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Direct Imaging of Stabilized Optical Flow and
Possible Anomalies From Moving Vehicle

Shigeru Ando , Member, IEEE, and Toshiki Kindo, Member, IEEE

Abstract— Machine perception of dynamic scenes becomes
more and more important for autonomous vehicles and vision-
based driver-assistance systems. Even with other 3D ranging
devices, dense, detailed and instantaneous detection of optical
flow is essential for early distinguishing small moving objects
in the 3D environment from the moving vehicle. To overcome
the limited performance in the immediacy, resolution, accuracy
and acuity of existing methods, we provide an optical flow
detection scheme based on a three-phase correlation image
sensor (3PCIS) that is capable of Fourier-coefficient imaging
combined with an exact and direct algorithm derived from
the weighted integral method of identifying the differential
equation model from a short-duration observation. To utilize
inherent performances of the detection scheme by removing
the large and rapid disturbances induced by the rotational
fluctuations of the platform, we introduce a software operation
of gaze in which the image coordinates are fixed on and
smoothly pursue a forward stable object so that the optical
flow field is relative to the moving coordinate system. In it,
the gaze subsystem continuously provides angular velocity and
pose between the camera and gaze target, while the imaging
subsystem instantaneously obtains two optical flow distributions
by cancelling the ego-rotation components and then removing the
outwardly diverging components derived mainly from stationary
3D environments. Possible anomalies captured in each frame
instantaneously provide candidates of hazardous objects that
should be tracked and further investigated. We examine the
performance of optical flow stabilization and anomaly detection
using image sequences of monocular 3PCIS mounted on a moving
vehicle on town roads and a highway.

Index Terms— Optical flow, ego-motion, gaze, autonomous
vehicle, weighted integral method, correlation image sensor.

I. INTRODUCTION

THE early detection of harmful traffic situations is an
important subject for autonomous vehicles and vision-

based driver-assistance systems navigating around other mov-
ing vehicles and humans. Future vehicles must be able to
perceive their environment reliably from their own visual
input, just like a careful human driver with keen senses.
In DARPA Grand/Urban Challenges for practical autonomous
driving technologies [1], [2], LiDAR is a main device for
capturing 3D traffic environments [3]. However, its resolution
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is too low to detect an early sign of hazard for planning
an emergent reaction to avoid it [4], [5]. The role of vision
sensors remains important in the dense and rapid detection of
anomalous conditions such as a ball and children jumping into
a road, a motorcycle approaching an intersection without slow-
ing down, and a vehicle that changes lanes without considering
the surroundings. Toward this aim, dense optical flow (OF)
is particularly advantageous since it not only instantaneously
and widely captures the environment and objects, but also
provides insights into their geometric layout that can be
easily fused with LiDAR or millimeter-wave radars. However,
under the unknown ego-motion of the advancing platform, the
tasks become considerably difficult for detecting small moving
objects in cluttered backgrounds [6].

The methods for OF detection [7], [8] comprise
1) a description of brightness constancy during motion, 2) the
local or global modeling of the velocity field, and 3) an
optimized solution with regularization, and they all have long
been studied. The techniques for 2) and 3) are mostly general
frameworks, but those for 1) are highly specific to optical
images. The most established one is the optical flow partial
differential equation (OFPDE), which describes strictly the
spatiotemporal variation of image intensity over the velocity
field. However, the OFPDE in the differential methods (DMs)
[9], [10] is followed immediately by a dirty approximation of
the temporal differential using the consecutive-frame differ-
ence and thus suffers a fundamental limitation in the range of
velocity and accuracy. Also, an OFPDE can constrain only a
normal component of the flow. Thus, the aims of many studies
have been the regularization of these problems, such as locally
smooth [10] or globally coherent flows [11], multiscale analy-
sis [12] and extended constancy assumptions [13]. Another
category of 1) is the multiframe correspondences of sparse
features in an image sequence [14], [15]. Although it provides
long-term reliable results, an obvious disadvantage is that
small components without distinctive features can be ignored.
To implement an on-vehicle early warning vision under ego-
motion, two different roles of the OF must be coupled and
enhanced together. The tracking determines both the velocities
and loci of featured points, which enable accurate recoveries
of ego-motion and the related OF. Then, the OFPDE, with
proper mathematical treatments, provides a stable, detailed and
instantaneous description of the flow field.

Recently, a novel framework for these studies has been
obtained as a combination of a mathematical technique, the
weighted integral method (WIM), and an imaging device, the
three-phase correlation image sensor (3PCIS) [16]. The WIM
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provides an exact algebraic equation (AE) for determining the
coefficients of a differential equation from weighted integral
measurements of its variables [17], [18], [19], [20], [21]. For
the OFPDE, an exact closed-form solution of the velocity is
obtained from short-time Fourier coefficients (FCs) of time-
varying intensity [22], [23] captured directly by the 3PCIS.
Various types of 3PCIS have been fabricated [24], [25] and
improved for an accurate algebraic solution of OF [26].

The purpose and the main contribution of this paper is to
present an on-vehicle OF detection scheme with an extremely
low latency and an extended spatiotemporal resolution free
of the accuracy problems and ill-conditions in the traditional
methods. The most severe impediments to obtain practicable
performances are the rapidly time-varying OF components
induced by rotational fluctuations of the platform. To remove
them, we introduce a software operation of gaze driven by the
instantaneous image motion, in which the image coordinate is
fixed on a stable stationary object. Thus, it pursues it so that
the OF field is relative to the moving coordinate. Owing to
the extended performances of the WIM and 3PCIS, both the
image coordinate and the relative OF fields are stabilized up
to their time-differential order such that only the translational
ego-motion components and flows due to moving objects
(if they exist) remain.

The method we propose is for a realtime, direct imaging of
anomalous objects as inputs to succeeding high-level analysis;
thus, it is restricted to an early, pre-attentive (near-sensor)
level. The procedure is based solely on the mathematical
models, dominant statistics and algebraic operations. Also, it is
so designed to permit feedback from the cognitive level in
the integration. In Section III, the WIM for ego-motion OF
is described. Then, in Section IV, the stable visual coordinate
(SVC) and gazeflow are introduced. In Section V, we describe
the algorithms in detail, while in Section VI, we examine them
using real 3PCIS image data captured from a vehicle driven
on busy town roads and on a highway.

II. RELATED WORK

A. Ego-Motion and Moving-Object Detection in 3D Scenes

The ego-motion-induced OF in a static 3D scene [27]
was implemented with the DM for detecting rotation-only
or translation-only ego-motion [28], for the focus of expan-
sion (FOE) on a rigid object [11], and for the robust 3D
reconstruction [29]. The problems encountered when moving
objects are present have been studied as the structure from
motion in a multibody environment. For separating static
scenes and rigidly moving objects, most methods are based
on the random sample consensus (RANSAC) framework and
require a significant number of iterations [30]. Further con-
siderations include the use of the factorization method [14],
a piecewise planar model of a 3D scene [15], probabilistic
reasoning including occlusion [31] etc. The visual odometry
or simultaneous localization and mapping (SLAM) [33] pro-
vide a reliable framework for visual navigation. Applications
to vehicles include the estimation of ego-motion using the
road surface [34], the detection of position/velocity of other
vehicles [35] and the inference of road layout for autonomous

driving [36]. Additional considerations include tight coupling
with multiperson detection [37], the use of vehicle kinemat-
ics constraint [38], robust circular matching in tracking and
stereo [39], context-aware motion descriptor using oriented
histograms of OF [40] etc. However, in these methods, the
instantaneous detection of small moving objects for traffic
safety is not a primal concern.

B. Motion Anomaly Detection From a Moving Vehicle

For vehicle safety, a child, bicycle or ball approaching the
road represent targets of interest that requires an emergent
reaction. The difference between ego-motion-compensated
frames of stereo cameras [41], [42], [43] or a monocular
camera [44], [45] provides the instantaneous distribution of
possible anomalies. The frame difference, however, includes
various noises such as occluding and/or occluded edges or
misaligned textured regions. A reliable operation for rejecting
them is the continuous tracking and detection described in
the previous section as well as the semantic inference of
moving targets [46], detection and tracking via composite
object description [47], fusing OF orientation and magnitude
for robust obstacle detection [48], use of a learning framework
for robustness [49] and maintaining occupancy probability
in voxels using 3D point cloud and odometry [50], which
often reduce the rapidness of anomaly detection and sensitivity
to small objects. Real-time approaches with binocular stereo
and other sensors include pedestrian detection from stereo
depth histograms [51], moving object detection using FOE
clustering and inertial sensors [52] and obstacle detection by
fusing stereo and radar [53]. Among others, the direct and
single-frame detection of ego-motion-compensated OF with
an extended reliability is desirable for removing erroneous
responses and solving the spatiotemporal resolution problems
simultaneously.

C. Studies Inspired by the Human Vision

The roles of gaze or fixation in human and machine vision
have been indicated in various studies on the following topics:
recovering ego-motion [54], geometrical reasoning of object
shape [55] and facilitating obstacle avoidance and target
following [56]. The ultrashort latencies of the conjugate eye
responses to ego-motion and pursuing a moving object are
shown to be enabled by feedforward and feedback mechanisms
based on OF [57]. An active vision system using a pan/tilt
platform [58] is a hardware realization of gaze. In contrast,
software realization is less costly using a coordinate transform
and geometrical correction on the image whenever the gaze
target is present in the image area. Other studies include the
foveated vision with space-variant resolution [59], an event
camera with time-resolved sensitivity [60] and a small moving
object detector inspired by the fly visual system [61].

III. OPTICAL FLOW UNDER EGO-MOTION

A. Optical Flow Differential Equation for Ego-Motion

Let r = (x, y) and (X, Y, Z) be the image and camera
coordinates fixed on the vehicle (see Fig. 1). Let the rotation
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Fig. 1. Definitions of coordinate systems. The camera coordinates (X, Y, Z)
and image coordinates (x, y) are fixed on the moving vehicle. The gaze target
is a stationary object in the advancing direction of the vehicle. The stable
visual coordinates are (x �, y�, Z �) (oblique coordinates), in which x � and y�
are perpendicular and in the image plane, x � is parallel to the horizon, and
Z � is the line of sight toward the gaze target.

and translation motions of the camera be � = (�x ,�y,�z)
and T = (Tx , Ty, Tz), respectively. Then, for the stationary
object surfaces free from occlusions, the OF field from the
moving camera is expressed as [27], [29]

v(r) = B(r)� + 1

Z(r)
A(r)T , (1)

where Z(r) is the distance to the surface being imaged at r.
The 2 × 3 matrices B(r) and A(r) are expressed as

B(r) =
[

xy/ fc − fc − x2/ fc y
fc + y2/ fc −xy/ fc −x

]
(2)

A(r) =
[ − fc 0 x

0 − fc y

]
, (3)

where fc is the focal length of the camera. By using Eq. (1),
the OFPDE induced by ego-motion is expressed as

{
(B(r)� + 1

Z(r)
A(r)T) · ∇ + ∂

∂ t

}
f (r, t) = 0, (4)

where f (r, t) is the light intensity on the image plane.

B. Exact Short-Time Integral Form of OFPDE

Assume Eq. (4) is satisfied in the frame interval [0, T ] of
the camera and the temporal changes of v(r) in the frame
are ignorable in comparison with those of f (r, t). Then, the
OFPDE in [0, T ] is identically expressed by optical flow
algebraic equations (OFAEs, see [26] for derivation):

(
B(r)� + 1

Z(r)
A(r)T

) · ∇gn(r)

+[
f (r, t)

]T
0 + jn�ωgn(r) = 0 ∀n, (5)

where �ω ≡ 2π/T is the unit frequency, and

gn(r) =
∫ T

0
f (r, t)e− j n�ωt dt (6)

is the nth order Fourier coefficient in [0, T ] which can be
directly captured by the 3PCIS (n = 0 is the intensity image

TABLE I

COMPARISONS OF OPTICAL FLOW DETECTION BASED ON THE WIM WITH
3PCIS AND THE DM WITH A CONVENTIONAL IMAGE SENSOR (IS)

captured always). By eliminating the integral boundary term[
f (r, t)

]T
0 using n = 0 and n = 1, the OFAE is expressed as

(
B(r)� + 1

Z(r)
A(r)T

) · ∇(g1(r) − g0(r))

+ j�ωg1(r) = 0. (7)

For the whole image, the system of Eq. (7) involves six
unknowns of � and T plus pixelwise unknowns of Z(r).
In the same time, Eq. (7) is complex, providing two equations
pixelwise. Therefore, in the WIM, all unknowns are essentially
solvable except for a common scale of T and Z(r) if the 3D
environment is stationary (no moving objects). It is not the
case for the DMs using Eq. (4) which provides a real equation
pixelwise.

The differences in mathematical backgrounds and perfor-
mance for OF detection between the WIM using the OFAE
and a 3PCIS, on one side, and the DM using the numerical
approximation of OFPDE and a conventional image sensor,
on the other side, are summarized in Table I. For experimental
comparisons between them and for details of the 3PCIS, see
Section VI-A and [26].

IV. STABLE VISUAL COORDINATES AND GAZEFLOW

A. Definitions

Gaze defined in this paper is the operation of keeping the
view center and horizontal axis of the image plane at the
images of a steady object ahead (gaze target) and the hori-
zontal line in the environment, respectively. For the geometry,
see Figs. 1 and 5 and their captions. The view center and
horizontal axis make up a moving coordinate system in the
image plane. Stability of OF is, therefore, achieved in both
egocentric and object-centric senses because the origin is at
the moving vehicle, while the angles of axes are determined
in relation to the gaze target and the horizon fixed in the
world coordinate. A stable visual coordinate (SVC) is the
frame determined by the line of sight connecting the camera
origin and the point on the gaze target (gaze center) as the Z �
axis, and the moving coordinates in the image plane as the
x � and y � axes. Gazeflow is the OF defined in the SVC. The
operation to acquire the stable visual coordinate is the gaze.
At the gaze center, the gazeflow must be always zero since
the SVC continuously and smoothly pursues the gaze target.
The gazeflow describes a detailed motion distribution relative
to the gaze center. This is an important difference of the
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gazeflow from the OF stabilized by a gyro sensor (see Fig. 8
in Section V for the difference between the gaze parameters
and gyro-sensor outputs).

B. Gazeflow: Optical Flow Under Gaze Operation

Let the position of the gaze center be r0 = (x0, y0). Let the
distance to the gaze target be Z(r0) ≡ ZG . The OF at r0 is
expressed as

v0 = B(r0)� + A(r0)T
ZG

. (8)

We also express r0 and v0 as smooth temporal functions
v0(t)= ṙ0(t) for the inter-frame Kalman filtering. The method
of obtaining r0, v0 and �z is described in Section V.

Now, let us consider a velocity distribution being relative to
the gaze center as

v(r) − v0 = (B(r) − B(r0))� + (
A(r)
Z(r)

− A(r0)

ZG
)T , (9)

in which the rotational motion term is expressed as

(B(r) − B(r0))�

=
[

y−y0
−x +x0

]
�z + 1

fc

[
xy−x0y0 −x2+x2

0
y2−y2

0 −xy+x0y0

] [
�x

�y

]
.

(10)

For the second-order small term on the right-hand side, let us
introduce the approximations that the gaze center is sufficiently
near the optical center, i.e., �r0� � fc, and the gaze target is
sufficiently distant, thus �(Tx , Ty)�/ZG � �(�x ,�y)�. Then,
the small term is expressed as

1

f 2
c

[
x2−x2

0 xy−x0y0

xy−x0y0 y2−y2
0

]
v0 = r r t − r0r t

0

f 2
c

v0 (11)

using the gaze center velocity v0. Therefore, by subtracting
from v(r) the velocity distribution determined by r0, v0 and
�z , the gazeflow distribution is expressed as

vG(r) ≡ v(r) − v0 − r r t − r0 r t
0

f 2
c

v0 − (r − r0)
⊥�z

= ( fc

ZG
− fc

Z(r)

) [
Tx − x0Tz/ fc

Ty − y0Tz/ fc

]
+ Tz

Z(r)
(r − r0),

(12)

where ⊥ indicates the π/2 rotation of the vector. The gazeflow
vG(r) is the sum of a unidirectional vector field of the first
term and a diverging vector field of the second term. The first
term vanishes where the distance is near the gaze target. In this
respect, gaze is the procedure of making the description of the
OF field simpler by excluding the effects of � everywhere and
those of Tx and Ty near the distance of the gaze target.

To understand the terms (x0, y0)Tz/ fc subtracted from
(Tx , Ty) in Eq. (12), see Fig. 2. The direction of the line
of sight (Z � axis) and the velocity toward it are (θx , θy) and
T �

z , respectively. Then, if �r0� � f , the velocity components
induced by T �

z 	 Tz along the x and y axes are

T �
z sin θx 	 y0Tz

fc
, − T �

z sin θy 	 x0Tz

fc
, (13)

Fig. 2. Translational ego-motion components Tx and Ty induced by the
forward motion T �

z and the pose rotation (side view for Ty is shown). Gaze
operation is also capable to cancel these components from OF.

Fig. 3. Plots of 1/Z − 1/ZG vs Z when ZG = 40m and ZG = ∞, The
function value is proportional to the influence of Tx and Ty in the gazeflow,
and it is zero when Z = ZG . For finite ZG , the influence becomes smaller
in Z < 2ZG than when ZG = ∞. It is bounded within the widest range of
Z (e.g., red zone) when ZG is the harmonic mean of the terminal values.

which are equal to the subtracted terms. This means that the
components Tx and Ty induced by the tilt of the optical axis
from the line of sight have been removed in the gazeflow.

C. Desired Conditions of the Gaze Target

The gaze target should be, for reliable OF detection, richly
patterned, occlusion-free, and stationary during the vehicle
advance. Thus, it is in the forward direction. Regarding its
distance, Fig. 3 shows graphs of the residual influence of
Tx and Ty in the gazeflow. By choosing a finite gaze-target
distance ZG , the influence of Tx and Ty becomes far smaller
than in the case of ZG = ∞. Generally, the influence is
bounded equally at extremes of a distance range Zmin < Z <
Zmax when ZG = 2/(1/Zmin + 1/Zmax). If Zmax = ∞ on
the far side, Zmin = ZG/2 on the near side. In practice,
the distance is unknown. Hence, an appropriate algorithm is
designed to choose the gaze target as a distant object with a
large area (see Section V).

On the relationship to the ground plane, let the heights of
the target and camera be HG and Hc, respectively. Then, the
image height in the SVC of the ground plane at the distance
Z(r) is expressed as

y � 	 − fc

Z(r)
Hc + fc

ZG
(Hc − HG), (14)

and if Hc = HG , the second term including ZG (decreasing
with locomotion) vanishes. Therefore, by adopting a gaze
target at the same height as the camera, the ground plane image
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Fig. 4. Block diagram of the overall algorithm. The gaze system maintains
the gaze area and continues tracking or initializing it. The imaging system,
using the gaze system results, performs the imaging operation of gazeflow
and anomalous flow by cancelling the ego-rotation components of the OF and
tangential and positive divergent components of the gazeflow, respectively.

has a simple and stationary distance distribution. This is the
case even after changing the gaze target.

V. PRACTICAL MATTERS AND ALGORITHMS

The algorithms for determining the gazeflow comprise
1) pursuing operation of the gaze target to determine the
origin and velocity (r0, v0,�z) of the SVC, and 2) detect-
ing the gazeflow as an instantaneous OF field free from
the above-determined ego-motion components. Note that the
strategies of 1) and 2) should be contrastive: 1) requires
a reliable steady object selection, smoothness, accuracy and
long-time consistency as the ego-motion of the platform, while
2) requires immediateness and spatio-temporal resolution as an
early warning mechanism in a possibly harmful environment.
The algorithms are integrated together as shown in Fig. 4.

A. Placement of Gaze Area and Velocity Estimate

The gaze rectangle is, as shown in Fig. 5, an extended region
(128×72 pixels area in 704×512 pixels image) attached to the
gaze center for velocity estimation and image matching. The
determination of the gaze center is activated initially, when
the offset of the gaze center from the optical axis exceeds a
threshold or when tracking fails. The center is placed at a local
maximum of image variance near the optical center. Across
a saccadic change of the gaze center, the gaze parameters
v0,�z and θz are transfered and r0 is shifted accordingly.

The gaze area is a subset of the gaze rectangle consisting
solely of the target image and is determined based on the
clustering of OF. First, the velocity distribution is obtained
using the local least-squares method expressed as

v(r) = arg min
v

∫ ∫
�(r)

∣∣v · ∇(g1 − g0) + j�ωg1
∣∣2

d r, (15)

Fig. 5. Definitions of the gaze center, gaze rectangle and gaze area. The gaze
area is the largest subarea of the gaze rectangle with a uniform OF. The gaze
center is attached to a 2D-featured pattern in the gaze area. The peripheral
region is used to estimate the rotational and radial OF components.

where �(r) is a small area (e.g, 3×3 pixels) around r. The
normal equation to obtain v = (vx , vy) is expressed as

�
{ ∫ ∫

�(r)
∇(g1 − g0)

∗(∇(g1 − g0)
)t

d r
} [

vx

vy

]

= �ω
{ ∫ ∫

�(r)
∇(g1 − g0)

∗g1d r
}
, (16)

where �{·} and {·} are the real and imaginary parts,
respectively. From it, a 2D histogram of v(r) is generated
in the gaze rectangle. While weighting the similarity with the
previous velocity v0(t − T ), the peak is selected as v0(t). The
variance of scatter around the peak is used to extract the gaze
area using the Mahalanobis distance of v(r) from v0(t).

By using the peak velocity as v0(t), the largest object with
a uniform OF is chosen as the gaze target. Objects with
spatially varying OF, such as the road surface, are excluded.
The selection of the rear face of the preceding vehicle is
usually not excluded since it has little effect on visual stability.
Also, a large crossing object near the path can be gazed. For
a moment, the gazeflow becomes relative to the object to
describe its detailed motion (see Fig. 14(d) for an example).
Such gaze targets are reset whenever the condition becomes
unacceptable for stable tracking.

B. Tracking of the Gaze Area With Enhanced Resolution

Images from a moving vehicle suffer motion blur, which
reduces the matching accuracy. With the 3PCIS, blur can be
reduced by combining the intensity and correlation images.
A truncated Fourier series expansion of the time function
f (r, t) of the incident light with g−1(r) = g∗

1(r), g0(r) and
g1(r) is expressed as

f (r, t) 	 g0(r) + 2�{g1(r)e j�ωt } (0 < t < T ), (17)

which leads to the central-time image (CTI)

f [m](r) ≡ f (r,
T

2
) 	 g0(r) − 2�g1(r), (18)

where the superscript m is the frame count. The first spectral
zero due to the motion blur is removed [22], [23], and spatial
bandwidth of the CTI is increased to about three times g0(r).
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Fig. 6. Motion blur reduction using intensity and correlation images (a part
of Fig. 12(c)). The Fourier series expansion at the central time of the frame
provides a removal of first spectral zeros of blur and a resolution enhancement
about three times in the motion direction (upper right).

Fig. 6 shows an example of motion blur reduction. Reso-
lution enhancement in the motion direction (mostly by pitch
and yaw) is achieved without any false effects such as ringing
at edges. In the following matching operation, the CTIs are
used to increase their selectivity and accuracy.

Even in the gaze area, different appearances of the gaze
target can occur. Thus, the matching criterion is the maximiza-
tion of the sum of similarities being tolerant of the inclusion
of unmatched pixels defined as

r[m]
0 =arg max

r [m]
0

∫ ∫
gaze area

exp
{

− 1

2σ 2

(
f [m](r−r[m]

0 )

− f [m−1](r−r[m−1]
0 )

)2
}

d r. (19)

where σ specifies an acceptable deviation for the similarities.
Since the gaze area is small, the expansion and rotation of
the previous image in it are ignorable. The initial position
of the search is at r[m−1]

0 + v
[m]
0 . The subpixel offset is then

determined by the differential method.

C. Estimation of �z

The roll velocity �z is determined using (v0, r0) after
Kalman filtering. Peripheral regions (see Fig. 5) are more
informative for this estimate. To exclude small moving objects
and estimate �z in stationary regions, we again use the
histogram method. Let vρ(r)≡Tz/Z(r) be the radial velocity
coefficient. Then, the local least-squares method to determine
the rotational and radial velocity coefficients is expressed as

(�z(r), vρ(r))

= arg min
�z ,vρ

∫ ∫
�(r)

∣∣(�z(r − r0)
⊥ + vρ(r − r0)

+ v0 + r r t − r0r t
0

f 2
c

v0
)·∇(g1(r)−g0(r))+ j�ωg1(r)

∣∣2
d r,

(20)

which is solved by inverting the normal equation

�
{ ∫ ∫

�(r)

[
h∗

θ
h∗

ρ

] [
hθ hρ

]
d r

} [
�z

vρ

]

Fig. 7. Examples of histograms for the estimation of gaze parameters v0
and �z . See Figs. 12(a) to (d) top row for those images. Upper row: histograms
of (vx , vy) in the gaze rectangle (axis scale: pixel/frame), middle row:
histograms of (�z , vρ) in the peripheral image field (axis scale: deg/frame
and 1/frame), and bottom row: vertical projections of the (�z, vρ ) histogram
for all vρ > 0 bins (axis scale: deg/frame).

= −�
{∫ ∫

�(r)

[
h∗

θ
h∗

ρ

] (
j�ωg1

+(
v0 + r r t − r0r t

0

f 2
c

v0
) · ∇(g1−g0)

)
d r

}
, (21)

where

hθ ≡ (r−r0)
⊥ · ∇(g1−g0) (22)

hρ ≡ (r−r0) · ∇(g1−g0). (23)

The results in the peripheral regions make a 2D histogram.
Even for static objects, vρ = Tz/Z varies in accordance with
the distance. A marginal distribution of it for positive vρ is
obtained and then weighted by the similarity with the previous
frame. The peak is used as the estimate �̃[m]

z . By limiting vρ to
be positive, regions of moving objects faster than the platform
are excluded. A Kalman filter is used to obtain a smoothed
pair of �[m]

z and θ [m]
z where θz and θ [m]

z are the roll angles.
The top and middle rows in Fig. 7 show examples of 2D

velocity histograms for estimating v0 and �z , respectively.
In the top-row histograms, single clear peaks moving up and
down are evident. The peaks usually correspond to a stationary
distant scene or the back face of a large vehicle in front. The
highest peak is chosen as v0 unless otherwise specified, and
the contributing region to it is extracted as the gaze area. The
middle row shows the 2D histograms of �z (horizontal axis)
and vρ (vertical axis) in the peripheral image region. In it,
populations on the upper side are from proximate objects and
those near the center are from a distant scene. Graphs in the
bottom row show the vertical projection of the middle-row
histogram. Their peaks are used as �z .

Fig. 8 shows an example of velocity detection and gaze-
target tracking when the vehicle is passing through an intersec-
tion under repair. Images are shown in Fig. 12. In the top and
bottom graphs, the traces of the gaze position x0, y0, θz and the
gaze velocity v0x , v0y,�z are shown, respectively. Gray lines
near each trace show the gyro sensor outputs as the ground
truth values. In the graphs, repetitive changes in pitch angle
and motion owing to the waviness of the road surface are
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Fig. 8. Examples of traces of gaze parameters r0 = (x0, y0), θz , v0 =
(v0x , v0y) and �z (for corresponding images, see Figs. 12(a) to (d) top row)
Top graph: x0 (black), y0 (red) and θz (green); bottom graph: v0x (black),
v0y (red) and �z (green). Gray lines near the traces show the gyro sensor
outputs as the ground truth values.

Fig. 9. Long-term trace of the gaze center position r0 = (x0, y0) and the
roll angle θz . The graphs of frame indices from 13 to 73 are the same as those
from 0 to 60 in Fig. 8. The lines are x0 (black), y0 (red) (left scale) and θz
(green) (right scale). Repeated jumps of x0 indicate the saccadic change in
the gaze target along a curving road.

clearly captured as the traces of y0 and v0y . Velocity traces
are very accurate and delay-free: about 0.2 pixel/frame for
v0x , v0y (0.0086 deg/frame as �x and �y) and 0.1 deg/frame
for �z . The increasing offset of y0 is due to the continuing
slope of the road (slanted ground plane).

The tracking operation continues at all times while keep-
ing or inevitably changing the gaze target. Fig. 9 shows a
long-term trace of (x0, y0) and θz after the scenes in Fig. 12.
Repeated jumps of x0 indicate the saccadic changes of gaze
target along a curving road so that the gaze rectangle is near
the image center. Slight discontinuities of y0 at the jumps are
caused by the shift of gaze center to the most textured position.

D. Estimation of Gazeflow

As the final step in each frame, the gazeflow is estimated
directly from the image data g0(r) and g1(r) using the

above determined gaze parameters v0, r0 and �z . The Horn-
Schunck-type global optimization method [10] is used for the
calculation. A particular emphasis is on the regularization of ill
conditions using an a priori distribution given by a previous
frame and the knowledge of stationary objects such as the
ground plane and sky. Owing to the enhanced stability and
continuity in the SVC, the regularization performs well along
both the temporal and spatial axes.

Let the a priori gazeflow distribution be ṽG(r). Then, the
estimation problem is stated as the minimization of the sum
of the squared deviation of the gazeflow from the default
gazeflow, the squared deviation from the local average, and
the squared error of OFAE:

{vG(r)} (gazeflow distribution)

= arg min
{vG (r)}

∫ ∫
whole image

{�vG(r) − ṽG (r)�2

+ μ2�vG(r)−ṽG(r) − �vG(r)−ṽG(r)��2

+ λ2
∣∣(vG(r) + v0 + r r t −r0r t

0

f 2
c

v0 + (r−r0)
⊥�z

)

· ∇(g1(r)−g0(r)) + j�ωg1(r)
∣∣2}

d r, (24)

where {vG(r)} indicates the set of gazeflows in the whole
image, � � indicates a spatial integral for smoothing,
and μ2 and λ2 are the regularization parameters. Let us
express ṽG(r) = ṽ = (ṽx , ṽy) and vG(r) = ṽ + δv =
(ṽx + δvx , ṽy + δvy). Let (hx , hy) ≡ ∇(g1(r) − g0(r)),
hθ ≡ (r−r0)

⊥·∇(g1(r)−g0(r)), and v0+(r r t−r0r t
0)v0/ f 2

c ≡
(v �

0x , v
�
0y) for brevity. Then, the integral is expressed as

J =
∫ ∫

whole image

(
δv2

x +δv2
y + μ2(δvx −�δvx �)2

+ μ2(δvy −�δvy�)2 + λ2
∣∣hx (ṽx +δvx + v �

0x )

+ hy(ṽy +δvy + v �
0y) + hθ�z + j�ωg1

∣∣2)
d r. (25)

By differentiating J with δvx and δvy for all r and equating
to zero, we obtain the iterative scheme

δvk+1
x = μ2

1 + μ2 �δvk
x � − λ2

1 + μ2 �{h∗
x

(
hx(v̄x +δvk

x +v �
0x)

+ hy(v̄y +δvk
y +v �

0y) + hθ�z + j�ωg1
)} (26)

δvk+1
y = μ2

1 + μ2 �δvk
y� − λ2

1 + μ2 �{h∗
y

(
hx(v̄x +δvk

x +v �
0x)

+ hy(v̄y +δvk
y +v �

0y) + hθ�z + j�ωg1
)}, (27)

where the superscripts k and k +1 are the iteration counts. For
the regularization parameters, our choice in the experiments
was μ2 ∼20 and

λ2

1 + μ2 ∼ 1

(|hx |2 + |hy|2 + ε2
1)

√
(δvk

x )
2 + (δvk

y)
2 + ε2

2

, (28)

where ε2
1 and ε2

1 are small positives.
The computation time for each frame (3PCIS @30fps)

from the image input, the gaze and imaging operations, and to
the display of results was about 0.62s using a Core™ i7–4790
CPU @3.6GHz (Visual C++ 14.1 codes, single thread).
A suitable GPU will enable the real-time implementation.
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Fig. 10. Optical flow detection of an approaching wall. All images were taken by a 3PCIS [26]. (a) intensity image (first frame for the DM), (b) OF result
of the DM (two frames, 5×5 pixel least squares, cascaded estimates using low resolution images and pixel-shifted high-resolution images), (c) OF result of
the WIM (single frame, 2×2 pixel least squares using Eq. (15)). Velocity vs color correspondence is indicated by the color scale to the right of (c).

Fig. 11. Tangential (black) and radial (red) velocity components (left-
axis scale) and rms estimation errors (right-axis scale) of the OF results in
Figs. 10(b) and (c). The horizontal axis is the distance from the focus of
expansion. Vertical bars indicate the rms error. Note that the right-axis scale
(rms error) in (a) is magnified 5-fold that in (b).

VI. EXPERIMENTAL EVALUATION

A. Performance Evaluation of OF Detection by 3PCIS

The proposed method is based on the extended sensing
capability of the 3PCIS and the exact algebraic solution
based on the WIM. We first confirm the performance of
this device and algorithms with a simple ego-motion setup.
Fig. 10 shows OF results of a flat board (cork) approaching

the camera. It simulates all directions and wide magnitudes
of OF from the vehicle (see [26] for the results obtained
using a rotating object). The intensity image (a) captured at
30.3 frame/s shows g0(r). It is also used as the first frame
of a simple dual-resolution DM [8]. Spatial gradients (2-level
smoothing for the DM) were computed in the frequency
domain for accuracy reasons, while 5 × 5 and 2 × 2 pixels
local least-squares methods were applied for the DM and
WIM, respectively. In the DM, pixel shift was introduced
to reduce the relative displacement using the first velocity
estimate. However, the DM result Fig. 10(b) shows large
disorders except for the central region with low velocities
(∼3 pixels/frame). For an instantaneous OF result, velocity
errors such as spots are difficult to distinguish from small
moving objects. In contrast, the stability is maintained even at
the peripherals (∼6 pixels/frame) in the WIM result Fig. 10(c).
Moreover, the temporal and spatial resolutions are 2 and
2.5 times larger than those in Fig. 10(b). Small decreases in
velocity in Fig. 10(c) are caused by the aperture problem: the
decrease in ∇(g0(r) − g1(r)) particularly under high velocity
conditions [22], [23]. Figs. 11(a) and (b) show the velocity
dependences of the accuracy of the DM and WIM. In both
results, the tangential and radial velocity components, together
with the rms errors are plotted. The DM has an unavoidable
velocity limit even when smoothing the images. In contrast, the
accuracy of the WIM is maintained over a wide velocity range.
Even with a small estimation area (2×2 pixels), the rms error
at a low velocity is about 0.25 pixels/frame and the relative
error at a high velocity is about 4%. This shows that high-
resolution, wide-range velocity can be obtained directly and
more reliably by using the 3PCIS combined with the WIM.

B. Gazeflow Detection From a Moving Vehicle

Figs. 12(a) to (d) show conventional egocentric OF and
gazeflow. Both were obtained by the 3PCIS with the WIM.
The scenes were acquired when the vehicle is passing through
an intersection under repair. A few workers are standing
on the road near construction equipments. In the second
row, egocentric OFs are shown. The velocity and directions
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Fig. 12. Egocentric OF and gazeflow (both were obtained by 3PCIS with WIM). The test vehicle with 3PCIS is passing through an intersection under repair.
First row: intensity images; second row: camera-centered OFs; third row: gazeflows (maximum brightness: 5.0 pixel/frame), fourth row: magnified brightness
of the third row (ditto: 1.0 pixel/frame). The egocentric OF changes severely and rapidly owing to the ego-motion. In contrast, most of the ego-motion
components are removed, and the distance-related flow field caused by the vehicle advance and its details become evident.

indicated by color change severely and rapidly owing to the
pitching and rolling of the vehicle. In contrast, the gaze-
flows shown in the third row are very stable and present a
mostly gradual expansion of a stationary distribution. This
is an inverse-distance-related flow field caused by the the
locomotion of the vehicle. In it, the workers and construction
equipment can be clearly recognized as proximate objects in
the advancing direction. The velocities on the road are more
stabilized in the gazeflow because the regularization effects
in the iteration are enhanced by the temporal continuity of
the velocity field in this area. The regularization also clarifies
the small OF in distant scenes as shown in the fourth row
(maximum brightness: 1.0 pixel/frame). Increasing rightward
velocities of power poles are from 0.2 to 0.8 pixel/frame.

Changing colors due to specular reflections are seen on the
vehicle in front. Other bright spots are mostly due to sensor
dusts.

The accuracy of OF and gazeflow was mostly maintained
over an entire velocity range of this experimental condition.
Even without an interframe regularization, the rms error at a
low velocity is about 0.25 pixel/frame and the relative error at
a high velocity is about 4%.

C. Anomaly Detection From Moving Vehicle

Figs. 13(a) to (l) show several scenes and results including
moving objects. (a), (b) and (c) are images on a branch of
a town road with much traffic. In gazeflow (b), a bicycle
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Fig. 13. Examples of gazeflow and anomalous flow distributions of 3D scenes including moving objects. (a),(b),(c) A town road with intense traffic. Several
motions of on-coming cars and a cycling student approaching the road from left are detected as velocities distinct from the environment. As shown in (c),
the rightward motion of the bicycle cannot be attributed to a stationary object. (d),(e),(f) A merging lane to a highway. Passing vehicles faster than the test
vehicle are captured as distinctive and contradictive motions to the stationary environment. (g),(h),(i) A left-turning vehicle and a bicycle hidden by it. The
leftward velocity of the vehicle and its tangential component are captured in (h) and (i). The rightward velocity of the bicycle generates an anomalous flow.
(j),(k),(l) Pedestrians walking across or along a narrow town road. The leftward velocity of a crossing pedestrian (red) captured in (k) is extracted as an
anomalous flow in (l). Some tangential components of body motions of a walking pedestrian (left side) are also captured as anomalous flows.
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TABLE II

FEATURES AND ROLES OF GAZEFLOW IN ON-VEHICLE IMAGE ANALYSIS FOR SAFETY AND OBSTACLE AVOIDANCE (DOF: DEGREE OF FREEDOM,
OV: OWN VEHICLE, EW: EARLY WARNING). REGARDING NOTES 1) TO 5), SEE THE DISCUSSION AT THE END OF SECTION VI-C

Fig. 14. Induced transition of the gaze target to a vehicle crossing in front.
(a) and (b) gaze areas (red) in gaze rectangles (cyan) before and after the
transition, (c) and (d) gazeflows for (a) and (b). In (a), the gaze target was on
the left and through the window of the vehicle, and the gazeflow (c) captures
the leftward motion of the crossing vehicle. In (d), relative motions in the
vehicle (wheel rotation and surrounding reflection) become more evident.

approaching from the left is captured as an area of rightward
velocity. Also, the rightward velocity of on-coming cars and
a low leftward velocity of a right-turning car in the distant
intersection are very distinctive from the surroundings. They
are suspicious because of their shorter times to collision [62]
than the surroundings. The anomalous flow (c) displays the
tangential component of gazeflow or the gazeflow as it is
where the diverging component is negative. Only the approach-
ing bicycle is visible in it. To extract the on-coming and

right-turning cars as moving objects, their distance relations
with the surroundings must be elucidated. Figs. 13(d) to (f)
represent a scene and the flow results for a merging lane of
a highway. In the gazeflow (e), several passing vehicles that
are faster than the test vehicle show opposite velocities to the
stationary environment, and only the passing cars are visible
in the anomalous flow (f). Figs. 13(g) to (i) are for a scene
and the results of a forward vehicle turning left, whereby
bicycles (rightward velocity ∼1.2 pixel/frame) hidden by it
are revealed. The leftward velocities of the vehicle higher
than the surroundings are captured in the gazeflow (h). Also,
their tangential components on its lower side are captured
as the anomalous flow (i). One of the bicycles is moving
slightly rightward along the road. Therefore, it is nonzero
in the gazeflow and is also detected as an anomalous flow.
In Figs. 13(j), (k) and (l), a pedestrian crossing the road in front
is captured in the gazeflow and anomalous flow. The leftward
velocity on the right side of the road is improbable as a
diverging flow from a moving vehicle. Tangential components
of the walking motion of a pedestrian on the left side are also
captured as anomalous flows, whereas two slow walkers on the
right side of the road are not. The other nonzero components
in (k) are caused by the insufficient cancellation of ego-motion
OFs and/or aperture problems in textureless regions or oriented
patterns.

Fig. 14 shows a passive transition of the gaze target when a
vehicle crossed the path in front. The gaze changed from a road
side to a side face of the moving vehicle, which is dominant
in the gaze rectangle. This causes a change of gazeflows
since they are relative to the target motion. In Fig. 14(c), the
gazeflow captures clearly the leftward motion of a crossing
vehicle. Also, ego-motion components are suppressed mostly
so that the sensitivity to other moving objects is maintained.
In contrast, Fig. 14(d) captures detailed motions of the vehicle
parts including their directions, e.g. a rotating wheel of the
vehicle. However, a uniform bias is present in the OFs of
environment and the removal of ego-rotation components is
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degraded. The suppression or utilization of this type of gaze
transition can be a subject of future studies.

TABLE II summarizes the features of gazeflow for acquiring
the 3D environment and moving objects in it. The advantages
of gazeflow over the conventional egocentric OF are evident in
the rapid finding of moving objects as anomalous or suspicious
events. As early warnings of danger, these events can be used
to trigger the suitable high-level image analysis. For the early
warning conditions from the notes 1) to 5) in TABLE II, exam-
ples of gazeflow and anomalous flow responses are as follows:
1) tangential flow due to object motion: Fig. 13(l) (walker’s
leg on the left); 2) the lateral or turning motion of the forward
vehicle: Figs. 13(h) and (i); 3) negative diverging flow by a
faster parallel vehicle: Figs. 13(e) and (f); 4) positive diverging
flow larger than the surroundings: Figs. 13(b) and (h); 5) later-
ally approaching or crossing objects: Figs. 13(b), (c) and (l).

VII. SUMMARY

An on-vehicle OF detection scheme with an extended
spatiotemporal resolution of the flow field and stability
against the rotational fluctuation of the platform was proposed
based on the exact algorithm and the solid-state 3PCIS with
Fourier-coefficient imaging capability. A gaze operation was
introduced so that the OF field relative to the object-centric
coordinate, called the gazeflow, is stabilized and the detailed
motion of small objects becomes detectable. The overall
performance including the anomalous object extraction was
examined using real 3PCIS data sequences acquired by a
vehicle moving on busy town roads and a highway. The
proposed method is expected to be helpful for enhancing
the performance of succeeding high-level operations and for
realizing advanced safety vehicles with keen senses.
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