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Abstract— Scene understanding plays a crucial role in
autonomous driving by utilizing sensory data for contextual
information extraction and decision making. Beyond modeling
advances, the enabler for vehicles to become aware of their
surroundings is the availability of visual sensory data, which
expand the vehicular perception and realizes vehicular contextual
awareness in real-world environments. Research directions for
scene understanding pursued by related studies include per-
son/vehicle detection and segmentation, their transition analy-
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sis, lane change, and turns detection, among many others.
Unfortunately, these tasks seem insufficient to completely develop
fully-autonomous vehicles i.e., achieving level-5 autonomy, trav-
elling just like human-controlled cars. This latter statement is
among the conclusions drawn from this review paper: scene
understanding for autonomous driving cars using vision sensors
still requires significant improvements. With this motivation, this
survey defines, analyzes, and reviews the current achievements
of the scene understanding research area that mostly rely on
computationally complex deep learning models. Furthermore,
it covers the generic scene understanding pipeline, investigates
the performance reported by the state-of-the-art, informs about
the time complexity analysis of avant garde modeling choices, and
highlights major triumphs and noted limitations encountered by
current research efforts. The survey also includes a comprehen-
sive discussion on the available datasets, and the challenges that,
even if lately confronted by researchers, still remain open to date.
Finally, our work outlines future research directions to welcome
researchers and practitioners to this exciting domain.

Index Terms— Autonomous driving, autonomous vehicles, con-
text prediction, deep learning, scene understanding, semantic
segmentation.

I. INTRODUCTION

AUTONOMOUS Driving (AD) relies on processed infor-
mation from numerous sensors installed over the vehicle,

perceiving the surroundings, helping to understand the traffic
scenes and control the movements of the vehicle [1], and
hence playing a role of its eyes and ears. These sensors mostly
include high resolution cameras, radar, and Light Imaging
Detection and Ranging (LiDAR) [2] to classify the objects via
feature extraction and to measure the distance to surrounding
objects via radio waves and illumination, so as to eventually
yield a 3D view of the environment. To avoid collision with
on-road obstacles, various types of other sensors have also
been deployed for autonomous vehicles, which include infra-
red, sonar, micro radar, ultrasonic, and short distance sensors.
Similarly, vision sensors are used to equip autonomous vehi-
cles with the ability to understand the visuals of surrounding
environment, which include road lanes detection, traffic light
analysis, road sign detection and recognition, vehicle detection
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Fig. 1. Sample segmented images for an autonomous vehicle, helping in
scene parsing: (a) exemplifies instance segmentation, where each object from
similar classes is segmented into different color with its own boundary pixels;
(b) depicts a semantically segmented image, where objects of similar classes
are highlighted in an individual color, without any differentiation.

and tracking, pedestrian detection (both on-road and off-road),
and short-term traffic prediction [3]. Visual scene represen-
tation and understanding for AD include lanes detection,
traffic lights analysis, traffic signs, surrounding pedestrian and
cars detection, and many other tasks. Accumulating these
information provide more enhanced and safer instructions for
automated actions of the vehicle, such as turning manoeuvres,
lane changing, or braking [4].

Among the various sources of information gathered for
vehicular decision making, vision sensors data [5] are arguably
considered as the most reliable ones [6]. Therefore, this
research domain has been extensively studied and widely
applied in Intelligent Transportation Systems (ITSs) [7],
mostly from a machine learning perspective and by resorting
to deep Convolutional Neural Networks (CNNs). Deep CNNs
embody a special flavor of neural networks with several
functional layers suitable to process images by repetitively
extracting model features from the input image, towards opti-
mally achieving better representations. Scene understanding
from vision data operates likewise, applying a deep CNN over
real-time frames to e.g. interpret a pedestrian location and
its distance from the autonomous car. Beyond this simplified
generic computer vision-based scene understanding, complex
models proposed nowadays are able to generate multiple
labelled outputs (e.g. pedestrians and vehicles), as well as their
localization.

Scene understanding primarily refers to context extraction
from visual data that is based on different features such as
shapes of objects, their distance from the vehicle, and many
other clues including size of the objects and their approaching
speed. A scene analysis can be achieved by accumulating
these information and building a complete scenario of the
scene around the vehicle, so that vehicular systems can be
informed of e.g. the presence of humans in front of the car and
their distance from the autonomous vehicle. When assessed
together, this information helps in actions being taken by
the autonomous vehicle, where the distinction among various
humans, vehicles, buildings, traffic signs, turns etc. is essential
for proper decision making, as visualized in Figure 1. Tradi-
tionally, these information streams are extracted in isolation
using separate computer vision algorithms [11], which are
recently replaced by CNNs-based segmentation mechanisms.
A segmentation mechanism annotates the boundaries of vari-
ous types of objects and assigns different colors to each pixel
identified to belong to different objects. Pixel-level labeling

may refer to semantic or instance segmentation as shown in
Figure 1, where instance-level segmentation assigns different
colors to each object, even in the same class (e.g. vehicles),
whereas pixel-level semantic segmentation assigns the same
color labels for the same class of objects. Among many
traditional segmentation strategies [12], the most widely used
category is semantic segmentation using deep CNNs, which
partitions an ongoing scene into different meaningful elements
such as road, cars, pedestrians, trees, besides other elements
present in the vehicular context.

A. Background and Related Works

Semantic segmentation is widely used in AD applications
until proper scene understanding [13] demands a clear dis-
tinction between two identical objects. For example, sur-
rounding cars pose a similar label in semantic segmentation
networks, and convey a clear understanding of the scene for
further decision making. However, at some point, AD needs
instance-level segmentation to deal with various types of traffic
stakeholders and their levels of engagement. Traditionally,
there are three representative types of semantic segmentation
networks represented in Figure 2: fully convolutional networks
(FCNs), deep fully convolutional neural network architecture
for semantic pixel-wise segmentation known as (SegNet), and
the so-called DeepLab strategy [14], which we briefly revisit
next towards arriving at the purpose of this manuscript.

To begin with, the FCNs [8] architecture is structured
in encoder-decoder formation to extract deep discriminative
features for later instance localization and segmentation task.
The encoder part comprises of standard convolutional and
down-sampling layers typically used in CNNs for classification
problems, where the decoder part used transposed convo-
lutional layer to up-sample the coarse output feature maps
from the bottleneck layers of the architecture as shown in
Figure 2(a). The up-sampling process can be achieved at
coarse and finer level of FCNs i.e., instead of the traditional
last layer output, it can be passed through transposed con-
volution layer(s), that help produce prediction maps of the
same size as the input frame. On the other hand, SegNet is
built upon a series of deconvolutional layers that transform
the extracted features into class score prediction maps as an
output with identical frame size as that of the input. A SegNet
network comprises two functional modules, where the first
extracts features from the input frame using a CNN and the
prediction maps with class scores are constructed via a series
of transposed convolutions and un-pooling layers in the second
module [15], ultimately producing instance-level segmentation
results. This kind of segmentation strategy is also known as
encoder-decoder strategy. Finally, the DeepLab strategy for
semantic segmentation utilizes convolutional layers with an
up-sampled filter, known as atrous convolutions, with bilinear
interpolation to obtain prediction maps of identical size as an
input frame.

Recently a plethora of new semantic segmentation methods
[16], [17], [18], [19], [20], [21], [22], [23], [24] for visual

scene understanding has emerged in the literature, eliciting
impressive results. For instance, Nesti et al. [19] presented a
method that evaluates the robustness of semantic segmentation
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Fig. 2. Various segmentation network architectures, adopted by mainstream research in segmentation as baseline strategies.

approaches for autonomous vehicles. They introduced a novel
loss function to analyze the effectiveness of existing semantic
segmentation methods against real-world adversarial attacks in
autonomous driving environments. Natan et al. [21] proposed
a compact yet efficient multi-task learning semantic segmenta-
tion method to deal with different modes of data. Their method
has the ability to perform various tasks in a unified approach
that includes depth estimation, semantic segmentation, ranging
(LiDAR data) segmentation, and light detection. To analyze
the model uncertainty problem for semantic segmentation,
Zhao et al. [22] presented a pyramid bayesian approach, which
evaluates the uncertainity of semantic segmentation model
for autonomous driving. They examined the performance of
semantic segmentation model (SegNet) by replacing dropout
layers with pyramid pooling layer and claimed improvement
in their model’s performance. Baran et al. [24] introduced a
unique approach for understanding the road view semantics
through onboard Bird’s Eye View (BEV) camera visuals.
They have analyzed the understating of road scenery in three
different perspectives that include image-level, BEV level, and
aggregated temporal road scene understanding. Traditionally,
neural networks are trained using powerful graphics processing
units (GPUs) and huge server computers, whereas inference
is performed over embedded systems in self-driving cars.
Lately the computational complexity has been reduced signif-
icantly by some deep models such as SqueezeNet [25], which
achieves AlexNet level accuracy with 50 times less number
of parameters. Following SqueezeNet, ENet [26] achieved
real-time semantic segmentation over embedded devices. More
recently, semantic segmentation achieved significant mile-
stones from the perspective of time complexity, as reported
in [25] and [26]. For the better understanding of readers, the
graphical overview of the major architectures distribution of

the semantic segmentation driven scene understanding litera-
ture for autonomous driving is depicted in Figure 2.

B. Challenges and Motivation

Self-driving cars have to react instantly according to the
surroundings, where in real-world circumstances there are
higher chances to encounter new type of events, putting the
car in tangle situation. Furthermore, the inherent uncertainty
associated to unknown situation increases the probability of
the model to issue erroneous decisions, putting the lives of pas-
sengers and other counterparts nearby in danger. The inference
of a trained model installed in self-driving cars needs to be
dynamic in nature, perceiving real-time decisions, aware of the
confidence in its own outputs, learning from new events, and
updating the parameters of their model. Similarly, decisions
made by self-driving cars are mostly generated by black-box
neural models, leaving a manifold of open questions for
explainable and accountable decisions made by an autonomous
car. Moreover, future location perception of pedestrians and
vehicles with truly actionable accuracy is still to be achieved
in AD. Similarly, complex driving scene understanding and
visual scene perceptions in adverse weather conditions are
also open challenges yet to be covered in AD domain. All
these challenges are of utmost necessity to see driver-less
cars moving safely in urban areas. Unfortunately, despite prior
efforts [29], [30], the community lacks a consolidated, unified,
single point of reference for ascertaining the current level of
maturity of semantic segmentation techniques for vehicular
scene understanding.

Considering the aforementioned challenges and importance
of vision sensors-based semantic segmentation in accurate
scene understanding and parsing, we accumulate the existing
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research contributions and outcomes in this survey. The main
research questions that are highlighted in this survey are given
as follows. 1) Do the available datasets possess generaliza-
tion potentials for scene understanding in complex visual
scenes? 2) Can the current methods segment complex visual
scenes containing uncertainties such as fog and rain, and
segment the unstructured information including rough roads
and non-smooth pathways for pedestrians? 3) Do the current
methods attentively learn from the ongoing scenes and contain
events-based scene understanding potentials?

C. Contributions

This survey takes a step ahead in this regard by critically
examining the recent state-of-the-art in visual scene under-
standing using segmentation techniques, with the following
main contributions to the ITS community:

1) A thorough introduction to scene understanding, which
defines the generic pipeline and explains each of its steps
individually. This helps newcomers to the field grasp
prior knowledge from all aspects of scene understanding
for AD.

2) A discussion and critical analysis of the most relevant
papers and datasets arising from the notable research
activity on scene understanding witnessed during the last
decade.

3) A performance study of current state-of-the-art methods
by considering their consumed computational resources
and the platforms for which these methods are devel-
oped. In the existing literature, some contributions pro-
vide their open-source implementations. This review
leverages them by executing, analyzing, and comparing
the resources consumed by each method. This study
allows expanding the target audience of this review
towards industrialists with interest in better scene under-
standing strategies that are functional in real-world
environments.

4) A reasoned derivation of future research guidelines
based on the analyzed literature, identifying open prob-
lems and challenges in this domain, as well as research
opportunities that can be explored to address them
effectively.

D. Review Methodology

The research articles discussed in our position sur-
vey are retrieved using different keywords such as scene
understanding in autonomous vehicles, vision-based semantic
segmentation in autonomous vehicles, and multi-class scene
understanding in autonomous driving. Most of the articles
retrieved were purely relevant with some exceptions for
multi-modalities methods [31], [32], weak relevance to the
investigated topic, for instance, point cloud systems [33],
and some outdated articles with relatively old deep learning
strategies [34]. Furthermore, the aforementioned keywords are
searched in multiple repositories including the Web of Science
and Google Scholar to ensure the retrieval of relevant contents.
The inclusion criteria ensures that a paper is recognized among

the AD experts i.e., the number of citations, where we also
analyzed the Use in the Web of Science and the classification of
citations such as checking whether the concerned paper is cited
in most of the articles as a support or in background or general
discussion. In Figure 3, the overall distribution is provided,
where the statistics indicate that the trending publisher in ITS
domain from semantic segmentation understanding perspec-
tive is IEEE, followed by non-reviewed pre-prints in ArXiv
repositories.

The rest of the manuscript is split into five main sec-
tions. Section II highlights the role of segmentation for AD,
and explains some featured methods from related literature.
Section III explains evaluation metrics in use for segmentation
tasks, several loss functions designed for special purposes, and
a time complexity analysis of representative methods from the
segmentation literature. A list of widely used segmentation
datasets are enumerated and described in Section IV, along
with an explanatory discussion on the drawbacks and the
challenges posed by them. Section V exposes open chal-
lenges for scene understanding methods in the AD domain
using segmentation modules, and outlines research direc-
tions to address them. Finally, in Section VI, we conclude
this review with derivations of the whole article and an
outlook.

II. SEMANTIC SEGMENTATION FOR SCENE

UNDERSTANDING IN AD

The primary objective of semantic segmentation is to anno-
tate each pixel of an input image within a range of prede-
fined classes used while training i.e., defining boundaries of
individual entities inside an ongoing scene, assisting in many
applications [45]. The dictionary of possible classes varies
depending on the dataset and the segmentation task under
consideration. Nevertheless, basic objects that are common in
most databases used in semantic segmentation literature for
AD include humans/pedestrians, different types of vehicles
(car, bike, etc.), traffic lights, and many more, [46], [47].
Segmenting different types of objects assists the autonomous
vehicle decision making. For instance, if a nearby pedestrian
is accurately segmented by a deep neural model, it instantly
initiates the brake pressing mechanism by considering the
distance between vehicle and the pedestrian. This is easily
doable using accurate segmentation technique that draws clear
boundaries of pedestrian against other objects, contributing to
real-time decision making.

Semantic segmentation for scene understanding is mostly
performed via RGB cameras. More recently, LiDAR
sensors-based methods have achieved significant results in
segmenting an outdoor scene for autonomous vehicles [36].
There are major fusion-based techniques that allow RGB data
and LiDAR point clouds to interact in a single network for
semantic segmentation [40]. However, in this article we specif-
ically focus on RGB sensors-based semantic segmentation
methods due to their lower computation cost, high level of
applicability, and large field of view. A concise summary
about the literature on LiDAR and multi-modalities semantic
segmentation is given in Table I. Furthermore, interested
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Fig. 3. The overall literature distribution of semantic segmentation driven scene understanding methods for AD. (a) Publisher-wise literature distribution of
scene understanding for autonomous driving. (b) Research article type based literature distribution of scene understanding for AD.

readers can refer to a very recent survey on 3D LiDAR data
for semantic segmentation available in [48].

We now discuss some prominent segmentation methods
featured for AD. Segmentation is widely used in scene
parsing, whereas some methods only focus on specific kind
of objects such as pedestrian, cars, bicyclist, and lane to
incorporate their importance for AD in streets. In order to
attribute the desired level of importance to such objects,
RAPNet [73] contains importance-aware features selection
method to automatically nominate important features for
the predicted labels. By contrast, other mainstream methods
[60], [65] focus on general objects’ segmentation without
granting any importance to objects on road or zebra crossing
areas. Scene understanding in some methods is performed
using segmentation techniques functional in diverse environ-
ments with unstructured roads [74], challenging weather [75],
outdoor complex conditions [76], and varying illumina-
tion [77]. A detailed description of features segmentation
methods is given in Table II.

There exists several survey contributions of computer vision
research community to cover various major challenges, pro-
vide tutorials, and offer future research directions in various
subdomains of AD. These surveys are summarized in Table III.
As can be observed in this table, scene understanding is
not specifically considered to the level of its importance in
AD, and there exist very scarce surveys related to scene
segmentation. For instance, Xue et al. covered scene under-
standing methods based on events reasoning in their baseline
survey [29]. This is the most related survey to our topic,
but it is concentrated on events and intention prediction of
pedestrians and vehicles rather than on scene parsing and
related paradigms. Another recent survey broadly covers road
segmentation methods, but without any focus on their con-
cerned challenges with future research directions in the AD
domain [78]. To the best of our knowledge, this survey is novel

of its kind in the AD literature and is a need of the community
working on autonomous vehicles, given the acknowledged
importance of scene parsing in this domain.

III. PERFORMANCE EVALUATION OF

SEMANTIC SEGMENTATION

The performance evaluation of different semantic segmenta-
tion models used in AD domain are discussed in this section.
Herein, we explain the evaluation metrics, different types of
objective functions, analyze the computational complexity, and
finally provide quantitative comparisons of deep models. The
nomenclature of the used variables is given in Table IV.

A. Evaluation Metrics

Building only a predictive deep segmentation model is not
a wise and trustworthy decision for safe AD unless it is tested
on unseen data. Most models evaluate their performance on
a disjoint set of the same dataset that is used for training,
but still the test data are totally new for the trained model.
Recently, deep models are being developed with more gen-
eralized potentials for unseen data [89]. Deep models for
segmentation are evaluated using some common metrics to
assess the optimal results against ground truth. Based on
the difference between instance and semantic segmentation,
different types of evaluation metrics can be used for these
tasks, which we review next as follows.

1) Intersection Over Union (IoU): The IoU metric [90],
[91] computes the overlapping regions between the predicted
model’s results pred Maskinput and the ground truth mask
GT . It is the simplest metric that essentially counts the
number of common pixels using intersection and union as per
Equation (1).

IoU(pred Maskinput , GT ) = pred Maskinput ∩ GT

pred Maskinput ∪ GT
, (1)
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TABLE I

COMPREHENSIVE DATA TABLE OF EXISTING LITERATURE ON SEMANTIC SEGMENTATION USING LIDAR SENSORY DATA OR FUSION OF RGB AND

LIDARS. HEREIN, FEATURED METHODS ARE PROVIDED AND ARE SELECTED BASED ON THEIR ENDORSEMENT

AMONG SCENE UNDERSTANDING RESEARCH COMMUNITY FOR AD

where pred Maskinput is the mask of labels predicted for
each pixel of the input image, and GT is the ground truth
mask that should be predicted by an ideal segmentation model.
In case of multiple classes (as it often occurs in the related
literature), the IoU score is computed for each class individ-
ually followed by its global average over all classes, giving
rise to the so-called mean IoU. As this method is based on
Jaccard and Dice coefficients, it is also referred to as Jaccard
Index.

Computing IoU over the output of instance segmentation
models is complicated, as it produces multiple masks for each
object inside an input image. Therefore, it becomes similar
to object detection evaluation with the only difference being
the bounding boxes comparison in the object detection prob-
lem, which is replaced by the masks comparison in instance
segmentation.

2) Pixel Accuracy for Semantic Segmentation: Another
commonly used metric is the pixel accuracy Pi xel Acc [57],
which reports the percentage of correctly classified pixels in
an input image when correspondingly compared to the ground

truth mask, as formulated in Equation (2).

Pi xel Acc(�) = T P(�) + T N(�)

T P(�) + T N(�) + F P(�) + F N(�)
, (2)

where T P(�), T N(�), F P(�), and F N(�) respectively denote
the number of true positives, true negatives, false positives, and
false negatives measured over the image, assuming that pixels
of label � are given value 1 and 0 otherwise. As in IoU, it is
also computed individually for every class, and globally for
all classes of a given dataset. For a single-class representation
with comparatively smaller coverage in an image, this metric
is biased as it only reports on the identification of pixels in an
image where a class (positive class) is not present.

B. Special Loss Functions for Semantic Segmentation

In general, various factors may affect the learning potentials
of a certain Machine Learning model. The loss function is
among the most important ones in neural computation, as it
quantitatively evaluates the model’s predictions during training
and improves the performance via gradient updates and back
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TABLE II

COMPREHENSIVE ANALYSIS OF EXISTING LITERATURE ON SCENE UNDERSTANDING METHODS FUNCTIONAL FOR AUTONOMOUS DRIVING. HEREIN,
FEATURED METHODS ARE PROVIDED AND ARE SELECTED BASED ON THEIR ENDORSEMENT AMONG

SCENE UNDERSTANDING RESEARCH COMMUNITY FOR AD

propagation until the the specified number of epochs. There are
multiple loss functions for segmentation tasks. Furthermore,
some research works have hitherto proposed to improve the
segmentation performance further by defining modified/hybrid
versions of these loss functions. Common loss functions can
be found in [92], whereas advanced type of loss functions are
given below with their respective mathematical definitions:

1) Weighted Binary Cross Entropy: It is a variant of cross
entropy loss function that is widely used in many computer
vision problems. It is defined as the difference measure
of two probability distributions (y and ŷ) of corresponding
inputs [93], [94]. In this case, β is used for balancing among
false positives and negatives.

wBC E(y, ŷ) = −β · y log(ŷ) + (1 − y) log(1 − ŷ), (3)

where ŷ is the output of the segmentation network for a given
pixel, and y is its ground truth, and the images and labels
weights are computed using zeros and ones.

2) Balanced Cross Entropy: In this alternative formulation
of the loss function [95], [96], positive and negative samples
are weighted as follows:
wbBC E(y, ŷ)

= −β · y log(ŷ) + (1 − β) · (1 − y) log(1 − ŷ), (4)

hence inserting a complementary weight for negative
samples.

3) Focal Loss: Focal loss F L is a well-established loss
function that can be used in case of imbalanced data [97],
which also occurs frequently in segmentation problems.
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TABLE III

DETAILED DESCRIPTIONS OF SOME REPRESENTATIVE SURVEYS IN THE ITS LITERATURE, SORTED
IN TERMS OF THEIR RELEVANCY TO THE PRESENT SURVEY

Following the previous notation, the focal loss is
given by:

F L(pt) = −αt · (1 − pt )
γ log(pt ), (5)

where pt is the probability that the model predicts for the
ground truth object, γ > 0 is an parameter that permits to
grant more or less relative weight to misclassified examples,
and αt ∈ [0, 1] is set to account for the presence of class
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TABLE IV

LIST OF USED VARIABLES

imbalance or instead, tuned as another hyper-parameter of the
overall model.

4) Others: There are many other types of loss functions1

used in specific cases for segmentation problems, such as
region-based losses [98]. Among them we underscore the
prevalence of studies using the Dice loss, which gets inspired
by the Sørensen–Dice coefficient (namely, a measure of sim-
ilarity between images); the Tversky loss, which extends the
Dice loss with a β coefficient to weight differently false nega-
tives and positives; the shape-aware loss for better address-
ing the segmentation of challenging objects; the Hausdorff
distance loss [99], [100]; and the combo loss, which blends
together the binary cross-entropy loss for curves smoothing
effect and the Dice loss for class balancing problems. We again
refer to [92] for a detailed mathematical compendium of these
loss functions.

C. Time Complexity Analysis

In order to illustrate the current performance levels of
segmentation models used for AD, we now report the results
of some featured deep segmentation models. The overall
report of running time of these models is given in Table V.
Some of the model’s time complexity indicators are reported
from their methods, whereas in other cases we have run
the reported models from their publicly available repositories
using our experimental resources. The system’s configuration
for CPU includes an Intel(R) Core i7-7700 CPU@3.60 GHz
processor running on Windows 10 operating system, while
the GPU used in experimentation is a NVIDIA GeForce GTX
1060 with 6 GB graphics memory. Table V also shows the
predictive performance of the models (when available) over
three different datasets, as well as the size of the trained
models (measured in MB).

1https://cnvrg.io/semantic-segmentation/ (accessed on April 21st, 2021).

TABLE V

PERFORMANCE AND TIME COMPLEXITY ANALYSIS OF FEATURED
SEGMENTATION MODELS. AN UPWARD ARROW DENOTES

THAT THE HIGHER THE VALUE, THE BETTER THE MODEL

(AND VICE VERSA FOR THE DOWNWARD ARROW)

TABLE VI

QUANTITATIVE ANALYSIS

The world’s leading AV chips including Intel Ponte Vec-
chio, NVIDIA A100, Tesla D1, Huawei Ascend 910, and
Google TPU (v1, v2, v3), have achieved mass production for
applications such as 2D/3D fusion annotation and semantic
segmentation training [101]; however, the time complexity
of the analyzed methods running over CPU indicates that the
current neural architectures still need to focus on lowering
the time complexity and energy consumption. The highest
frames per second (FPS) among these methods is achieved
by [57], that is 3 frames per second for CPU. When deployed
over a GPU, the best FPS score is 81.9 frames per second
achieved by [102]. In real-world environments [103], devices
are severely resource-restricted [104], such as Raspberry-pi,
Jetson Nano, and Google Board. Executing such huge models
over these devices is a challenging task. Therefore, much
attention is required in terms of time complexity towards
enabling the execution of these models over energy-limited
devices functional in Internet of Things setups [105], [106].

D. Quantitative Analysis of Scene Segmentation Methods
for AD

This section elaborates on the quantitative empirical analysis
of road scene segmentation methods surveyed in this paper
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TABLE VII

STATISTICAL OVERVIEW OF THE SCENE UNDERSTANDING DATASETS
USED FOR AUTONOMOUS DRIVING. * REPRESENTS A DATASET

WITH ADVERSE WEATHER CONDITIONS

and that empower the automation of AD. For the quantitative
assessment, we inspect the performance of every method
for road scene segmentation using three evaluation metrics:
Mean Intersection over Union (mIoU), Pixel Accuracy, and
Mean Average Precision (mAP). Furthermore, computational
efficiency is accounted for by reporting the FPS achievable
by each method in inference time. The detailed quantitative
results in terms of the aforementioned metrics are given in
Table VI. Results across different scene segmentation datasets
(including Cityscapes, CamVid17, COCO, SemanticKITTI,
and VOC) are reported from the literature and compared based
on their results.

From the reported results in Table VI, it can be noticed
that, among all methods evaluated over the Cityscapes dataset,
the approaches proposed in [26], [27], and [102] attain a
balanced trade-off between accuracy (in terms of mIoU, Pixel
Accuracy, and mAP) and efficiency for real-time applications
(in terms of FPS). By contrast the reported results over
the CamVid17 dataset evince a better segmentation perfor-
mance of the methods contributed in [27] and [102]. Among
these three focused methods, [27] scores best in terms of
mIoU and mAP values, with superior FPS, which are 31.30,
65.50, and 65.5, respectively. The reported results over the
SemanticKITTI dataset indicate a better performance of the
method in [51], achieving well-balanced mIoU and FPS scores,
i.e., 52.20 and 92, respectively. Finally, the method in [65] per-
forms comparatively better than the one in [107], by offering
best values of the mIoU, mAP, and FPS scores (75.70, 83.60,
and 19.5, respectively).

IV. DATASETS

Many datasets are nowadays available for segmentation
tasks, where some of them are related to semantic segmenta-
tion and others are introduced for instance segmentation. Rep-
resentative datasets in the segmentation literature particularly
those designed for AD are discussed in detail in the subsequent
sections and their detailed statistics are given Table VII.

A. KITTI

KITTI [46] is a 3D vision benchmark data containing
outdoor stereo images of road scenery along with its cor-
responding 3D laser scans. The 3D image data is acquired
by two high resolution stereo cameras (gray scale and color),

advanced OXTS RT 3003 localization system that combines
global positiong system (GPS), global navigation satellite
system (GLONASS), inertial measurement unit (IMU), and
real time kinematic (RTK) correction signals. It also contains
Velodyne HDL-64E laser scanner, mounted on the top vehicle
to produce 3D points for the captured scenes in real time.
The deployed stereo cameras are first calibrated and then
synchronized with a localization system and a laser scanner
to generate accurate ground truth data.

The dataset comprises a total of 14999 RGB stereo image
pairs (including both image and its corresponding ground
truth), with a resolution of 1240 × 376 pixels. The entire
dataset is partitioned into a training (7841 samples) and a
test set (7518 samples). The training set is further split into
two subsets, namely, train (3712 samples) and test set (3769
samples), and the latter is used mainly for validation purposes.

B. SemanticKITTI

SemanticKITTI [47] is a large-scale outdoor scene dataset
constructed for point cloud semantic and panoptic segmen-
tation of road scenery, including residential area, city traf-
fic, and highways. It comprises a total of 43552 point-wise
re-annotated 3D scans generated with automotive LiDAR sen-
sor for the KITTI Vision Odometry Benchmark dataset [46].
This dataset has a total of 22 distinct sequences split into
training-validation and test subsets. The training-validation
set consists of 23,201 3D scans from sequences 0 to 10,
while the test set comprises of 20,351 3D scans from
sequences 11 to 21.

Unlike Paris-Lille-3D [113] and Wachtberg [114] datasets,
which only contain the aggregated 3D scans of the com-
plete sequence captured with the same type of sensors,
SemanticKITTI provides the individual point cloud of the
entire captured sequence of road scenery. Thus, it enables
the performance evaluation of semantic segmentation based
on multiple consecutive scans.

C. HighD

The HighD dataset [55] contains around 110,000 refined
trajectories of different vehicles, including cars and trucks.
Those trajectories are captured from drone videos recorded
at a resolution of 4096 × 2160 pixels and 25 FPS over
German highways. For each particular vehicle trajectory, the
dataset provides trajectory ID, speed, acceleration, longitudinal
coordinate, distance to the leader, and ID of the current leader.
These trajectories are widely used to analyze the driving
behavior of car-following drivers using computer vision algo-
rithms. The dataset includes 60 videos of 17 minutes on
average captured in 6 different locations, depicting a road
portion of around 420 meters in length. All videos are captured
in sunny and clear weather conditions, from 8 AM to 5 PM,
thereby minimizing the efforts required for video stabilization
and other post-processing operations.

The dataset includes four different files for each captured
video, including three CSV files and the visual aerial view
of the highway. The first file contains the information about
traffic signs, driving lanes, speed limit on each specific lane,
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and location of the site. The vehicle class, vehicle dimensions,
mean speed, and driving direction is given in the second
file. The third file provides the detailed information such as
speeds, lane position, accelerations, and description of adjacent
vehicles per frame.

D. CityScapes

CityScapes [50] is a high-quality pixel-level semantic
segmentation dataset for urban street scene understanding,
collected in around 50 cities in Germany and neighboring
countries. The dataset provides 5,000 pixel-level annotated
images of resolution 1024 × 2048, depicting complex urban
scenes captured in different weather conditions, varying back-
ground, and scene layout. As compared to other benchmark
datasets for street scene understanding [46], [47], [55], the
CityScapes dataset surpasses the previous efforts in terms of
variety, size, scene complexity, and annotation richness.

To discriminate the semantic representation of each par-
ticular object in the captured image, data is annotated with
30 different categories. For semantic segmentation task, the
entire dataset is split into four separate subsets including 2,993
training images, 503 validation images, 1,531 test images,
and 20,021 auxiliary images. The training, validation, and
test image sets have high-level refined annotations, while the
auxiliary set of images contains coarse annotations.

E. Nuscenes

NuScenes [53] is a large-scale 3D object detection dataset
recently introduced for driving scene understanding in AD.
The dataset is collected in Boston (South Boston and Seaport)
and Singapore (Holland Village, Queenstown, and One North)
using moving car equipped with a suite of specially designed
sensors. The car-mounted suite includes 13 sensors: 6 RGB
cameras with 1600 × 900 resolution and 12Hz capture fre-
quency, 5 long-range radar sensors operating at 77 GHZ with
13Hz capture frequency, 1 LiDAR sensor with 20Hz capture
frequency, and an IMU sensor. All sensors are precisely
synchronized with each other to obtain high-quality data and
better cross-modality between visual and sequential data.

The dataset consists of 1000 driving sequences, where each
sequence is 20 seconds long. Data are annotated by experts
into 23 object classes (i.e., Car, Truck, Human, and Bicycle
etc.), where each object class is further categorized into
10 different sequence classes based on the semantic differences
between the sequences. For training and inference, the dataset
is divided into 700, 150, and 150 annotated sequences for
training, validation, and testing, respectively. Each sequence
comprises 40 frames, offering a 360o view of the surrounding
scenery.

F. Mapillary Vistas

The Mapillary Vistas [62] is one of the largest and chal-
lenging street-level scene segmentation datasets for pedestrian
and traffic-related scene analysis. The dataset contains 25,000
high quality (8.6 Pixels) outdoor scene images of resolution
1920 × 1080 captured from all over the world at different
conditions concerning lightning, season, weather, and daytime.

Images are captured by the sidewalk pedestrians as well as
from the moving cars with various image acquisition devices
including smart phone cameras, action cameras, tablets, and
professional cameras. To prepare the data for supervised
learning-based scene segmentation, data are annotated into
66 distinct object categories with additional 37 classes with
instance-specific labels.

The Mapillary Vistas dataset is 5 times larger than the
benchmark CityScapes dataset [50], providing fine-grained
annotated data generated by 69 expert annotators with poly-
gon style for delineating each specific object in the image.
For semantic segmentation learning task, the dataset is split
into three subsets of images namely training, validation, and
testing, having a total of 18,000, 2,000, and 5,000 annotated
images, respectively.

G. ApolloScape

ApolloScape [115] is an extensive street-level road scene
dataset recently released for a variety of self-driving
applications including car instance segmentation, 3D map
construction self-location, scene parsing, lane segmentation,
scene trajectories, and detection-tracking. The dataset contains
143,906 frames of resolution 3384 × 2710 pixels, with good
quality ground-truth data, comprising pixel-level semantic seg-
mentation, pose information, and 3D point clouds of captured
scene. Compared to the existing publicly available datasets
(i.e., KITTI [46] or the Mapillary Vistas [62]), ApolloScape
comprises almost 15 times more data with rich labeling in
terms of holistic semantic dense point for each scene.

The images and depth data in the dataset are acquired with
car-mounted sensors deployed over various cities of China
under different weather (cloudy and sunny), lightning (day,
night, noon), and traffic conditions (rush and non-rush hours
traffic with pair of stereo images). The suite of car-mounted
sensors includes one VMX-CS6 camera system with two front
cameras having a resolution of 3384 × 2710 pixels, two
VUX-1HA laser scanners with range of 1.2m to 420m and
360o FOV, a measuring head device with IMU/GNSS (heading
accuracy 0.015o, position accuracy 20∼ 50%, and roll and
pitch accuracy 0.005o). During data recording, the vehicle
drives with a speed of 30 km per hour, whereas the mounted
cameras are triggered every 1 meter.

H. Berkely Deep Drive

The Berkely Deep Drive dataset [116] is a large-scale
dataset composed by diverse driving videos and GPS/IMU data
for road scene understanding including drive-able area seg-
mentation, road objects detection, instance segmentation, and
lane mark detection. The dataset includes around 10,000 hours
of driving stream depicting visuals of towns, highways, and
rural areas of San Francisco Bay Area, New York, and other
cities of USA in varying weather and lightning conditions.
Besides the video data, the dataset also provides GPS/IMU
driving trajectories for location tracking, recorded with GPS,
IMU, gyroscope, and magnetometer sensors. The dataset pro-
vides image-level annotations for a variety of driving scene
understanding tasks. Object detection annotations include traf-
fic light, traffic sign, bus, person, motor, bike, truck, car, train,
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and rider. The instance segmentation annotations contain car,
road, pedestrian, person, footpath, and traffic boards etc.

I. COCO

The Common Objects in Context (COCO) dataset [66]
is one of the predominant databases released by Microsoft,
widely used for object detection, semantic and object instance
segmentation, and object captioning. The dataset embeds
330,000 images with more than 200,000 labeled instances,
250,000 persons with key points, human pose estimation, and
1,500,000 object instances categorized in 80 distinct classes.
The image data is collected from different sources including
relevant object images from the PASCAL VOC dataset [67]
and the Flickr site uploaded by amateur photographers with
search-able keywords. The entire dataset is collected and
annotated for object detection, instance segmentation, and
image captioning using an interface specifically designed for
hired expert annotators.

Originally the COCO dataset is released into two parts:
the first part of the dataset was released in 2014, where
the second part of the dataset was introduced in 2015. The
first part comprises three subsets of images including 82,783
training, 40,504 validation, and 40,775 testing images. Like-
wise, the second release of the dataset comprises 165,482,
81,208, and 81,434 images for training, validation, and testing,
respectively.

J. VOC (2007 and 2012)

The PASCAL VOC (Visual Object Classes) [67] is one
of the most challenging datasets publicly available and is
used for image classification, object detection, and image
segmentation. Similar to the COCO [66] dataset, the VOC
dataset is released into two parts: VOC 2007 and VOC 2012.
The VOC 2007 release contains a total of 9,962 images
and their corresponding annotations split into three subsets:
2501 training, 2510 validation, and 4951 testing images. The
VOC 2012 release includes 22,531 images divided into three
subsets of 5,717, 5,823, and 10,991 images for training,
validation, and testing, respectively. The dataset is captured
from two different sources (flickr photo-sharing website and
the Microsoft Research Cambridge database).

All images of the VOC 2007 and VOC 2012 datasets
are annotated with two distinct attributes, i.e., object class
and bounding box, which denote the object type and the
coordinates of the object location. Both datasets contain
20 classes, where each class contains a varying number of
images. However, each class contains at least 500 images,
depicting common objects such as cat, dog, person, car,
and bike. For each of these categories, a comprehensive set
of images is supplied, each having semantic richness and
significant variability concerning to object size, illumination,
pose, occlusion, orientation, and position.

V. SCENE UNDERSTANDING IN AD:
CHALLENGES AND DIRECTIONS

The datasets introduced above possess a wide variety of
objects, with some of them posing least importance towards

decision making of an autonomous vehicle such as sky
and buildings. Mainstream research contributed nowadays
is centered towards favorable daytime scenes for seman-
tic segmentation, with sufficient illumination and support-
ive weather conditions. Many car companies and Original
Equipment Manufacturer in industry have access to a high
volume of data; however, they are not keen to share their
data publicly, mainly due to IP, industrial competitions, and
General Data Protection Regulations (GDPR) concerns. Con-
sequently, lack of sufficient labelled data for accurate scene
understanding in dynamic weather conditions with varied
illumination conditions, such as night time [117], smoggy
situations, and edge cases remains a challenging task for AD
research.

This research niche is among the challenges that are still
insufficiently addressed by the community to date. In this
section we offer our critical views on the current status of
scene understanding in AD, summarizing them in a set of
challenges together with a prescription of the research direc-
tions that can help the community step further and overcome
them effectively.

A. Open Challenges

Although significant research has been done and AD indus-
try is widely growing but still there are several open challenges
to achieve perfectly intelligent AD, demanding researchers’
attention. These challenges are discussed individually with
supported references from the related literature.

1) Salient Objects Consideration: While much work has
been done in the field of segmentation, very less attention
has been paid to objects’ distinction based on safety levels or
priorities. For instance, a segmentation model only segments
humans in an ongoing scene without any consideration of
their location or their movement speed, which can be use-
ful to control the autonomous vehicle and avoid accidents.
There are various challenges while considering an object’s
location during segmentation. For instance, the distance of
the object from the autonomous vehicle, where the closest
distance can be segmented as the highest risky level and the
vehicle needs to take actions accordingly. Similarly, an object
using zebra crossing and another one walking on roadside
can be prioritized differently [73]. Furthermore, motion of the
objects [118] from or towards the autonomous vehicle is also
an open issue to be faced by future deep learning models for
scene segmentation. Object’s motion towards the autonomous
vehicle with higher speed segmentation map needs quicker
actions and vice versa.

2) Coarse-Structured Information: Most of the datasets
introduced in AD literature for segmentation are recorded in
normal and well-structured infrastructures of advanced cities.
The currently developed deep learning models may achieve
best results2 over structured datasets [50], but generalize
poorly in many unstructured environments, as given in a
sample scenario in Figure 4. For instance, an online challenge
NCVPRIPG-2019 focused on unstructured road data recorded

2https://www.cityscapes-dataset.com/benchmarks (access: April 8th, 2021).
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in India.3 The highest mean IoU achieved so far in this
competition is 0.6276 over the testing set, which reflects the
enormous difficulty of achieving models with good generaliza-
tion properties in complex scenes. This aspect of AD demands
further attention in terms of data collection, as well as the
inclusion of new and effective representation mechanisms in
deep learning models.

3) Uncertainty-Aware Decisions: A largely overseen aspect
of scene understanding and AD decision making thereof is
the confidence under which models elicit their predictions
over the input data. The fact that the vehicular surround-
ings are inherently uncertain ecosystems seem not to have
persuaded the community to delve into this matter, step-
ping aside current methodological trends centered exclusively
on predictive scores. Fortunately, confidence estimation has
grasped the attention of the community recently (see e.g. [119],
[120], [121] and references therein included). Nevertheless,
elements from evidential deep learning [122], Bayesian for-
mulations of deep neural networks [123], simpler mechanisms
to approximate the output confidence of neural networks
(e.g. Monte Carlo dropout [124] or ensembles [125]) and other
assorted methods for uncertainty quantification [126] should
be progressively incorporated as an additional yet crucial
criterion for decision making. This is specially important when
dealing with complex environments, in which the lack of data
that can fully represent any possible scene induces a large
amount of epistemic uncertainty in the output of the model.
Without confidence being considered as an additional factor
for AD, or with current studies focused solely on predictive
and/or computational efficiency aspects, there will be no
guarantees that new scene segmentation models upsurging
in the scientific community are of practical use and can be
transferred to industry.

B. Future Directions

The aforementioned challenges and our literature analy-
sis suggest a number of research opportunities for advanc-
ing over the current state-of-the-art in vision-based semantic
segmentation-assisted scene understanding for AD. We herein
offer our envisioned directions:

1) Explainable AD: Deep segmentation models emerging
from the AD literature generate their output without eliciting
any explanations of how it applied an action during the
drive, associating the model’s decision with certain complica-
tions. If a certain non-explanatory decision of an autonomous
vehicle led to an erroneous behavior, causing accidents and
traffic irregularities would be problematic from the legal
perspective. Explanations of the model’s decision are neces-
sary for AI-based decisions to be verified, interpretable, and
accountable.

Recently, many deep models are there to explain the gen-
erated output [127], that could be applied in AD domain to
explain the contributions of a model in a driving decision.
Considering achievements so far in explainable Artificial Intel-
ligence (XAI, [128]), AD can harness the myriad of post-hoc

3https://cvit.iiit.ac.in/ncvpripg19/idd-challenge/ (access: April 8th, 2021).

Fig. 4. Sample images with segmentation ground truth from coarse-structured
road of India Driving Lite Dataset [74] and CVPR-2018 autonomous driving
challenge dataset4 . The images in (a) and (b) unleash several challenges for
a deep learning segmentation model, whereas the image in (c) seems to be
easily segmented for scene understanding.

XAI techniques available for generating explanations. How-
ever, such produced explanations may not suffice in practice as
their limited scope may not demonstrate the overall interpreta-
tion of a model, but rather provide a correspondence between
what the model observes in an input to predict their output.
Further research is extensively needed in this direction to
produce an enriched narrative connecting vehicular perception
to automated actions, as we elevate gradually towards realizing
the highest level of AD.

2) Towards Video Segmentation for AD: Semantic segmen-
tation using frame-based visual data has achieved consid-
erable attention, with major improvements in the last two
years. Although there are significantly robust techniques for
frame-level segmentation, they are still mostly designed for
achieving better accuracy levels, compromising their compu-
tation efficiency. Therefore, when image-based segmentation
is employed in AD, it results in large processing latencies

4CVPR 2018 WAD Video Segmentation Challenge, https://www.kaggle.
com/c/cvpr-2018-autonomous-driving (accessed: April 15th, 2021).
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Fig. 5. Visual segmentation results of various deep segmentation models over input images having variable weather conditions such as snow and fog. The
segmented maps of DeepLab and OmegaNet are not trustworthy for an autonomous vehicle’s scene understanding.

that are unaffordable for their adoption in real vehicular
on-board hardware. Despite this noted issue, more generally
there are some scenes encountered while driving which have
overlap and occlusion during consecutive frames, paralysing
the frame-based segmentation for scene understanding. Video-
based segmentation is a contemporary option in this regard,
which should ensure faster processing and a better practicality
for AD applications.

3) Object’s Predicted Locations Segmentation: A signifi-
cantly vibrant research activity can be lately noted around
the estimation of the future location of pedestrians and other

moving objects in the scene, such as vehicles [60]. Notwith-
standing its highly challenging nature, the task of future loca-
tion estimation assists decision making of autonomous vehicle,
providing estimated future trajectories of persons and vehicles.
Unfortunately, research revolving on segmenting future loca-
tions is scarce and to the best of our knowledge there is not
a single research segmenting or drawing segmentation maps
of pedestrian or other objects’ future locations. This area is
very challenging though, but not far to be achieved for scene
understanding. Recently, many methods [129], [130] have
achieved accurate bounding-boxes prediction of pedestrians
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for upcoming 10 to 15 frames. These methods can be con-
sidered as the baseline for future research in this valuable
direction.

4) Hybrid Methods and Multi-Modalities: Besides the
broader coverage of RGB data generated by vision sensors,
there are some other modalities [131] and sensors with quite
informative patterns and points for scene analysis and under-
standing. For instance, point clouds [132], [133], meshes [134]
and depth data [135] together with RGB data can generate
an increased 3D scene understanding for an autonomous
vehicle [136]. These data are generated from various sensors,
including LiDAR among many other options. Hybrid models
are widely used in many domains [137], [138] with successful
results in terms of vulnerability and can be implemented in ITS
domain as well. As vehicles are equipped with more sensors,
we envision many opportunities for research on multi-modal
information fusion, further stimulated by other non-embarked
sources of related information (e.g. floating car data – wherein
cell phones of drivers and passengers act as additional traffic
probes – or social network data).

5) Active and Incremental Learning: Active learning [139]
in machine learning refers to self-adaptability and learning of
a model with respect to time and new data encountered during
testing phase even after its deployment stage [140]. In real-
world environments, dynamic scenes with rarely occurring
living species or objects such as kangaroo or a self-engineered
dump and cargo truck may be encountered by a vehicle, which
may rely on AI’s model decision for further actions such
as applying brake or increasing acceleration. Thus, a scene
understanding AI based mechanism should interactively allow
processing queries of every type of data and its structures
in the form of unlabeled data instances labeled by a human
annotator during the process, involving human in the train-
ing loop [141]. There are different types of active learning
techniques, such as membership query synthesis [142], where
synthetic data is generated and the parameters of synthetic
data can be tuned [143] based on structure of objects, derived
from base species of the dataset. On the other hand, the
capability of segmentation models to update their captured
knowledge with new data in an incremental fashion is a key for
their sustainability and continuous improvement. We foresee
that these two capabilities of segmentation models for scene
understanding will grow in importance in prospective studies.

6) Complex Driving Scenes Understanding: Semantic seg-
mentation with applications to scene understanding primarily
focuses on objects in a single category without any con-
sideration to the importance of their location. For instance,
a pedestrian walking through a sidewalk is classified simply
as a pedestrian. There are some disadvantages associated to
this approach: the extra time involved by an algorithm to
verify its location; and let the vehicle decide actions, there is
no specific safety levels of pedestrians (relate-able to cyclist
and other objects), treating all objects as belonging to a
similar safety level. Therefore, for complex driving scenes with
abundant human subjects, there is a need for priority-driven
systems to segment the pedestrians on vehicular lanes in a
different category, and conversely, for the pedestrian with
huge distance or ones on side walk. A baseline research

dealing with this problem recently introduced a pedestrian
location perception network with location inference of each
semantic map corresponding to the human [56]. This work
can be advanced in terms of more objects identified in scenes
characterized by a higher complexity and diversity.

7) Adverse Weather Conditions: When operative in real-
world environments, autonomous vehicles may encounter
adverse weather conditions such as snow, fog, rain or dark
areas, among other phenomena [144], [145]. Existing models
are highly accurate for normal cases with sufficient illu-
mination and other favorable conditions. However, models
need to be adaptable to non-favorable weather scenarios. For
instance, a dataset for night-time segmentation is introduced by
Xin et al. in [146]. Furthermore, preprocessing techniques for
haze [147] and fog [148] removal ensure effective semantic
segmentation. But at the same time, if deep segmentation
models are designed with built-in capabilities to account for
weather-related uncertainties, or they prove to be effective in
such cases, would decrease the computation time required for
the aforementioned preprocessing steps. Some representative
results of existing models over weather uncertainties are tested
and reported in Figure 5, whereas a baseline research for
scene understanding has developed a deep model and a Foggy
Cityscapes dataset [149]. The segmentation maps generated by
these models clearly outline a long road ahead in this direction.
The current models seem to have insufficient generalization
potentials towards challenging scenarios such as rainy envi-
ronment, snow, and cloudy scenarios. Despite the presence of
some challenging datasets in adverse weather conditions such
as Fog [150], [151], night time and dark scenarios [152], [153],
wild [154], etc., the current methods still lack focusing on
end-to-end deep models to handle complex weather scenarios
effectively. There also exists some generalized datasets with
multiple challenges [116], [155], but the amount of data
labelled for semantic segmentation in most of these datasets
are very limited i.e., number of annotated instances ranging
from 40 [151] to maximum 4006 [155] samples.

Utilization of advanced driving simulators such as VituoC-
ity [156] to create photo-realistic synthetic dataset without
needing expensive and high-risk driving in real-world is also
among the current approaches to compensate experiments in
adverse weather conditions.

8) Events-Based Scene Understanding: So far, scene under-
standing has been primarily approached by using segmentation
techniques. Nonetheless, the focus can be diverted towards
higher levels of vehicular cognition, such as events based
scene understanding [157]. For instance, analyzing the events
for scene parsing is a promising direction, where surrounding
events such as bicyclist on the vehicle lane, pedestrian crossing
the road, among many other common events can better support
and favor more informed decision making of autonomous
vehicles [158]. The main point here is to not rely only on
segmentation for scene understanding, but rather to explore
other metrics and to discover relationships between identified
objects over space and time [159]. It is our belief that this
augmented contextual awareness will be a major breakthrough
towards the accountability of decisions made by autonomous
vehicles.
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9) Replacing CNNs With Vision Transformers: Dense pre-
diction models, such as semantic segmentation and saliency
detection, are mostly inspired by convolutional architectures.
Particularly, backbones of semantic segmentation methods
mainly rely on convolutional operations. It is true that these
networks progressively downsample input images and acquire
features at multiple scales, thus allowing for increased recep-
tive fields. These mechanisms for feature refining, i.e., for
transitioning from low-level to high-level descriptors, are com-
putationally complex and have certain limitations for many
computer vision tasks, particularly for dense prediction tasks.
For instance, the granularity of the features, as well as their
resolution, are lost gradually as the layers go deeper and
deeper, by producing inadequate representations for subse-
quent decoder layers, and by loosing information that cannot
be recovered during the decoding procedure. Training at
higher input resolutions demands higher computational budget,
whereas the use of dilated convolutions increases receptive
fields quickly without downsampling. Other similar techniques
can be applied to mitigate the loss of feature granularity.
Unfortunately, such techniques still suffer from bottlenecks
due to the involvement of convolutional operations over the
hierarchical neural structure of the model.

In contrast, transformers (as encoders) have better image
representation capabilities [160], [161], which mainly hinge
on representing images as bag-of-words, and passing them
through various transformer layers to extract features at
several resolutions. Then, they progressively integrate these
multi-resolution representations to finally attain the con-
cerned dense prediction task. When trained over large-scale
datasets, vision transformers [162], [163], [164], [165], [166],
[167], [168], [169] perform well for dense prediction tasks.
For instance, Ranftl et al. [162] establish an unprecedented
state-of-the-art level of performance by introducing vision
transformers in a semantic segmentation domain. A similar
approach is observable for the saliency detection domain,
where the authors in [163] applied vision transformers with
multi-level tokens fusion and a new token upsampling strat-
egy based on transformers. Liu et al., [165] introduced a
transformer-based weakly supervised semantic segmentation
method named WegFormer, which encapsulated three differ-
ent components to generate high-quality segmentation masks.
Their presented WegFormer first generates attention maps
using deep taylor decomposition (DTD) and then used a
soft erasing mechanism to smooth computed attention maps.
Finaly, they have filtered the noisy activation maps using
their proposed efficient potential object mining strategy. Ruip-
ing et al., [166] presented knowledge distillation driven trans-
former for efficient semantic segmentation of road scenes.
They have retrained a shallow transformer by transferring the
learned knowledge from large transformer network trained
on large volume of image data. The knowledge distillation
strategy allowed their method to achieve the same level of
segmentation performance and faster inference time due to
reduced computational complexity. Lin et al., [168] proposed
a multi-scale transformer for efficient semantic segmentation,
which extracts multi-level features from an image and then
aggregates the extracted features using a feature selection

technique. The aggregated features are then used to deter-
mine the salient regions of the given image, resulting a
fine quality semantic segmentation. So far, these methods
have achieved unrivaled performance levels in these specific
domains, unleashing manifold future research directions and
opportunities for semantic segmentation tasks.

10) Towards More Accurate and Efficient Semantic Segmen-
tation Methods for AD: The qualitative performance of cur-
rently employed semantic segmentation techniques is shown in
Table VI, where we notice that only a few methods are able to
balance the trade-off between accuracy and inference latency
of their model. The experimental results reported for these
methods indicate that they require further work to alleviate
their computational burden while maintaining their unpar-
alleled performance. Furthermore, we test most well-known
semantic segmentation models in a few challenging scenarios,
as reported in Figure 5. We have found that these models
should also be evaluated in terms of knowledge transferability
and generalization accross different datasets [89]. Furthermore,
the time complexity reported in Table VI suggests that some
of these methods are functional in real time when deployed on
GPU devices. In any case, the focus of semantic segmentation
methods should also be diverted towards computational com-
plexity, given the stringently limited computational resources
available in today’s AD in-vehicle telematics.

VI. CONCLUDING REMARKS AND OUTLOOK

Vision sensors’ data are a key component of autonomous
vehicles, playing a significant role in an autonomous vehicle’s
decision making. Vision sensory data are analyzed using Com-
putational Intelligence techniques for effective outputs such as
sign board detection, drivable area selection, and traffic lights
perception. In doing so, an autonomous vehicle senses the
surroundings using vision sensory data. Segmentation extracts
pixel values of various objects inside an input image and
individuates them from one another using distinct colors. The
segmentation of various objects into their respective classes
helps dramatically in parsing scene information for the vehicle.
Although complementary options can be found to derive data
from other sensors for decision making, vision sensors have
undoubtedly a major role in the current vehicular panorama.

Segmentation for scene understanding of autonomous vehi-
cles has been in play for many years, but a consolidated,
summarized analysis is absent from the existing literature.
In this survey we have discussed on the strengths of exist-
ing segmentation methods in clear environments and their
weaknesses when facing challenging scenarios. Our main
conclusion is that the scene understanding literature has not
achieved perfection yet, as many limitations remain in the
current methods that we have thoroughly covered in our
review, followed by relevant suggestions and outlooks in a
detailed manner. We have covered baseline works dealing
with deep learning models, their hierarchy for segmentation
tasks and the challenges associated to each model category.
Furthermore, performance evaluation strategies suited for seg-
mentation models, special loss functions, and datasets widely
used in AD domain have been also tackled in depth. We have
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rounded up the work by exposing open challenges for scene
understanding, together with future research directions with
stimulating baseline references from the recent literature.

On a closing note, it is undeniable that experts from the
ITS community are continuously struggling towards better
scene understanding strategies to utilize the vision sensors’
data effectively. Mainstream research is gravitated towards
improving the model’s accuracy through the capabilities of
its neural layers. However, there exist other challenges to
be covered in order to achieve reliable, trustworthy and safe
AD. Challenges from the scene understanding perspective
demand robust models with prioritization levels for segmented
objects, coarse-structure information processing capabilities,
and risk categorization. Furthermore, current deep segmen-
tation models are confied to handle a single information
modality, while recently point cloud data [133], [170] have
been studied extensively for complex tasks related to AD.
These are open opportunities to utilize multi-modal data such
as 3D LiDAR [171] and vision sensors, and to transcend from
single deep neural network to more elaborated fusion models,
capable of accomplishing complicated yet more informative
learning tasks for autonomous vehicles. These opportunities
(if well and timely leveraged) can advance the ITS research
and bring scene segmentation to a new level, where driver-less
vehicles can be deployed in real-world environments and
support safer and reliable travel services.
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