. We can observe that the
changes in occupancy are significant at the beginning of the
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Fig. 6. Marginal occupancy of consecutive iterations in the hypothetical
dataset.

Fig. 7. Average charging rate (Kw) and frequency for various available
charging time periods in MCTS.

algorithm, while the marginal occupancy reaches a steady state
with zero changes toward the end due to the users’ agreement
on the optimal scheduling actions.

Figure 7 indicates the frequency of selecting charging meth-
ods considering various average charging rates (i.e., k = 1, 2)
for 100 iterations of MCTS over the network. EV users tend
to choose (i) low-occupancy charging facilities with more
available service time periods left for charging per spot due
to the stochasticity involved in charging rates at facilities or
(ii) switch to faster charger types to secure enough SOC before
their subsequent trips.

B. Real-World Dataset

The proposed methodology is applied to a real-world case
study in North Carolina. The network includes 42 nodes,
451 links, and 13 parking lots with charging facilities in North
Carolina State University campus, as shown in Figure 8. The
figure indicates the facility locations that EV travelers (i.e.,
faculty, staff, students, and visitors) tend to charge on campus.
The origins and destinations are located in Raleigh, Durham,
and Chapel Hill. The values for time-to-monetary value coef-
ficient θ , charging cost coefficient α, and overcharging penalty
factor α� are set to 0.1, 10, and 0.1, respectively. We assume
that the number of chargers at each charging facility is 10. The
demand in this dataset is distributed over time as 140, 210,
170, 120, and 230 for early AM, AM peak, mid-day, PM peak,
and evening time-of-days. Similar to the hypothetical dataset,
the low and high demand levels are assumed to be half
and twice of the medium demand level, respectively. With
a 20-time period dynamic scheduling scheme, the real-world
dataset includes 1,120,560 decision variables, given an average

Fig. 8. (a) Travel origins/destinations, NC; (b),(c),(d) Charging facility
locations on North Carolina State University campus. [Map source: Google,
accessed November 25, 2020].

Fig. 9. Objective value ($) over 10 GNE iterations.

of 174 users in each time period. To generate results for the
real-world case study, we run the algorithm up to 10 iterations
for GNE since the solution will not improve significantly
afterwards (i.e., the change in the objective value sum of all
users is below 0.5%).

Figure 9 represents the value of travel cost and charging
expense in the objective function over iterations. As illustrated,
EV users choose the nearest parking lot to their destinations
due to a lack of information from other users in the first
iterations of the algorithm. However, the exchange of infor-
mation over iterations improves the perception of EV users
about the occupancy and demand of each charging facility
for which they may experience slightly higher travel costs.
On the other hand, we can observe a decreasing trend in the
charging expenses due to the newly perceived penalty costs
when the occupancy of all parking lots is updated. Thus,
EV users tend to stay in a charging facility to secure just
enough SOC for their next trips and avoid the overcharging
penalty.

Figure 10 presents the average charging rate as well as the
standard deviation for EV users who are realized at time period
18 (i.e., 4:30-5:00 PM) in the medium demand case. The
standard deviation captures the reaction of users in choosing
the charger types. EV users begin to select slow charging spots
as they are less expensive. However, overcharging attempts
lead to extra waiting costs for incoming users. Therefore, they
will choose fast chargers to avoid the overcharging penalty.
Based on the exchanged information over 10 iterations of
GNE, EV users will charge at facilities with higher charging
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Fig. 10. Average and standard deviation of charging rates (Kw) over 10 GNE
iterations.

Fig. 11. SOC changes (Kwh) of EVs during charging at facility 3.

rates as more appealing facilities (e.g., with lower rates
and consequently lower costs) continue to get occupied by
other users. Although the average charging rate approximately
follows an increasing trend, its standard deviation fluctuates
until all users receive updated information on charging spot
occupancy.

Figure 11 illustrates the average SOC of EV users who
select charging at facility 4 in medium demand case.
As observed, users (with sufficient SOC to reach facility
4 before their SOC falls below 1 Kwh) need to stay in the
charging spots at node 4 to be able to fulfill their upcoming
trips. Note that the maximum distance to final destinations
is assumed to be 48 miles, which requires 16.7 Kwh for
an average EV (i.e., with 2.91 mile/Kwh) in time period 3
(9:00-9:30 AM) and time period 12 (1:30 - 2:00 PM).

Similar to the hypothetical case study, we analyze the
occupancy over iterations. Figure 12 presents changes in the
occupancy of the charging facility located in the lot at node
4 for the medium demand scenario. We can observe significant
changes in each two consecutive iterations over the first itera-
tions of the algorithm. Similarly, the exchange of information
among users leads to a steady state with zero changes toward
the last iteration. The CPU time of this scenario is 3.1 hr .
The results are obtained in real-time as the optimal solutions
are found within the duration of each time period that is
30 min.

We have also conducted a sensitivity analysis to eval-
uate the impact of the overcharging penalty factor α� on
the objective value (2a), considering (1) total travel cost

Fig. 12. Marginal occupancy of consecutive iterations.

Fig. 13. Objective value ($) versus coefficient of penalty term (α�).

Fig. 14. The comparison of objective value ($) in consensus-based and
prioritized scheduling schemes.

and (2) combined charging and penalty costs, imposed to
each user i . As Figure 13 indicates, higher values of α�
change the charging pattern: some EV users leave charging
facilities with a sufficient charge to avoid the overcharging
penalty. Therefore, we see a slight increase in the travel
cost corresponding to movements from charging spots to
regular parking spots. Moreover, we notice that penalty cost
significantly decreases as users tend to avoid the increasing
penalty.

The solutions of the consensus-based approach are com-
pared to those of a benchmark strategy that prioritizes EV
users upon their arrivals. Let us describe how the benchmark
works. At each time period, the users are assigned to available
charging spots following a first-come-first-serve scheme given
the updated system state (e.g., charger availability, charging
demand). If the capacity of a charging facility is reached,
EVs will form a queue to get served without a look-ahead
consideration. The upcoming charging demand and charger
availability are ignored in the user assignments to chargers at
each time period. This implies that the queue length does not
affect the user assignments. Figure 14 and Table III present
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TABLE III

COMPARISON WITH BENCHMARK SOLUTIONS

objective values obtained by our consensus-based (with look-
ahead policy) versus priority-based scheduling after 10 itera-
tions over the entire horizon.

VI. CONCLUSION

This study develops a charge scheduling scheme for EV
users over time and space, given facilities with different charg-
ing types and limited capacities. EV users obtain information
on the charger availability at each facility. Additionally, EVs’
SOC, subsequent travel plans, and departure times are shared
with the network operator upon their arrival at the facility.
The objective is to determine the optimal charging schedule
for each user that minimizes the (i) total travel costs and
charging expenses and (ii) overcharging penalty. The problem
is formulated as a DP model that captures the state of the
system (i.e., EV arrivals at facilities, SOC, available chargers,
pricing scheme, and waiting times) and takes actions using a
stochastic look-ahead technique. The model is first distributed
to user-level optimizations using a GNE approach that relaxes
the coupling constraints connecting users. A consensus-based
coordination scheme is incorporated into the GNE procedure
to push the user-level solutions toward system-level optimality
and find near-optimal solutions. Then, a Monte Carlo tree
search algorithm with an embedded tree policy and an SH is
proposed to efficiently capture the uncertainties and approxi-
mate the value function. The tree policy evaluates the available
actions and estimates the value functions over time, while the
SH predicts the value of recently added nodes to the tree,
under uncertain charging rates, to determine the near-optimal
charging schedules. Numerical experiments on a hypothetical
and a real-world dataset confirm the solution quality and
efficiency of the proposed methodology. The results show that
EV users tend to choose the charging facilities with more
available service time periods left to reduce the uncertainty
involved in the charging rate and guarantee enough SOC
before leaving the charging facility. It will be very interesting
to study the computational performance of the proposed hybrid
solution technique based on a range of problem sizes consid-
ering different network instances and EV charging demand.
Decomposition techniques, e.g., column generation based
approaches [49], [50], reinforcement based techniques [51],
[52], and meta-heuristics [53] could be used to further improve
the computational efficiency. Another future research direc-
tion would be the inclusion of agency-level decisions (e.g.,
charging pricing decisions, infrastructure decisions) into the
framework and solving the problem as a bi-level program
[e.g. [11], [30], [54], [55], and [56]]. It will be worthwhile
to investigate in the future heavy electric vehicle charging

scheduling (e.g., trucks and buses [57], [58], [59]), intercity
travel planning [60], multiple objective decision-making [61],
real-time private parking sharing [62], [63], among other
applications. It will also be interesting to gather real-world
EV charging demand data to analyze the charger utilization
with various scheduling schemes given user preferences over
time.

APPENDIX

Proof of Theorem 1: Proof: As denoted, Ṽ t
a (S

t
a) =

E(ϕt
i (Bt ,J t , a)). Thus, based on the definition of min-

imization we have: Ṽ t
a (S

t
a) = E(ϕt

i (Bt ,J t , a)) ≥
E(mina ϕ

t
i (Bt ,J t , a)). �

Proof of Proposition 1: Proof: We first prove the neces-
sity. If there exists a feasible SOC path (i.e., ψi ≥ ni jk ),
then bt,t �

i + πni j,0 ≤ Qi ≤ bt,t �
i + 2πni j,1. In other words,

the charging threshold can be reached within the parking
duration based on the feasible charging rates. To explore the
sufficiency, given ψ−1

i (Qi−bt,t �
i ) ∈ [π, 2π], we can obtain that

bt,t �−1
i + πni j,0 ≤ bt,t �

i ≤ bt,t �−1
i + 2πni j,1. For ni j,1 ≥ 1 and

know that 2πyi j,1 ≤ 2πni j,1, we can conclude that C
bt,t �

i
is not

empty. �
Proof of Proposition 2: Proof: For all sufficiently large

z, we claim multipliers ν
(1)
z , ν

(2)
z , ν

(3)
z , and ν

(4)
z exist such that:

∑
k∈K

∑
j∈J

((
θ(voj + μ jδ)+ θ �L̂t

j k

)
yz

i j k + αpt
jknz

i j k

+ α�(ψi − nz
i j k)+ ρ−1

z ui,z
j k exp(ρz gi

j k(y
z
i, j k, yz

i, j k))

− Mν(2)j k + ν(3)j k π(k + 1)
)
+ ν(1)|J ||K | = 0, (8a)∑

k∈K

∑
j∈J

((
θ(voj + μ jδ)+ θ �L̂t

j k

)
yz

i j k + αpt
jknz

i j k

+ α�(ψi − nz
i j k)+ ν(2)j k

)
−

∑
j∈J

ν
(4)
j π |K | = 0, (8b)

ν(1)(
∑
k∈K

∑
j∈J

yz
i j k − 1) = 0, (8c)

ν
(2)
j k (ni jk − M yz

i jk − 1) = 0, ∀ j ∈ J, k ∈ K , (8d)

ν
(2)
j k (b

t
i + π(k + 1)yz

i j k − bt+1
i ) = 0, ∀ j ∈ J, k ∈ K ,

(8e)

ν
(3)
j k (Qi − bt

i −
∑
k∈K

π(k + 1)nz
i j k) = 0, ∀ j ∈ J. (8f)

Constraints (8a)-(8f) hold given (7a), (7i)-(7k) and along with
the following condition:∑

k∈K

∑
j∈J (−Mν(2)j k + ν(3)j k π(k + 1))+ ν(1)|J ||K | = 0.

The aforementioned conditions are equivalent to
Mangasarian—Fromowitz constraint qualification [64] at
solution (yz, nz) and thus, the claim holds. �
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