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Awareness and Congestion Control
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Abstract— To support inter-vehicular applications, vehicles
broadcast beacons with information about their state. Congestion
may occur when the load on the channel due to beaconing can
prevent the transmission of other types of messages. In this
paper, we propose a distributed algorithm for optimal joint
adaptation of transmit power and beaconing rate for congestion
and awareness control. Our approach is based on a network
utility formulation of the congestion control problem, which
allows us to induce a desired fairness notion and set different
priorities for vehicles. We formulate the general problem but,
since it is not convex, we assume Rayleigh fading and derive an
algorithm, called PRAIOS, that solves the optimization problem
in a decentralized way with convergence guarantees. Our results,
validated with realistic simulations in both static and dynamic
scenarios and compared with other proposals, show that PRAIOS
quickly converges to close to optimal allocations, while keeping
the maximum beaconing load at the desired level. They also
show that it can control the load when the fading is not
Rayleigh. Applications can dynamically set their requirements as
constraints, that are enforced by the algorithm while complying
with the maximum load, which allows seamless integration of
operational requirements into the control framework.

Index Terms— Vehicular communications, awareness, conges-
tion control, power control, rate control, network utility maxi-
mization.

I. INTRODUCTION

INTELLIGENT Transportation Systems (ITS) are being
built upon the capabilities of connected vehicles, which

support the use of innovative applications in traffic safety,
traffic control, cooperative driving and other advanced ser-
vices. Communications among vehicles are subject to severe or
moderate fading effects [1], which results in a dynamic envi-
ronment with short-life connections and adverse propagation
conditions. American and European standards have allocated
several channels at 5.9 GHz for vehicular communications and
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have adopted IEEE 802.11p as physical and medium access
control layers [2], [3]. To support inter-vehicular applications,
vehicles use a control channel to broadcast information about
their state, including their position, speed, heading, or acceler-
ation, among other data [4]. This information is encapsulated
in beacon messages, which are transmitted periodically at
a fixed or variable beaconing rate, what is called Cooper-
ative Awareness Service (CAS) in the ETSI standards [4].
In addition, the control channel is mainly used to broadcast
event-driven messages, such as emergency messages when a
dangerous situation is detected. Since these are high priority
messages, it is therefore necessary to ensure the availability
of the control channel for them. However, the aggregated
load on the control channel due to beaconing may degrade
the performance of CAS in general and even prevent the
transmission of emergency messages, what is called channel
congestion due to beaconing activity. To prevent this situation,
ETSI has specified a framework for decentralized congestion
control (DCC) in the control channel [5], which supports
dynamic adaptation of several transmission parameters such
as transmit power, beaconing rate or message datarate [6].

Therefore, the goal of DCC is to limit the channel band-
width used by beacons to ensure that the remaining capacity
is available to event-based messages. However, beaconing
must also provide the “level of awareness” required by the
applications working on top of the service. That is, awareness
control should be used to adjust the aforementioned commu-
nication parameters in order to fulfill the requirements of a
particular application [7]. Both goals may conflict, since in
general application reliability increases with high power and
beaconing rates. Moreover, quality of service requirements are
dynamical, context-dependent and particular of each vehicle.
For example, the minimum beaconing rate and communication
range for vehicles approaching an intersection may be quite
different from those of vehicles under free-flow conditions
in a highway. Since there are multiple parameters to control
and potentially conflicting goals, it is clear that an integrated,
flexible and dynamically configurable approach to congestion
and awareness control is necessary. In this paper we propose
such a mechanism based on a decentralized joint control of
beaconing rate and transmit power.

Our proposal also allows to select a particular fairness
notion and control it dynamically. In the vehicular context,
fairness is specially important since it is related to the user
safety. Since beacons are used to build and accurate estimate
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of the surrounding road traffic state [7], it is necessary that
all vehicles can effectively communicate its state, that is, they
should be allocated similar resources, under the constraints
imposed by the available capacity. But different formal notions
of fairness can be used, which result in a trade-off between
fairness and efficiency [8]: a more restrictive fairness notion
usually implies a less efficient use of the shared resource.

To derive an algorithm with such features, we model the
congestion control as a Network Utility Maximization (NUM),
the formal approach that we used in previous papers, but
adapting it to the current goal of controlling both rate and
power and extending the scope in several ways as we discuss
next. The underlying approach of NUM is just to derive
an algorithm that solves a constrained convex optimization
problem, where each vehicle is associated a utility function [9],
and the optimization goal is to maximize or minimize the sum
of the utilities. But NUM additionally uses the shape of the
utility function to induce globally a certain notion of fairness.
That is, by using a class of utility functions known as (α,w)-
fairness functions, the allocations will exhibit a particular type
of fairness [10]. With those functions, the fairness parameter,
α is used to select from range of fairness notions that go
from proportional fairness (α = 1) to max-min fairness
(α → ∞) [10], and the priority parameter, w, to assign
different priorities. We have used this formal method in [11] to
derive a beaconing rate control, but assumed a single common
power for all the vehicles. Conversely, in [12] we derived
a transmit power control assuming a fixed beaconing rate.
In [13] we extended both models by considering the possibility
of transmitting beacons with multiple powers simultaneously,
but the transmit power was not actually controlled explicitly,
that is, the only control variable managed by the algorithm
was the beaconing rate, although the different available powers
entered the constraints.

In this paper, we do propose a distributed algorithm for
optimal joint control of transmit power and beaconing rate.
That is, both transmit power and beaconing rate are actually
controlled and their values are assigned by the algorithm.
This proposal, hence, extends our previous work in several
ways. First, let us note that it is not immediate to derive a
joint power-rate control from the previous separate rate and
power controls, because the controlled variables multiply each
other and make the problem non-convex in general. Second,
we here seek to maximize an awareness metric, discussed and
defined later, which depends on both power and beaconing
rate. To model the dependence on transmit power, we assume
a single-slope path loss for attenuation and Nakagami-m for
fading. Therefore, unlike our previous works, in which the
utility functions only depended on the beaconing rate, in this
paper the utility is the level of awareness a vehicle produces,
considering a more realistic channel model as well as power
and rate as decision variables. However, introducing such a
general fading model also makes the problem non-convex in
general. To overcome it, we then restrict ourselves here to the
case of Rayleigh fading but show in our results that it is also
able to control the load even with other fading conditions.

Our algorithm stands out from previous proposals in several
features. First, joint control, in the sense that the output of

the algorithm is the value to set for transmit power and
beaconing rate, is not actually carried out in various previous
works [14], [15], [16]. Instead, they adjust the value of
only one of the variables in order to control the excess of
channel capacity available after some particular application
has set some minimum values. Second, in the capability of
inducing a fairness notion and weighted priority, as well as
the convergence guarantees shown here. Hence, in the paper
we compare our algorithm with BFPC [17], a proposal that
actually controls power and rate jointly; and the SAE J2945/1
standard [18], which controls separately rate and power in a
heuristic way, and show how it outperforms them.

In the remainder of this paper we first review related works
in section II. In section III, the problem is formulated as a
NUM joint power and rate allocation problem. First we discuss
the awareness metric we are interested in and the propagation
model, then we provide a formal description of the problem
and propose a particular algorithm to solve it. In section IV,
it is validated and compared with other proposals in static
scenarios and we show its behavior when the fading conditions
are different from Rayleigh fading. We extend afterwards the
comparison and evaluation to different dynamic scenarios and
show how it can be configured by applications and assign
different priorities. Finally, conclusions and future work are
discussed in section V.

II. RELATED WORK

Previous approaches to DCC use separately beaconing
rate [11], [19], [20] or transmit power [7], [21] and some
consider combined power and rate control [14], [15], [16],
[17], [18]. A recent survey [6] discusses in detail the most
relevant proposals and most of the potential control variables,
so we briefly discuss here some of them directly related to
our work. We do not consider proposals related to vehicular
communications based on cellular networks (C-V2X), since
its MAC differs significantly from 802.11, although some of
the mechanisms evaluated in this paper have been used for
congestion control in C-V2X [22].

One of the algorithms suggested by the ETSI standards is
LIMERIC [19], which adapts only beaconing rate with a linear
control based on the measured channel busy rate (CBR) from
the local neighbors. LIMERIC is shown to converge to a single
fixed point, which assigns equally the bandwidth among all
the vehicles that share the same congestion state, but only
if assumed that all the vehicles are in range. For multihop
scenarios it is combined with PULSAR [20] which requires
CBR measurements from two-hop neighbors. Several pure
transmit power controls are discussed in [7]. In [18] and [21]
is used to adjust the communication range to keep the desired
number of neighbors in range. In general, controlling only the
power tends to result in oscillatory behavior, as discussed later
in our results, but it has been shown to improve the perfor-
mance of cooperative driving application when combined with
synchronized communication slots [23].

Combined transmit power and rate adaptation has been used
in [14], [15], and [16] mainly for awareness control, that
is, to fulfill the quality of service requirements of particular
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applications, None of them control both transmission variables
in a joint optimal way, but set them separately according to
some heuristic. In [14] the beaconing rate is adjusted to keep
the maximum position error under a certain value and then
the transmit power adjusts the transmission range to keep the
channel occupancy within some range. Both [16] and [15]
have as main goal to control the inter-beacon reception time at
some target distance and in both cases they use LIMERIC and
PULSAR as an additional beaconing rate control to comply
with the maximum channel load. In [16] the transmit power is
first set to maximize the inter-beacon reception time and then
the beaconing rate is adapted using PULSAR. And in [15] the
desired inter-beacon reception time determines the transmit
power and rate and if there is some channel capacity available
the beaconing rate is increased via LIMERIC and PULSAR
until the maximum channel load is reached. In comparison,
in this paper we derive an algorithm for optimal joint control
of both transmit power and beaconing rate. We compare our
proposal to the SAE J2945 standard [18], which is used in the
United States, and BFPC [17]. The former is an adaptation
of the work in [14], discussed previously, which adapts the
transmit power to keep the channel load within a certain range
and sets the beaconing rate according to the measured density
of surrounding vehicles. BFPC uses non-cooperative game
theory to derive a distributed algorithm for joint power and
rate control, which does no need to exchange any additional
information with neighbors to work. Its main drawback is that
it does not allow to configure a precise maximum range for
the desired channel load but uses three parameters which have
to be tuned to particular scenarios by trial.

An approach similar to ours here can be found in [24] where
authors use a NUM joint rate and power control framework.
There are still significant differences: first, the propagation
model is abstracted by an indicator function, but the mapping
of the channel model to the indicator function is not discussed.
In addition, it turns the optimization problem into an integer
programming one. In our case we explicitly include a prop-
agation model in our maximization problem. Second, since
their formulation is non-convex in general, they decompose
the problem in rate and power subproblems and propose
an iterative algorithm where rate or power are considered
constant inputs to the other subproblem alternatively. The
obtained solution is suboptimal. On the contrary, we provide
an algorithm which results in an optimal solution to the joint
problem, although focused on the particular convex case of
Rayleigh fading. Third, transmit power is not included in the
utility function unlike our formulation.

Since the goal of awareness control is to fulfill the require-
ments of a particular application [7], it is necessary to relate
those needs to communication parameters. In [16] several
possible awareness metrics which capture the application
requirements are discussed in detail. In Section III we define
such a metric, adapted from [16]. A number of proposals
are designed around particular application requirements [14],
[25]. In particular, keeping a certain tracking error [14],
[25] is one of the metrics used by POSSAC [25] to set
the beaconing rate, in addition to a target warning distance
dependent on the vehicle movement status together with a

control of the contention window to minimize the probability
of packet collisions. Our proposal can be used to achieve the
same goals in a flexible way. As discussed in Section IV,
applications can dynamically set several parameters and use
the priority parameter to assign more resources to particular
vehicles. In fact, the state of the environment and road can
be incorporated seamlessly into the framework control while
meeting the channel load constraints, as we showed in [26],
where we used the time-to-collision of vehicles to prioritize
the beaconing rate in a NUM control. Since our algorithm
here involves power and beaconing rate, more sophisticated
environmental aware controls can be implemented seamlessly.

Finally, machine-learning methods have been applied to
congestion control recently [6], [28]. Such methods are heuris-
tic in nature but have the advantage that can be applied
to problems in which traditional optimization methods are
difficult to apply due to the non-convexity of the problem, such
as those that involve control of data rate [27]. In particular,
reinforcement learning (RL) has been applied to resource
allocation in centralized networks [28], but fewer proposals
apply RL in distributed environments, as we did in [29], where
we used Q-learning to train agents to adapt power and rate
for congestion control. Although such procedures work well,
they do not provide flexibility for configuration, there are no
guarantees about its optimality and they raise concerns about
their applicability in scenarios different from the ones used to
train. The model derived in this paper allows to compare the
optimal allocation to the solutions provided by such methods.

III. JOINT POWER-RATE AWARENESS AND CONGESTION

CONTROL IN VEHICULAR NETWORKS

Notation: In the remaining of the paper we use boldface
letters (x) for random variables, lowercase letters with bars
(x̄) for vectors, uppercase letters with bar (H̄ ) for matrices
and subscripts for the elements of a vector or matrix.

In this section we model the joint transmit power and bea-
coning congestion control problem as a convex optimization
problem. We first discuss the propagation model and awareness
metric we use. Afterwards we formally formulate the general
problem which is not convex, so we transform it into convex
form for Rayleigh fading and propose a distributed algorithm
for its solution.

Let v̄ = [v1, . . . , vV ]T be a set of vehicles in a vehicular
network, with V the number of vehicles. Each vehicle v ∈ v̄
can select a transmit power pv ∈ [pmin

v , pmax
v ] W for each

beacon transmission and can transmit beacons with a rate rv ∈
[rmin

v , rmax
v ] beacon/sec. The goal of our algorithm is to find

the pv and rv that maximize some utility function.

A. Propagation and Fading Model

We use the model described in [13] and [12]. We assume
a single-slope path loss attenuation model and a Nakagami-m
fading model. With this assumptions, the power received at
a distance d from a transmitter is pr = F/Adβ , where
A = ( 4π f

c )2, f is the carrier frequency and β is the path
loss exponent. F is a r.v. with gamma distribution, whose pdf
is fF(x) = (μx)m−1μe−μx

�(m) , where �(x) is the gamma function.
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For a vehicle transmitting with power p, the scale parameter
is set to μ = m

p to get an average power of p. The fading
intensity is given by the parameter m, a lower value implies
more severe fading conditions.

With this model, the probability that the received power at
a point at distance d from a transmitter is above the sensitivity
of the receiver S, Pr , is:

Pr (d, p) = Prob(F > S Adβ)

= 1 − FF(S Adβ) = �(m, S Adβm
p )

�(m)
(1)

where �(m, x) is the upper incomplete gamma function. From
now on, to simplify notation, we define Kij = S Am(di j )

β ,
where di j is the distance between vehicle i and j . Note that
Kij = K ji . Note also that when m = 1 we get Rayleigh fading
and Pr (di j , p) = ex p(−Kij p−1).

B. Awareness

Periodic broadcast of beacons with vehicle status informa-
tion is the basic service upon which cooperative inter-vehicular
applications are built. Even though the service is called “Coop-
erative Awareness Basic Service”, the standard does not define
precisely what is meant by awareness, apart from stating that
“On reception of a CAM the receiving ITS-S becomes aware
of the presence, type, and status of the originating ITS-S” [4].

Due to this lack of a clear specification of awareness,
different definitions can be found in the literature [6], see for
instance [16] for a discussion. Most of them define awareness
in terms of either a certain Packet Delivery Ratio (PDR)
or Inter-Beacon Reception Time (IRT), at a target distance,
required by an application to ensure a given quality of service.
But these metrics are not equivalent and do not generally imply
each other, that is, a low IRT does not necessarily imply a
high PDR. We consider the IRT a more suitable metric for the
reliability of an application and so derive an expression for it.
In the following discussion we assume that eq. (1) gives also
the probability of successful reception of a package. This is the
case when the noise and interference power is low enough so
that the sensitivity can be used instead of the Signal-to-Noise-
and-Interference Ratio, SNIR. In our context, the background
noise is usually negligible and, when congestion control is
working properly, the MAC is not saturated and so collisions
are rare and interfering vehicles are relatively far away [21].

To provide reliability guarantees, an application usually
requires that, at a certain target distance (do), a maximum
IRT (Tmax) is achieved with a given target probability Po,
that is, Prob(IRT ≤ Tmax) ≥ Po. Now, given a beaconing
rate r and assuming that the probability of successful beacon
reception is independent at each transmission, the number of
lost beacons, lb, is geometrically distributed and the IRT is a
r.v. IRT = (lb+1)/r . From this, the reliability in terms of IRT
for a given transmit power p and beaconing rate r is given by

Prob(IRT ≤ Tmax) = 1 − (1 − Pr (do, p))rTmax (2)

Hence, eq. (2) relates power and beaconing rate with IRT
and fixes the minimum power and beaconing rate required
to guarantee a certain reliability. It may be a candidate as

utility function to be maximized by each vehicle. However,
no reliability is actually guaranteed unless it is used in the
problem constraints. Furthermore, it is not convex for a general
Nakagami model.

Our alternative then is, first, to let the application set the
minimum acceptable values as constraints if necessary. That
is, an application can use eq. (2) to transform its requirements
into some pmin

v and rmin
v , and pass them to the algorithm when

necessary. Otherwise the minima specified by the standard
are used. With our algorithm, such particular requirements
can be set dynamically and independently by each vehicle,
and the allocation will be optimal as long as it is feasible,
that is, the sum of the minimum rates sets by the vehicle
does not exceed the channel capacity. And, second, we set
as goal to minimize the average IRT, E[IRT] = 1

r Pr (do,p) ,

or equivalently, to maximize its inverse. Let us note that
in that case, we are actually maximizing the beaconing rate
weighted by the reception probability at the target distance,
r Pr (do, p), what we call effective beaconing rate, which is
also a reasonable measure of the level of awareness a vehicle
generates.

As we said, although the PDR is often used as a metric of
awareness, under the assumption of independence of errors, the
obtained results are different as we will discuss in Sect. IV-A.

C. Problem Formulation
We have already discussed the propagation model and the

awareness control goal. It remains to define the remaining
goals: For congestion control we are interested in limiting the
total rate of beacons received by each vehicle to a Maximum
Beaconing Load (MBL), that is a maximum of C beacons/s.
The MBL is often expressed in equivalent ways, in particular
as a limit to the Channel Busy Time (CBT), which is the
fraction of time that the channel is not idle. When expressed
this way we will refer to the MBL as CC BT . The utility
function to be maximized by each vehicle is the inverse of
the average IRT, 1

E[IRT] = r Pr (do, p), as discussed in the
previous section. But to control the fairness of the optimal
allocation, we use α-fair utility functions Uv as

Uv (x) =

⎧⎪⎨
⎪⎩

wv x if α = 0

wv log x if α = 1

wv
x1−α

1−α if α > 0, α �= 1

(3)

so that any optimal solutions of the problem are also (α,w)-
fair [10]. This way, any required fairness notion can be
enforced by setting the α parameter, while the wv values can
be used to achieve weighted fairness and assign priority to
vehicles.

With all the previous definitions we can formulate the
general joint power-rate optimization problem:

G − PR : max
rv ,pv

∑
v

Uv (rv Pr (do, pv )) (4a)

subject to:
V∑

i=1

ri Pr (dv i , pi) ≤ C ∀v ∈ v̄

(4b)
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rmin
v ≤ rv ≤ rmax

v ∀v ∈ v̄ (4c)

pmin
v ≤ pv ≤ pmax

v ∀v ∈ v̄ (4d)

The objective function (4a) maximizes the sum of the
utilities as functions of the effective beaconing rate at the target
distance.

Constraints (4b), ensure that the average beaconing load
measured by a vehicle is below the MBL. To see this, consider
that a Nakagami-m fading model a vehicle v receives a beacon
from a neighbor i with a probability Pr (dv i , pi), and there
is a probability of receiving beacons from distant neighbors
and not receiving beacons from close ones. In that case,
the channel is effectively not occupied since the received
power is below the sensitivity due to fading. Assuming a
binomial distribution with parameter p = Pr (d, p) for the
number of successfully received beacons and neglecting the
changes of distance in vehicles during the measurement period
(Tm), which is reasonable, since Tm is usually in the order
of hundreds of milliseconds, the average beaconing load on
the channel locally measured by a vehicle v is given by∑

i ri Pr (dv i , pi ), which already includes its own generated
beaconing load. For simplicity we assumed a common beacon
size, but the following algorithm can accommodate any beacon
size, even if different vehicles use different sizes. In that
case, constraints (4b) have to be modified appropriately by
multiplying the beaconing rates by the beacon size used by
vehicles and changing the units of C . In practice it requires
that the vehicles keep track of the size of beacons received
from other vehicles.

Finally, constraints (4c) and (4d) keep the variables within
the allowed ranges. As discussed before, the lower limits can
be set by applications in order to enforce some quality of
service requirements, via eq. (2). They can be dynamically set
by each vehicle independently if necessary. Or they may be
set to the lower limit determined by the standards.

However, problem G − PR (4a) is not convex in general,
only in certain cases, as for instance, Rayleigh fading. In the
remaining of the paper we therefore focus only on the Rayleigh
case, since it describes well a wide range of scenarios [30].
In addition, in Section IV-B we evaluate and discuss the
results when this assumption is not valid. We will see that
the algorithm is still very effective in controlling the load in
these cases.

D. Rayleigh Fading

In this section we formulate the optimization problem when
Rayleigh fading is assumed. In that case problem G − PR (4a)
can be transformed to convex problem by a change of variables
as follows. First, we make the change of variable, hv = p−1

v
and set m = 1 in (1) for Rayleigh fading, so that the probabil-
ity of successful reception becomes, Pr = ex p(−Kij h). The
set of constraints (4b) are not convex yet, but if we additionally
make the change of variable yv = ln(rv ), we obtain convex
constraints. To induce the desired fairness notion we will use
as utility functions the ones in (3) so that any rate allocation to
the vehicles is α-fair if and only if, it is the optimum solution
of (5). But taking into account that the objective function is
concave as long as α > 1, as discussed in the Appendix.

With the above transformations the convex form of the
problem of joint power-rate optimization for Rayleigh fading
is:

R − PR : max
yv ,hv

∑
v

(e(yv−Kohv ))1−α

1 − α
(5a)

subject to:
V∑

i=1

e(yi−Kvi hi ) ≤ C ∀v ∈ v̄ (5b)

ln(rmin
v ) ≤ yv ≤ ln(rmax

v ) ∀v ∈ v̄

(5c)

1/pmax
v ≤ hv ≤ 1/pmin

v ∀v ∈ v̄

(5d)

where Ko = S Am(do)
β . Notice that, only for Ko but not for

the constraints (5b), we may substitute the sensitivity S by
a decoding threshold D to reflect the more realistic case of
requiring a higher power to successfully decode a packet.

E. Dual Decomposition

In order to find a decentralized algorithm to solve problem
R − PR (5) we use a dual decomposition, see [31] for a
general overview of dual methods.

To use the standard formulation in optimization, we first
convert problem (5) to a minimization problem by changing
the sign of sum in (5a). Then we form the Lagrangian function
L of (5a) relaxing the constraints (5b):

L(λ, y, h) = −
∑
v

(e(yv−Kohv ))1−α

1 − α
+

+
∑
v

λv (
∑

i

e(yi−Kvi hi ) − C) (6)

where λv ≥ 0 are the Lagrange multipliers associated with the
relaxed constraints. The Lagrange dual is the minimum value
of the Lagrangian function over the domain of the variables.
That is, given a set of non-negative multipliers λ̄,

g(λ̄) = min
ln(rmin

v )≤yv≤ln(rmax
v )

1/pmax
v ≤hv≤1/pmin

v

L(λ̄, yv , hv ) (7)

And the dual problem is:

max
λ≥0

g(λ̄) = max
λ≥0

⎧⎪⎪⎨
⎪⎪⎩

min
ln(rmin

v )≤yv≤ln(rmax
v )

1/pmax
v ≤hv≤1/pmin

v

L(λ̄, yv , hv )

⎫⎪⎪⎬
⎪⎪⎭

(8)

Since the objective function in (5a) is concave, for α > 1,
and the Slater condition holds, it has the strong duality
property and the Karush-Kuhn-Tucker (KKT) conditions char-
acterize its optimum solution [32]. Then, when the optimal
multipliers λ̄∗ have been found, at least one of the associated
rates ȳ∗(λ̄∗) and powers h̄∗(λ̄∗) are the optimal solution of
the original problem (5).

Solving the power-rate allocation problem with the dual
method then requires using a gradient descent algorithm to
iteratively find the dual optimal multipliers λ̄∗, and obtain
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the corresponding optimum power p̄∗(λ∗) and rate r̄∗(λ∗)
allocations from eq. (7). In the following subsection we
develop this procedure: At each iteration, vehicles broadcast
their multiplier λv , receive multipliers from neighbors and use
them as input to the optimization problem (7). The latter has
no analytical solution, but can be solved independently by each
vehicle with a gradient algorithm using local information.

Let us clarify that, to solve problem (7), one should actually
use global information, since the sum in the relaxed constraints
in eq. (6) extends to all the vehicles. This issue can be formally
corrected just by limiting the sum in the constraints (5b) to
only the neighbors of a vehicle. All the subsequent derivations
remain equal just by limiting the corresponding sum to the
set of neighbors and the proofs in the Appendix require the
introduction of a neighbor matrix. But, since from a practical
point of view this fact is not relevant, as we discuss in the
following section and show in the Results, we prefer to keep
the problem in its current simpler formulation.

F. Distributed Algorithm

In this section, we propose PRAIOS (Power-Rate awareness
and congestion control for inter-vehicular communications),
an algorithm that solves problem (8) in a decentralized way,
without the need of any central coordinated infrastructure.

At each iteration, the algorithm first compute a distributed
gradient descent: vehicles receive the multipliers from neigh-
bors and compute the gradient of (7) to update their own
multiplier; Afterwards, they pass all the received multipliers
to a function that solves the local problem of minimizing the
Lagrangian function eq. (6) and update their rate an power.
Since there is no analytical solution to the latter problem we
propose to use a gradient projection algorithm that provides
a quick convergence to the optimal solution and discuss later
other practical alternatives.

Algorithm 1 - Power-Rate Awareness and Congestion Control
for Inter-Vehicular Communications (PRAIOS)

At k = 0, set initial vehicle multiplier λ0
v , inverse of power

h0
v and logarithmic rate y0

v , ∀v
Then, at each time k:
Step 1. Each vehicle v receives the multipliers from

neighbor vehicles λi , ∀i .
Step 2. Each vehicle updates its own multiplier λk+1

v as:
λk+1

v = [
λk

v + γ
(∑

i e(yi−Kvi hi ) − C
)]+

λv≥0
Step 3. Each vehicle updates yk+1

v and hk+1
v with the

output of Algorithm (2):
[yk+1

v , hk+1
v ] = LagrangianMinimization(λ̄, yk

v , hk
v )

The main procedure is described in Algorithm 1. The
algorithm to minimize the Lagrangian function is described in
Algorithm 2. In both cases the gradient descent is projected on
the constrain set, that is, [x]+X = arg minz∈X ||z − x ||2 denotes
the orthogonal projection with respect to the Euclidean norm
of a vector onto the convex set X . But notice that, since in
both algorithms the set X is made of box-constraints, that
projection is inmediate.

Algorithm 2 - LagrangianMinimization

1: procedure LAGRANGIANMINIMIZATION(λ̄, h, y)
2: y1 = y, h1 = h, j = 1
3: repeat

4: y j+1 =
[

y j − ε
j

∂L(y j ,h j )
∂y

]+
ln(rmin

v )≤yv≤ln(rmax
v )

5: h j+1 =
[
h j − ε

j
∂L(y j ,h j )

∂h

]+
1/pmax

v ≤hv≤1/pmin
v

6: j = j + 1
7: until ||∇L(y, h)|| = 0
8: return y j+1, h j+1

9: end procedure

Next we clarify the algorithm steps and discuss other
practical aspects:

• To update the multiplier in Step 2 of Algorithm 1, we use
the fact [33, pp. 423] that, given a set of multipliers λ̄,
a subgradient G ∈ ∂g, of the dual function g evaluated
at λ̄ is given by

G(λ̄) =
∑

i

e(yi−Kvi hi ) − C, ∀v (9)

The subgradient is just the difference between the mea-
sured load by a vehicle and the MBL constraint. Hence,
as a practical alternative, we use in our implementation
the CBT measured by a vehicle, that is,

G(λ̄) = 1

Tb
(C BTv − CC BT ), ∀v (10)

where Tb is the beacon duration.
• The Lagrange multiplier of a vehicle, λv , represents the

congestion measured by that vehicle.
• The LagrangianMinimization function executes a

gradient-descent algorithm to minimize the Lagrangian
function in eq. (7). At each step, and given the collected
set of multipliers λ̄, the gradient ∇L(y, h) is

∂L(y, h)

∂yv
= −(e(yv−Kohv ))1−α +

∑
i

λi e
(yv−Kiv hv ) (11)

∂L(y, h)

∂hv
= Ko(e

(yv−Kohv ))1−α −
∑

i

λi Kive(yv−Kiv hv )

(12)

• The probabilities of reception from distant enough vehi-
cles are essentially zero, Pr = e−Kiv hv ≈ 0. Therefore,
their beacons are not received in practice and their multi-
pliers are not known. But, even if they were known, due
to the extremely low value of the probability of reception,
they would not contribute appreciably to the sums in
eqs. (11) and (12). So, as mentioned in the previous
section, we have formally kept the global formulation
but the sums in the LGP function only involves the
vehicles for which a beacon has been received during a
measurement period. In any case, in Section IV our results
confirm that this is the case and the algorithm is robust.

• An alternative to solve problem (7), is to only compute
the line 5 of Algorithm 2 and then set y j+1 to the value
given by eq. (19) in Appendix B, at each iteration. This is
slightly faster and is what we do in our implementation.
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• Our proposal requires that vehicles broadcast their current
beaconing rate and transmit power and the multiplier:
three real numbers. They would be piggybacked in a
beacon, which would add 12 bytes to its size, a small
overhead.

• The parameters γ and ε are used to tune the speed of
convergence of the gradient descent. They should be
as high as possible to increase speed, but below the
bound derived in Appendix B. The bound is not tight,
so in practice they can be higher and selected by by
experimentation, as done in the next section. Since the
algorithm converges, any initial λ0

v is valid.
PRAIOS converges in general to the proximity of the optimal
value, and, in some cases, to the optimal value, depending on
the strict concavity of the objective function, which in turn
depends on the value of the parameters. The convergence of
the algorithm is shown and discussed in the Appendix.

IV. RESULTS

In this section we discuss the results of our proposal and
provide a comparison with two other joint rate-power control
algorithms, BFPC [17] and the SAE J2945/1 standard [18].
The simulations have been implemented with the OMNET++
6.0 simulator [34], and the INET 4.3.7 library [35] which
implements the IEEE 802.11p standard. This library also
implements a realistic propagation and interference model for
computing the Signal to Interference-plus-Noise Ratio (SINR)
and determining the packet reception probabilities, considering
also capture effect. We set a data rate of 6 Mbps and assume
an equal beacon size of 500 bytes. This results in a total
message size of 537 bytes, including MAC and physical
headers. Because the physical-layer trailer duration depends
on the payload size via the padding, the resulting packet
duration is 752 μs, according to [2], and thus, the total channel
capacity is 1329.8 beacons per second. Finally, we are going
to focus on the α = 2 case. Although PRAIOS allows to
use different fairness parameters, the bound for the gradient
step, γ , derived in Appendix B depends exponentially on the
fairness parameter, which means that using a high value is
detrimental to the convergence speed. In the following results
we show that PRAIOS converges quickly with α = 2 but that
might no be the case for higher values. In addition, we prefer
not clutter the results with additional figures. So, we leave
as future work a more detailed study on the influence of
the fairness parameter and the difference in the outcomes it
produces.

The simulation parameters that are common to the simula-
tions studies in this and the following sections are summarized
in Table I. To encourage reproducibility, the implementation
of the algorithms and the rest of the code used for the paper
are freely available in our public repository1 and any other
parameter value can be checked there.

A. Validation
In this section we test the validity of our algorithm and

assumptions, in a static scenario where vehicles do not move

1https://gitlab.com/esteban.egea/praios

TABLE I

COMMON PARAMETERS FOR SIMULATIONS

which allows us an accurate control of the vehicle inter-
actions. We first simulate a linear network with 286 equi-
spaced vehicles at 10 m from each other. The MBL has
been limited to get an average CC BT = 0.4, or equivalently,
C = 531.91 beacon/s. With SAE a strict MBL constraint
cannot be set, therefore we have set the parameters vMax-
ChanUtil = 0.4 and vMinChanUtil = 0.3 to keep the CBT
in the 0.3–0.4 range. In addition we have set the parameter
vPERRange = 250 to adjust it to our do = 250 m.

For CBFP we have tried several combinations of its para-
meters and we have finally set the parameters to w = 650,
u = 20, c = 1. Simulations are run for 100 s. CBT measure-
ments and algorithm steps are executed every Tm = 100 ms,
so 1000 steps of the algorithms are computed. In addition to
the algorithms, the exact optimal values have been computed
with the CVX numerical solver in Python, CVXPY [36]. All
simulations have been replicated 5 times and 95% confidence
intervals are computed and shown as shaded bands in the plots.

In Fig. 1(a) we show the per vehicle allocated rate and
power respectively. In Fig. 1(a) we also plot the effective
beaconing rate at do per vehicle, that is rv Pr (do, pv ), which
is the desired awareness, that is, our utility. As can be
seen, the shapes of the rate and power allocations from
PRAIOS differ from the optimal ones computed by CVX,
but the effective beaconing rate of PRAIOS is very close
to the optimal one from CVX. It means that the particular
combination of allocated power and rate from PRAIOS is
able to achieve a very similar total utility. In fact, if we
compute the value of the utility function of the PRAIOS
allocation,

∑
v Uv (rv Pv (do, pv ) = 49.89, the ratio of this

value to the exact optimal one computed by CVX is just
1.0065. As an additional check, the bound M2

Gγ /2 for the
utility value computed in Appendix B for this case is 2.037
and the difference of the utility values is 0.32, which is well
within the bound. BFPC allocates very high rates but reduces
considerably the power, whereas SAE allocates lower powers
and rates than PRAIOS. The effective rate for BFPC is higher
than PRAIOS but the MBL constraint is not met by BFPC
as seen in Fig. 1(b), whereas SAE results in a CBT 20%
lower than the target MBL, so channel is underutilized, and
the effective rate is also lower than PRAIOS.
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Fig. 1. Simulation results for the static scenario after 100 s. Shaded bands show 95% confidence intervals. (a) Top: Beaconing rate and effective rate at
250 m. Bottom: Transmit power. (b) Top: Average CBT normalized to a MBL CC BT = 0.4. Bottom: Average PDR at 250 m.

In fact, if we examine the average CBT in Fig. 1(b) we
can see one of the problems of both BFCP and SAE: that the
MBL and other constraints cannot be precisely set. SAE allows
to set a range of values for the MBL and it actually keeps
the CBT around 0.32, that is, inside the allowed range. With
BFPC the problem is more acute, since different parameter
combinations result in different average CBT and there is no
clear indication of how to select them [17]. For instance, if we
set c = 3 keeping the rest of parameters equal we obtain
an average CBT of 0.3, similar to SAE. We show here a
combination that only exceeds 10% the MBL. In comparison,
PRAIOS allows to set a precise MBL constraint, which is
met, as shown in Fig. 1(b). Actually these results show that
PRAIOS provide the best effective beaconing rate that is able
to meet the MBL constraint, as designed.

If we look at the average PDR at 250 m shown in Fig. 1(b),
PRAIOS clearly outperforms the other proposals. The allo-
cated rates by all the algorithms are quite stable as indicated by
the indistinguishable confidence interval bands in Fig. 1, while
there is more variability in the allocated power per replication
in general. This explains in part the variability in the PDR
figure. But BFPC shows a very high variability of PDR,
not corresponding to the moderate variability of its allocated
power. In fact, it may seem contradictory that the effective rate
of BFPC is higher while its PDR may be low. But it is not,
because the effective rate (or the inverse of the average IRT)
and the PDR give different results. To see this, notice that the
average PDR at a target distance can be computed as follows:
given an ego vehicle e, a set of N(d) neighbor vehicles whose
distances to e are less or equal than d , and assuming that the
probability of successful beacon reception is independent for
each neighbor, the expected PDR for a transmission for e at
distance d is given by

E[PDR(d)] = E[
∑

i si

N(d)
] =

∑
i Pr (dei , p)

N(d)
= P̃ (13)

where each si is an independent Bernouilli r.v. with probability
of success given by the corresponding Pr (dei , p) from eq. (1),

and the sum in (13) goes over all vehicles in N(d). The
expected value of the sum is just the sum of the expected
values of the Bernouilli r.v. Then the expected value of the
PDR when r beacons are transmitted in a second is given by
1
r

∑r
j=1 P̃j ≈ P̃ , if we assume that the relative distances do

not change much in a second and so the P̃j are approximately
equal. We see that the PDR does not depend on the beaconing
rate but only on the power via Pr . This is of course a
very simplified analysis valid only in absence on interference.
A more accurate model is Pr = Pr (dei , pt)(1 − Pc(e, j)) +
(1− Pi(i, j))Pc(e, j), where Pi is the interference probability
given, for instance, by eq. (17) in [21] and Pc is a probability
of collision that has to be computed and depends in general
on the MAC and load, that is, on the beaconing rate.

Therefore, the main reason for the poor PDR of BFPC is the
low power allocated, which results in a low Pr , combined with
a high beaconing rate that increases the collisions and interfer-
ence. The effective beaconing rate, r Pr may be high because
of a high beaconing rate, while the PDR is low because of a
low power, as illustrated in the following example. Consider
a vehicle with a single neighbor at a target distance for
which the effective beaconing rate is r Pr = 5 beacon/s.
This effective rate may be achieved in two different ways:
(1) with r = 5.5 beacons/s and Pr = 0.9 and (2) with
r = 10 beacons/s and Pr = 0.5. After two seconds, for case (1)
the vehicle has transmitted 10 beacons and the neighbor has
received on average 9 beacons, so the PDR = 9/10 = 0.9.
For case (2) the vehicle has transmitted 20 beacons but the
neighbor has received only 10 on average, so PDR = 10/20 =
0.5. Note that in both cases, the average IRT is actually the
same.

The conclusions of the previous discussion are general:
when using joint rate and power control, a combination of
low power and high rate is detrimental to PDR, and does not
necessarily decrease the average IRT. This is why we said in
Sect. III-B that selecting PDR or IRT as goal metrics gives
different results. It also suggests that setting a high minimum
power may be desirable for this kind of control. Unlike the
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Fig. 2. Simulation results for the static scenario with different value of the shape parameter (fading type). (a) Top: Beaconing rate and effective rate at
250 m. Bottom: Power. (b) Top: Average CBT normalized to a MBL CC BT = 0.4. Bottom: Time evolution of the ratio between the utility of the PRAIOS
allocation and the optimal allocation from CVX.

other proposals, PRAIOS provides the flexibility to set this
kind of precise limits to the constraints and goals.

B. Different Fading Types and Convergence Speed

We have derived our algorithm under the assumption that
the fading is of Rayleigh type, m = 1. In this subsection we
discuss the behaviour of PRAIOS when that assumption is
not met. We also discuss the speed of convergence of the
algorithm.

We simulate the scenario described in the previous section
but changing the shape parameter to m = 3 and m = 0.5, that
is, more moderate and stronger fading respectively. In Fig. 2
we plot the results. Regarding the allocations, the powers are
similar and we see in Fig. 2(a) that for moderate fading the
effective rate is higher with lower rates because the probability
of reception is higher at the same power. We cannot say
whether the allocations are optimal or how close to an optimal
allocation they are, but as we can see in Fig. 2(b) top, the
average CBT constraint is tightly met in both cases. The key
to obtain that behaviour is that we use the measured CBT as
subgradient, that is, eq. (10) instead of eq. (9), so we do not
have to use the assumptions about the m parameter that are in
the Kiv . Thus, PRAIOS can effectively control the load when
the fading is not Rayleigh, even if the allocation is not actually
optimal.

Finally, we look at the speed of convergence. In the previous
Section we plotted the results after 100 s of simulation,
which may raise concerns about the speed of convergence.
But the convergence is much faster. In Fig. 2(b) bottom we
plot the ratio of the total utility achieved by PRAIOS to the
exact optimal utility computed by CVXPY. As can be seen,
after around 4 s the ratio has reached 0.97, which means
that the algorithm has practically converged. Note that the
utility can be higher than the optimal one at the beginning,
because the MBL constraints are not met. The power and rate
allocations at that time are also shown in Fig. 2(a). PRAIOS

converges quickly to a close to optimal allocation and then it
moves slowly to the exact optimal allocation with some small
oscillations due to packet losses.

C. Dynamic Scenario

In this section we examine the behavior of the algorithms
in a dynamic situation. We simulate a typical scenario, where
a road has a traffic jam in one direction with a high density
of vehicles, which generates high congestion levels, while on
the other direction there are moving vehicles in free flow
at high speeds. In our scenario we place 3 lanes of static
vehicles in one direction. At each lane, 85 vehicles are placed
separated by 2 m plus a random value uniformly distributed
between 2 and 4 m, starting at the origin, so that each row of
vehicles spans around 450 m. In the other direction a set of
50 vehicles separated with the same distribution is moving at
30 m/s heading to the static cluster. The moving cluster starts
at 930 m at t = 0. We use the parameters of Section IV-A
for all the algorithms, except that we set CC BT = 0.6 and, for
SAE J2945 we set vMaxChanUtil = 0.6 and vMinChanUtil =
0.3. The simulation runs for 100 s, and the moving cluster
passes the static cluster at time between 15 to 50 s.

In Fig. 3 we plot the different metrics averaged over all
the simulation time, showing the static and moving vehicles
in two different plots for each metric. The abscissa shows
the vehicle positions at the start of the simulation, but it is
understood that the coordinates in the moving cluster change
as vehicles move. The results show, in general, that PRAIOS
works properly in a dynamic scenario. The conclusions of the
comparison are very similar to those of the previous section.
In particular, we can see how PRAIOS keeps the CBT at the
maximum allowed, while the other proposals result in just
around 50% of the MBL. Again, the effective beaconing rate
of BFPC is above that of PRAIOS, but it reduces considerably
the power, which results in a worse PDR for the static cluster.
For the moving cluster the PDR for BFPC is slightly better
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Fig. 3. Simulation results for the dynamic scenario after 100 s. Shaded bands show 95% confidence intervals. Top: static cluster. Bottom: moving vehicles.
(a) Average beaconing rate and effective rate at 250 m. (b) Average transmit power. (c) Average CBT normalized to a MBL CC BT = 0.6. (d) Average PDR
at 250 m.

than PRAIOS, because it benefits from the lower power used
by the vehicles in the static cluster, which results in lower
interference. The higher power of PRAIOS is also the reason
for the slightly worse PDR of vehicles in the center of the
static cluster, as a consequence of the interference created by
hidden node collisions.

To achieve a better understanding of the algorithms behav-
ior, we show in Fig. 4 the time evolution of power and rates for
the static and moving clusters. We have plotted the results for
all the vehicles, but keeping the same color for each algorithm.
We can now clearly see that both SAE and BFPC have
oscillations. For BFPC the power converges to a stable value
but the rate keeps oscillating in the static cluster. The reason
is not clear, it is probably due to the configuration parameters
used. As said above, the lack of a guide to configure the
parameters to achieve some goal is one of the main drawbacks
of this proposal. For the moving cluster the rate oscillation
appears only when they are passing the static cluster and then
stabilizes. For SAE J2945, there are longer-period oscillations

of both rate and power, which is the expected behavior of
this algorithm: it increases linearly the power when it is in the
allowed CBT range, but when it is out of range, it directly sets
the maximum or minimum power respectively. Those power
oscillations are transferred to the beaconing rate because it
is driven by the estimated density of vehicles, derived from
the number of neighbors measured. PRAIOS, on the contrary,
does not exhibit oscillating behavior. The powers in the static
cluster are kept at the maximum value, except for the periods
of adaptation when the moving cluster is passing or leaving
the static one. Rates have a slight variation over the mean
value (recall that all the vehicle rates are plotted with the
same color) depending on the position in the static cluster.
The figure also shows the quick convergence of PRAIOS to
the final value. In the moving cluster, it is interesting to note
that PRAIOS vehicles first reduce the power when approaching
the high congestion zone, then drop the rate at the level of
the static vehicles. When they are out of the influence of the
high congestion cluster, both power and rate are kept at the
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Fig. 4. Time evolution of the dynamic scenario. Lines for all the vehicles are shown with the same colour for each algorithm. (a) Top: Beaconing rates for
static cluster. Bottom: Power for static cluster. (b) Top: Beaconing rates for moving vehicles. Bottom: Power for moving vehicles.

maximum level, as one would expect, because the load is
below the MBL, unlike the other proposals. In conclusion,
PRAIOS is able to adapt the allocations to variable situations
and quickly recover the maximum rate and power when the
measured load is below the MBL.

D. Flexibility for Applications

A usual criticism to congestion control algorithms is that
they ignore the needs of the applications and just use the
state of the channel for congestion control [25]. We, on the
contrary, think that our approach provides more flexibility for
the applications to adapt the control to their needs and the
vehicular environment than other approaches, which design
the algorithm around some particular requirements, such as to
minimize some tracking error metric. With PRAIOS, appli-
cations on vehicles can set independently the maximum and
minimum rate and power and the MBL to enforce some
behavior, but they can also use the priority parameter, wv ,
to induce a more subtle adaptation. Even the MBL and the
fairness parameter, α, can be used to drive the behavior. In fact,
in a previous work we discussed how to use the priority
parameter to adapt the rate control to the surrounding traffic
situation [26]. With power and rate, more possibilities are open
for such a control, but we leave it as future work and conclude
this section with an example that illustrates the flexibility of
PRAIOS.

In this scenario, we use again the configuration of the
dynamic scenario in the previous section. The static vehicles
are again placed in 3 parallel lanes with the same intervehicle
distance. For the moving vehicles we set two different configu-
rations: Cluster A comprises the first 25 moving vehicles and
cluster B the remaining 25 moving vehicles. Let us assume
that cluster A vehicles run some particular application, such
as the Longitudinal Collision Risk Warning, LCRW, defined
by ETSI [38], which requires a latency below 300 ms and a
communication range between 200 and 300 m. To derive a set
of constraints from this requirements we apply eq. (2) with

target distance do = 250 m, target probability Po = 0.95 and
maximum IRT Tmax = 0.3 s, or in words, that the IRT at
250 m has to be below 300 ms for 95% of the packets, and
get a number of combinations of minimum rate and power
that are able to achieve that level of awareness. In our case,
at least we have to set rmin

v = 6 beacon/s and pmin
v = 0.5 W,

but to account for interference for vehicles in cluster A we
set a slightly higher minimum rate of 7 beacon/s and power
of 0.6 W. For the rest of vehicles, we set minimum rates of
1 beacon/s and minimum power 0.1 W. For the static cluster
we set CC BT = 0.4, and for vehicles in A and B, CC BT = 0.6.
Finally, we use the priority parameter to remark how weighted
fairness can be achieved with PRAIOS. So we consider a
number of special vehicles, think of ambulances, for instance,
that have priority over the rest of vehicles. We set wv = 4 for
3 vehicles in different positions along the static cluster, for
the first and last vehicle in cluster A and for 2 vehicles in
cluster B. For the rest of vehicles the priority parameter is 1.
Our algorithm will assign more resources to these vehicles,
according to the situation, without enforcing a minimum value.
As an approximation to the expected results, from eq. (19) in
Appendix B, it follows that the ratio of rates of vehicles i
and j, measuring the same congested channel state, would be

w
1
α
i /w

1
α
j .

In Fig. 5 top we show the rate and effective rate when
moving vehicles are in the middle of passing the static cluster.
It clearly shows the higher rates for special vehicles in both
static and B clusters, due to the higher priority parameter,
whereas for cluster A only a slight increase in the effective rate
for the last vehicle. As previously mentioned, the assignment
actually depends on the congestion state or available resources,
and vehicles in less congested areas (borders) are assigned
higher relatives rates. For vehicles in cluster A, there is no
margin for it, and all of them set the minimum rate. Finally,
in Fig. 5 bottom we show the empirical cumulative density
function, CDF, for the IRT of the beacons received only
from vehicles in cluster A, in total more than 2 million
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Fig. 5. Dynamic scenario with priority and different configurations for
clusters. Top: Average beaconing rate. Bottom: Empirical CDF of the IRT
from vehicles in cluster B.

samples for the simulation time. As can be seen 95% of
the samples are below 300 ms, and in fact, 82% of the
samples are below 146 ms. And again the measured CBT,
not shown, is very close to the MBL. In this case, since
there are many more vehicles in the static cluster, the CBT
is 0.4. In conclusion, PRAIOS parameters can be dynamically
and independently set by applications to achieve particular
requirements. If multiple applications running on a vehicle
demand different requirements, some manager module needs
to decide the more stringent to set the parameters.

V. CONCLUSION

In this paper we propose a distributed algorithm for optimal
joint adaptation of rate and power for congestion and aware-
ness control in vehicular networks. Our approach is based
on a NUM formulation of the congestion control problem,
which allows us to induce a desired fairness notion and set
different priorities for vehicles. Our goal is to minimize the
average IRT as an awareness metric. We formulate the general
problem but, since it is not convex, we assume Rayleigh
fading and derive an algorithm, called PRAIOS, that solve the
optimization problem in a distributed way, with convergence
guarantees.

We have validated our proposal with realistic simulations
in both static and dynamic scenarios and compared its per-
formance with other similar proposals. Our results show that
PRAIOS quickly converges to close to optimal allocations,
while keeping the MBL at the desired level. Unlike the other
proposals, PRAIOS provides the flexibility to set precise limits
to the constraints and goals, which are enforced by the algo-
rithm in dynamic scenarios, without oscillations. We have also
shown that PRAIOS can effectively control the load and keep
it under the MBL when the fading is not Rayleigh, although in
that case the allocation might not be optimal. Finally, we have
exemplified how PRAIOS provide a flexible framework for
applications which allows them to adapt the control to their
particular needs. Applications can independently translate their

requirements to particular constraints, that can be dynamically
set and enforced by the algorithm, and different priorities can
be assigned according to the state of the environment or the
characteristics of the vehicle, while meeting the channel load
constraints.

As future work, we plan to take advantage of that flexibility
to integrate more precisely context-dependent constraints into
the framework control, as we did in a previous paper, where
we used the computed TTC to set the priority parameter of
the vehicles. The combination of available parameters and the
possibility to seamlessly use even different utility functions
independently by each vehicle open the way to richer designs.
In that work we also plan to study the influence of the
fairness parameter in the outcomes of the algorithm and the
convergence speed. An alternative to explore is the use of
a linear utility function. That is, we have shown that the
proposed utility functions are concave when α > 1, but if
we set α = 1 in the utility we obtain an affine function
of the log-rates and the probability of reception, that can be
regularized to obtain a strictly concave utility. Such a control
would be easy to implement, should converge quickly and
would provide proportional fairness. We leave it as future
work.

APPENDIX

A. Concavity of the Objective Function

The concavity of the objective function of problem R − PR
(5), determines whether it is possible to converge to the opti-
mal value or just to the proximity of it. It depends on the value
of the parameters, and as we discuss next, only convergence
to the proximity is guaranteed in general. To establish the
concavity we compute the Hessian of the objective function
and its eigenvalues. It can be shown that it is a set made of
(0,−(K 2

o +1)e(yv−Kohv )(1−α)(α−1)),∀v, that is, for every pair
of rate and power variables, there are two eigenvalues: one is
zero and the other one is negative as long as α > 1. Therefore,
the objective function is concave, provided α > 1, but not
strictly concave. As discussed in the next section, in this
case the algorithm converges to the proximity of the optimal
value. This is usually enough for practical purposes, since in
a realistic environment the collection of neighbor multipliers
is subjected to noisy measurements. The objective function is
strictly concave for certain combinations of the parameters and
variable ranges, as can be shown by computing second-order
conditions, and so it is possible in theory to converge to the
optimal value. But such combinations do not have a trivial
form and it is not practical to use them.

B. Proof of Convergence of Algorithm 1

As we said previously, the objective function can be concave
or strictly concave depending on the domain of the variables
and the value of the parameters. We consider first the case of
strict concavity.

1) Strictly Concave Objective Function: An optimal solu-
tion to problem R − PR (5) is obtained as long as the gradient
projection of Algorithm 1 converges. And the convergence
follows from the Lipschitz continuity of the gradient of the
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Lagrange dual function (7), ∇g(λ̄) = G(λ̄) [37, Proposition
3.4], given by eq. (9). Therefore we have to prove that

‖Ḡ(x̄) − Ḡ(ȳ)‖2 ≤ M‖x̄ − ȳ‖2 ∀x̄, ȳ ≥ 0 (14)

Now, given any x̄, ȳ ≥ 0, using Taylor theorem we have
that ‖Ḡ(x̄) − Ḡ(ȳ)‖2 ≤ ‖∇2g(z̄)‖2‖x̄ − ȳ‖2 for some z̄ =
t x̄+(1−t)ȳ ≥ 0, t ∈ [0, 1]. Therefore, we have to find a bound
for the Euclidean norm of the Hessian ‖H̄‖2 = ‖∇2g(z̄)‖2.

We first compute the Hessian by direct differentiation of the
gradient of the dual function (9), obtaining the Hessian matrix
H̄ , which is a V × V matrix, whose elements are

(H̄)i j = ∂g(λ̄)

∂λi∂λ j
=

∑
v ′

eyv′−Kiv′ hv′ (
∂yv ′

∂λ j
− Kiv ′

∂hv ′

∂λ j
) (15)

Now, to bound it we need the following relations. For
each vehicle and at each algorithm iteration, given a vector
of multipliers λ̄, the unique minimizers in (7), y∗

v and h∗
v ,

are computed from the stationarity condition of the Lagrange
dual (7), that is, ∇L = 0 for the Lagrangian function (6). So,
from (11) and (12) we get for vehicle i

(e(y∗
i −Koh∗

i ))1−α =
∑
v ′

λv ′e(y∗
i −Kv′i h∗

i ) (16)

Ko(e
(y∗

i −Koh∗
i ))1−α =

∑
v ′

λv ′ Kv ′i e
(y∗

i −Kv′ i h∗
i ) (17)

Grouping the above expression (16) for all the vehicles,
i = 1 . . . V , we form a linear system of equations for the λ̄,
written in matrix form as

B̄λ̄ = ā (18)

where (B̄)i j = eyi−K ji hi and ai = (eyi−Kohi )(1−α).
We look for an additional system involving the Hessian. For

this, we solve for y∗
v in (11)

y∗
i = 1

α
ln[ e−Koh∗

i (1−α)

∑
v ′ λv ′e−Kv′ i h∗

i
]

= 1

α
[−Koh∗

i (1 − α) − ln[
∑
v ′

λv ′e−Kv′i h∗
i ] (19)

and, since, both y∗
i and h∗

i are functions of the vector of
multiplers λ̄, then take the partial derivative with respect to
one of the multipliers using implicit differentiation to get

∂y∗
i

∂λ j
= 1

α

[(
Ko(α − 1) +

∑
v ′ λv ′ Kv ′i e−Kv′i h∗

i

∑
v ′ λv ′e−Kv′ i h∗

i

)∂h∗
i

∂λ j

− e−K ji h∗
i∑

v ′ λv ′e−Kv′i h∗
i

]

= [
Ko

∂h∗
i

∂λ j
− e−K ji h∗

i

α
∑

v ′ λv ′e−Kv′i h∗
i

]
(20)

where we have used the fact that
∑

v′ λv′ Kv′ i e
−Kv′ i h∗

i
∑

v′ λv′e−Kv′ i h∗
i

= Ko,

obtained from dividing (17) by (16).
Next we group the partial derivatives on the left side of (20):

∂y∗
i

∂λ j
− Ko

∂h∗
i

∂λ j
= − 1

α
e−K ji h∗

i∑
v′ λv′ e−Kv′ i h∗

i
(21)

and multiply both sides of (21) by ey∗
i and the sum in

denominator of the right side to get
∑

v ′ λv ′ey∗
i −Kv′i h∗

i (
∂y∗

i
∂λ j

− Kv ′i
∂h∗

i
∂λ j

) = − 1
α e−K ji h∗

i (22)

again using the previous expression for Ko.
Finally, we add together (22) for all the vehicles, i =

1 . . . V , and get

V∑
n=1

( ∑
v ′

λv ′ey∗
n−Kv′nh∗

n (
∂y∗

n

∂λ j
− Kv ′n

∂h∗
n

∂λ j
)
)

= −1

α

V∑
n=1

ey∗
n−K jnh∗

n (23)

Since the above expression is the inner product of the j
column of the Hessian and the vector of multipliers, H̄ j

T
λ̄,

we can form a system of equations for the λ̄ by grouping
together all the multipliers and using the fact that the Hessian
is symmetric, to obtain the following system

H̄ λ̄ = d̄ (24)

where di = − 1
α

∑V
n=1 ey∗

n−Kin h∗
n .

Now, since λ̄ is equal for (18) and (24), we solve for λ̄ in
the first one to get λ̄ = B̄−1ā, and substitute in the second
one to get H̄ B̄−1ā = d̄ . Then, we multiply both sides by āT ,
and get H̄ B̄−1||ā||2 = d̄ āT , and then by B̄ to finally get our
expression for the Hessian H̄ = 1

||ā||22
d̄ āT B̄ , so we can derive

a bound for it.
We use the fact that any expression e−Kx hx ≤ 1 and assume

that there is a maximum allowed rate rmax for all the vehicles,
specified by standards, so that any expresion eyx−Kx hx ≤
rmax . Then, using the ∞-norm for vectors and matrices,
we find that ‖H̄‖∞ = 1

‖ā‖2
2
‖d̄ āT B̄‖∞ ≤ ‖d̄‖∞‖āT ‖∞‖B̄‖∞

‖ā‖2
2

≤
‖d̄‖∞‖āT ‖2‖B̄‖∞

‖ā‖2
2

≤ ‖d̄‖∞‖B̄‖∞
‖ā‖2

≤ V
α rmax V rmax

√
V (rmax )(1−α)

.

Finally, we get ‖H̄‖2 ≤ √
V ‖H̄‖∞ ≤ V 2

α (rmax)α+1.
Therefore, we conclude that ∇g(λ̄) is Lipschitz continuous
with M = V 2

α (rmax)α+1. From this follows that Algorithm 1
converges to the optimal values provided 0 < γ < 2/M .

2) Concave Objective Function: In this case we have a
projected subgradient algorithm, which for fixed step size
γ converges to within M2

Gγ /2 of the optimal, where MG

is a bound of the Euclidean norm of the subgradient,
‖G(λ̄)‖2 ≤ MG . It is straightforward to obtain such a bound
from the subgradient expression eq. (9), as for instance,
M2

G = V (C2 + (V rmax)2).
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