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Immediate Vehicle Movement Estimation and 3D
Reconstruction for Mono Cameras by Utilizing

Epipolar Geometry and Direction Prior
Zoltan Rozsa , Member, IEEE, Marcell Golarits , and Tamas Sziranyi , Senior Member, IEEE

Abstract— Motion estimation of surrounding objects is indis-
pensable to any mobile machinery. The paper proposes a method
to solve the estimation and reconstruction problem of dynamic
objects with a mono camera. Using the relative camera motion
and detected rigidly moving objects on the image, we estimate
their movement up to a scale factor. Utilization priors about their
moving direction are used to estimate the transformation, which
maps the 3D object from the previous frame to the actual one.
Our two-frame method works twice the speed or more as other
methods using three frames or more for the estimation, and we do
this without any constraints. We evaluate our method on various
traffic scenarios of different autonomous driving datasets.

Index Terms— Vehicle trajectory, 3D reconstruction, mono
camera, intelligent transportation.

I. INTRODUCTION

ESTIMATING relative camera motion is a high research
interest in many machine vision fields. UAVs, mobile

robots, automated guided vehicles, autonomous cars, etc.,
require the knowledge of vehicle ego-motion to navigate.
Methodologies like Simultaneous Localization and Mapping
(SLAM) or Structure from Motion (SfM) offer the possibility
of reconstructing the static environment besides determin-
ing the camera motion. With other simple sensors on-board
(e.g., incremental encoder) or based on simple assumptions
(identifying objects, knowing camera height), the vehicle
displacement’s absolute scale can be determined. However,
moving objects are generally ignored; the reconstructions are
focused on the static scene; the image points of the dynamic
objects are treated as outliers. Although other dynamic par-
ticipants of the transportation system can pose a higher threat
than static objects. Pedestrians are vulnerable [1], and other
vehicles can move at high speed. When these objects move
toward us, a quick reaction is needed for safety [2]. Techniques
are needed that are capable of operating at the moment the
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dynamic object appears [3]. While other methods require a
series of frames to establish a decision, our method can already
give a reliable estimation of the object motion and shape from
only two frames (so two times faster than estimating from
three; also, calculation time is negligible), which can be critical
in braking distance. Our method can also be used as an initial
estimation, supporting future trajectory estimation methods.
There are end-to-end deep learning-based methods for motion
prediction of multiple moving objects like [4] and [5] which
are capable of predicting that. However, they model the
vehicles as 2D objects. Considering real extensions of vehicles
(instead of simplified models) is vital for passenger safety; that
is why we reconstruct not just the trajectories but the objects
in 3D as well.

Movement of dynamic objects (so-called eoru-motions:
motions of multiple moving objects not rigid with the
scene [7]) can also be reconstructed up to a scale. The scale
ratio between this and the reconstruction of the environment
is unknown, thus the object’s distance and velocity. In the
paper, we propose a method to calculate the relative scale ratio
and the displacement of moving objects at the environment
reconstruction scale. In real-life scenarios, we utilize GPS data
to estimate the metric scale. We perform this by estimating
the essential matrix of a virtual camera pair corresponding to
the target object’s movement, reconstructing the motion at a
selected scale, and estimating the movement’s homogeneous
transformation as a matrix maps the object center translation
parallel to a given direction. Our assumption is true for most
vehicle movements (because of straight road segments), and
our tests show that it can result in a satisfactory solution in
other cases as well as we only need two applicable frames
to calculate the proper scale for the whole trajectory. This
assumption makes it possible to determine the transformation
matrix between frames on the absolute scale and achieve state-
of-the-art accuracy in mono camera-based trajectory estima-
tion and 3D reconstruction. Fig. 1 shows that the accuracy
of our 3D reconstruction using only two camera frames is
comparable to LIDAR measurements.

A. Contributions

The paper contributes to the following:
• New methodology is proposed to estimate the transfor-

mation matrix of the motion of moving objects not rigid
with the scene (based on an image pair of a mono camera)
at the scale of background reconstruction.
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Fig. 1. Example of reconstructed moving object position based on two frames
(with moving camera). 1a and 1b show two consecutive frames of Nuscenes
dataset [6]. 1c shows our reconstructions together with LIDAR clouds. Color:
Red - first LIDAR frame, Black - second LIDAR frame, Green - first frame’s
reconstruction, Blue - second frame’s reconstruction.

• It extends the state-of-the-art because this method can be
applied in general 3D scenarios where earlier estimation
algorithms (like [8] [9]) cannot.

• Utilizing only two frames for the solution reduces the
initial estimation time significantly

• Efficient solution is proposed for the degenerate cases.

B. Outline of the Paper

The paper is organized as follows: Section II surveys the
literature about the related topics. Section III describes the
proposed method and the concept in detail. Sections IV and V
show our test results. In Section VI we propose a comple-
ment to our method to deal with its limitations. Section VII
continues with discussion. Finally, Section VIII draws some
conclusions.

II. RELATED WORKS

3D environment reconstruction is achievable from camera
images by using SfM or SLAM [10] models, but it is more
challenging for dynamic scenes. Reference [11] supports us
with a great survey about the topic. There are a few solutions
for multi-body non-rigid SfM [12], and some more for rigid
multi-body SfM. However, multi-body SfM causes problems
in practice [13], like regular bundle adjustment. In most
cases, it is solved by factorization [7]. Trajectory triangulation
of points moving along a line was first solved in [14] by
using Plucker representation. Later [15] proposed a solution
to reconstruct the trajectory of points with more general
movement by utilizing a linear combination of trajectory basis
vectors.

Estimation of relative scale to the background is one of
the main issues in reconstructing trajectories of objects not

rigid with the scene. As in general, these trajectories can be
determined only up to the one-parameter family. Additional
constraints are required to obtain the correct scale. Constraints
can arise from the non-accidentalness principle, as in the
case of [16] or deep learning for depth estimation, using
object shapes template can be applied as well. [9] Motion
models [8] can be applied as a constraint like a constant
velocity model like in the case of [9]. The most common
assumption is the planar motion of objects, relating the move-
ment on the ground by being perpendicular to the normal
vector of the ground plane [17] and the distance of object
points to the ground plane being constant [18]. However, this
calculation cannot be executed with a consecutive frame pair
of a mono camera in most cases, even in case of constraints.
The methods above require multiple frames for the estimation,
the knowledge of the ground plane’s orientation, and special
camera or object motion. Real-time ground plane estimation
from a mono camera is hardly applicable (because of slopes,
it requires computationally expensive dense reconstruction).
Figure 1c shows how few road points can be reconstructed
(gray points). Also, methods relying on that require specific
camera motion, making it inapplicable to driving scenarios.
Compared to the above, the present paper brings the following
advantages:

• Only two frames are required for the displacement
estimation;

• the initial estimation can be refined with each frame;
• no specific camera motion is assumed;
• 2D motion of moving objects is not a requirement; objects

can move through 3D space (e.g., uphill);
• only visual odometry is required, reconstruction is not

necessary;
• does not require learning or object templates;
• orientation of the ground plane is not needed.

III. THE PROPOSED METHOD

Here, we describe the method in detail. We divide our
pipeline of scale and transformation estimation into four steps.

1) Preliminary data generation
2) Estimation of virtual camera motion and reconstruction

without unknown scale
3) Estimate movement direction
4) Compute the relative scale

These steps are described in the following subsections.
In Figure 2, we illustrate the transformation matrices and

coordinate system we use. (Symbols not indicated in the
figure caption are defined in the following subsections.) Three
coordinate systems are illustrated in the figure. Two of them
are the camera coordinate system at different positions, with
C1 and C2 camera centers. The third (global) one for this
illustration is fixed to the traffic pole.

A. Preliminary Data Generation

To generate the input data to our algorithm, we propose
to execute three preprocessing sub-tasks. First, the cameras’
intrinsic parameters should be determined [19]. The intrinsic
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Fig. 2. Illustration of the transformations in our case. The blue car represents the moving object (the traffic pole is a static one) inspected from two camera
positions. P is a static point, while Pm , and P |

m corresponds to the same moving 3D point defined in the global coordinate system. Tmov,g describes the
transformation of the moving car (and Pm on it).

matrix of a camera is constructed from these parameters and
maps the 3D point (P) coordinates (in the camera coordinate
system) to its 2D projections on the image plane (p):

p = K T P (1)

where K is the intrinsic camera matrix.
Then, the relative camera poses should be estimated. In our

real-life experiments we used GPS-based poses, but without
other sensors, it can also be estimated utilizing only the mono
camera with an SfM software like COLMAP [20] for accu-
racy or SLAM method like ORB [21] for the real-time run.
(We used these in the case of virtual camera pose estimation.)
In the latter case, the vehicle trajectory is determined on the
scale of ego-motion trajectory. Finally, the moving object must
be detected and matched through consecutive frames. In our
case Yolo_v2 [22] is used for detection and Hungarian algo-
rithm for [23] tracking. The methods of the current subsection
are not an essential part of our proposed method (e.g., [24] pro-
vides an excellent survey for detection alternatives). However,
real-life experiments showed that the above methods provide
good performance to provide input data to our estimation.

B. Estimation of Virtual Camera Motion and up to
Scale Reconstruction

We can estimate a virtual camera motion between consecu-
tive frames corresponding to the tracked objects, assuming that
the vehicle is static and only the camera (on the ego vehicle)
is moving. Later on, knowing the ego-motion, the motion of
the tracked object can be calculated from this virtual camera
motion.

By decomposing the estimated essential matrix [25] corre-
sponding to the moving object, we can define the projection
matrices of virtual camera poses (denoted with v index):

Pv,1 = K T
1 Tv,1 = K T

1 [Rv,1|λ1tv,1] (2)

Pv,2 = K T
2 Tv,2 = K T

2 [Rv,2|λ1tv,2] (3)

where T = [R|t] are homogenous transformation matrices
with R rotation matrices and t translation vectors. v index
means virtual camera poses, and numbering indicates the
given frame. We determine the reconstruction up to a scale
factor by defining λ1 as the unknown scale. In our tests,
we used COLMAP [26] to reconstruct the dynamic objects
by estimating the motion of a virtual camera pair. Different
image features [27] and robust estimators like [28] can be used
for this estimation (customized to the needs), just in the case
of the real camera motion estimation.

C. Estimate Movement Direction

1) Coordinate Transformation: The virtual camera motion
determines the object motion and shape at a given scale
(e.g., λ1 = 1) and the 3D point cloud shape. However,
we would like to determine the trajectory and object shape on
an absolute scale. We will utilize the fact that the coordinate
systems of the virtual cameras and the real ones of the static
scene’s reconstruction are the same.

The previously triangulated point cloud can be transformed
to the coordinate systems of the virtual cameras by the previ-
ously determined Tv,i transformations. We apply a statistical
outlier removal algorithm to denoise the triangulated object
cloud. This method is thresholding based on the average
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Fig. 3. Illustration of the object motion estimation with known point shape and relative motion direction. Dashed lines represent the projection directions.
Crosses indicate the projected points with u and v coordinates (the first indices refer to point numbering, and the second ones indicate the image number).

distances in the neighboring points [29]. After that, by using
Ti transformations which maps the global coordinate system
object points before (Pm) and after the movement (P �

m) to
the i th camera coordinate system can be described as a
function of λ1:

Pm = T −1
1 [λ1 X1 λ1Y1 λ1 Z1 1]T (4)

P �
m = T −1

2 [λ1 X2 λ1Y2 λ1 Z2 1]T (5)

where Xi , Yi and Zi are point coordinates of the triangulated
3D points in the coordinate systems of virtual cameras, and
i = 1 : 2 are the camera indices.

2) Principal Component Analysis (PCA): On the triangu-
lated and transformed point cloud, we apply PCA [30] to deter-
mine its oriented bounding box, and we will use the direction
in which the point cloud is the most scattered, indicated as N
as our estimation of the object’s center movement direction.
The covariance matrix of the point cloud coordinates:

C = 1

n − 1
PT

μ Pμ (6)

where n is the number of points of the point cloud Pμ of
which Pc center point is transformed to the origin. By applying
singular value decomposition on C we can get the eigenval-
ues and eigenvectors of the covariance matrix. The direc-
tion corresponding to the smallest eigenvalue will be our
estimation of N .

Illustration of how movement direction specifies the cor-
rect scale is shown in Figure 3. The moving object in the

illustration is a triangular prism. The estimated essential matrix
gives the shape, knowing the object only translates (does
not scale between views, and here, in this illustration, does
not rotate either). Red arrows indicate a possible translation
direction. Green arrows indicate the real translation of points
in the known direction N . The movement direction (here,
parallel to its longitudinal axis) determines the correct scale.
The pair of smaller triangular prisms is a valid solution without
knowing the direction, but the red arrows are not parallel to
what we are searching. Only choosing the scale of the bigger
pair of triangular prisms results in the searched direction N .

D. Compute the Relative Scale

Here, we use the assumption that the object (or at least its
centroid) goes through a transformation that can be approx-
imated as a translation parallel to its longitudinal axis. Thus
the difference vector of the two center points (in the global
coordinate system) is equal to the unit vector of the move-
ment direction multiplied with an unknown scale λ2 of the
displacement:

P |
c − Pc = λ2 N (7)

utilizing the known transformations (from the camera coordi-
nate systems to the global one) and the estimated points:

T −1
2 λ1 Pc,2 − T −1

1 λ1 Pc,1 = λ2 N (8)
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TABLE I

COMPARISON OF OUR RESULTS ON VEHICLE TRAJECTORY DATASET TO EARLIER METHODS

where Pc,1 and Pc,2 are the centroid of the point cloud in the
first and second camera coordinate system.

Rearranging the equation, and writing separately the rotation
and translation parts of the transformations gives:

�
R−1

2 Pc,2 − R−1
1 Pc,1 N

� �
λ1
λ2

�
= C1 − C2 (9)

where C1 and C2 are camera centers in the global static
coordinate system and their difference is a vector describing
the ego-motion.

Let us denote λ =
�

λ1
λ2

�
, b = C1 − C2, and A =

(R−1
2 Pc,2 − R−1

1 Pc,1 N) the coefficient matrix. The equation
systems above (two unknowns with three equations) can be
solved in a least-squares sense:

λ = (AT A)−1 AT b (10)

By substituting λ1, the searched scale to Tv,1 and Tv,2 we get
the transformation matrix of the moving object in the global
coordinate system:

Tmov,g = T −1
2 Tv,2T −1

v,1 T1 (11)

Finally, we got the object motion’s transformation matrix.
Moreover, we also get the 3D reconstruction of the moving
object on the correct scale.

IV. VALIDATION

We evaluated the proposed method in the Vehicle Trajectory
dataset [18], which is the only demanding dataset currently
available for vehicle trajectory estimation and object recon-
struction with a moving mono camera to the best of our
knowledge.

The Vehicle Trajectory dataset is a virtual dataset containing
seven scenes (each with one trajectory) and five cars. Ground
truth object masks are published with the dataset, so tra-
jectory estimation can be measured without preprocessing
influencing the results. The dataset is designed for vehicle
trajectory estimation for mono and stereo cameras. As we
use mono cameras, left images are used in our case. The
seventh scene (Bumpy road) is an exception as it operates
just with object motion parallel to the camera (degenerate
case to our algorithm). In this case, we used left and right
camera images alternately (in different time steps) to evaluate
the whole dataset (note: only two frames without degeneracy
would be enough to estimate the relative scale). We used scale
ratios (calculated from frame pairs) with degeneracy degree
smaller than 0.75 (judged as trustworthy, see in Fig. 10) for
the one global scale ratio estimation. Degeneracy degree is

defined absolute value of the scalar product of unit vectors
in the direction of the estimated object and camera motion
(see more in Section VII-A.1). However, in the case of some
trajectories, there were just degenerate consecutive frame pairs
based on the defined threshold. In this case, we used the
available frame pairs and estimations. We estimated a global
scale in two different ways for the whole trajectory. In the
first case, we used the geometric mean of the calculated scale
ratios (from consecutive frame pairs), and in the second case,
we constructed a linear equation system from the equations of
the frame pairs (Eq. 9):

⎛
⎜⎜⎜⎝

Ng,i Ni 0 · · · 0
Ng,i+1 0 Ni+1 · · · 0

...
Ng,n 0 0 · · · Nn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

λ1
λi

λi+1
...

λn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Ci−1 − Ci

Ci − Ci+1
...

Cn−1 − Cn

⎞
⎟⎟⎟⎠

(12)

where i = 2..n, n is the number of frames and R−1
i Pc,i −

R−1
i−1 Pc,i−1 denoted as Ng,i .

We solve the equation system in the least-squares sense
(like in Eq. 10) and we used the estimated λ1 scale as the
global scale relating the object trajectory to the background
reconstruction.

Table I shows the average performance measure values
are compared to [18]. Reference [18] used the whole image
sequences to select view pairs of specific conditions to esti-
mate the scale ratio. We used only consecutive view pairs
for the estimation. For the global scale estimation, we used a
geometric mean of the estimated ratios (geomean) or estimated
only one global scale ratio by gathering the equations of
consecutive frame pairs (eq. sys). We estimated the average
scale ratio at least as accurately as the baseline for four out of
the five cars. The trajectory errors calculated by the proposed
estimation are shown in Figure 4 for all the 35 trajectories.
Comparing Figure 4 to a similar figure published in [18] shows
that we outperformed the baseline in most of the cases. For
both performance measures, we outperformed [18]’s proposal
except only the case of the Smart car, which the fact can
explain, the car has a small length/width ratio, so the longitudi-
nal axis of the car is harder to estimate. Example reconstructed
trajectory is illustrated in Fig 5. (The trajectory consists of
60 frames, every 10th and the 1st frame is illustrated.)

V. REAL-LIFE TESTS

For the real-life testing of the proposed method, we chose
the Argoverse dataset [31]. From the dataset, we selected
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TABLE II

DESCRIPTION OF TEST TRAJECTORIES FROM ARGOVERSE DATASET [31]

Fig. 4. Trajectory error of different vehicles and scenes of the Vehicle
Trajectory dataset [18] with our proposed method. On the x-axis, different
scenes are listed, while different colors indicate different cars in these scenes.

8 vehicle trajectories corresponding to different traffic situ-
ations and vehicle movements. These data are summarized
in Table II with some statistics. For the simpler referencing,
we assigned an integer number to identify the sequence and
objects instead of the original Argoverse id, and this is
indicated as ’our’ in the table.

Results of the trajectory estimation and reconstruction can
be found in Table III. Note: utilizing camera frames with high
frequency can make the estimation even more accurate, but
in these test scenarios, only 10 Hz sampling rate was used
because of the LIDAR ground truths and the analysis provided
in Section VII-C.

Our results were compared to the ‘lift and splat’ part
of [32] as it is a deep-learning-based method designed and
utilized by state-of-the-art methods like [5] for trajectory
prediction. We used [32] for comparison because the part

Fig. 5. Reconstructed trajectory and point cloud of VW van of Vehicle Tra-
jectory dataset [18] in case of Right Curves scene. Colormap: Green - ground
truth ground, Red - ground truth object poses, Blue - Reconstructed vehicle
points of the given position.

of the network can be considered to have a similar purpose
(localizing surrounding vehicles) to ours. However, some
significant differences should be discussed. Although the lift
part of the network estimates 3D from the images (in very low
resolution), at the end of the splat part, only 2D information
(in bird’s-eye view) is available in the form of a probability
map about the surrounding vehicles with a simplified model.
We provide 3D information about the vehicles with the actual
shape, given positions, and data points.

The depth accuracy of our two frames-based estimations
outperformed [32] on average and in most of the sequences,
too; utilizing more than two frames resulted in an even more
significant performance increase. Besides, the segmentation
result of [32] is often a box estimation parallel or perpendicular
to the ego-vehicle. Inbetween angles, it often cannot estimate
the correct pose of the vehicles, unlike our geometry-based
estimation, as examples in Fig. 6 demonstrate to us.
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TABLE III

RESULTS OF TEST TRAJECTORIES FROM ARGOVERSE DATASET [31]

Fig. 6. Example of vehicle estimations on Argoverse dataset [6].
6a and 6b show the original images. 6c and 6d are the estimation results.
Color: Black - Ego vehicle, Green - (LIDAR based) ground truth position,
Blue - [32]’s segmentation result, Red - our position estimation.

The average depth error of our method in different chal-
lenging sequences is 7.96 %. This is the same level of
accuracy as reported results by [34] and somewhat below
than reported by [35] and [9] in similar real-life data, but
with less challenging scenarios (only straight movement).
Also, not relying upon constant motion assumption as [34]
our method can solve more generic and challenging trajec-
tories (e.g., the Vehicle trajectory dataset of the previous
section). See more comparisons to these methods in section VI.
A reconstructed trajectory of the dataset is illustrated in Fig. 7.
(Every 15th frame is illustrated.)

VI. COMPLEMENTARY METHOD

As previously mentioned, parallel camera and object move-
ment results in degenerate cases for our method (see more
in section VII-A.1). On the one hand, we find that it is a
very frequent movement type, but also the least dangerous one
(e.g., ADAS systems like adaptive cruise control are already
handling parallel moving vehicles in front of us); most
hazardous scenarios happen at vehicle path intersections.
On the other hand, only one frame-pair with non-degenerate
movement is sufficient for estimating the whole trajectory;
also, our method is robust against cases close to degeneracy
(Section VII-A.2). Finally, these parallel movement driving
scenarios are not even challenging in terms of camera-based
depth estimation. There are some methods like [34] or [9],
which demonstrate that they are capable of vehicle trajectory

Fig. 7. Reconstructed trajectory of Argoverse dataset [31] in case of
sequence 4. Colormap: Black - Lidar frame (just for reference), Red - (LIDAR
based) ground truth object positions (just for reference), Blue - Reconstructed
vehicle points from the camera of the given position.

estimation in this simple case of approximately parallel move-
ment of cars (in the case of 9 trajectories of the KITTI dataset),
so these can be used. Still, we propose a straightforward
solution to deal with these degenerate cases, using mostly the
same pipeline as we have used so far. We suggest altering it
after N is computed in Section III-C (and so degeneracy degree
is known). From there, we can see that the target vehicle is
moving approximately parallel to the ego vehicle. In this case,
we can apply a simplified scale estimation because the target
vehicle is parallel to our vehicle (and so their rear or front
part is approximated as a plane). Based on the knowledge of
camera installation position (height in absolute scale), we can
use homography to estimate the vehicle distance (depth) on
the ground. Steps of the scale estimation in these cases:

• Estimate the distance (Dplane) of the car’s (rear or front)
plane perpendicular to our moving direction from the
reconstructed point cloud. We can use the prior of its
normal vector orientation (in the case of the KITTI
dataset with roll and pitch angles being approximately 0,
this orientation is approximately [0 0 1] in the camera
coordinate system). We used RANSAC to estimate this
plane of the target object [28].

• By projecting the reconstructed object cloud to a given
image, we select the points with the highest v coordi-
nate (closest to the ground plane) inside the previously
determined bounding box of the object.

• We assume that the previously determined points are on
the ground plane, and we use projective transformation
determined from the known camera installation position
to estimate the distance of these ground points (Dpoint ).
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TABLE IV

RESULTS OF TEST TRAJECTORIES FROM KITTI RAW DATASET [33] FOR DEGENERATE CASES

Fig. 8. Reconstructed trajectory of KITTI raw dataset [31] in case of sequence
id 47 and object id 6. Colormap: Black - Lidar frame (just for reference),
Red - (LIDAR based) ground truth object positions (just for reference),
Blue - Reconstructed vehicle points from camera of the given position.

• The relative scale which relates the target vehicle to the
background can be computed as: λ1 = Dpoint

Dplane

Results of this estimation can be seen in Table IV and
a reconstructed trajectory and object shape are illustrated in
Fig. 8. (Every 10th frame is illustrated.)

One can see that using this assumption, we achieved state-
of-the-art depth error estimation for half of the benchmark.
However, our goal was to show that this benchmark which
was frequently used to evaluate trajectory estimation is not
challenging. It uses only one type of vehicle movement (and
methods evaluated on this cannot be compared to our solution
working in general camera and target motion cases). That
is why we created a new benchmark for vehicle trajectory
estimation by selecting diverse traffic scenarios from the
Argoverse dataset (described in Table II and Section V).

VII. DISCUSSION

In this section, the proposed method’s well-known limita-
tions and comparison are discussed, and finally, a running time
analysis is provided.

A. Degeneracy

In this subsection, first, degenerate cases are derived math-
ematically, then robustness against degeneracy is investigated.

1) Degenerate Case: In case of translation of the camera
has the same direction as the translation of the moving object,
scale of the moving object translation cannot be estimated.
Substituting this condition, C2−C1|C2−C1| = N to Equation 9, and
rearranging it, gives:

λ1 Ng = −(λ2 + |C2 − C1|)N (13)

Fig. 9. 2D Illustration of the degenerate case of object motion estimation
with known relative motion direction.

so Ng must be a multiplication of N as well. This results in a
coefficient matrix of rank equal to one, or a scalar equation:

λ1 = −λ2 − |C2 − C1| (14)

which naturally cannot be solved for the two unknowns.
Figure 9 illustrates this degenerate case. If the motion N ,
is parallel to the camera motion, both triangles (blue and
orange) can be the solution. The scale remains ambiguous.

2) Degeneracy in the Validation Data (Robustness Against
Degeneracy): In the validation dataset, as we have said in the
Bumpy Road scene, the camera and object trajectory (from our
method’s point of view) was completely degenerate. However,
other parts of the dataset contained degenerate or nearly degen-
erate cases too. Figure 10 illustrates how the proposed method
behaves as a function of a degeneracy. We measure the degree
of degeneracy as the absolute value of the scalar product of
unit vectors in the direction C2 − C1 and N (0 means they
are perpendicular, and 1 indicates parallel). In the figure, the
ratio of estimated and ground truth scales ( λ1es

λ1gt
) in logarithmic

scale is visualized as a function of degeneracy.
The illustration corresponds to one car (Golf) through the

different trajectories, but all the cars have a very similar data
distribution. One can see that there were many consecutive
frame pairs in the dataset close to the degeneracy degree 1,
and they resulted in erroneous estimation. However, they
can be easily filtered out (as we can calculate this factor,
which we call the degree of degeneracy). We get reasonable
estimations a bit farther from the value 1 (we used 0.75,
as mentioned earlier). On the other hand, as in the logarith-
mic scale, the distribution seems symmetric on the x axis.
Calculating a geometric mean (or formulating a global equa-
tion system) could result in a correct scale approximation
close to degenerate motions (if we have enough measurements)
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Fig. 10. Distribution of consecutive frame pairs degeneracy (in terms of
our estimation method) and accuracy of corresponding estimations in Vehicle
Trajectory dataset. Different color circles indicate consecutive frame pairs in
different scenes. On the x-axis, as we get closer to the right, the higher the
degeneracy gets (related object and camera movement). On the y-axis the
closer to 0 means more accurate position estimation.

as well. Considering the dataset’s overall degeneracy degree,
our method proved to be robust.

Note: The parallel camera motion case cannot be solved by
the method proposed by [18] either, but in fact, it has a lot
more theoretically degenerate cases, discussed in the following
subsection.

B. Earlier Attempt in Degenerate Case

The method of [18] is the only available in the literature,
which is capable of achieving similar accuracy as our pro-
posed one (Table I) for general vehicle trajectories (includ-
ing general camera motion and turning vehicles). However,
besides its earlier mentioned limitation (coming from ground
plane estimation) its applicability to general driving scenarios
(camera and target object are moving in approximately parallel
planes) is questionable. They provide no quantitative result
on Cityscapes dataset [36] which they use to illustrate their
method in these cases. Reference [18] approximate the ground
as a plane, and based on plane motion assumption; they aim
to solve the relative scale estimation. They utilize the fact that
object points should have the same distance to the estimated
ground on each frame. Formulating this criterion to any point
of the object (here, we use object center) in the case of
two frames, we can write the following equation (using the
notations of this paper):

n
�
Ng C2 − C1

� �
λ1
1

�
= 0 (15)

where n is the normal vector of the plane. Let us suppose
a coordinate frame fixed to one point in the ground plane,
oriented so that direction of z axis is the same as its normal
vector, pointing upward. In this coordinate frame the equation
of the ground plane is 0 = Ax+By+Cz−D = 0x+0y+1z−0

TABLE V

RUNNING TIME OF PIPELINE COMPONENTS

(A, B and C are normal vector components and D is the offset
of the plane) and distance of a point to the ground plane can
be calculated simply by the scalar product of its normal vector
n = [0, 0, 1]. In this case only one equation remains for the z
coordinate of vector Ng :

λ1 Ng,z = C1,z − C2,z (16)

where z index means the z coordinate of a vector. As it
can be seen from Eq. 16 if there is no difference between
the z coordinates of the camera position (moving parallel to
the ground), the relative scale λ1 cannot be determined. As the
height difference of a camera (installed on a car) between
consecutive frames is minimal (approximately 0), any general
driving scenario could mean (close to) degenerate case to [18].
Numerous frames can be required for a proper estimation.
They provide only qualitative result on two trajectories of
this type of data (Cityscapes [36]), which can be reproduced
uncertainly based on their description. In this way, we cannot
compare their performance to ours in the case of driving
scenarios. However, on their dataset, we outperformed them
in most of the cases (Table I).

C. Running Time Analysis

The theoretical speedup is coming from the two frames’
sampling instead of three or more, which is an important issue
in risky traffic conditions. The present development machine
configuration carried out the running time analysis: RAM:
31GB, CPU: Intel� Core i7-7820X CPU @ 3.60GHz × 16,
GPU: GeForce GTX 1080 Ti 12GB, Operating system:
Ubuntu 18 in Matlab environment. Measured running time
values are shown in Table V. The computation depends on
the dataset image size. The indicated values correspond to
Argoverse dataset with an image size of 1920 × 1200.

The ORB feature based reconstruction runs with bundle
adjustment with an average running time of 569 ms. However,
it is a background feature not necessarily counted in real-time
frequency. In this configuration (with high-resolution images),
the system can run about 5 FPS in a not-optimized Matlab
environment.

Yolo_v2 detector is reported in [22] to run about 91 FPS
(about 10 ms/frame) with 69.0 mAP and ORB-SLAM about
25 ms/frame in [37]. Substituting these values to the running
time calculation of the pipeline (and not assuming any speed
up in the tracker), would result in about 58 ms total run time
(17 FPS), close to the real-time speed of 20 FPS. Summing up
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in Table V, it is safe to assume that real-time run is provided
in a usual on-board embedded system.

VIII. CONCLUSION

This paper has presented an approach to reconstruct vehicle
trajectories and vehicles in 3D with a mono camera, based
on direction prior and epipolar geometry. We provide reliable
results for eoru-motions by utilizing only two frames. For
this, we estimate the relative scale that relates the object
and the background. Earlier methods relied on priors like
ground estimates, object shape models, and learning while
working in the case of specific camera motion. We do not
require these or utilize any assumption besides direction prior.
Propagation of the scale ratio is possible, as the evaluation
shows. We have discussed the limitation of the method with
the degenerate case. We can detect these cases and propose
a complementary to our method. With this proposal, we have
reached state-of-the-art performance results in the problematic
cases too. Our method uses only two frames to estimate
the pose, speed, and 3D shape of moving objects two times
faster (much earlier) than a method using three frames. It is
advantageous in an autonomous driving application where
prediction speed (especially of a hazardous moving object)
is essential. The method’s quantitative evaluation supports
the theoretical advantages. We estimated trajectories of such
general traffic scenarios that have not been aimed before in
the literature. It can be used in any general vehicle trajectory
estimation scenarios, too, like estimation from a UAV (Vehicle
Trajectory dataset [18] ). In these cases, we have outperformed
the state-of-the-art. Our method has potential extensions as
many natural and artificial objects are elongated parallel to
their travel direction. Object recognition can extend to other
predetermined directions if not the case. We plan to extend
the method to estimate other object types’ movements in the
future.
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