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DNN-Based Approach to Mitigate Multipath Errors
of Differential GNSS Reference Stations

Dongchan Min , Minchan Kim, Jinsil Lee , Mihaela Simona Circiu, Michael Meurer , and Jiyun Lee

Abstract— One of the major error components of differential global
navigation satellite systems is a multipath error in a reference station.
This paper introduces a deep neural network based multipath modeling
method. A signal to noise ratio, as well as satellite geometry, is used
as a feature parameter to capture the variation of the multipath error
caused by unavoidable changes in the vicinity of the reference station. The
performance of the proposed method is demonstrated for both normal
and varying multipath cases using experimental data. The remaining
multipath error after mitigation is well bounded by the standardized
error model.

Index Terms—Differential global navigation satellite system,
deep neural network, multipath error mitigation.

I. INTRODUCTION

Adifferential global navigation satellite system (GNSS) technique,
which generates range error corrections from reference stations at
fixed and known locations is widely used to improve positioning
accuracy. Not only is accuracy improved by this technique, but
with monitoring functions it can detect and exclude satellite faults
or other anomalies in the transmitted signals before they affect
users [1]. Differential GNSS (DGNSS) with such augmentation
allows navigation systems to provide sub-meter accuracy and high
level of integrity. Thus, DGNSS will be a key component of future
air transportation systems (e.g., urban air mobility) to help meet the
demanding navigation requirements [2].

One of the dominant error sources of DGNSS is a multipath error
of the reference station. The multipath error occurs when the signal
arrives at the antenna from reflecting surfaces (e.g., the ground and
structures in the vicinity) in addition to the line-of-sight source. The
multipath errors at a DGNSS reference station and aircraft are mostly
uncorrelated, and thus the correction process cannot remove the
multipath error. Because the multipath environment of the reference
station can be considerably more severe than that of the aircraft, it is
of particular interest to reduce the multipath error in the reference
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station. The reference station should be installed in an open-sky area
as free from reflecting objects as possible to ensure DGNSS accuracy
and integrity against multipath errors. The siting criteria, however,
cannot completely remove multipath signals due to the ground or
objects around the vicinity of antennas.

The problem of mitigating multipath error in pseudorange mea-
surements has received considerable research attention. The most
commonly used methods are attenuating the multipath signals at
the antenna or receiver level. The antennas were designed to be
less sensitive to the reflected signals [3]. The development effort
yielded a multipath limiting antenna (MLA) which uses a vertical
array of dipole elements [4], [5]. Multipath mitigation techniques
at the receiver level use a modified discriminator to improve the
resolution of the signal correlation process [6], [7], [8], [9]. Recently,
several studies have adopted a machine learning (ML) technique to
attenuate the multipath signals. In [10], [11], and [12], the ML-
based angle-of-arrival estimation was used for a multipath signal
discrimination from incoming signals, and in [13], a neural network-
based delay-locked loop was proposed. These advanced antennas and
receivers significantly reduce multipath errors; however, they cannot
completely eliminate such errors and the applications of some of
those techniques are expensive.

An alternative is to estimate and correct the multipath error at the
measurement level. One of the fundamental techniques is a carrier
smoothing filter (CSF) [14], but a gradually varying multipath error
cannot be smoothed. The multipath error can be predicted from a
known receiver environment and the laws that govern the propagation
of electromagnetic radiation [15], but it is computationally intensive.
The other approach is empirical modeling. For the antenna installed
in an essentially static environment, the repeating satellite geometry
of the GNSS constellation produces repeating multipath effects. The
multipath error on the currently visible satellite, therefore, is identi-
fied and used to correct measurements on the subsequent repeating
period. This is referred to as sidereal filtering or daily filtering in
the community [16], [17], [18]. Another empirical modeling method
is to map the multipath errors onto a sky plot, which is called
space-domain modeling [19], [20], [21], [22]. The ML-based models
were also developed, which use the elevation and azimuth angels
[23], [24] or GNSS coordinates series [25] as input parameters.

The assumption made in these empirical modeling approaches is
that the vicinity of the reference station is ideally well-maintained;
for example, the placement of the reflecting object remains constant
and its reflective properties do not change. However, changes in the
reflective properties are inevitable due to variables affecting them,
such as temperature, humidity, or precipitation. For instance, after
a rain fall, the reflecting properties of the surfaces of the reflecting
objects may change, resulting in a variation of multipath signals.
These reflected signals have a different intensity or phase compared
with the reflected signals from dry surfaces, which causes different
multipath errors.

The goal of this work is to capture and estimate the variation
of multipath errors caused by inevitable changes of an antenna
environment. The day-to-day variation of the multipath errors is
presented to show the degree to which precipitation affects the
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Fig. 1. Antenna configuration at Station NYLP [27].

TABLE I

RECEIVER/ANTENNA INFORMATION OF CORS STATIONS

multipath errors. The proposed method uses signal to noise ratio as
one of the feature parameters to capture the variation and employs
deep neural networks (DNN) to construct the empirical model of
multipath errors.

This paper presents the experimental results obtained by using
the data observed at five different reference stations. In addition,
it compares the standard deviations of the corrected multipath errors
with the ground accuracy designator of a ground based augmentation
system (GBAS) under the assumption that GBAS will be applied for
future air transportation systems. The final section summarizes this
paper and suggests future efforts. This paper is an expanded version
of an earlier conference publication [26], including new experimental
results using continuously operating reference stations (CORS) data.

II. DATA USED FOR THE ANALYSIS

The data collected at CORS stations were used to evaluate the
performance of the DNN-based multipath error modeling. The CORS
stations provide collected GNSS data throughout the United States,
its territories, and a few other countries, which are publicly available
at [27]. The CORS stations are sited in an open area where
there are no obstructions 10 degrees above the horizon [28]. Five
CORS stations, for which weather databases are available at [29],
were chosen to examine the relationship between the variation of
multipath error and the precipitation. Their station ID, installed GNSS
equipment, and location are listed in Table I. Fig. 1 shows the antenna
configuration at Station NYLP as an example [27]. The data from day
of year (DOY) 113–143 in 2019 and 61–81 in 2020 were used for
the performance evaluation. We extracted the multipath errors from
the GNSS code-phase pseudorange measurements using the method
proposed in [23] and implemented the CSF [14] with a smoothing
time constant of 100 s. The receiver thermal noise was assumed
negligible after applying the CSF.

III. MULTIPATH ERRORS AND SIGNAL TO NOISE RATIO

Multipath is caused by signals arriving at an antenna via multiple
paths, as depicted in Fig. 2. The primary path is a direct path from the
satellite to the antenna (i.e., line-of-sight). In contrast, the secondary
paths are reflections of the nearby objects or ground [3]. The reflected

Fig. 2. Illustration of multipath signal.

Fig. 3. Normalized cross-correlation of the multipath errors (dates) and the
corresponding precipitation.

and delayed signal corresponds to a weaker version of the direct
signal [3]. When the direct signal is combined with the reflected
signals, the signal modulation is distorted. This causes the receiver
to struggle in estimating the true arrival time of the direct signal,
inducing the multipath error in the pseudorange measurement.

The multipath signals can be characterized in terms of amplitude,
time delay, and phase relative to the direct signal. The multipath error
is proportional to the relative strength of the multipath signal, and
nonlinearly varies as a function of time delay and relative phase [30].
The time delay of a given multipath signal is entirely dependent
upon the geometry of the environment in which the receiver is
located. The amplitude and phase rely on both the environment and
the characteristics of the user’s antenna and receiver. In the case of a
stationary antenna, the multipath error on a pseudorange measurement
can, therefore, be modeled as a function of the azimuth and elevation
angles of the corresponding satellite, unless there are changes in
the nearby objects. However, in practice, even if the vicinity of the
antenna is well maintained, the multipath error is not free from its
daily variation due to both slow and rapid changes of the surrounding
environment.

The day-to-day variation of the multipath errors for consecutive
days can be demonstrated by evaluating their cross-correlation.
Fig. 3 shows the normalized cross-correlation between the multipath
error sequence of DOY 142 and the sequence of the dates within
DOY 122–142. The GNSS measurements collected at the NYIL
station were used for this correlation analysis. As presented in Fig. 4,
the normalized cross-correlation of each date decreases as the time
gap from DOY 142 increases, due to the increased variation in the
multipath errors. The variations can be classified into two categories:
a slow and continuous variation, and a rapid and temporary variation.
The variation grows slowly and continuously as the cumulative
environmental changes become inevitable over time, even though the
environment is properly maintained.
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Fig. 4. Multipath error and signal to noise ratio aligned with its satellite
elevation angles on three consecutive days.

The rapid and temporary variation in the multipath error represents
an unexpected and impermanent change in the vicinity of the antenna.
There could be various factors which produce abrupt changes in the
surrounding environment for a short time. One of the most common
and inevitable causes is precipitation, which includes rain, sleet,
frost, and more. After rains, the reflecting objects are wet and this
causes the reflecting surfaces to have different reflecting properties
in comparison with a dry surface. This changes the amplitude, phase,
and time delay of the reflected signals. These changes disappear
once the surfaces completely dry. The example relationship between
precipitation and multipath is shown in Fig. 3. Four rapidly and
temporarily decreasing cross-correlations occur on DOY 127, 130,
133, and 139, and their precipitations are 4.3, 27.7, 10.4, and
15.5 mm, respectively. This variation cannot be captured by previous
efforts [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], which
only rely on the repeatability of the satellite geometry to estimate
the multipath error. Therefore, an additional parameter is required
to detect the changes of the surrounding environment inducing the
variation of the reflected signals.

This study utilizes the signal to noise ratio (SNR) value of the
incoming signal as a feature parameter to capture the variations of
the multipath signals. In [31], the SNR value was used to adaptively
estimate the spectral parameters (e.g., Ai , ψi ) of multipath signals.
The SNR of the multipath signals can be expressed, as in (1), for a
case where a direct signal is combined with n multipath signals [31]

SN RM P =
∑n

i=1
Ai cos (ψi )+ ε (1)

where SN RM P is the SNR values of the multipath signals, Ai
represents the amplitudes of the reflected signals, and ψi is the
argument directly related to the relative phase of the multipath signals.
ε is the noise term. The changes in the reflective properties of the
reflecting objects produce variations in Ai and ψi , resulting in a
difference in the SNR value. In Fig. 4, the multipath errors and
SNR values of DOY 138, 139, and 140 are plotted in accordance
with their satellite elevation angles, using the NYIL station data.
The precipitations on those dates were 0, 15.5, and 1.8 mm per
day, respectively [29]. The precipitation on DOY 139 changes the
reflective properties of the reflecting object, and thus the SNR
values of DOY 139, as well as the multipath errors, show different
sequences, compared with those of DOY 138 and DOY 140. This

Fig. 5. Schematic representation of the proposed DNN-based multipath error
mitigation method.

yields a possibility of capturing the multipath errors resulting from
the precipitation by utilizing the SNR value which is available at the
receiver.

The use of SNR values and the satellite geometry (i.e., the
azimuth and elevation angles) as feature parameters makes the model
construction problem more complex than the case of relying on
the satellite geometry only. One of the important aspects of the
empirical modelling technique is the algorithm used to construct the
model. In [32], it was rigorously established that a standard multilayer
feedforward network, which is the DNN, is capable of approximating
the function of interest to any desired degree of accuracy, provided
that sufficient number of hidden units are available. DNN has
been extensively used in many applications (e.g., signal processing,
pattern recognition) to approximate complex nonlinear systems,
and its considerable results have been reported in the literature
[33], [34]. Thus, a new DNN-based multipath error modeling method
is proposed in the following section.

IV. DNN-BASED MULTIPATH MITIGATION METHOD

This study proposes a DNN-based multipath error modeling
method for the DGNSS reference station. The reference station was
assumed to be well maintained to prevent any environmental changes
near the antenna, except for inevitable causes including a long-term
seasonal variation or precipitation. The satellite elevation and azimuth
angles and the SNR value are used as input features of the DNN
model, and the DNN outputs the corresponding multipath error.
The satellite elevation and azimuth angles, used for determining the
traveling paths of the signals, contain information regarding the time
delays of the reflected signals. The SNR value includes information
on the amplitude and phase of the reflected signals.

The schematic layout of the proposed system architecture is
depicted in Fig. 5. The GNSS raw measurement collected from
the reference station is stored in a database on each day. These
measurements are post-processed to extract the multipath errors,
detailed in [23], and are used as training data. The DNN models for
each satellite are replaced every day with the newly trained model
using the data that are composed of the multipath errors observed
from a series of previous dates to the present. The period of the
training data shall be long enough to contain information with which
the DNN can learn the relationship between the input features and the
multipath error. However, if the period is too long, the training data
might contain the multipath error which has little correlation with the
current multipath error due to the slow and continuous environmental
changes. This causes a degradation of the performance of the DNN.
Thus, the period should be tuned depending on the surrounding
environment of the antenna. We evaluated the performance of the
DNN while gradually increasing the period of the training data and
set it as 14 dates for the selected CORS station. In practice, the same
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or similar approach needs to be conducted to search for an optimal
window size of training data before initiating the system.

A ‘tanh’ function was used as an activation function of the DNN
model, and a Levenberg-Marquardt algorithm was used to optimize
the DNN using the mean squared error as the loss function. We set
up two hidden layers and 20 hidden nodes for each layer, which
were determined to achieve acceptably low validation errors by trying
different layer (from one to ten) and node per layer (from two to fifty)
combinations. We also tested recurrent neural networks (RNN), but
they took approximately ten times longer training time than DNNs
while the performance was improved by only about two percent.
Thus, we chose the DNN by considering a trade-off between better
performance and less computational time.

V. PERFORMANCE EVALUATION

The DNN-based multipath error mitigation method is compared
with the daily filter method proposed in [16]. We use the reduction
rate of the multipath error standard deviation as the performance
index, which is defined as

r = σtrue − σcorrected

σtrue
× 100, (2)

where σtrue and σcorrected represent the standard deviations of
the true and corrected multipath errors, respectively. The corrected
multipath error is the residual error, which is defined as

M Pcorrected = M Ptrue − M Pest imated , (3)

where M Ptrue is the true multipath error obtained after applying
a 100-seconds smoothing filter, and M Pest imated is the estimated
multipath error by the DNN or daily filter.

The daily filter method is an intuitive and powerful method to
mitigate multipath errors of reference stations. However, its perfor-
mance is degraded when today’s multipath error changes from that
of yesterday. Thus, the performance comparisons between the DNN
and the daily filter were conducted for two cases: a normal case and
a variation case.

1) Normal Case: today’s multipath error is almost the same as
that of yesterday.

2) Variation Case: today’s multipath error is different from that
of yesterday.

In the normal case, as the two multipath error sequences on
consecutive days are similar to each other, the reduction rate obtained
using the daily filter could be high in comparison with that in the
variation case. We categorized the dates used for the evaluation into
the two cases for each station based on the daily filter reduction rate.
Assuming that the number of days in the normal case is larger than
that of the variation case, the thresholds categorizing the two cases
were determined from the median and median absolute deviation
(MAD) of the reduction rate obtained by using the daily filter. The
detailed procedure is as follows:

1) Compute the reduction rate (r j,i
s ) of the j-th satellite, i-th day,

and station s using the daily filter;
2) Compute the averaged reduction rate (r i

s ) of the i-th day and
station s:

r i
s = 1

nsat

∑nsat

j=1
r j,i
s , (4)

where nsat indicates the number of satellites.
3) Calculate the median of the averaged reduction rate of the

station s (r̃s) and compute its MADs , as follows:
r̃s = median

i
r i
s , (5)

M ADs = median
i

(∣∣∣r i
s − r̃s

∣∣∣
)
. (6)

Fig. 6. True multipath errors and those estimated by the daily filter and
DNN for the normal case for the five stations. The root mean square errors
of the daily filter (blue) and DNN (red) are given at the right-hand side for
each station.

4) Classify the i-th day of station s into:
Normal case if r i

s ≥ r̃s − M ADs ,

Variation case if r i
s < r̃s − M ADs .

For this study, as the DNN training process requires a period of
14 dates for the training data, the dates within the period of DOY
127–143 in 2019 and DOY 75–81 in 2020, not the entire period,
were classified and used for the performance analysis

A. Normal Case

Fig. 6 plots the true multipath errors (black dotted line) observed at
the five stations on DOY 143, which are classified as normal cases.
The figure also shows the estimated multipath errors by the daily
filter (blue dashed line) and DNN (red solid line), respectively, and
their root mean square errors. At the NYIL and NYLP stations, the
true multipath errors oscillate slowly, and the estimated multipath
errors from the daily filter are almost the same as the true multipath
errors. In contrast, the multipath errors at the TXAU, ROD1, and
TXAN stations have high-frequency components in addition to the
low-frequency components. The high-frequency components of the
multipath induced slight discrepancies between the true multipath
error and the estimated error from the daily filter, which degraded
the performance of the daily filter.

There could be various factors that produce a difference in mul-
tipath characteristics. The major cause of the difference among the
selected stations is the GNSS equipment, listed in Table I. The NYIL
and NYLP stations use antennas and receivers from manufacturers
that are different from those of the TXAU, ROD1, and TXAN
stations. Each receiver is equipped with the manufacturer’s patented
signal tracking algorithms to acquire the pseudorange measurements
from the GNSS signals. The receivers of NYIL and NYLP stations
are designed to use a high precision pulse aperture multipath corre-
lator [35], and those of TXAU, ROD1, and TXAN are based on high
precision multiple correlators [36]. The antenna installed at NYIL is a
choke ring antenna, and that of NYLP is a patched antenna equipped
with an antenna radome. Those of TXAU, ROD1, and TXAN are
patched antennas. The difference between the receiver and antenna
designs causes the difference in the multipath characteristics.
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TABLE II

MULTIPATH ERROR REDUCTION RATES FOR NORMAL CASE

The performance of the DNN model was compared with that of
the daily filter in terms of the reduction rate of the multipath error
standard deviation. Table II presents the mean reduction rates over
the dates classified as the normal case and their standard deviations.
At the NYIL and NYLP stations, where the multipath errors oscillate
slowly, the reduction rates obtained using the daily filter are higher
than those obtained using the DNN. As the low-frequency component
of the multipath error is highly correlated with that of the previous
day, the daily filter outperforms the DNN that was trained using the
data containing lesser correlated days as the time span increases.
In contrast, the mean reduction rates obtained using the daily filter
are similar or worse than those obtained using the DNN at the
TXAU, ROD1, and TXAN stations, which exhibit the high-frequency
multipath errors. This is because the high-frequency components in
both the true multipath error and that estimated by the daily filter
behave like noises and degrade the mean reduction rates. Unlike
the daily filter, because the DNN only outputs the low-frequency
component of multipath errors that can be captured by the input
features, its adverse effect of subtracting the noise-like error from
true multipath was less than that of the daily filter.

As presented in Table II, the standard deviations of the reduction
rate when using the DNN are smaller than those when using the daily
filter at all stations. This shows that the slight multipath error changes
(considerably lesser than the variation case) are also captured by the
SNR values. From the entire normal cases, the total mean reduction
rate obtained using the DNN is slightly lower than that obtained
using the daily filter by 7.5%. In contrast, the standard deviation of
the reduction rate of the DNN is smaller than that of the daily filter
by 46.70%, which indicates the performance of the DNN is more
consistent than the daily filter.

B. Variation Case

Fig. 7 presents the true and estimated multipath errors for the
variation case at each station. Similar to the normal case, the TXAU,
ROD1, and TXAN stations shows both the low-frequency and high-
frequency changes in the multipath errors, whereas the NYIL, and
NYLP stations show only the low-frequency components. Because
the stations are placed at different locations, the dates classified as
the variation case for each station are also different. Fig. 7 plots the
data on DOY 130 for the NYIL and NYLP stations, DOY 129 for
the TXAU and TXAN stations, and DOY 131 for the ROD1 station.
The weather history recorded by [37] indicates that it rained at each
station on these dates, with a precipitation of 0.3 – 27.7 mm per day.
In Fig. 7, the multipath error of the variation case shows a different
time series from that of the previous day, which is equivalent to the
multipath error estimated by the daily filter. We cannot be sure of
the exact reason for this variation; however, it is very likely that the
rain may have produced differences in the reflective properties of
the reflecting objects and resulted in the variation of the multipath
error. As the daily filter simply shifts yesterday’s multipath error
by the orbit period of each satellite, it cannot capture the multipath

Fig. 7. True multipath errors and those estimated by the daily filter and
DNN for the variation case for the five stations. The root mean square errors
of the daily filter (blue) and DNN (red) are given at the right-hand side for
each station.

TABLE III

MULTIPATH ERROR REDUCTION RATES FOR VARIATION CASE

variation which occurs today, decreasing its multipath error reduction
rates. In contrast, the DNN learns the relationship between the input
features and the multipath error from the training data; thus, the
DNN estimates the multipath error variation. Although the multipath
error estimated by the DNN (red solid line) is not perfectly accurate,
it is closer to the true multipath error (black dotted line) than that
estimated by the daily filter (blue dashed line), as shown in Fig. 7.

The reduction rates obtained using the DNN and daily filter are
tabulated in Table III for each station. When using the DNN, the
mean reduction rates are higher than those obtained using the daily
filter, with an improvement of 13.02% (min.) – 441.28% (max.) at
each station. The DNN outperforms the daily filter by 71% in terms
of the total mean reduction rate over the five stations and produces
a more consistent performance by reducing its standard deviation by
30.08%.

VI. MULTIPATH ERROR MODEL

In this section, the DNN based multipath mitigation method is
evaluated and compared with the daily filter by deriving multipath
error models for an example GBAS application to future air trans-
portation systems, such as urban air mobility or unmanned aerial
vehicles. The GBAS is the DGNSS architecture standard for civil
aircraft precision approach and landing navigation under all weather
conditions. The current GBAS reference station installs expensive
antennas and requires careful siting within a well-controlled airport
to achieve its full performance. However, the GBAS variants for
future air transportation, which requires many landing sites, may
not have the luxury of installing expensive equipment or meeting
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Fig. 8. Multipath error models as a function of the satellite elevation angle.
This result was computed using the normal cases of the selected five stations.

siting constraints. Therefore, the use of the daily filter or DNN
shall be effective to reduce the multipath errors of their reference
stations.

The standardized GBAS error models assume that the pseudorange
error components have a zero-mean normal distribution. The standard
deviation of the ground multipath component and the receiver noise
is classified by the three ground accuracy designators (GAD); A, B,
and C, which are associated with the performance type of antenna and
receiver. As an intermediate level of performance, GAD-B is defined
to represent installations whose performance could be achieved
with advanced receiver technologies and conventional antennas [37].
We assume that the future GBAS variants are likely to install antennas
and receivers of the GAD-B level, also similar to CORS stations
listed in Table I. We, therefore, compare the standard deviation of the
multipath errors of the CORS stations with the GAD-B. However, the
CORS stations do not meet airport siting requirements, and thus their
multipath errors are expected to be greater than those of the GAD-B
Model. Note that, because the GAD model is used for the airborne
positioning algorithm and integrity protection level computations, the
true standard deviations must be equal to or smaller than the GAD
model.

The standard deviations of the remaining multipath errors after
mitigation were computed for the CORS stations as follows. We col-
lected the corrected multipath error data from all satellites and all
stations. Then, we sorted the collected data into satellite elevation
bins of 10 degrees, and computed the sample mean and sample
standard deviation of the corrected multipath errors for each bin.
The standard deviation used for the comparison with the GAD-B
model was computed by adding the sample standard deviation and
the absolute value of sample mean for conservative assessment. This
was done because the sample mean is non-zero, while the GAD-B
model assumes a zero-mean normal distribution for the multipath
errors. Fig. 8 compares the standard deviations of true multipath
errors (black-dotted line with circle markers), those corrected by the
daily filter (blue-dashed line with diamond markers) and DNN (red-
solid line with square markers), with the GAD-B model (magenta-
solid line). All data classified as the normal cases of the selected
five stations were used for the results. The standard deviations of
the true multipath errors exceed the GAD-B model at the elevation
bins larger than 40◦. It is evident that, for this example, the CORS
stations have worse environments than airports in the view of signal
reflections. In contrast, the standard deviations of the multipath errors
corrected by the daily filter and DNN are reasonably well-bounded
by the GAD-B model. Fig. 8 also shows that the performance of the
daily filter and DNN are almost the same. The fact that the DNN
provides a competitive performance compared with the daily filter is
consistent with the results of the reduction rate for the normal case
presented in Table II.

Fig. 9. Multipath error models as a function of the satellite elevation angle.
This result was computed using the variation cases of the selected five stations.

The standard deviations of the multipath errors for the variation
case are plotted in Fig. 9. The data of all dates classified as the
variation case collected from the five selected stations were used to
compute the standard deviations. While the true standard deviations
of the multipath errors for the variation case are almost the same with
those for the normal case, the standard deviations of the corrected
multipath using the daily filter are increased for the variation case.
This indicates that the multipath time series are different on the
consecutive days, but the statistical dispersions of the magnitude of
the multipath errors are at the same level. Unlike the daily filter, the
performance of the DNN for the variation case is not much worse
when compared to that for the normal case. It is also consistent
with the results of the reduction rate for the variation case shown
in Table III. It demonstrates that the multipath errors mitigated by
DNN are well bounded by the ground accuracy model in both the
normal and variation cases.

VII. CONCLUSION

A DNN based multipath empirical modeling method was intro-
duced with the goal of capturing and estimating multipath errors
of DGNSS reference stations. Testing results showed that the per-
formance of the DNN compared better to the daily filter when the
variation of the multipath error occurred due to inevitable changes in
the reflecting properties of surroundings due to weather conditions.
It was also demonstrated that our method when applied to degraded
antenna environments could provide multipath error models which
meet the GBAS standards.

The proposed method can be further extended to mitigate GNSS
multipath errors of a moving platform. The multipath of a vehicle
following a defined path repeatedly is expected to be modeled via
machine learning techniques using geometry information between
the vehicle and satellites, and the vehicle’s attitude and reflecting
properties. This stream of research is currently being explored as
a follow-up study. Further applications to various types of DGNSS
systems, including carrier phase-based systems which requires the
fast and reliable solving of cycle ambiguity, can benefit from this
study by mitigating multipath errors in real time.
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