
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022 19907

Attention for Vision-Based Assistive and Automated
Driving: A Review of Algorithms and Datasets
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Abstract— Driving safety has been a concern since the first cars
appeared on the streets. Driver inattention has been singled out
as a major cause of accidents early on. This is hardly surprising,
as drivers routinely perform other tasks in addition to control-
ling the vehicle. Decades of research into what causes lapses
or misdirection of drivers’ attention resulted in improvements
in road safety through better design of infrastructure, driver
training programs, in-vehicle interfaces, and, more recently, the
development of driving assistance systems (ADAS) and driving
automation. This review focuses on the methods for model-
ing and detecting spatio-temporal aspects of drivers’ attention,
i.e. where and when they look, for the two latter categories of
applications.

We start with a brief theoretical background on human visual
attention, methods for recording and measuring attention in
the driving context, types of driver inattention, and factors
causing it. We then discuss machine learning approaches for
1) modeling gaze for assistive and self-driving applications
and 2) detecting gaze for driver monitoring. Following the
overview of state-of-the-art models, we provide an extensive
list of publicly available datasets that feature recordings of
drivers’ gaze and other attention-related annotations. We con-
clude with a general overview of the remaining challenges, such
as data availability and quality, evaluation methods, and the
limited scope of attention modeling, and outline steps toward
rectifying some of these issues. Categorized and annotated
lists of the reviewed models and datasets are available at
https://github.com/ykotseruba/attention_and_driving

Index Terms— Visual attention, driving, gaze prediction, driver
assistance, drowsiness, distraction, self-driving, review.

I. INTRODUCTION

DRIVING, despite being commonplace, is a demanding
activity that involves multiple concurrent tasks. Besides

keeping the vehicle within the road boundaries, drivers observe
other road users, anticipate potential hazards, and deal with
distractions from both inside and outside the vehicle. Drivers
rely primarily on vision to make decisions [1], thus under-
standing how drivers observe the scene, how it affects their
reasoning, and what causes lapses in attention is crucial for
ensuring road safety, especially given the existing evidence
that temporary distractions and sub-optimal visual scanning
skills increase risk of accidents [2], [3].
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Technology for assistive and automated driving aims to
reduce traffic accidents caused by human error, and significant
progress has been made towards this goal in recent years.
For example, advanced driver assistance systems (ADAS) are
gradually becoming standard even in low- and mid-priced
commercial vehicles. More than 30% of vehicles sold in the
USA in 2016 were equipped with passive sensors, such as
rearview cameras, parking proximity sensors, and blind-spot
detection [4]. Active assistance features, e.g. lane departure
detection, emergency braking, and adaptive cruise control,
have become standard in more than 200 car models pro-
duced by major manufacturers in the past five years [5].
According to recent estimates, ADAS can potentially eliminate
up to one-third of accidents caused by light vehicles on
highways [6].

Although existing ADAS can detect specific hazards and
automatically take measures to avoid imminent collisions,
ultimately, they act independently of the drivers’ state or
intentions. Driver monitoring systems (DMS) offer a com-
plementary approach to safety by estimating drivers’ inat-
tention to alert them or safely stop the vehicle if the
driver is not responsive. Currently, most commercial DMS
rely on vehicle measures such as steering or lateral control
to assess drivers’ state [7], however, the next generation
monitoring systems will use in-vehicle cameras to observe
drivers, analyze where they are looking, and issue warnings
to direct their attention back to the road or towards critical
objects/events.

Widespread deployment of vision-based DMS is necessary
for partially- or highly-automated driving systems correspond-
ing to SAE Levels 2-4 [8]. Past research shows that drivers
who are not actively controlling the vehicle (e.g. when using
full or partial automation) and perform a supervisory role are
more prone to distractions [9], [10]. The safety of switching
to manual control depends on whether the driver is distracted
or fatigued [11], [12]; therefore monitoring drivers’ state
and providing feedback is necessary. Together, ADAS and
DMS are expected to offer significant improvements in road
safety. For example, DMS have been included in Euro NCAP
2025 roadmap to zero road fatalities by 2050 [13], and similar
initiatives are likely to be proposed in other countries.

Finally, autonomous vehicles (AVs) are seen by many as
the ultimate solution to eliminating some [14] and poten-
tially all crashes [15] caused by driver error (as defined
in [16]). Given recent successes of biologically-inspired atten-
tion mechanisms in various perceptual tasks [17], many
self-driving approaches now incorporate attention to improve
perceptual and decision-making abilities as well as their
explainability.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5490-9805
https://orcid.org/0000-0002-8621-9147


19908 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

In sum, vision-based assistive and autonomous driving
solutions rely on sophisticated algorithms that observe and
analyze drivers’ behavior and relate it to the events unfolding
in the traffic scenes. This review summarizes past works and
current state-of-the-art in estimating and modeling drivers’
attention, surveys publicly available datasets and discusses
open problems. To limit the scope of the review, we focus on
the algorithms that use machine learning techniques to model
drivers’ spatial and temporal attention allocation to objects and
areas inside and outside the vehicle.

The paper is structured as follows. Section III provides a
brief theoretical background on drivers’ attention and inatten-
tion. In Section IV we discuss approaches for driver moni-
toring that rely on drivers’ gaze or appearance for in-vehicle
gaze estimation, inattention detection, action anticipation, and
awareness estimation. Section V covers algorithms for model-
ing drivers’ attention allocation in the traffic scene for assistive
and autonomous driving applications. Section VI provides an
extensive list of publicly available datasets that contain record-
ings of driver gaze and other attention-related annotations that
enable the design, development, and evaluation of the models
discussed in the previous sections. Finally, in Section VII
we conclude the review with the general discussion of open
problems and limitations of current research and suggest steps
toward rectifying some of the issues.

II. LITERATURE SEARCH

To gather a representative set of papers for review, we con-
ducted a thorough search using Google Scholar with the
following query words: eye, gaze, fixation, glance, eye-tracker,
attention, drowsiness, fatigue, inattention, distraction, and
driver. We limited the search to papers published from 2010 to
2021 (inclusive) in premier intelligent transportation, robotics,
and computer vision venues, including but not limited to
Transactions on Intelligent Transportation Systems, Intelligent
Vehicles Symposium (IV), International Conference on Intel-
ligent Transportation Systems (ITSC), International Journal of
Robotics Research (IJRR), International Conference on Intel-
ligent Robots and Systems (IROS), International Conference
on Robotics and Automation (ICRA), International Conference
on Computer Vision and Pattern Recognition (CVPR), Inter-
national Conference on Computer Vision (ICCV), European
Conference on Computer Vision (ECCV). The choice of the
past decade is motivated by growing interest in developing
driving assistance and self-driving systems during this time
period and recent breakthroughs in machine learning that
promise to make such systems viable for broad deployment.

Since search terms include commonly used words, a large
portion of the 3011 papers initially returned by the search
engine was excluded as not relevant upon examining their
titles and abstracts. We also excluded the following: 1) studies
using modes of transportation other than cars (e.g. bicycles,
motorcycles, trucks, buses, trains), 2) studies that rely only on
indirect methods to assess drivers’ attention (e.g. ego-vehicle
sensor information), 3) studies that focused on drivers with
medical issues or under the influence of alcohol or drugs, and
4) uncited papers over 5 years old. As a result, 204 papers
were selected for this review.

III. THEORETICAL BACKGROUND

Due to space constraints, we cannot discuss all aspects of
human visual attention. However, in the following section,
we will provide a brief theoretical background helpful for
understanding how attention is defined, recorded, measured,
and operationalized for applications in the driving domain.

A. Drivers’ Attention

1) What Is Attention, and Why Is It Needed?: Vision is a
primary source of information for driving [1]. However, drivers
do not process the entire scene at once and instead sequentially
focus on its various elements. This is caused by the biological
properties of human vision, where acuity (resolution) is highest
in the center of the visual field (fovea and parafovea) and drops
off towards the periphery due to the non-uniform distribution
of receptors in the retina [18], [19]. Eye movements help
bring portions of the scene into the central field for closer
examination [20].

2) Types of Eye Movements: In the driving domain, gaze
movements are commonly used as a proxy for attention. The
literature we reviewed is dedicated to analyzing episodes when
the gaze is held steady (fixations and glances) and transitions
between them (saccades), while stabilizing eye movements
and vergence were not considered. Fixations indicate gaze held
at a single point and last from a fraction of a second to several
seconds. Glance (termed dwell in psychology [21]) refers to
gaze maintained within some area of interest (AOI). As defined
in [22], glance starts from the moment the gaze moves inside
the AOI until it moves out. Duration of fixations and glances
measure what areas or objects the driver attended to [23], [24]
inside the vehicle or in the traffic scene, whereas saccades are
indicative of their intentions and decisions [25].

3) Types of Attention Mechanisms: Eye movements are
determined by attentional control mechanisms subdivided into
two groups: bottom-up and top-down [26]. The former is
guided by the saliency of the objects or areas in the scene
that attracts gaze [27], [28]. Top-down attention is driven by
the task [29], i.e. it focuses on the objects or events relevant
for the task, whereas salient but task-irrelevant stimuli have a
lesser effect.

Both are likely involved in driving, but their relative con-
tribution and interaction are still not fully understood. Exper-
imental evidence points to the dominant role of task-based
attention in driving [30]–[32]. At the same time, salient
stimuli such as bright digital billboards also tend to attract
drivers’ involuntary attention even though they are irrelevant
to driving [33], suggesting presence of bottom-up influences.

4) Gaze Recording Equipment: Eye trackers provide the
most accurate recordings of foveal vision. Tower-mounted
models offer the highest precision and sampling rates [34]
at the expense of significantly limiting subjects’ head move-
ments. Remote and head-mounted eye trackers have lower
precision but allow normal head movement and are thus more
suitable for experiments involving active control of the vehicle.
At the same time, eye trackers remain expensive and suscep-
tible to data loss due to calibration issues [35], [36]. Video
cameras offer a cost-effective and nearly maintenance-free
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alternative to eye trackers but require labor-intensive manual
coding to extract gaze information. This process involves
annotating each video frame with a text label specifying the
approximate drivers’ gaze direction, typically subdivided into
coarse areas of interest (AOIs) [37], e.g. rearview mirror, wind-
shield, or speedometer. Multiple annotators are often employed
to reduce errors caused by drivers’ individual characteristics
and subtle eye movements [2], [38]. Another source of error
is low sampling rate of the cameras which may bias the data
towards prolonged glances since short fixations and saccades
may not be captured [37].

5) Effect of Recording Conditions: The choice of on-road
versus in-lab conditions is a trade-off between realism and
replicability. Recording gaze in an actual vehicle in traffic
offers the most ecologically valid conditions, but driving
simulators provide a more cost-effective solution that can
be more reliably replicated across multiple subjects [39].
Therefore, results obtained in a driving simulator need to be
verified against conclusions made using on-road data (valid-
ity). Absolute validity, i.e. the exact numerical match between
measures obtained in simulation and on-road is preferred
to relative validity indicating similar trends, but both are
acceptable [40].

Validity depends not only on the fidelity of the simulator
(how accurately it reproduces the environment and vehicle
controls) but also on the measures being considered. Accord-
ing to [41], most of the research focus thus far has been
on validating driving performance measures (e.g. lane and
speed maintenance, crash rate, etc.) and few studies examined
attention-related measures. While measures such as hazard
anticipation and fixation durations have been validated across
different types of simulators [42], [43], comparisons between
on-road vehicles and simulators have not been conclusive. For
example, a study in [44] reports differences in road fixations,
and [45] showed greater gaze dispersion in the simulator than
on-road. In a recent experiment by Robbins et al. [46], mean
fixation durations recorded in a high-fidelity driving simulation
were similar to an on-road experiment but only for medium-
to high-demand situations (such as turning at intersections).

The last result points to another factor affecting the validity
of the results, the in-lab environment itself [47]. Numerous
studies confirm that in-lab settings affect the transfer of
findings to on-road conditions due to short session durations
[48], [49], overexposure to rare events [50], low risk [51],
small subject groups, and lack of diversity within them [52].

B. Drivers’ Inattention

Due to associated safety risks, most of driving literature
is dedicated to inattention rather than attention. According
to the commonly accepted definition by Regan et al. [53],
inattention during driving is operationalized as “insufficient,
or no attention, to activities critical for safe driving”.

1) Taxonomy of Inattention Types: Besides the definition of
inattention, Regan et al. [53] provide a taxonomy of inatten-
tion types (Figure 1) that distinguishes between five subtypes
of inattention: 1) restricted attention (due to physical obstruc-
tions or blinks), 2) misprioritized attention, 3) neglected

Fig. 1. Driver inattention taxonomy by Regan et al. [53]. Inattention types
shown in bold are the focus of this review.

attention (e.g. not checking the blind spot while changing
lane), 4) cursory attention (looking in the right direction but
failing to process the information), and 5) diverted attention
(distraction by driving-related or non-driving-related tasks and
events). Restricted attention and attention diverted towards
non-driving-related tasks are two types that have been inves-
tigated theoretically and modeled in practice (e.g. drowsi-
ness [54]–[56] and distraction [7], [57]–[60]). Other types of
inattention, such as misprioritized, cursory, or neglected atten-
tion, can only be identified in hindsight after a safety-critical
situation has occurred and are less studied [61].

2) Types of Non-Driving-Related Tasks (NDRT): Two ways
of grouping NDRTs have been proposed: by type (e.g. cell
phone use, radio tuning, smoking), to determine which activ-
ities are more prevalent and pose more risk, and by demand,
which includes primary modality (visual/auditory), interaction
(active vs. passive), interruptibility (easy/difficult), and coding
of information (verbal/spatial) [62]. Demand-based categoriza-
tion is more common and better reflects what cognitive func-
tions are affected. Based on modality, most tasks can be repre-
sented as a combination of one or more of the following [63]:
1) visual - requires averting gaze off the road (e.g. checking
the speedometer); 2) cognitive - requires thinking (e.g. talk-
ing to the passenger or recalling information); 3) manual -
requires taking hands off the wheel (e.g. smoking, drinking).1

Demand-based categorization agrees with evidence of limited
attentional resources, wherein performance in multiple tasks is
reduced when those tasks compete for the same resources [66].
For example, driving as a visuo-manual activity, is affected
by concurrent visual, manual, or visuo-manual tasks, although
cognitive distractions can have a negative impact as well [67].

IV. ATTENTION ESTIMATION FOR DRIVER MONITORING

Vision-based DMS require an accurate estimate of drivers’
attention towards areas inside the vehicle (to determine drivers’
state and actions) and elements of the traffic scene (to identify
what the driver is aware of). In this section, we review meth-
ods for in-vehicle gaze estimation (Section IV-A), inattention
detection (Sections IV-B and IV-C), and action anticipation
(Sections IV-D) framed as classification problems. Methods
for driver awareness estimation are discussed in Section IV-E.

A. In-Vehicle Gaze Estimation

The problem of in-vehicle gaze estimation is commonly
framed as multi-class classification, i.e. categorizing features

1Other proposed modality types include biomechanical (manual) and audi-
tory [64], and emotional [65]. Here, we consider distractions that do not
involve manual actions or visual input as cognitive.
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related to drivers’ gaze or head position with respect to
predefined areas of interest (AOIs) within the car interior. It is
also possible to solve this problem analytically by determining
the driver’s 3D gaze direction and its intersection with the
3D model of the vehicle interior, but only a few approaches
do so [68], [69]. Thus most research in this field focuses
on finding the best combination of features (e.g. head pose,
gaze) and classifiers. Figure 2 shows reviewed algorithms for
in-vehicle gaze estimation grouped by features they use.

1) Input Sources and Feature Extraction: Specialized hard-
ware such as eye trackers is useful for obtaining high-precision
drivers’ gaze direction and head pose (as in [70], [71]). Video
cameras can extract similar data from images of drivers’ faces
but with lower precision and limited to predefined areas.
At the same time, low-cost and no need for maintenance make
cameras more suitable for assistive and monitoring technology.
Near-infrared (NIR) imaging cameras are also used in some
works, alone [72] or combined with a visible light camera [73],
to make the system suitable for night driving conditions.

Feature extraction pipeline should ideally satisfy the fol-
lowing criteria: real-time runtime, short processing chain to
avoid accumulation of error, and informativeness of features
for classification of gaze zone. When using camera images, the
following series of steps can be followed to extract drivers’ 3D
gaze direction [68]: 1) detection and tracking the driver’s face;
2) detection of facial landmarks and eye features (cropped
image of eyes, iris, and/or pupil location); 3) estimation of
head pose (roll, yaw, and pitch angles) from facial landmarks;
4) estimation of 3D gaze vector using eye and head pose
models; 5) finding the intersection point between 3D gaze
direction and 3D model of the vehicle interior. Some of these
steps can be omitted or simplified by use of machine learning
techniques discussed below.

2) Classifiers: In the literature, the minimal set of features
used for this problem consists of facial landmarks [74], [75]
or head poses extracted from the landmarks [72], [76]. These
features can then be fed into a classifier to determine a gaze
zone. The experimental results indicate that although their
computation can be performed in real-time, facial landmarks
and 3D head position features cannot reliably differentiate
between neighboring zones, such as a speedometer and wind-
shield [76] or side mirror and the window next to it [72].
In both cases, the drivers either made small head movements
or did not move their heads and performed eye movements
instead. Temporal filtering [74], aggregating features over
time [76], and feature normalization [75] led to improved
performance but ultimately did not resolve the issue, lead-
ing to the conclusion that eye features are also necessary.
Fridman et al. [77] in a thorough study estimated that eye
information contributes a 5.4% increase in average accuracy,
and an even larger boost of 20% was reported in [78].

Deep learning models have the advantage of combining fea-
ture extraction and classification steps. Instead of the explicit
processing pipeline described above, a single convolutional
neural network (CNN) pre-trained on the image classification
task can be used to classify cropped frames from driver-facing
videos [80]–[83]. These CNN-based models reach high accu-
racy and can discriminate adjacent areas better than previous

Fig. 2. In-vehicle gaze estimation models organized by the visual features:
Gaze - gaze coordinates or eye crop, face - face image/landmarks, head - 3D
head pose. Number of AOIs is shown in circles.

methods that relied on hand-crafted features. In one study,
Vora et al. [82] experimented with multiple face cropping
methods and CNNs and determined that the upper half of
the face provided optimal information. Another advantage of
using CNNs is that they perform well even with uncropped
images [81], thus saving computational costs associated with
face detection and tracking.

3) Evaluation and Limitations: Since in-vehicle gaze esti-
mation is a classification problem, metrics, such as accu-
racy, F1-score, and confusion matrix, are commonly used to
evaluate the models. Accuracy and F1-score provide global
performance assessment, while the confusion matrix shows
accuracy per area of interest (AOI) and which areas are
misclassified.

In the literature, there are large differences in the number
of AOIs defined inside the vehicle: from 2 zones (driving-
and non-driving related as in [71], [77]) to 18 [68], [72], with
6-8 being the most common (although the justification for the
particular choice is rarely given). Naturally, more fine-grained
zoning is challenging and leads to worse performance since it
is more difficult to localize gaze within a smaller area [75].
As an alternative to fixed AOIs, Huang et al. [70] propose
to cluster drivers’ gaze into zones customized for individual
drivers. The downside of this method is that some potentially
important areas such as rear-view and side mirrors may be
excluded if some drivers ignore them.

Although most models achieve high classification accuracy,
some challenges remain. For example, some drivers attend
to different zones by moving their heads while others move
only their eyes, as noted in [72], [74] and more thoroughly
investigated in [77]. Such individual differences can be cap-
tured by training the models on user-specific data rather than
data aggregated across many drivers [70], [74], [75], but
individual data may not be readily available. A more generic
solution combining head pose and gaze direction information
has been shown to mitigate this issue [76], [78]. Nevertheless,
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Fig. 3. Distraction detection algorithms grouped by the visual features and
types of distractions they can detect. Features: gaze - gaze coordinates or eye
crop, face - face crop/landmarks, head - 3D head pose. Distraction types:

- cognitive, - visual, - manual, - visuo-manual, - non-
specific. Algorithms marked with * use additional features, e.g. vehicle or
context.

some adjacent zones remain difficult to distinguish, partic-
ularly windshield and speedometer, due to their proximity
and subtle eye or head movement required to switch between
them [68], [69], [71], [77], [78]. More recent CNN-based
models appear to suffer less from misclassifications of these
kinds [82].The presence of eyewear causes another challenge.
Glasses introduce glare and occlusions, making it difficult to
estimate gaze direction [81]. In [73], a pre-processing step
is added to remove eyewear via a gaze-preserving generative
network, however, it cannot handle thick glass frames and
glare.

B. Distration Detection

Timely and reliable driver inattention detection is a pre-
requisite for driver monitoring systems (DMS) that aim to
improve road safety by alerting drivers to dangerous behav-
iors. Distraction detection algorithms summarized in Figure 3
exploit changes in drivers’ gaze patterns caused by secondary
task involvement, e.g. taking eyes off the road to look at
their phone or cognitive distractions. Similar to in-vehicle gaze
detection, distraction detection can be solved as a multi-class
classification problem. Because of differences in behavioral
changes depending on the kind of distraction, the majority of
the algorithms focus either on detecting a specific distraction
type or distinguishing between different distractions.

1) Types of Distractions: Cognitive and visuo-manual dis-
tractions (see Section III-B) are more commonly investigated
NDRT types among the reviewed papers. Unlike visual and

manual distractions, cognitive tasks are difficult to induce and
verify. Furthermore, tasks used to test cognitive distractions
vary significantly from study to study. Some imitate natural
activities, e.g. conversations [84] and voice-based playlist
retrieval [85], and some include artificial tasks such as math
quizzes [65] and n-back tasks [86]. Visual-manual tasks con-
sidered in the studies are everyday activities, such as using
a cell phone for reading [87], [88] or sending messages
[65], [88], radio tuning [89]–[91], and selecting a song from
the playlist [91]. Since NDRTs differ in how they affect the
driver and how they manifest themselves visually, algorithms
must be tested on a variety of tasks to ensure robust distraction
detection [87], [88], [91].

2) Input Sources and Feature Extraction: Features such
as gaze coordinates or coarse AOIs (see Section IV-A) are
naturally indicative of visual distractions. According to the
evidence from psychological studies, longitudinal [92]–[94]
and lateral [95]–[99] vehicle control measures are also sensi-
tive to various types of distractions. Therefore, ego-vehicle
information, e.g. speed and steering wheel rotations, is
often used in addition to visual features [65], [84], [90],
[91], [100], [101]. Given that most secondary activities are
not instantaneous and affect the temporal distribution of gaze
differently, nearly all distraction detection algorithms use
temporal data, with observation lengths ranging from 2 to 10s.

Many of the reviewed algorithms use gaze and head
pose features obtained via an eye-tracker [86], [100], [103],
[104], [106], [108] or manually annotated [85], [89], [105],
[109]. Fewer approaches incorporate explicit feature extraction
pipelines (such as those discussed in Section IV-A). For
instance, [87], [88], [108] rely on facial landmarks and [91]
uses head pose extracted from driver-facing camera images.

Approaches that rely on gaze data alone process raw
gaze coordinates to compute various statistical functionals
(e.g. mean, standard deviation, percentiles) and apply fea-
ture selection to find the optimal set of features for a
specific distraction type. For instance, Wollmer et al. [91]
showed that head rotation angle and its derivatives are sensi-
tive to visual-manual tasks, whereas Liao et al. [101] deter-
mined that gaze locations are useful for detecting cognitive
distractions.

In addition to gaze and visual features, information such
as vehicle data [84], [100], [101], [110], physiological sig-
nals [65], audio (to detect conversations) [84], detected objects
in the scene [87], [108], and mirror-checking actions [84] have
been shown to improve the accuracy of distraction detection.

3) Classifiers: Support Vector Machine (SVM) is the most
commonly used classifier for this problem, used in nearly
half of the reviewed algorithms [84], [100]–[106], [108].
Other approaches, such as boosting [84], extreme learning
machines [102], [104], K-means [90], and Hidden Markov
Models (HMM) [89] have demonstrated high performance on
the distraction detection task. Recent works that use deep
learning methods, such as recurrent [86], [88], [91] and
convolutional neural networks [65], [87], [88], demonstrate
their superior performance across most metrics and ability to
extract information directly from raw images or multi-modal
data.
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However, existing datasets provide only a limited set of
non-driving related tasks (NDRTs), therefore, features and
classification approaches tend to be optimized for a nar-
row range of distractions. A solution proposed in [111] is
more versatile as it does not focus on specific activities, but
rather relies on off-road glances to detect inattention. Moti-
vated by evidence that long off-road glances increase crash
risk [112], this model uses a 2s buffer to track distractions and
issue sound alarms. The buffer shortens whenever the driver
looks away from the road and lengthens when they look at
the road again. Driving-related glances away from the road
(e.g. towards mirrors) are treated with a latency of 1s to
prevent issuing unnecessary warnings.

4) Evaluation and Limitations: Standard classification met-
rics, such as accuracy, precision, recall, and F1-score, are
commonly used to evaluate distraction detection models. Most
achieve high accuracy and F1-scores, often over 90%, some
even close to 100% [88]. However, the results of different
algorithms are not directly comparable due to the prevalent use
of private unpublished data and the lack of public benchmarks
for this problem. Although most authors specify the number
of subjects, their age, gender, and driving experience, the
volume and properties of the data used for the evaluation
are often defined imprecisely and in different units, e.g. dura-
tion [101], [103], number of video frames [108], or number
of events [107]. Direct comparisons are also affected by
inconsistent recording conditions across studies, e.g. in-lab
driving simulators [101], parked vehicles [87], or on-road
settings [88].

Overall, despite encouraging results, the problem of dis-
traction detection is far from being solved since drivers’
gaze distribution depends on the context and is subject to
individual differences. For example, different sets of fea-
tures are needed for urban and highway roads [100], there-
fore thorough testing in various environments is desirable
[91], [105]. Driving tasks, such as vehicle following and pass-
ing, also affect gaze distribution patterns and have to be taken
into account when modeling distraction [110]. Although there
are commonalities in how distractions manifest themselves in
different drivers [89], the system should consider individual
user characteristics for the best results [84], [105].

Although the purpose of designing distraction detection
algorithms is for use in vision-based ADAS, only few of the
reviewed systems have been verified in practice. For example,
a monitoring algorithm proposed in [88] was tested in a driving
simulator to validate the effect of sound alarms on engagement
in non-driving related tasks (e.g. texting, reaching for objects,
and eating). The subjects played a truck driving game while
performing NDRTs at 30s intervals. Sound alarms reduced the
number of accidents and traffic tickets, however, experimental
conditions were far from realistic. A more extensive field
study was conducted for AttenD algorithm [106]. It involved
7 subjects who drove a test vehicle equipped with the system
for one month. Despite the small subject pool, the overall
changes to subjects’ visual behavior were positive and pointed
towards increased attention to the road ahead. Some issues
were also exposed, such as data loss due to large head
movements and excessive alarms caused by not taking into

account drivers’ intent to change lanes or brake (especially
at lower speeds). Given that warning system acceptance by
users is reduced significantly by false alarms [113], [114], it is
important to consider HCI issues when developing monitoring
algorithms and conduct user studies besides evaluation on
datasets. Refer to Section VII for further discussion.

C. Drowsiness Detection

Drowsiness detection methods rely on the driver’s appear-
ance to detect signs of fatigue such as frequent blinking,
closed eyes, yawning, and nodding. Similar to distraction
detection, detecting drowsiness is framed as a classification
problem, either binary (drowsy/alert) or multi-class for more
fine-grained alertness states.

1) Input and Feature Extraction: Most algorithms rely
on driver-facing video cameras to detect drowsiness. Near-
infrared imaging (NIR) cameras are often used (along [118],
[120], [128] or combined with visible imaging color cam-
eras [130]) due to their versatility for day and night condi-
tions and robustness to changes in illumination and low light
conditions.

Eye, mouth, and head features are considered to be the most
effective for estimating drowsiness [143], [146]. These features
are detected using methods described in Section IV-A, such as
face detection [121], [146] and tracking [117], locating facial
landmarks [123], [146], detecting blinks [124] and eye clo-
sures [123], recognizing mouth drooping and yawning [123],
and measuring head pose and head movement [124]. Eye fea-
tures (blinks and closures) are further processed into standard
drowsiness measures such as percentage of eye closure (PER-
CLOS [149]) [140], [143], [145] and blink frequency [143],
[147], [148].

Detection of many drowsiness symptoms, such as slow
blinking and yawning, is further improved by aggregating
features across time [116]. Longer time intervals up to several
minutes for the blink and eye closure features typically work
best [149] but also increase the risk of missing microsleeps
and “blank stares” [150], thus alerting the driver too late.
Another approach is to use multiple measures, however, the
design of the algorithm should account for different measures
of drowsiness having different tendencies [135]. Inclusion
of global context features such as continuous driving time,
temperature, current time, and sleep duration has also been
shown to further improve drowsiness detection [131], [137].

2) Classifiers: Rule-based approaches and thresholding are
computationally the simplest methods for detecting drowsi-
ness [132], [140], [141], [148], however, they are susceptible
to differences between drivers and variations of signal due to
changes in illumination and vibration of the vehicle. Learning
methods such as SVM [135], [137], [145], boosting [128],
or HMMs [124], are more robust in practice.

Recently, deep learning methods have been applied to
drowsiness detection. For instance, Zhao et al. [146] use a
deep belief network to classify drowsy facial expressions using
a concatenation of facial landmarks and features from cropped
images of drivers’ eyes and mouths. Weng et al. [123]
instead of combining the features used three DBNs to encode



KOTSERUBA AND TSOTSOS: ATTENTION FOR VISION-BASED ASSISTIVE AND AUTOMATED DRIVING 19913

mouth, head, and eyes features, and HMMs to learn rela-
tionships between them for alert and drowsy states. In order
to capture temporal dimension, Shih et al. [121] aggregate
per-frame features extracted via CNN over 50 frames and feed
them into a recurrent network, followed by additional temporal
smoothing. Yu et al. [118] utilize 3D CNNs to extract generic
spatio-temporal features in a single feed-forward pass. These
features are then processed to extract specific information,
such as the presence of eyewear, and condition of head,
mouth, and eyes. Specific and generic features are fused via a
feed-forward network for final drowsiness classification.

3) Evaluation and Limitations: A significant limitation of
research in this field is the prevalence of private datasets. The
only widely used public dataset is Driver Drowsiness Detec-
tion (DDD) [123], however, as discussed later in Section VI,
it is recorded in lab conditions while subjects act drowsy.
Many private datasets are also recorded in artificial conditions,
e.g. lab [119], [127], [133] or parked vehicles [124], [148],
and only a few are captured in on-road conditions, typically
highways and rural roads with little traffic [132], [137], [141].
One study used recordings of drowsy passengers instead of
drivers due to safety concerns [146].

The lack of benchmarks and publicly available naturalistic
data make it difficult to establish state-of-the-art performance
for drowsiness detection and their suitability for practical
use, respectively. Despite reporting excellent results, many
algorithms still struggle with certain aspects of the problem,
notably extreme head angles [144], [146] and glare and occlu-
sion from eyewear [117], [118], [143]. Individual differences
across drivers can also diminish the accuracy of drowsiness
detection. For example, specific signals like blink patterns are
subject to considerable individual variations [141] and difficult
to detect when participants have smaller eyes [148]. Vehicle
vibration and variability of driver positions with respect to
cameras further exacerbate these problems [144]. Further-
more, some drivers do not show visible signs of drowsiness
even when fatigued [130]. More diverse publicly available
multi-modal datasets collected in naturalistic conditions are
part of the solution to the problems listed above [124], [130].
On the algorithmic side, including more features and person-
alization can potentially improve drowsiness detection results
and the overall reliability of the proposed solutions but requires
additional computation resources and calibration [130], [148].

Other issues are methodological. For instance, there is
little agreement in the literature on inducing drowsiness.
A common approach is to ask the drivers to yawn and act
drowsy [119], [124], [126], [127], [129], however, there is a
risk that such data is not representative of more realistic condi-
tions. Alternatively, drowsiness and fatigue can be induced by
extended [132], [137] or monotonous [131] driving sessions,
driving late at night [130], or reducing sleeping hours prior
to experiment [145]. Some studies also employ night shift
workers for collecting naturalistic data [144], [147].

Another challenge is providing the ground truth for the
recorded data since both defining types of drowsiness and
recognizing them in human subjects are not trivial. Concerning
the former, the Karolinska Sleepiness Scale (KSS) [151]
is a standard scale defining drowsiness levels on a scale

Fig. 4. Drowsiness detection algorithms grouped by the type of drowsiness
induction method and number of drowsiness levels (specified in circles).

from 1 (fully alert) to 9 (fully asleep). For recognition tasks,
all 9 levels are rarely used, and instead, coarser scales are
formed by combining the intermediate levels. However, there
is no consistency in the literature on how it is done. For
example, [130] collapses the KSS scale into 2 levels, [144]
uses 4, and [137] 3 levels. Likewise, there is no agreement on
which KSS levels should be combined together. Depending
on the study, the alert state can extend to KSS levels 3 [129],
4 [137], or 6 [143]. Intermediate levels of drowsiness may
include KSS levels 6-7 [129], [143], 5-7 [137], or only
7 [147]. Only extreme drowsiness is consistently associ-
ated with KSS levels 8-9 across studies [129], [137], [143],
[147]. Sleepiness scales other than KSS have also been used,
e.g. custom 3-level scale [146] or Zilberg 4-level scale [152]
in [135], although simple binary drowsy/alert assessment is the
most common [116], [117], [125], [126], [134], [140], [142],
[148]. The latter approach may be justified since intermediate
drowsiness levels are easily misclassified as drowsy [129].

Given a specific drowsiness scale, the next step of assigning
labels to the data is not straightforward. Some studies rely on
self-reported drowsiness scores [130], [143], [147], observer-
rated sleepiness [135], [144], or both [137]. According to
evidence from psychological experiments, neither is bias-free:
observer ratings may not be reliable [153], [154] and self-rated
sleepiness does not always correlate with driving perfor-
mance [155]. Simulated data where drivers acted drowsily
is devoid of issues with assigning ground truth and is a
preferred choice for most studies (Figure 4). A question
remains whether such data is realistic enough. For successful
application in practice, user studies and validation experiments
of various sleepiness assessment methods in different contexts
are needed.

D. Driver Maneuver Recognition and Prediction

Recognizing and predicting drivers’ actions is another valu-
able feature for driver monitoring and assistive technology.
Knowing what the driver is doing or intends to do next can
help direct their attention to the right objects and reduce
unnecessary warnings. Since drivers’ gaze is linked to the
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goal and actions being performed [156], it can be exploited to
recognize and anticipate drivers’ maneuvers.

1) Feature Extraction and Classification: Similar to distrac-
tion and drowsiness detection, action recognition and predic-
tion are often framed as a multi-class classification problem:
features aggregated across observation time and classifiers are
used to predict the upcoming maneuver.

For this task, the approximate direction of drivers’ gaze is
often used unless eye-tracking data is available as in [157].
The processing pipeline for obtaining gaze features usually
includes face detection and tracking, followed by facial land-
mark detection, extraction of gaze zones [79], [84], [158],
gaze duration, frequency, and blinks [79], [84]. Alternatively,
an implicit representation of gaze can be used, such as
tracked facial landmarks aggregated over time as proposed in
[159], [160] or mirror-checking actions [84].

A variety of methods have been proposed to classify
actions based on the temporal features above. For exam-
ple, Li et al. [84] use boosting [161] with a combination
of mirror-checking actions and vehicle dynamics features.
Martin et al. [79], [158] model maneuvers using a multivari-
ate normal distribution (MVN) of spatio-temporal descriptors
that capture gaze duration towards relevant AOIs. Besides
discriminative models, temporal modeling that fits the data
more naturally has also been applied. Jain et al. [159] and
Akai et al. [157] propose auto-regressive input-output Hid-
den Markov Models (HMMs) to classify driver’s actions given
driver gaze and vehicle dynamics. Recurrent networks are also
effective for multi-modal data [160] but lack the explainability
of HMMs.

2) Evaluation and Limitations: Since action prediction is
typically framed as classification, common metrics such as
precision, recall, and F1 are used to evaluate the results.
As expected, it is more difficult to predict maneuvers several
seconds in advance, thus precision and recall improve as time-
to-maneuver (TTM) decreases [158]. Besides issues with face
detection and tracking due to illumination changes [159], some
maneuvers are generally more difficult to predict because of
the overlap in behaviors (e.g. mirror checking is not always a
precursor to lane changing [158]) and lack of visual cues from
the driver (e.g. when they are familiar with the route or make
a turn from the dedicated lane [159]). Inclusion of scene and
route information may help handle such cases.

E. Driver Awareness Estimation

Inattention detection systems discussed so far do not con-
sider the environment and what the driver is aware of. How-
ever, a better understanding of driver behavior, current task,
and context is desirable for more effective driver assistance
systems that could, for example, verify whether the driver
attended to relevant objects and provide situation-specific
warnings. This section reviews systems that make steps in this
direction by associating driver attention to objects of interest
in the traffic scene.

1) Visual Features and Processing: Algorithms discussed in
this section determine drivers’ awareness of vulnerable road
users, signs, and traffic signals. Most of them follow a similar

Fig. 5. Visualization of the attention cone: a) view from inside the vehicle,
b) projection of the cone onto the traffic scene. Sources: a) [162], b) [163].

procedure: 1) detect drivers’ 3D gaze direction, 2) convert gaze
to vehicle’s frame of reference, 3) detect objects in the scene
and their properties, and 4) match drivers’ gaze with objects
to identify whether they were fixated.

Drivers’ gaze direction estimation uses approaches dis-
cussed in Section IV-A, whereas detecting objects in the
scene relies on off-the-shelf algorithms [164], classical vision
pipelines [163], [165], [166], or manually annotated bounding
boxes [167]. Distances to the detected objects and their rel-
ative velocities may be inferred from a stereo camera [166],
provided by range sensors [166], [168]–[171], or determined
using simple heuristics [164].

Different strategies have been proposed for detecting what
objects the driver observed. The simplest solution is to check
whether the driver’s gaze falls within the object’s bounding
box [164], [167], [170]. Since inaccurate measurement of
3D gaze direction can result in large errors, especially for
objects far away, the authors of [163], [166] propose to treat
attention as a cone projected from the drivers’ eyes towards
the windshield (Figure 5a). Some algorithms also take into
account that drivers retain information about objects for some
time after looking at them [164], [171], [172], as well as other
properties of the scene, such as weather and proximity of other
road users [172]. For example, Schwehr et al. [168], [173]
model the joint probability distribution of the object states
in the 2D vehicle coordinate system, object coordinates, and
the driver’s gaze direction in 2D to estimate which objects
have been fixated or tracked. Ahlstrom et al. [172] modify
the AttenD algorithm (described earlier in Section IV-B) to
include elements of context via additional buffers for targets
of relevance which, besides traffic ahead and behind, include
intersections. Properties, such as proximity to other road users
and weather adaptations, are also accounted for in the model.
Zhu et al. [174] use SAGAT [175], a method for measur-
ing situation awareness (SA), to associate it with various
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gaze-, memory- and object-related features. A combination of
these three types of features achieved over 70% agreement
with human SA results.

2) Evaluation and Limitations: Evaluating driver aware-
ness models is not trivial, however indvidual modules can
be evaluated quantitatively. For example, measuring gaze
estimation error [176], [177], road user trajectory prediction
accuracy [162], object detection [166], [178], etc.. In contrast,
there are no unified approaches for evaluating the performance
of the entire system. Cross-model comparisons are virtually
impossible since algorithms do not share the same definition of
outputs, objects of interest, or application scenarios. Typically,
a qualitative evaluation of the individual models is provided
based on several illustrative scenarios [162], [165], [166],
[168], [169], however it gives little idea of how robust,
effective, and usable this system might be. Although some
algorithms were tested with human subjects, many were not
done in realistic driving conditions: some involved staged
pedestrian crossing [179], routes on a university campus [164],
and tests in driving simulators [172], [180].

In order to make a viable monitoring system that takes
into account driver awareness, several fundamental issues
that stem from the properties of the human visual system
and limitations of recording equipment must be resolved.
For instance, establishing the exact point of gaze (PoG) is
difficult even with precise eye trackers, as shown in a series of
experiments by Schwehr et al. [177]. The authors conclude
that regardless of the choice of model for projecting the gaze
into the scene, the point of gaze is always off the target by tens
of pixels and that the error is primarily caused by the imprecise
measurement of gaze by eye tracker. Given that eye trackers
provide the most accurate data, it is likely that vision-based
systems will suffer from the same issue. A cone of gaze
used in many studies instead of PoG alleviates some of the
imprecision but does not localize the targets well (Figure 5b).
An assumption that the drivers detect all objects within the
intersection area [163], [166] may not be accurate. According
to Kim et al. [181], gaze is generally correlated with lower
levels of situation awareness (as defined in [182]), but gaze
alone is not sufficient to predict SA. A regression model that
takes into account proximity of the gaze to the target and
awareness score explained only 50% of the variance in the
data, therefore other factors should be considered. Additional
indicators that may be useful are vehicle control [180] and
braking intention [183], as well as detectability of signs
[184]–[186] and pedestrians [187] in traffic scenes depend-
ing on the visual properties of the objects and the scene,
e.g. illumination, visual clutter, visibility, etc.

V. MODELS OF ATTENTION FOR ASSISTIVE

AND AUTONOMOUS DRIVING

Algorithms discussed in this section do not detect drivers’
gaze direction and state but rather model what objects and
events need to be attended to for safe driving. Models intended
for use in driver assistance systems rely on human data to
predict where safe drivers should look in specific condi-
tions. Algorithms for autonomous driving utilize mechanisms

Fig. 6. Sample outputs of driver gaze estimation algorithms. a) Pixel-
level saliency map for vehicle performing a left turn. b) Visualization of
object-level importance scores for vehicle following. Red color indicates
higher relevance/importance in both images. Sources: a) [198], b) [201].

inspired by human attention to focus on what is important to
improve decision-making and make it more transparent.

A. Modeling Visual Attention in the Traffic Scene

In the past decade, a number of methods have been proposed
for modeling the spatial distribution of drivers’ gaze in traffic
scenes. Given a single image or a sequence of images of the
scene, these algorithms output saliency maps (or heatmaps)
where higher pixel values (usually within [0, 1] range) indicate
areas of interest, risk, or importance (Figure 6a). Fewer
algorithms assign importance scores to specific objects. In this
case, higher scores are associated with objects relevant to the
ego-vehicle (e.g. lead vehicle shown in red in Figure 6b).

1) Bottom-Up and Top-Down Influences: As discussed in
Section III, bottom-up and top-down influences affect the dis-
tribution of drivers’ gaze. Bottom-up (or data-driven) features
are associated with unexpected or unusual elements in the
scene and are often computed using existing saliency algo-
rithms [188]–[192]. Top-down features are task-specific and
hence more varied. For example, [188], [189] use vanishing
point because drivers often focus on it to get an optimal
view of the road ahead [25], [193]. Other options include
drivers’ actions [190]–[192], current driving task [194], [195],
previous fixation locations [190]–[192], and vehicle teleme-
try [190]–[192], [196]. Other common features include seman-
tic segmentation maps [197]–[199] and detected objects [196],
[200]–[202].

Various spatio-temporal features can be helpful for cap-
turing the dynamic nature of the traffic environment and
drivers’ gaze changes. For instance, optical flow is useful
for identifying the direction and magnitude of motion in the
scene [198], [203]–[205]. More recently, following successful
applications in video action recognition problems [206], 3D
convolutional networks have become a popular choice for
encoding spatiotemporal data [194], [199], [202], [207]. Some
approaches use recurrent networks, combined with individ-
ually encoded frames [208], [209] or with a set of frames
processed via 3D convolutional layers [197].

While it is possible to learn associations between individ-
ual scene images and human saliency maps without explicit
task representation using features extracted via convolutional
neural networks [198], [203], [204], [210], [211], the results
are difficult to interpret and analyze. Approaches that use
bottom-up and top-down features are more transparent as they
directly control their influence on the resulting predictions.
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For example, a weighted sum of bottom-up saliency
maps and high-level features (vanishing point and cen-
ter bias) was proposed by Deng et al. [188], [189]. They
later extended this method by learning the weights
for individual features using a random forest [189].
Tavakoli et al. [203] in experiments with regression mod-
els, demonstrate that bottom-up features are weakly corre-
lated with task-driven gaze, however, an ensemble model
that combines bottom-up and top-down influences leads
to improved results. Borji et al. in several works [190]–[192]
examined the contributions of different types of features using
a Hidden Markov Model. In these experiments, top-down
features (e.g. actions and previous gaze location) correlated
with the human gaze better than bottom-up ones (e.g. saliency
maps), however combination of both types of features per-
formed best.

Two recent models, HammerDrive [194] and
MEDIRL [195], demonstrate that explicitly modeling
the underlying driving task is beneficial for gaze prediction
performance. In HammerDrive, a separate module recognizes
maneuvers (lane change and lane-keeping) from the vehicle
telemetry. The result is used to reweight the output of the
ensemble of bottom-up saliency predictors. MEDIRL applies
inverse reinforcement learning to learn a policy for visual
attention given the present agent state, which includes local
and global context, and driving task (braking, lane-keeping,
and merging).

2) Evaluation and Limitations: Evaluation of driver gaze
models follows the procedure and metrics established in
free-viewing saliency research (see [212] for a review). These
metrics assess how similar are predicted saliency maps to
those of human drivers in terms of saliency value magnitudes,
statistical distribution properties, and salient locations [213].

To further verify the quality and human-likeness of the gen-
erated saliency maps, the following human experiments were
proposed: subjects viewed videos with superimposed drivers’
gaze or saliency maps produced by the model and were
asked to choose which one came from a human driver [198]
or was more consistent with good driving practices [208].
Since participants were not able to reliably discern natural
and artificial gaze maps, it was interpreted by the authors
as evidence in favor of the models. Whether such predicted
patterns lead to safer driving remains unclear, particularly
when data for training and evaluation is recorded in lab (see
discussion in Section III).

A particular challenge related to driving gaze data is that
it is comprised of common driving scenarios (e.g. vehicle
following, driving on a straight road) with few surprising
events or interactions with other road users. For exam-
ple, in DR(eye)VE [198], the drivers encounter relatively
few other road users and do not perform maneuvers often,
resulting in center-biased gaze distributions. This has con-
sequences for models since they learn the dominant gaze
behaviors and thus fail to predict gaze for scenarios that occur
rarely. Xia et al. [208] propose to mitigate the prevalence of
common driving scenarios using two strategies. First, they
curate the training data by focusing on abnormal events

(e.g. braking). Second, they implement a weighted sampling
strategy that selects frames with abnormal gaze distribution
more frequently during training. To measure how well the
models learn the underlying driving task, some authors com-
pute metrics over segments of data where drivers’ gaze distri-
bution significantly differs from the mean due to maneuvers
or actions of other road users [207], [208].

B. Attention for Self-Driving Vehicles

Self-driving technology aims to improve safety by eliminat-
ing human error. But to match or exceed human driver perfor-
mance, AI-driven systems require solving multiple problems in
many areas of computer vision and robotics. Perception alone
involves overcoming significant challenges in object detec-
tion, tracking, scene segmentation, depth, and optical flow
estimation (see [214]). Decision-making for motion planning,
behavior selection, and vehicle control rely on precise mapping
and localization [215] as well as understanding the behaviors
of vulnerable road users [216].

Current self-driving systems that tackle these issues can
be broadly subdivided into modular and end-to-end [217].
The former use dedicated modules for various processing
stages, whereas the latter are unified systems that convert
input from sensors directly to control commands. Due to the
overwhelming number of self-driving approaches, we limit
the review to end-to-end driving models that use attention
for perception and reasoning to improve models’ performance
and transparency. The role of attention is to identify objects or
areas in the scene that are most relevant for the current driving
task and safety. The general principle of many attentional
mechanisms is reweighting of the features according to a query
that could be a literal question or a different set of features
(e.g. hidden state of the recurrent model representing the
current context) [218]. The weights themselves can be used
to analyze what parts of the input had a larger influence on
the output and investigate intermediate processing for better
explainability of the model’s decisions.

1) Types and Uses of Attention: Spatial attention is wide-
spread in self-driving models because it retains the spatial
arrangement of features and computes attention weights that
can be traced back to the locations in the environment.
Weights visualized as a heatmap can be interpreted as objects
or areas in the scene that were important for the current
output of the model. Spatial attention is usually applied to
intermediate and final layers of the feature extraction step.
For example, in [219], multiple attention modules are inserted
after intermediate and last layers of CNN to gradually refine
features. Kim et al. [220] insert the attentional module after
the convolutional feature extraction and also condition spa-
tial attention weights on the hidden state from the previous
timestep.

Computing attention weights for image regions and specific
objects in the scene instead of pixels or individual features is
also possible. Cultrera et al. [221] use simple spatial atten-
tion that is trained as part of the network. The model first
extracts features from the input image via pre-trained CNN,
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Fig. 7. Visualized spatial attention weights: a) object-level, b) pixel-wise.
Sources: a) [222], b) [220].

groups them into coarse regions, and passes them through
the pooling layer. Then, an attention block consisting of a
fully-connected layer followed by softmax activation produces
weights that are element-wise multiplied with the output of the
pooling layer. In [222], features corresponding to individual
objects in each frame are extracted first. An object-level
attention network is then applied to a concatenation of local
object feature and global image features to output a scalar
score indicating the object’s relevance. Top-k objects are then
passed to a policy network that outputs a discretized action.
He et al. [223] and Wei et al. [224] propose methods for
computing sparser attention weights for input features which
results in a more selective and compact focus of attention and
reduced computation.

Recently, the Transformer architecture [225] has been
shown effective for many vision tasks [226]. Transformers
process sequential data without relying on recurrence, and
instead use several identical blocks composed of multi-head
attention, feed-forward neural network, residual connection,
and layer normalization. Attention module is a key element
that reweights input according to current task or context.
Stacking several attention blocks with different initialization
within a multi-head layer allows learning to focus on different
parts of the input.

The flexibility of Transformers for various input modali-
ties [226] and the inherent interpretability of learned attention
scores [227], [228] lend themselves well to the self-driving
domain. For example, Chitta et al. [229] use a Transformer
to encode image patch features, ego-vehicle velocity, and
positional embeddings. An additional Neural Attentional Field
module then identifies parts of encoded input that are relevant
for query waypoint in the bird’s eye view (BEV) image. Way-
points produced by the model are then used to generate vehicle
control commands. Prakash et al. [230] propose TransFuser,
a model composed of multiple transformer blocks for grad-
ually fusing feature maps of different modalities (image and
LiDAR BEV) at multiple resolutions. The waypoints generated
from these features are shown to be effective in guiding the
vehicle. Li et al. [231] make use of Transformers for devel-
oping a model for perception and prediction from multi-modal
data comprised of LiDAR sweeps, images of the scene, and
high-definition maps. Features of all detected road users in the
scene are passed to the Interaction Transformer module that
identifies for every actor all other relevant actors. Experiments
on naturalistic driving data show that focusing on the most
relevant agents helps reduce the number of collisions.

Some approaches leverage human data for training attention
modules. For example, in [245] human gaze is used to train
a foveal visual encoder that selects informative locations in
the scene, crops patches, and processes them in more detail.
The peripheral visual encoder extracts convolutional features
from the entire image to provide global context. The two are
combined via a planner to produce vehicle speed. In [246],
a gaze model trained on human eye-tracking data is used
to control the amount and spread of dropout to improve
the accuracy of control commands during imitation learning.
Gaze-modulated dropout is lower in highly salient areas and
higher in irrelevant areas and offers better performance than
fixed uniform or center-biased dropout. Instead of the human
gaze, Kim et al. in a series of works, leverage human textual
annotations using visuo-linguistic techniques. In [239] they
propose an explanation module for the vehicle controller that
generates a textual explanation for the action and a spatial
attention map that highlights relevant regions in the scene
image. In [238] the authors use textual advice to generate
vehicle control commands and spatial attention maps that
influenced the decision. In the most recent paper [247], they
use attention for simultaneous generation of control commands
using natural language and textual and visual explanations.

2) Evaluation and Limitations: The driving performance
of self-driving algorithms is evaluated in simulated environ-
ments [229], [230], [248], using pre-recorded datasets [220],
[224], [247], [249], or both [222]. In simulations, safety
metrics measure the number of collisions or infractions and
the distance traveled between them [222], [229], whereas
on pre-recorded data, metrics assess how well the algorithm
matches vehicle data, e.g. in terms of acceleration, heading,
or generated ego-vehicle trajectory [231], [239], [249].

Performance of attention is evaluated quantitatively via
ablation studies to show improved vehicle control [224], [231],
[245], [247], [248], reduction in traffic incidents [222], [224],
[230], [248], and match with human data, such as gaze [245]
or textual annotations [247].

Qualitative evaluations of attention modules commonly use
visualizations primarily to demonstrate that the algorithm
focuses on portions of the environment relevant for safe
driving. Object-level attention (Fig. 7a), where importance
scores are visualized for individual objects, is easier to inter-
pret and is more common [222], [224], [229]–[231]. Pixel-
wise attention scores (Fig. 7b) used in some studies [220],
[245], [249] often do not match specific objects in the scene
and, in some instances, do not adequately reflect the decisions
made by the system [220].

VI. DATASETS

High-quality publicly available data are crucially important
for applied research, particularly for a complex and dynamic
task such as driving. As discussed in previous sections, driving
data must capture a wide range of scenarios and conditions,
as well as sufficiently large and diverse pool of participants.
Thus large-scale data are a must for adequate evaluation of
models and benchmarking the overall progress. This section
covers a number of public datasets for a range of applications
and properties of drivers’ attention they represent (Table I).
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TABLE I

PUBLIC DATASETS FOR STUDYING DRIVERS’ (IN) ATTENTION WITH LINKS TO THE CORRESPONDING PROJECT PAGES AND DATA PROPERTIES. THE
DATASETS ARE SORTED BY AVAILABILITY OF EYE-TRACKING DATA AND YEAR OF PUBLICATION (IN REVERSE CHRONOLOGICAL ORDER). THE

FOLLOWING ABBREVIATIONS ARE USED IN THE TABLE. VIDEO DATA: S - SCENE-FACING CAMERA, D - DRIVER-FACING CAMERA,
RGB - 3-CHANNEL IMAGE, IR - INFRA-RED, DEPTH - DEPTH SENSOR, MOCAP - MOTION CAPTURE. ANNOTATIONS: TL - TEXT

LABELS, BB - BOUNDING BOXES, FL - FACIAL LANDMARKS, OCCL - OCCLUSION, SEM - SEMANTIC SEGMENTATION
MAPS. FRAME COUNTS MARKED WITH ∗ ARE ESTIMATED BASED ON THE LENGTHS

OF THE VIDEOS AND CAMERA FRAME RATE

A. Driving Datasets With Drivers’ Eye-Tracking Data

Datasets with gaze recording accompanied by driving
footage are naturally relevant for studying drivers’ attention.
Within this group, DADA-2000 [232] and BDD-A [208]
focus on hazardous scenarios, C42CN [233] on secondary
non-driving tasks, and the rest (MAAD [205], Traffic-
Saliency [211], DR(eye)VE [198], C42CN [233], TETD [188],
and 3DDS [190]) provide gaze data for everyday driving. Haz-
ard perception datasets contain short clips featuring abnormal
events, whereas everyday driving datasets consist of longer
video recordings.

Only DR(eye)VE dataset is recorded on-road, however due
to difficulties in replicating the routes and traffic conditions
across subjects, each video is associated with only one driver’s
gaze recording. 3DDS and C42CN recorded in a low-fidelity
driving simulator aggregated gaze data from multiple subjects.

Eye-tracking data for the remaining datasets were recorded
while subjects passively viewed driving footage on a computer
monitor. As mentioned in Section III-A, such conditions
lack ecological validity compared to on-road driving but
are replicable across many subjects. As a result, there are
measurable differences in gaze allocation between the two
setups. For example, Xia et al. [208] reported that subjects

who passively viewed videos from the DR(eye)VE dataset
looked at more driving-related objects than the drivers whose
gaze was recorded originally. Further analysis is needed to
establish whether these changes are significant and how they
affect safety.

B. Driving Datasets Without Eye-Tracking Data

Datasets in this group usually contain videos from
driver-facing cameras from which gaze may be inferred or
driving videos with driver attention annotations. Multiple tech-
niques have been developed to associate recordings of drivers
with the attended areas inside and outside the vehicle. For
naturalistic driving data, the most common method is manual
coding of gaze from driver-facing camera recordings. To avoid
a labor-intensive and error-prone annotation process, drivers
are instructed to look at specific areas or markers in the vehicle
or the scene while seated in the parked vehicle. This approach
is taken in LISA v2 [73], DGW [235], and DMD [236]
datasets. In LISA v2, subjects were filmed under different
lighting conditions (daytime, nighttime and harsh lighting)
with and without eyeglasses. Additionally, the subjects were
asked to rotate their head to capture head motions typical for
actual driving. The DGW dataset followed a similar procedure
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Fig. 8. Types of data, data availability, and use in applications. The size of the circles reflect the number of publications using the corresponding data type
for a specific application. Within each circle, the proportion of public and private data is shown.

using a much larger and diverse pool of participants. To auto-
mate labeling, participants were asked to look at one of the
9 markers placed in the vehicle and speak the corresponding
zone number, which was transcribed using a speech-to-text
network. DGAZE dataset uses an in-lab setup where videos
of the drivers are captured against the backdrop of the vehicle
interior while they are looking at the annotated objects in
the traffic scene. This makes it possible to associate drivers’
appearance and the objects they attend to. However, it is yet
to be determined whether such an in-lab setup will translate
well to realistic on-road conditions.

Datasets without a driver video stream provide textual
labels for drivers’ actions and attention allocation in terms
of objects and events in the scene deemed important by
the annotators. For example, HDD [240], HAD [238], and
BDD-X [239] provide causal explanations for drivers’ actions,
e.g. the presence of crossing pedestrians, or a vehicle ahead
slowing down. Besides textual descriptions, HDD also pro-
vides bounding boxes for objects that the driver should look
at when performing maneuvers. DAD [241] focuses on more
extreme scenarios and contains videos of accidents recorded
via dashboard cameras. The annotations include textual labels
specifying the type of accident, temporal labels indicating
when the dangerous situation occurs, and bounding boxes for
important objects.

A number of datasets have been proposed for studying
driver inattention due to drowsiness or involvement in sec-
ondary tasks. DROZY [242], YawDD [244], DDD [123],
and RLDD [129] capture drowsy drivers. YawDD features
recordings of a diverse set of drowsy drivers demonstrating a
wide range of behaviors in varying conditions. Some draw-
backs of this dataset are scripted actions and recording in
a stationary vehicle. DDD is another scripted dataset where
subjects were recorded laughing, talking, and looking to the
sides, besides acting normal and drowsy, while playing a
driving video game in a low-fidelity simulator. RLDD contains
images of people captured with mobile phone cameras against
neutral backgrounds. Subjects were asked to record themselves
when they felt alert, low-vigilant, or drowsy, making sure that
the state was authentic. Their self-assessed alertness score
was used as a ground truth. Finally, DROZY is the only
dataset where subjects experienced prolonged waking under

the supervision and where physiological signals accompanied
self-evaluated levels of drowsiness.

Large-scale naturalistic data for studying driving- and
non-driving related activities are available in Brain4Cars [159]
and DMD [236]. Both contain extensive footage of
driver-facing cameras synchronized with traffic views, textual
labels, and associated vehicle information useful for detection
and anticipation of drivers’ behavior.

C. Naturalistic Driving Studies (NDS)

NDS are organized efforts to collect large-scale data on the
natural behaviors of drivers over extended periods of time. For
one of the first such studies, 100-car NDS, drivers used their
private vehicles with instrumentation installed to collect rich
visual and vehicle data from 2002 to 2004 in the USA [250].
The largest NDS to date, SHRP2, conducted in 2010-2013
also in the USA, involved over 3000 drivers who generated
50M miles of travel (with 372 crashes) and 2 petabytes of data
which is still being analyzed [251]. Unlike datasets listed in
the Table I, NDS data is not freely accessible due to privacy
concerns. For example, researchers interested in obtaining data
from SHRP22 are required to complete training and provide
a research proposal. Fees may also be charged depending on
the data requested.

D. Data Availability and Properties

Overall, the datasets listed in Table I contain data recorded
in multiple locations, with hundreds of subjects, and accompa-
nied by rich annotations. However, much of this data has been
released only recently and is not equally distributed across
application domains. As shown in Figure 8, a large portion of
the models covered in this survey are developed using private
unpublished data. For instance, research on driver monitor-
ing, such as in-vehicle gaze prediction, action anticipation,
inattention detection, and driver awareness estimation, largely
relies on private data sources, whereas scene gaze prediction
and attention for self-driving are studied primarily on publicly
available datasets.

2https://insight.shrp2nds.us
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Another limitation of many public datasets is that
attention-related data is often recorded in laboratory condi-
tions. Particularly, for eye-tracking data, such conditions have
not been validated (see in Section III-A). For datasets without
eye-tracking data, manually annotated events and objects often
serve as substitutes for attention. However, the procedures for
obtaining and verifying the correctness of such annotations
are often not discussed, making their validity for on-road
conditions a concern.

Finally, there are some gaps in the data types that the open
datasets provide, limiting their use in specific applications.
Figure 8 shows different kinds of annotations and their respec-
tive usage for various purposes. For example, to the best of
our knowledge, there are no open datasets containing driving
footage synchronized with the in-vehicle view and driver gaze
information for applications such as in-vehicle gaze prediction,
action anticipation, inattention detection, and driver awareness.

VII. GENERAL DISCUSSION AND CONCLUSIONS

Over the past decade, significant progress has been made
towards detecting and modeling properties of drivers’ attention
for use in assistive and automated driving. For example,
detecting where the driver is looking can be used to monitor
drivers’ alertness and attention, anticipate their maneuvers, and
estimate their awareness of the surrounding traffic situation.
Research on drivers’ attention allocation has also benefited
self-driving. Attentional mechanisms inspired by human visual
attention or trained on human gaze data help autonomous
vehicles focus on important objects and can also be used
to explain their decision-making. Nevertheless, many chal-
lenges and open problems remain to be solved to make
attention-based driving assistive systems viable for production.

A. Data Availability and Quality

1) More Public Datasets and Models Are Needed: Overall,
close to 80% of all works that we reviewed in this survey
relied on unpublished private datasets, and less than 10%
published relevant code for the models and statistical analysis.
But, as was shown in Figure 8, data availability also depends
on the application area. For instance, more than two-thirds
of driver gaze estimation in the traffic scene and self-driving
models are based on public data, and many provide source
code, whereas this is not the case for other applications. The
lack of public data severely hinders the ability of researchers to
reproduce the results of others and draw comparisons between
different approaches. Moreover, without established bench-
marks estimating actual progress in the area and identifying
future challenges is nearly impossible, especially since many
unpublished datasets are not accompanied by the information
on the recording conditions, characteristics of the subjects, and
tasks they performed. Although benchmarks are not without
issues, much of the recent progress in computer vision and nat-
ural language processing can be attributed to high-quality open
large-scale data. Similar tendencies can already be observed in
some research areas discussed in this survey, e.g. scene gaze
estimation, self-driving, and drowsiness detection.

2) Improving Data Diversity and Fidelity Regardless of
Data Accessibility: Recording conditions can have a sig-
nificant effect on the data quality and model applicability
in practice. Naturalistic recordings of drivers’ behaviors are
generally difficult to collect and analyze due to high associated
costs and lack of control over the conditions and tasks that
the drivers perform. As a result, large volumes of data need
to be aggregated to capture specific rarely occurring events.
Thus, virtually all data used for developing models is restricted
in some sense, e.g. by using predefined routes and tasks or
conducting the study in the lab or in a parked vehicle. Even
though laboratory conditions may be justified for potentially
dangerous experiments (e.g. involving drowsiness or distrac-
tions), they nevertheless affect subjects’ behaviors due to low
perceived risk, overexposure to rare events, and short duration
of sessions [47]. Recording in the lab or in a stationary vehicle
cannot capture dynamic changes in lighting, shifts of driver’s
position due to changes in the road angle, and data loss caused
by vibrations and road bumps.

Highway and rural road scenarios, often with low traf-
fic volume, are more common in both on-road and in-lab
experiments, whereas city driving is not as well investigated.
However, when it comes to drivers’ attention, urban conditions
are far more challenging due to the presence of intersections
and vulnerable road users. Although the speed of the vehicle
is lower on the city streets, drivers interact with many other
agents, which requires complex attention strategies. Further-
more, bad weather, unfamiliar environment, or heavy traffic
are rarely modeled. Even in large naturalistic studies, these
conditions are not well represented [37], [252].

Diversity of the participant pool is also a concern. The
vast majority of the works we considered record data from
no more than a dozen subjects, mostly university students,
and many do not provide detailed information about the
characteristics of the participants. However, given the evidence
of significant individual differences between drivers (as dis-
cussed in Section IV), recruiting more subjects with diverse
demographic characteristics is highly desirable.

The lack of realism in datasets extends from the envi-
ronment to the drivers’ actions, which are often staged. For
instance, it is common practice to induce distraction by
asking the drivers to perform tasks at timed intervals (see
Sections IV). In reality, however, secondary task engagement
is voluntary and depends on many factors, including experi-
ence, environmental, and situational, as well as characteristics
of the secondary task itself [64]. Forcing the subjects to
engage in meaningless tasks on-demand and incentivizing high
performance produces detectable changes in gaze allocation
and driving performance, but such behaviors may differ from
inattention occurring naturally during driving.

3) Taking Into Account the Active Nature of Driving:
All available datasets consist of pre-recorded driving footage
accompanied by gaze information (driver’s gaze and/or gaze
of passive observers) or manual annotations. As such they
provide limited use for estimating the changes in drivers’
gaze depending on the task. Counterfactual studies may help
in testing how changes in the task or the environment may
affect attention allocation [253] but it is virtually impossible
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to estimate the effect of the drivers’ actions on other road users
using pre-recorded data. Simulated environments can generate
the outcomes of different actions in the same scenarios but lack
realistic models of road user behavior and the environment.
While the quality of rendering has been steadily improving
with advances in computer graphics, the problem of modeling
the actions and reactions of the surrounding pedestrians and
vehicles remains far from being solved [254], [255].

B. Evaluation

1) Establishing Ground Truth: There are unresolved issues
related to establishing ground truth for many applications. For
example, determining specific objects or areas that the driver is
observing is not trivial. A recent study by Jansen et al. [256]
raised concerns regarding the manual annotation of gaze from
driver-facing videos. Based on their analysis, the customary
practice of measuring several independent annotators’ agree-
ment may not produce good quality labels as some areas
of interest are easily confused (e.g. accuracy for the AOIs
is consistently lower on the passenger side). Other factors,
such as the driver’s height, may also affect the results but
are rarely considered. Even with precise eye-tracking data,
establishing a point of gaze, especially for small or moving
objects, is prone to errors, as Schwehr et al. [177] show in
a series of experiments. Due to these limitations, models
that demonstrate high performance on such ground truth may
not transfer to real traffic conditions. Similarly, determining
driver’s cognitive state may be problematic. As discussed in
Section IV-C, self-reported and observer ratings for drowsiness
are often not accurate and do not correlate with driving
performance. Cognitive distractions are also difficult to induce
and detect (Section IV-B). Physiological indicators are more
suitable for these purposes [55] but require additional sensors,
making data collection more costly and the use of such systems
less desirable in practice.

2) Including Safety-Focused Evaluation: Assistive and
autonomous driving applications are motivated by safety con-
cerns; however, quantitative evaluations can only assess how
well they align with ground truth (which, as noted above,
may not be accurate). At the same time, actual crash data is
exceedingly rare. For example, in 43 thousand driving hours
of driving data recorded in 100-Car NDS, 82 crashes (mostly
rear-end collisions), 761 near-crashes, and 8295 incidents were
recorded [2].

In the literature, two approaches are commonly taken to
mitigate this issue depending on the application in question.
One is collecting and annotating accident videos published
online (see Section VI), and another is integrating attention
into vehicle control models, and testing them in simulation to
estimate crash risks (Section V-A2). Both methods have limita-
tions. While accident datasets may provide information about
various types of collisions and their timelines, annotations
collected in lab conditions, whether eye-tracking data, textual
labels or importance scores, are difficult to verify with regard
to safety. Therefore, it cannot be guaranteed whether visual
strategies learned from such data could have prevented the
crash or reduced its severity. Simulated experiments provide

both the active control and the ability to replicate the same
scenarios, as well as accident risk estimates, but typically are
not validated in on-road conditions.

There are also assessments of the risk of prolonged off-road
glance durations derived from naturalistic studies [109], [257].
Currently, they are widely used in behavioral literature and as
guidelines for in-vehicle infotainment system design. Although
they are relevant for the design and evaluation of inattention
detection algorithms, only one model within our selection of
papers uses them [106]. Incidentally, it is the only model that
captures the duration of the inattention, whereas the rest focus
on instantaneous detection.

3) Better Coordination Between Research Areas: Research
areas covered in this survey are complementary and can
benefit from coordinating their efforts. For example, taking
into account driver’s actions helps better predict attention
[194], [195] and detect inattention [109], [258]. Likewise,
gaze and appearance features are useful for detecting both
distraction and drowsiness (Section IV) but relatively few
works investigate these problems together [259], [260].

Human-computer interaction (HCI) research is also very
relevant for the design of algorithms intended for use in
assistive and autonomous driving systems. To ensure the
adoption of such systems, they should function seamlessly
and help the driver rather than add to their cognitive load
(e.g. by unclear or false alarms [261]). However, in the
reviewed models, such considerations are rarely taken into
account or verified through user studies. For example,
many driver gaze prediction algorithms (Section V-A) output
pixel-wise heatmaps where objects of interest or imminent
hazards are highlighted. Although several studies show that
target and maneuver-relevant cues can help direct drivers’
gaze to those areas [262]–[264], how this guidance is realized
is important. It has been shown that providing too many
cues is detrimental and may obscure other important infor-
mation [263], [265]. Specifically for hazards, indicating the
path to avoid them [266] is more effective than pointing at
the obstacle itself [267]. Another example is fatigue detection.
While reliable detection is the first necessary step, it is not
sufficient to provide effective countermeasures. Fatigue due to
cognitive under- or overload and drowsiness caused by sleep
deprivation require different interventions [268], therefore
context must be modeled as well. Individual characteristics
of the drivers discussed in Section IV or their driving pref-
erences [114], [269] should also be factored in when setting
thresholds for warnings.

C. Limitations of Attention Models

1) Using Gaze as a Proxy for Attention: As discussed in
Section III, driving literature views attention as observable
gaze changes and measures related to spatio-temporal prop-
erties in gaze, such as location and duration of fixations, and
transitions between them. The assumption is often made that
most driving-related information is processed in the fovea
and is predominantly task-driven. Thus analyzing gaze can
shed light on what the driver observed at any given time
and how it affected their decision-making. However, gaze
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as a proxy for attention also has a number of limitations.
First, gaze alone does not guarantee processing, in other
words, looking at something is not equal to being aware
of it (e.g. looked-but-failed-to-see errors [270] and change
blindness [30], [271], [272] occur during driving). Second,
drivers extensively use peripheral vision for vehicle control
[273], [274] and hazard detection [50], [275], [276], how-
ever, gaze provides little insight into peripheral processing.
Third, gaze is a result of a complex interplay between var-
ious attention control mechanisms, tasks being performed,
and surrounding context. These caveats must be taken into
account when analyzing eye-tracking data and designing
models for various applications in the driving domain and
beyond.

2) Reducing the Gap Between Behavioral Research and
Implementations: Despite encouraging results, most algo-
rithms consider only a fraction of the factors affecting drivers’
attention identified in behavioral studies. For example, there is
evidence that age [35], [277]–[279] and driving experience [3]
affect drivers’ attention allocation. Besides driver character-
istics, external conditions matter. Effects of driving through
intersections [280]–[282], on curved roads [283], in dense
traffic [284], as well as the presence of outside distractors
(e.g. billboards) [285], [286] have been investigated in numer-
ous behavioral studies but are not taken into account in many
implementations.

3) Incorporating Explicit Task Representation: As dis-
cussed in Section III-A, top-down factors play a large role in
drivers’ gaze allocation. High-level features, such as location
and class of objects, vehicle telemetry, and optical flow,
allow capturing only implicit dependencies between visual
features, drivers’ gaze data, and vehicle control signals. Such
interpretation of attention poorly reflects biological properties
of the human visual system and offers little control over
algorithms that predict attention allocation in practice. Driving
is not a uniform activity, different underlying tasks affect
attention distribution differently. For example, when control-
ling the vehicle, the drivers focus on the road ahead and
track road boundaries, periodically fixating on other road users
or scanning the intersections [156]. Visual context and gaze
may be ambiguous, therefore an explicit top-down signal with
intended action or planned route could help better direct the
model.

4) Modeling Attention Beyond Selective and Explanatory
Functions: In most models of drivers’ attention reviewed in
Section III-A), the role of attention is reduced to highlighting
and ranking objects or areas in the scenes. Other aspects of
attention, such as the effect of task on attentional modulation
of perception, sequential nature of processing, relation to
working memory, decision-making, and allocation of cognitive
resources [287], are not considered. Part of the reason is the
limited scope of the proposed models. More sophisticated
attention mechanisms would be necessary as models’ complex-
ity increases towards incorporating the state of the driver, and
analysis of the interactions between road users, infrastructure,
and drivers’ actions.

In conclusion, the problem of modeling drivers’ attention
is of immense practical and theoretical importance. In this

review, we discussed several research directions that analyze
and model information on where the driver is looking for
applications in driving assistance and automation. We hope
that providing a broad overview of several inter-related
research areas and identifying open problems will help
guide future investigations and lead to improvements in road
safety.
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