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Autonomous Driving: A Survey of Technological
Gaps Using Google Scholar and Web

of Science Trend Analysis
Shlomi Hacohen , Oded Medina , and Shraga Shoval

Abstract— Autonomous Driving (AD) introduces dramatic
changes to the way we travel. This emerging technology has the
potential to impact the transportation sector across a wide array
of categories including safety, efficiency, congestion, legislation,
and travel behavior. In this survey, we review the main issues
involved in AD as discussed in the literature, and shed light
on topics that we consider requiring further development based
on Google Scholar and the Web of Science (WoS) data base.
The paper also provides the results of research trends related to
Autonomous Driving based on analysis of the number of search
results listed in google trends. According to our research, the
fields of Vehicle-to-Vehicle (V2V) and Vehicle-to-Cloud (V2C)
networking are of higher interest due to the technological gaps
and standardization processes. In addition, cyber and security
research is in acceleration due to its importance.

Index Terms— Autonomous vehicle, autonomous driving, V2X,
safety, cooperative driving, Google trends.

I. INTRODUCTION

AUTONOMOUS driving requires a combination of many
capabilities, among them: localization, motion planning,

vehicle systems control (steering, acceleration/deceleration,
signaling, etc.), road perception, intention prediction of other
road users, awareness of dangers, human factors etc. The level
of importance for each capability varies according to the level
of driving automation. In this paper we differentiate between
the terms “Autonomous Vehicles (AV)” and “Autonomous
Driving (AD)”, where AD is a wider term that incorporates AV
as well as other technologies such as traffic behavior, human-
vehicle interaction, pedestrians etc.

Even though the first experimental AV was revealed in
1926 [1], the first modern AV was presented in 1986 by a
team from Carnegie Mellon University [2]. Since 2010, many
major automotive manufacturers such as GM, Mercedes Benz,
Ford and Toyota, have been developing AVs [3]. In 2013,
Toyota demonstrated an AV equipped with numerous sensors
and communication systems [4]. In 2016, Google’s AV passed
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Fig. 1. Vehicle to pedestrian (V2P), Vehicle to Vehicle (V2V), Vehicle to
Infrastructure (V2I) and Vehicle to Cloud (V2C) architectures.

the significant milestone of travelling over one million kilome-
ters. These events present a glimpse of the landmarks in AV
development that, due to the complexity of the task, progresses
slowly with a considerable amount of attention to safety and
reliability.

The large amount of data needed by AVs for a reliable
decision making comes from a variety of onboard sensors and
algorithms that perform data fusion and estimation, and from
external sources like other AVs (V2V), environmental and
infrastructure devices (I2V), cloud data bases (C2V) and any
combination of these (X2V). Fig. 1 illustrates schematically
some AV data transfer architectures. In the Society of Automo-
tive Engineers’ (SAE) definitions of automation level, “driving
mode” means “a type of driving scenario with characteristic
dynamic driving task requirements (e.g., expressway merging,
high speed cruising, low speed traffic jam, closed-campus
operations, etc.)” [5].

As a result of the popularity of AV research, many surveys
that review technologies involved with AVs were published
in recent years. These include perception [6]–[8], vehicle-
control [9]–[11] localization [12]–[15], cooperative driving
[16]–[19], machine-learning [20]–[22], racing AVs [23] and
cyber protection [24]. This survey is different from previous
surveys in two main aspects: first, it provides a wide field
of view of many research areas rather than focusing on a
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Fig. 2. A flowchart of the paper.

single subject. Second, it discusses the gaps between the
current and the required stages that will enable everyday usage
of AD.

Autonomous driving is expected to provide beneficial
changes to the way we travel, which will impact aspects such
as safety, efficiency, congestion, and travel behavior. Crash
avoidance, travel time reduction, fuel efficiency and parking
solutions are expected to save thousands of dollars per year
per AV [25]. However, the implementation and mass market
penetration of AVs will most likely take time, as current costs
are unaffordable for the common user, there are still a few
technological barriers, and the human aspects, infrastructure
and legislation are lagging far behind.

The aims of this paper are to provide a wide review
of the main issues involved in AD as discussed in the
literature, and to shed light on topics that require further
development. We do so by, first, presenting the main topics
involved with autonomous driving. We then point out the main
research gaps using an analysis based on the number of search
results listed in Google Scholar and Web of Science data
bases.

The flow chart shown in Fig. 2 depicts the organization
of the paper. In section II we review the current technologies
and methods used in AD. In particular, we review the common
technologies related to localization and lane detection of AVs,
and the models of road users’ behavior. These technologies
and models affect motion planning of AVs (section II-D)
which is performed by the AV’s control system (section II-E).
Section III provides an overview of the common sensor sys-
tems for AVs and their data fusion which also affect the vehicle
motion planning and control. In section IV we discuss the
concept of AD in terms of multiagent systems as it becomes
a critical notion in AD. Section V discusses the current
technological gaps which need to be addressed before AD
takes over common driving, and section VI provides the recent
trends in AD research and development, based on Google
Scholar search results looking at the annual results for key

terms. These results are used as indicators for the trends in
AVs and AD. Finally, section VII provides a discussion and
a summary.

II. AUTONOMOUS DRIVING

The concept of AVs is based on replacing the driver with
an autonomous system that can control the vehicle on tradi-
tional existing roads, together with other road users. The SAE
defined five automation levels of AD, described in Table I.
Since the overall aim of AD is to eventually replace the
driver, several features must be adjusted and integrated in
order to achieve safe and reliable travel. According to [26],
AD comprises three layers:

1) The perception layer, that perceives the critical environ-
mental settings in the vicinity of the vehicle, e.g., lane
tracking, obstacles, road signs etc.

2) The reference generation layer, that provides the refer-
ence instructions, i.e., the required path planning and
obstacle avoidance maneuvers based on inputs from the
perception layer.

3) The control layer, that performs the required tasks that
guarantee the trajectory tracking performance, expressed
in terms of steering maneuvers (usually performed by the
front axle) and acceleration/braking maneuvers. In the
following sub-sections, we discuss some of these funda-
mental features.

A. Localization

The localization of AVs is an essential task that is fun-
damental to path planning and safety. Although localization
schemes are well discussed in the literature, these may not
address all AD challenges such as data fusion, environ-
ment dynamics etc. Since Global Navigation Satellite Sys-
tem (GNSS) data is often not suffice for localization, other
sensors are used in order to improve the localization accu-
racy. This obviously increases the localization calculation
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TABLE I

AV LEVELS OF AUTOMATION (ACCORDING TO SAE) [27]

complexity. Researchers claim that AV localization requires
further development to reduce the calculation time, increase
Global Position System (GPS) accuracy, and to test other
types of sensor fusion [12], [28]. Consequently, researchers
and commercial companies are developing new localization
methods to face this challenge. Motion planning for AVs must
also consider the estimation error associated with localization
methods. Wong et al. [29] present a method to estimate the
localization error based on 2D geographic information alone.
They estimate the localization error with 87.4% of predictions
within less than 5cm error.

Many research papers and patents present improvements
to the localization of AVs using passive images [30]–[32].
Such sensors are low-cost and, together with smart image
processing, they achieve high accuracy. These methods use
visual observations applied by on-board cameras to improve
the localization accepted from GNSS.

In recent years, the use of LiDAR (Light Detection and
Ranging) sensors became more common in AV applications,
especially for collision avoidance. As a result, LiDARs are
often the favored sensor for map-based localization since
they have high resolution and high accuracy. Wang et al. [33]
presented a three-step method for map-based localization using
LiDAR measurements. First, the point cloud of a single frame
is used for curb detection. Then, a contour line of these points
is conducted. The last step is the matching between the map
and the contour lines. Mukhtar et al. [34] used sparse 3D
LiDAR scan data for map-based localization in order to reduce
the sensor cost.

As mentioned above, the control of AVs relies on data from
multiple sources, including Inertial Measurement Unit (IMU),
wheel odometry measurements, GPS, GNSS, LiDAR, RADAR
and cameras. As a result, methods for data fusion for local-
ization are very common. For example, DeBitetto et al. [35]
used inertial sensors as well as RADAR data to improve GPS
localization of AVs. Yu et al. [36] presented a localization
scheme for AVs in an urban area. They used a prior point
cloud of the environment, but since the environment changes
frequently, this prior data may be irrelevant. The authors
developed a novel data fusion algorithm that estimates the
reliability of each point from the prior map based on the new
observations.

Due to the complexity of analyzing data from multiple
sensors, researchers often prefer the use of machine-learning
and neural-networks [36]. In [37], researchers investigated
a map of nodes and edges they call the hybrid-map which
enables the implementation of different types of machine-
learning methods. The authors demonstrated this concept in an
AV equipped with two LiDARs providing data input, however
the authors state that this method needs further verification
and improvement to ensure a robust system.

B. Lane-Detection

One of the most important elements of AD and Advanced
Driver Assistant Systems (ADAS) is lane-detection. This fea-
ture commonly uses computer vision algorithms in order to
identify the road’s edge-markings and lane-marking in images
taken by cameras. The vehicle and the lane relative position is
then calculated. ADAS will alert in case the vehicle’s position
in the lane is not safe, while the AV uses this information for
keeping the car in lane using autonomous steering. Similar to
Automatic Emergency Braking (AEB), the Automated Lane
Keeping System, known as ALKS, is also becoming a standard
feature in new vehicle models following automation level 3 of
the SAE. The ALKS takes control over steering in order
to reduce the probability of a collision due to unsafe lane
changes. The ALKS mechanism is integrated in the vehicle’s
design such that it can override a driver’s maneuvering of the
steering wheel. In 2021, 42 countries approved the adoption of
an internationally valid regulation for ALKS. Currently ALKS
is limited to passenger vehicles driving up to 60km/h and car-
rying up to 9 passengers. Lack of clarity in lane markings, poor
visibility due to bad weather, illumination and light reflection,
shadows, and dense road-based instructions can contribute to
lane detection failures. Most lane detection methods are based
on analyzing 2-D images captured from a camera (usually
mounted behind the front windshield). These vision-based
approaches can be categorized into two methods: feature-based
and model-based. The model-based methods commonly use a
mathematical model with the relevant parameters to describe
the lane structure [38], [39]. For example, researchers in [40]
presented real-time lane marker detection in urban streets.
Their method generates a top view of the road, uses Random
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Sample Consensus (RANSAC) line fitting for the straight
lines, and a fast RANSAC algorithm for Bézier Splines fitting.
The feature-based method, though known for its robustness
against noise, is difficult to implement since it requires some
prior-known geometric parameters and heavy computation.
The feature-based methods analyze images and detect the
gradients of pixel information or the color of patterns to
recognize the lane markings. For example, the researchers
in [41] presented a robust and real-time vision-based lane
detection algorithm by reducing the image to an efficient
Region of Interest (RoI) in order to reduce the high noise
level and the calculation time. Their method also removes any
false lane markings and tracks the real lane markings using
the accumulated statistical data. Their experimental results
show that the algorithm gives accurate information and fulfills
the real-time operation requirement on embedded systems
with relatively low computing power. For more examples
see: [42]–[46].

C. Non-Automated Road Users Behavior

One of the biggest challenges in AD is to predict the
motion of non-automated road users, e.g., human-driven vehi-
cles, pedestrians, cyclists and pets as it involves unknown
and stochastic variables. Twaddle et al. [47] focused on the
increasing need for bicycle behavior models in urban areas.
Yao et al. [48] proposed a behavior model for conflicts in a
mixed vehicles-bicycles scenarios. Li et al. [49] proposed a
cellular automaton model that analyzes the behavioral char-
acteristics of bicycles’ illegal lane-changing behavior. Recent
research dealing with AD and pedestrian safety explored
the potentials and limitations of pedestrian detection [50].
The research analyzed nearly 5, 000 Video records of pedes-
trian fatalities in 2015 in the Fatality Analysis Reporting
System, and virtually reconstructed them under a hypothet-
ical scenario that replaces the vehicles involved with AVs
equipped with state-of-the-art technologies. They concluded
that although technologies are being developed to successfully
detect pedestrians in order to prevent fatal collisions, the
current costs and operating conditions substantially decrease
the potential for reducing pedestrian fatalities in the short
term.

The behaviour of humans as crowds (see [51], [52]) differs
from that of pedestrians crossing a busy road. The high hetero-
geneity between pedestrians and vehicles in terms of maneu-
verability, speeds, field-of-view etc. makes the prediction of an
individual pedestrian’s behaviour much more complicated than
that of a crowd’s behavior. Crowds are typically considered
as homogeneous individuals and the high density enables to
assume continues interactions between them ( [53]). There-
fore, the prediction of pedestrian behavior requires deeper
understanding of both pedestrian and driver behavior. Since
psychological considerations are convoluted with the trajecto-
ries planned by individual pedestrians, research on pedestrian
attitudes may have great impact on the behavioral models. For
example, Zhou et al. [54] used structural equation modeling
to predict pedestrian crossing behavior. The authors presented
a questionnaire with a scenario involving the violation of

road-crossing rules and asked participants about their attitude
towards such violations. Ye et al. [55] studied pedestrian
behavior where road-crossing is done in groups, by using a
behavioral model-based simulation. They analyzed the interac-
tions between groups of pedestrians and vehicles at unsignal-
ized intersections. In particular, they examined the mid-block
crossing, which is characterized by a long straight road that
enables vehicles to move at high speed, making it difficult
to judge the speed of oncoming vehicles. Pawar et al. [56]
analyzed and evaluated the dilemma-zone (an area located
before the road crossing) for crossing pedestrians at mid-block
crossings.

Several researchers developed pedestrian models that con-
sider local behavior of the individual pedestrian. Hoogendoorn
and Bovy [57] considered pedestrians as autonomous con-
trollers, which minimize a cost function while moving toward
a target destination. Blue and Adler [58] showed that a simple
set of rules can effectively describe pedestrians’ behaviors at
the micro level. They modeled bi-directional pedestrian motion
using a Cellular Automata micro-simulation to confirm this
claim.

Pedestrian road-crossing models involve a number of fac-
tors. Duives et al. [59] evaluated pedestrian behavior models
by considering eight distinct motion-based cases and six phe-
nomena of crowd movement. The researchers showed that
models of pedestrians crossing must fit the specific scenario.
Even though pedestrians share the same motivation, i.e., cross-
ing the road safer and faster, each pedestrian has his/her own
target location and level of urgency, while possessing varying
physical capabilities [53], [60], [61]. Guo et al. [62] con-
firmed that the behavior of road-crossing pedestrians depends
mainly on the waiting time. Hacohen et al. [63] presented a
statistical algorithm for estimating the pedestrian’s trajectory
while crossing busy roads. Their behavioral model depends on
the pedestrian’s level of urgency alone.

Due to the complexity of such predictions, researchers focus
on specific interactions between pedestrians and vehicles.
Hashimoto et al. [64] developed a particle filter-based model
of pedestrian behavior. The authors focused on the scenario of
left-turning vehicles at signalized intersections when crossing
at signalized crosswalks. Wang et al. [65] developed a pedes-
trian model for scenarios of mid-block crosswalks and inter-
sections. Lee and Lam [66] presented a model which estimates
the walking speed of pedestrians at crowded crosswalks, and
Bonnin et al. [67] considered especially the zebra-crossings
case.

An innovative strategy for developing pedestrian models
implements common robotic motion planning algorithms
to predict the trajectory of pedestrians. Such methods
refer to the vehicles as dynamic obstacles that should be
avoided, and the target is the other side of the cross-
walk. Zeng et al. [68] implemented artificial-potential-field
algorithm. Hacohen et al. [69] use Probability-Navigation-
Function to predict phenomenon of pedestrian crossings.
In their research, the paradox of risk aversion was explored
by simulating the pedestrians behavior while crossing the road
when vehicles are approaching. Xiao et al. [70] introduced a
Voronoi diagram-based algorithm for a pedestrian flow model,
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and Waizman et al. [71] developed their method based on
Velocity-Obstacle.

D. Motion Planning

The path planning task for AVs has been intensively
researched over recent decades. It is common to divide the
path planning problem into global and local planning. The
planning techniques can be classified as (i) Graph search
algorithms, such as Dijkstra [72]–[75] or A-star [76]–[79],
which assume a set of known configurations with the goal
of finding the path from two configurations passing through
the known configuration set; (ii) Sampling based planners,
such as RRT (Rapidly-exploring Random Trees) [80]–[83] that
simplify the approach of grid sampling of the configuration
space by sampling the region of interest with the desired
density. Interpolating curve planners are used to smooth the
paths given by the path planners. An Artificial Potential Field
(APF) [84] or Navigation function (NF) [85] also perform well
for AD [86]–[89].

Fully automated driving functionality also requires a reliable
environment mapping, used in the AVs’ control schemes.
Brown et al. [90] introduced a control framework that inte-
grates local path planning together with path tracking using
model-predictive-control. The controller first plans a trajectory
that considers the vehicle state (position and velocity) and the
desired path. Then, two safe envelopes are considered: one for
stability and the other for obstacle avoidance. Moriwaki [91]
presented an optimal steering control method for electric AV
based on H ∞ that aims to follow a chosen trajectory while
keeping a certain stability margin. da Silva and de Sousa [92]
used dynamic programming for AV motion control, where the
objective is to follow a desired path while keeping the short-
est distance between the vehicle and the desired path under
some predefined threshold. Kessler et al. [93] introduced two
novel approaches for extracting a topological road-graph with
possible intersection options from sensor data, along with a
geometric representation of the available maneuvering space.
Also, a search and optimization-based path planning method
for guiding the vehicle along a selected track in the road-graph
and within the free-space is presented. They compared the
methods by simulation and showed results of a test drive with
a research vehicle. Their evaluations show the applicability
in low-speed maneuvering scenarios and the stability of the
algorithms even for low quality input data. For more methods
of trajectory tracking and path following, see [94]–[96].

The field of motion planning which simultaneously consid-
ers safety and human comfort is yet to be fully developed.
Magdici and Althoff [97] presented a fail-safe motion planner
for AVs, which simultaneously guarantees safety and com-
fort by combining an optimal trajectory with an emergency
maneuver. Solea and Nunes [98] presented a path-following
control system together with a smooth velocity planning,
including parameters to ensure the comfort of the human
body. An important field of study is the passengers’ feeling of
safety in an automated vehicle which immerges when driving
in urban environments, where the path must be smoothed
in the planning stage before the trajectory tracking task.

The researchers in [99] implemented 4th and 5th degree Bézier
curves in their path planning generation. They focused on
urban scenarios (intersections, roundabouts, and lane chang-
ing) and speed planning for comfortable, safe motion.

Since AVs act in environments that involve humans, motion
planning must also involve the consideration of ethical issues.
For example, decision making in cases of inevitable accident
or right of way. The authors in [100], [101] discuss the
decision making of AVs from an ethical point of view.

The use of Machine-Learning (ML) seems to be an attrac-
tive method for AVs perception and motion planning (see
for example [102], [103]). In [104] the authors presented a
neural network model to analyze the data captured by the
sensors. Then, a decision-making system calculates the most
suitable control signal for the vehicle based on the obser-
vations. Isele et al. [105] solved AVs’ intersection problems
by utilizing Deep Reinforcement Learning which enables safe
manoeuvres in the case of sensors’ occlusions.

The complexity heterogeneity of scenarios of road
driving make motion planning a challenging task.
Banerjee et al. [106] investigated all disengagement and
accident reports obtained from The California Department
of Motor Vehicle (DMV) databases between 2014-2017, and
found that ML-based systems are the primary cause of 64%
of all misjudgment. Koopman and Wagner [107] stated in
their paper that “…there does not seem to be a way to make
ultra-dependable levels of guarantees as to how a ML system
will behave when it encounters data not in the training set
nor test data set”. Researchers address this challenge by
applying additional algorithms to block unsafe maneuvers.
Mirchevska et al. [108] used Reinforcement Learning for
lane changing of AVs. They addressed the uncertainty issues
by combining ML with safety validations to ensure that only
safe actions are taken.

E. Autonomous Vehicle Control

Autonomous driving requires a control system that guar-
antees a safe performance even in extreme scenarios such
as heavy traffic, unexpected behavior of other road users,
and poor visibility. As mentioned, vehicle control (manual or
autonomous) can be divided into two major tasks: steering
and accelerating/decelerating. All other tasks related to safe
driving, for example tracking, path planning, and obstacle
avoidance are based on these two fundamental capabilities.
The initial theoretical and experimental studies on robotic
systems and driving models were developed in the 1950s and
1960s, (e.g., [109], [110]). These studies aimed to improve
driving safety by eliminating the negative outcomes of human
errors in controlling vehicles by implementing highly reliable
automatic control systems with faster and more consistent
reactions. In particular, these studies focused on headway
safety policy, longitudinal and lateral control of individual
vehicles, and highway systems operations. These early systems
used inductive cables and magnetic markers embedded in
roadways to determine a vehicle’s location. Shoval et al. [111]
presented a robot driver system that controlled passenger
vehicles and trucks in a vehicle manufacturer’s Automatic
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Durability Road (ADR) test facility. The robot was installed
on the driver seat and mimicked the actions of a human driver,
manipulating the vehicle’s steering wheel, acceleration and
brake pedals, and gear stick. The installation of the robot
on the vehicle required 4 hours and did not involve any
intervention in the vehicle’s mechanisms. The lateral position
of the vehicle was determined by electric wires embedded
in the center of the driving lanes, where each wire was
characterized by a unique frequency. Two inductive coils were
connected to the front bumper of the vehicle and measured the
electromagnetic signals from the electric wire. The difference
between the signals from the two coils indicated the lateral
position of the vehicle relative to the electric wire. Steering
commands guided the vehicle along the required lane based
on the coils’ data. The longitudinal position was determined
by a set of low frequency FM transponders embedded along
the lane next to the guide wire. The transponders (TIRIS
– Texas Instrument Registration and Identification System)
were positioned a few meters apart along the track, pro-
viding reliable and accurate data on the vehicle’s absolute
longitudinal position. The DARPA Grand Challenge (DGC),
initially introduced in summer 2002, was one of the most
important milestones in the development of autonomous road
vehicles. The first challenge included 17 teams attempting
to complete the 140-mile course from Barstow, California to
Primm, Nevada. Although the winning vehicle traveled only
7 miles (5% percent of the planned route), the DGC was a
great success. Subsequent challenges included a route from
Los Angeles to Las Vegas (380 km), limited to 10 hours with-
out any human intervention (won by STANLEY team [112]),
and the 2007 DARPA Urban Challenge, where vehicles were
required to drive in traffic, and to perform complex maneuvers
such as merging into traffic, overtaking other vehicles, parking,
and crossing intersections [76]. The DARPA Urban Challenge
was a ground-breaking event as the vehicles were required
to negotiate other manned and unmanned vehicles in a close-
to-real urban environment. Following the DARPA challenge,
various technologies were developed and implemented for the
control of unmanned vehicles. These technologies enabled
steering and speed control as well as implementing some of
the features in human-driven vehicles. For example, Auto-
matic Emergency Braking (AEB), also known as Advanced
Braking Systems, is now a standard technology in many
modern passenger vehicles [113]. This technology can slow
down and even stop a vehicle autonomously when it detects
that the driver fails to respond to traffic events that may
lead to an accident. Many countries around the world are
enforcing or planning to enforce the implementation of AEB
systems in new passenger, SUVs and light commercial vehi-
cles. Automakers in the United States committed to include
AEB as a standard feature on all new vehicle models starting
in 2022.

Summing up, the ability to control the vehicle’s steering
and speed is the core of the AV functionality and many
modern Advanced Driver Assistant Systems (ADAS) make
use of it. Some gaps still remain such as additional criteria
for optimizing the vehicle control and the user experience,
and improving the vehicle Mean Time Between Failures

III. SENSORS

One of the first works on sensor systems for AVs was
presented by Waxman, [114] where a camera was used for
the control of the vehicle. The hardware at this time was
inefficient as the frame-rate was too low for the controller.
The researchers maintained continuous motion by what they
called ’looking ahead’ and then ‘driving blind’ for a short
distance until the camera took the next frame. The use of
cameras as a control input in AVs gained momentum at the
early 1990’s. [115] used an improved processor to control
the vehicle. The vision system estimated the lateral position
and deviation of the vehicle relative to the white lines in the
frame. Currently, all systems dealing with AVs use data-fusion
techniques. This enables an overlap of data in the region of
interest ( [116].

A. Camera Sensors

In recent years, cameras became the most common modality
sensor due to their high information content, lower cost and
operating power, and the ability to use ultra-sonic or radar as
auxiliary sensors if necessary. AVs are generally equipped with
video cameras in order to “see” and interpret the objects in
the road. Multiple onboard cameras allow vehicles to maintain
a 360◦ view of their external environment, thereby providing
a broader picture of the traffic conditions.

Today, 3D cameras are utilized for displaying highly
detailed and realistic images. Computer vision algorithms
(such as OpenCV) can automatically detect objects, classify
them, and determine their distance to the vehicle. For example,
3D cameras can easily identify other vehicles, pedestrians,
cyclists, traffic signs and signals, road markings, bridges, and
guardrails. Note that poor weather conditions such as rain,
fog, or snow can prevent these cameras from clearly detecting
obstacles in the roadway. Additionally, in situations where
the colors of the objects are similar or lack contrast to the
background, the detection algorithms may fail [117], [118].

One of the most known features for object detection is the
Histogram of oriented Gradients (HoG) [119]. When calculat-
ing the HoG feature, the image is divided into small cells, and
a histogram of gradient directions is compiled for the pixels
within each cell. This approach may also be used for human
detection [120].

The Convolutional Neural Network (CNN) approach
enables features’ extraction by integrating the features’ labels
(bounding boxes) into the learning process, and all features
are automatically learned from the training data [121]. CNN
is commonly used for human detection (see e.g. [122]) and
is further improved to R-CNN and YOLO [123], [124] which
requires a reduced computational cost and therefore is suitable
for real-time operation.

There are many examples where cameras are the main or
exclusive sensor. Heng et al. [125] presented the AutoVision
project, which aims to develop localization and 3D scene
perception capabilities for AVs based on vision sensors only.
Kuramoto et al. [126] developed a scheme for computing 3D
positions of distant vehicles based on mono-camera observa-
tions. The accuracy of the vehicle’s maneuvers estimation may
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be improved by using onboard monocular camera together
with other odometry sensors [127]. For example, a monocular
camera may also be used for localization by tracking known
street markers. Lu et al. [128] utilized road markings as land-
marks. Using the vehicle’s odometry and epipolar geometry
constraints, they were able to estimate the vehicle’s position
and orientation.

Stereo vision can be used with less preliminary knowledge.
In this technique, the length of the objects may be unknown.
An example of stereo vision for a 3D vision reconstruction
was presented by Kemsaram et al. [129], who used three deep
neural networks simultaneously to perform free-space detec-
tion, as well as lane boundary detection and object detection
on image frames captured using AV’s stereo cameras.

B. Radar Sensors

Onboard radar (Radio Detection and Ranging) sensors send
out radio waves that detect objects and gauge their distance
and velocity in relation to the vehicle in real time [130]. Radar
is a key technology for AVs and ADAS due to its robust-
ness to environmental variations such as inclement weather
(fog, rain, etc.) and lighting conditions, and their long-range
detection [131].

Radar sensors may be divided into two groups: Short range
sensors (24 GHz) are usually used for blind spot monitor-
ing, lane-keeping and parking assistance. Long-range sensors
(77 GHz) are used for maintaining safe distance and brake
assistance [132]. Radar sensors may also be used for identi-
fying vulnerable road users. Stolz et al. [133] investigated the
use of radar sensors to identify cyclists in AEB systems. Nabati
and Qi [134] proposed the RRPN (Radar Region Proposal
Network) algorithm for object detection. Based on the radar
observations, objects are mapped to the image coordinates.

The impact of occlusion, antenna beam elevation angle, lin-
ear vehicle movement, pedestrian motion, and other factors are
investigated and discussed in [135]. Their experiments show
that although over 95% of pedestrians can be correctly detected
in optimal conditions, under real life conditions, recognition
of pedestrian motion by radar only is insufficient due to
insufficient Doppler frequency and spatial resolution, as well
as antenna side lobe effects. An emerging research work
that deals with dual function radar-communications device is
presented in [136].

C. LiDAR Sensors

LiDAR technology is currently the most common technol-
ogy capable of delivering accurate real time 3D data due to
the use of a laser-based point cloud. Real-time LiDAR sensor
technology is used in a variety of commercial applications
including AVs, vehicle safety systems, 3D aerial mapping and
security. Though the benefits of 3D point-cloud data are clear,
most AVs require multiple LiDAR sensors which make the
AV’s sensor system expensive [137].

LiDAR sensors create 3D images of detected objects and
map the environment. Moreover, LiDAR can be configured
to create a full 360-degree map around the vehicle rather than
relying on a narrow field of view as compared to radar sensors.

Because of these two advantages, AV manufacturers and users
such as Google, Uber, and Toyota, incorporate LiDAR systems
in their sensors suit. For research on LiDAR and pedestrian
recognition by AI see [138], [139].

LiDAR–radar sensor fusion is more robust to environ-
mental changes than cameras since it uses a synergy laser
and radio frequency signals (see [140]–[143]). For exam-
ple, Kwon et al. [144] proposed a new detection scheme for
occluded pedestrian detection by means of LiDAR–radar sen-
sor fusion. The object within the occlusion region of interest
is detected by the radar measurement information, and the
occluded object is estimated as a pedestrian based on impulses
in the Doppler observations.

As of 2022, LiDAR sensors are much more expensive than
radar sensors. The LiDAR systems required for AD can cost
well above 10,000$ per unit, while the top sensors, currently
used by Google and Uber, costs up to 80,000$. In addition, bad
weather conditions such as snow or fog may block the LiDAR
sensors and affect their ability to reliably detect objects in the
road. In [145] the researchers overcome the LiDAR’s cones
problem, which appears when objects block the LiDAR’s
beams and make the point-cloud perforated, by using a stereo-
scopic camera system. Neural networks adapt the camera’s
observations to convert them to pseudo-LiDAR representations
— essentially mimicking the LiDAR signal.

IV. AUTONOMOUS DRIVING AS A COOPERATIVE SYSTEM

Traditionally, the term Autonomous Driving refers to the
technology that enables automatic operation of a single vehi-
cle’s control functions ( steering, throttle, braking, etc.).
As such, the vehicle may be equipped with all the actuators
and sensors that are needed for the loop-closure. A different
approach is the concept of multi-agent-systems or cooperative
AVs, where the control of each vehicle, in addition to the
environment conditions, is related to the operations of all other
AVs in the vicinity [146].

Individual vehicles may benefit from information obtained
from other vehicles in the vicinity, especially information
related to traffic congestion and safety hazards. Vehicular com-
munication systems use vehicles and roads infrastructure units
as communicating nodes in a peer-to-peer network, providing
each other with information. Vehicular communication sys-
tems raise the efficiency of all cooperating vehicles. According
to a 2010 study by the US National Highway Traffic Safety
Administration, vehicular communication systems could help
avoiding up to 79% of all traffic accidents. [147]

The cooperative operation of AVs has many signifi-
cant advantages. Researchers define three critical technolo-
gies [148]: (1) The cooperative driving connectivity between
road users together with (2) Big-Data and (3) autonomous-
vehicles’ operation and control. Hult et al. [149] discussed the
improvement in safety that results from cooperative driving
(see Fig. 3).

According to the “Traffic Safety Facts Annual Report of
2017” [150], more than 80% of the accidents with known
and reported factors were caused by human error. Poor lane
keeping was responsible for 8% of those accidents, and drivers
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Fig. 3. Vehicle coordination relies on tight interaction between control,
communication, and sensing [149].

under the influence of drugs, alcohol or medication were
responsible for 12% of the accidents. Autonomous driving
in general, and cooperative driving in particular, is widely
considered to greatly increase road safety based on these
factors.

Moreover, Zhou et al. [151] showed that cooperative con-
trol may significantly improve the smoothness of vehicular
flow and increase road capacity in comparison to human-
driven vehicles. They formulate a control law for vehicles’
acceleration in response to the actions of surrounding vehicles.
A discussion about ecological impact and fuel consumption
can be found in [152]. Both fuel consumption and air pollution
are reduced with the use of cooperative AVs (see also [153]).

The dependency level of an individual vehicle on a central
unit, a controller, in its decision making was discussed in
the literature. Reference [154] presented an algorithm for
cooperative control of AVs using a multi-agent system. The
authors formulated multi-layer reservation policies to manage
the interactions between vehicles, with the aim of reducing
energy consumption, increasing the smoothness of traffic flow,
and increasing intersection throughput. In [155] researchers
presented an algorithm for controlling the speed of an AV
to follow a speed-profile generated for cooperative AVs. The
algorithm monitors control messages that include the current
desired speed, as well as the future speed-profile to overcome
anomalous communications. In [156] the authors presented a
three layer algorithm for cooperative lane-changing. Although
the vehicles share information, the decision making is done
independently.

A. Cooperative Sensing

Cooperative sensing enables information sharing by all road
users and stationary devices located in the same environment,
which provides road users with observations beyond the line-
of-sight and the field-of-view. However, it introduces new
problems such as how to locate all observations on the same
map, identification of vehicles, high volume of communica-
tion, privacy invasion, etc. The authors in [157] presented a
framework to deal with those challenges and demonstrated
it on a group of AVs, each equipped with a single LIDAR

and a single camera. The communication and control were
conducted by the open-source libraries of ROS (Robotic Oper-
ating System). In [158] the authors presented a cooperative
sensing scheme that improves the vehicle’s capabilities, which
they named see-through, lifted-seat and satellite-view. The
authors investigated the improvements of such cooperative
sensing to the driving safety and the smoothness of the vehicle
manoeuvres. Based on the literature review, it seems that this
important subject should be further investigated.

B. Infrastructure to Vehicle Communication

Infrastructure to Vehicle (I2V) communication was consid-
ered a critical technology for road safety even before AVs
became popular. For example, [159] exemplified the safety
improvement and the positive attitude of human divers to I2V
systems.

AVs can send and receive data from stationary infrastructure
devices in the vicinity. I2V communication includes monitor-
ing vehicles [160], as well as other road users such as cyclists
and pedestrians. Pedestrian monitoring is essential for AD
in urban areas. Today, many streets have 24/7 surveillance
cameras for traffic monitoring and security, and the big data
from these cameras’ networks provides beneficial data for
AVs. Today, however, the control of most AVs is based on the
vehicle’s onboard sensors alone, yet, fusion with additional
external data will increase performance for pedestrian track-
ing and accident avoidance. The use of street-view cameras
was demonstrated by Kristoffersen et al. [161], where thermal
cameras were used in complex scenarios with changing light
conditions and existence of many pedestrians occluding one
another. They introduced a stereo thermal camera setup for
pedestrian counting, and investigated the reconstruction of 3D
points in a pedestrian-crowded street with two thermal cam-
eras. They then proposed an algorithm for pedestrian counting
based on clustering and tracking the 3D point clouds.

Reference [162] presented an improved GPS localiza-
tion system supported by I2V. Localization of vehicles
based on GPS is impossible in many scenarios, especially
cluttered urban areas. In such scenarios, I2V communica-
tions can provide accurate localization of vehicles. Refer-
ence [163]. I2V can also improve the AV decision making.
Perumal et al. [164] presented an algorithm for AV motion
planning based on observations for localization and for locat-
ing moving obstacles (road users). Grembek et al. [165] pre-
sented an algorithm for intelligent intersections based on I2V
observations that compensates for insufficient information,
leading to improved safety.

Another issue for consideration is the requirement for
seamless connectivity of vehicles and infrastructure devices.
Researchers (e.g., [166], [167] are developing methods that
apply multi-path TCP (Transmission Control Protocol) com-
munication in multi-radio access technologies or by multi-
hop clustering approach (e.g., a node can use other nodes as
relays) using a Wi-Fi gateway roadside units installed every
3 km. In [168], the authors presented a roadside unit equipped
with multiple antennas for network capacity improvement,
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and provided an evaluation of the packet error probability by
antenna correlation.

C. Communication Between AVs and Pedestrians (V2P)

For safe AD in urban environment, communication
of AVs with other road users, in particular pedestrians,
is required [169]. Habibovic et al. [170] stated that commu-
nication between AVs and other road users that enables nego-
tiation is essential, and examined some external devices and
negotiation methods. They concluded that more research must
be conducted in order to formulate an agreed standard, or lan-
guage for this type of communication. Dey and Terken [171]
studied the significance of eye contact and gestures between
pedestrians and drivers. They found that motion patterns of the
vehicle are more effective than eye contact for efficient traffic
negotiations. These findings open an opportunity for efficient
communication between pedestrians and AVs. Researchers
also presented optional devices to support such communi-
cation, for example in [172] a visual interface is presented.
Bazilial et al. [173] provided a survey of external human-
machine interfaces (eHMIs ). They found that textual eHMIs
are clearer for a pedestrian than other methods. Moreover, they
investigated how the text color and perspective of the textual
message affect the comprehension of the message, and found
that egocentric eHMIs are clearer.

In addition to the sensor system on the AV, communicating
awareness and intent in AV-pedestrian interaction was con-
sidered in [174]. In this paper, the researchers presented the
usefulness of interfaces that explicitly communicate aware-
ness and intent of AVs to pedestrians, focusing on crosswalk
scenarios. They found that interfaces communicating vehicle
awareness and intent can help pedestrians attempting to cross.
According to the research, the communication method should
use a combination of visual, auditory, and physical means (e.g.,
a phone held by a participant that vibrates when it is safe to
cross).

D. Vehicle to Vehicle Communication

Vehicle to vehicle (V2V) communication is more difficult to
implement due to its decentralized structure. V2V is based on
information sharing between a group of vehicles in the same
vicinity. This obviously requires communication technology
and protocol agreements (see CAR2CAR Consortium [175]).
By using V2V capabilities, the vehicles may also serve as
routers and allow communication over multi-hop to distant
vehicles and roadside stations. Challenges requiring consid-
eration include communication delays, partial measurements,
privacy and safety aspects. For example, in [176], the authors
presented an approach for an AV collision warning system that
is robust to communication uncertainty. Note that although the
communication between AVs may significantly improve the
traffic performance, it also holds risks, particularly in terms of
cyber security. Amoozadeh et al. [177] showed by simulations
that an insider attack can cause significant damage to an AV’s
control, and suggest some principals to improve AV cyber
security.

V. CURRENT GAPS

Autonomous vehicles are the near-future of transportation.
The intense research of the industry’s big players such as
Google and Tesla will make transportation safer, more com-
fortable, more efficient, and more common. While in 2019,
about 31 million vehicles were driving with some level of
automation worldwide, according to Statista Research Depart-
ment this number is expected to grow to 54 million in the next
five years [178]. Nevertheless, most of the research today is
focused on designing an AV that will be able to drive in today’s
roads alongside human-driven vehicles. According to the cited
research papers (and the authors’ view), some important points
are still in the development stage and need more research.

The following list presents gaps that are unique to the AD
field and not considered by other disciplines. We believe that
the AV field should focus on the following list in the further
development in order to expedite the adoption of autonomous
vehicles technology.

A. Environmental Sensors

- One of the ways to control AVs is to consider the vehicles
as a cooperative system rather than individual entities. In such
a case, the V2I together with V2C plays a major role in
the AVs control process as external sensors are connected
to control system. Implementation of efficient collective-
information-sharing requires an array of sensors utilizing envi-
ronmental sensors such as street/road cameras, as well as
onboard sensors together with efficient sensors fusion proce-
dures and reliable communication networks. Today, all leading
AV manufacturers are developing control systems that rely
entirely on the vehicle’s on-board sensor system. As the AV
market grows, the needs and opportunities for data sharing
will increase. Governments and local authorities should direct
resources from traditional road infrastructure to advanced
infrastructures that support this data sharing. Such an upgrade
does not necessarily involve initial high financial investments
since many roads are already being monitored for traffic
control, safety and security. At this stage we find that the
gaps are mainly in the development of data fusion and infor-
mation analysis algorithms. These algorithms include hazards’
identification, road users’ trajectory prediction, and schemes
for alerting upcoming vehicles’ failures. In addition, a high
volume of data may enable the implementation of algorithms
for the prediction of other road user behavior (pedestrians,
cyclists, etc.).

B. Robust and Distributed Communication Network

- Since the required capacity of information transfer for AD
is very high and the number of users is expected to increase,
there is a need for a robust and distributed communication
network. The vision of cooperative sensing requires a reliable
communication network. Data collection from street/road cam-
eras in order to monitor all road users require further research.
This should be integrated using conventional protocols for data
sharing. Pedestrians should be connected to the communica-
tion network as well. V2V and V2I communication differs
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from V2P since pedestrians’ ability to receive information is
restricted to small mobile devices (e.g., smart phones) and to
limited human perception capacities. In addition, V2I lacks the
ability to fully integrate the pedestrians in the control schemes.
Even though researchers have been investigating this challenge
for several years, this field requires further development.

C. Cooperative Interaction

- Cooperative sensing and communication are basic require-
ments for cooperative interaction between vehicles and other
road users. A centralized control may be implemented with
different levels of centralization. Obviously, cooperative opera-
tion of AVs can be realized only when most of the vehicles are
controlled by a centralized controller. These two prerequisites
are not fully available yet. Cooperative operation is expected
to improve the efficiency of driving with regard to traffic flow,
power consumption, safety and comfort. Decision making in
potentially fatal scenarios is a complex issue. When the AV
control scheme is designed by the vehicle manufacturers that
are committed to the safety of their customers, the control
system will probably choose the safety of the AV passengers
over the safety of other road users in potentially fatal scenarios.
This field of research should be deeply investigated, given
that the required infrastructures for the implementation of
centralized AV control, such as 5G communication and high
coverage by street cameras, will be available in the near future.

D. Ethical and Legal Issues

- The AV technology introduces many ethical and legal
questions. Preemption, give way for emergency vehicles, con-
siderations for decision making in cases where an accident is
inevitable, giving pedestrians traffic priority, the responsibility
of the AV user versus the vehicle manufacturer are just a few
examples for these type of questions. Jurists and researchers
must formulate ethical considerations for AV decision making
and data sharing, in keeping with the technology advancement.
Furthermore, governments should implement legislation of
new traffic laws and appropriate behavior for AVs, as well
as standardization of road infrastructure suitable for AVs,
such as communication networks, environmental sensors, road
signs, etc.

E. AVs Standardisation -

Although AVs are already operating in several cities around
the world, still some gaps are needed to be handled in terms
of standardization. The first one is to standardise functional
requirements, functional architecture and interfaces between
the different components involved in the AD tasks. For exam-
ple, the automotive industry have started to consider the
introduction of artificial intelligence algorithms in the ADAS
and AD systems. These standardization activities are related
to functional safety (ISO 26262) and Safety of the Intended
Functionality (ISO 21448). The safety problem related to
deployment of AI software in automotive system products is
still open [179].In addition, the researchers in [180] discuss the
aspect of cyber security of autonomous vehicles. Cyber attacks
on various sensors and on-board cameras have revealed several

vulnerabilities of the autonomous vehicles. The presence of
wireless communication-based technologies for cooperative
driving is inevitable, so reliable and secure data sharing must
be applied.

Apart from the gaps mentioned above, we identify a few
more technological gaps that are not directly related to the
development of AD; however, they might significantly influ-
ence the evolution of AV technology.

1) The High Price Tag of the Sensor Suit - some researchers
point out that this issue will delay the uptake of
Avs [181], [182]. More algorithms using alternative
sensor input data to LiDAR will lower the costs of the
technology, for example, 3D observation using a mono
camera.

2) Sensor Data Fusion: - these methods will improve the
robustness to weather and other environmental condi-
tions.

3) Artificial Intelligence: - utilizing AI as a tool for data
analysis and decision making for AVs requires further
research.

VI. THE TRENDS OF RESEARCH FIELDS RELATED

TO AUTONOMOUS DRIVING

Google Trends is a data source for various research fields
that may be used for prediction [183], [184]. For example,
real-time economic activity [185], Real-Time Surveillance of
Disease Outbreaks [186] or for investigating the general inter-
est in the robotics field [187]. Google trends data is also
used in the AV field for scientometric analysis [188]. We now
provide a short discussion on the popularity of technologies
and research areas related to AD, as expressed by the number
of search results listed in Google Scholar (GS) and the Web
of science (WOS) over the past several years. For better
accessibility to the leading research works, Table II depicts
samples of AV main topics research through the last two
decades.

These result can assists researchers in focusing their work
on popular areas, as well as direct them towards other areas
that are still in the early stages of development. Although there
are several academic search engines like ’Scopus’ and ’Web
of science,’ we give precedence to GS and to WOS. We chose
GS because, in contrast to other engines and tools, it searches
cover the entire web and is not limited to core collections. The
WOS was chosen as it is considered to be the most reliable
and objective data base of academic publications.

The trends analysis methodology used in this section was
as follows: We searched in Google Scholar keywords e.g.
“autonomous vehicle”, “camera” and “autonomous driving”,
while limiting the results to a specific year. In the Web Of
Science core collection the search was limited to the topic (i.e.
title, abstract and keywords). The results are presented in the
following graphs. As expected, the number of search results
in the WOS is much lower than that in GS since WOS covers
only the core collection academic journals and conferences
while GS covers all publications, including non-academic
publication, patents, private webpages etc. We present the
number of search results per year over the last two decades.
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Fig. 4. Number of search results in Google Scholar (GS) and Web of
Science (WOS) per year.

Fig. 5. Number of search results in Google Scholar per year.

The graphs below (Figures 4-11) present various terms accord-
ing to their affiliation. In both search engines, we counted
only search results that included the terms “autonomous-
vehicle” or “autonomous-driving” together with the term that
was checked. This prevents counting terms related to other
disciplines, e.g., the term camera gets billions of search results
that are not necessarily related to AD or to AV.

Fig. 4 depicts the number of Google Scholar and Web Of
Science search results for the terms “autonomous vehicle” and
“autonomous driving” per year between 1990 and 2020. The
graphs indicate that until 2010 the growth rate of both AD
and AV research was moderate and similar, with AV research
leading in the number of search results per year. Then, from
2010 onwards, there was an exponential increase in both terms.
Note that the term “autonomous vehicle” may include other
research areas like unmanned aerial/underwater vehicles etc.,
while AD is unique to this survey’s areas, thus, the actual
trend is even sharper, in addition to the larger absolute number
of results for AD compared with AV. Furthermore, when
discussing the trends of specific research areas within Ad and
AV, the relative number of entries of a specific area must be
considered in relations to the entire entries.

The number of search results of the terms related to the
basic operations of AD are presented in Fig. 5 for GS and
in Fig. 6 for WOS. Again, the number of search results
in WOS is significantly lower than in GS. Note that the
search results that included both AV or AD together with
the search term were counted. The increase of these terms’
appearance is conservative compared with the terms AV and

Fig. 6. Number of search results in web of science per year.

Fig. 7. Number of search results in Google Scholar per year.

Fig. 8. Number of search results in web of science per year.

AD displayed in Fig. 4. One explanation is that these subjects
are common in other disciplines such as general robotics and
systems control, making them commonly used by many other
researchers. According to the graphs, we believe that the rising
rate of these terms in relation to general control and robotics
will decrease in the next years, while we expect the rate to
increase in relation to AD and AV. According to the graph, the
number of search results related to vehicle control has declined
since 2018, while publications related to lane detection and
localization increased.

The popularity of different sensors used in the operation
of AVs is presented in Figures 7 and 8. Both graphs indi-
cate the same phenomena, while the number of researches
that rely on cameras increases continuously and steadily due
to the development of learning algorithms, LiDARs became
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Fig. 9. Number of search results in google scholar per year.

Fig. 10. Number of search results in web of science per year.

commonly used only in the middle of the previous decade.
Due to its cost, LiDAR systems were involved in only a few
research papers until about 2015, when their price dropped.
Radar technology, on the other hand, was attractive at the
beginning of the analyzed period, but in recent years (since
2019) LiDAR technology is more common is research. Radar
was a complementary sensor to cameras since it is robust for
visibility conditions, but it lost its attraction when LiDARs
became popular.

This survey’s results emphasize the advantages of the col-
laborative operation for AVs and AD. Figure 9 presents the
number of search results of the variants of V2X and coop-
erative driving terms. The results indicate that searching for
these terms became common about 2007-2010. Furthermore,
the appearance of the term Vehicle to Cloud (V2C) was less
common at the outset, but has increased in the last decade,
and currently leads the research in the field (as expressed by
the number of search results in Google Scholar). Contrary to
our initial assumption, collaborative operation of AVs is not
attractive in the current literature. We believe that this is a
result of the lack of attention that this area receives from
the AV manufacturers. Finally, V2P has the lowest number
of search results, even though this technology is essential for
pedestrian safety. One explanation for this is that it requires
multidisciplinary research technology combined with human
behavior skills.

Liability and legal considerations of AD are only at the
early stage of development. Figure 11 presents search results
of the terms “security” and “cyber”, which complement AD.

Fig. 11. Number of search results in google scholar per year.

Fig. 12. Number of search results in web of science per year.

Fig. 13. Google trends per year.

We believe that as AVs become more common in public roads,
research on the liability and legal considerations will increase
dramatically.

Fig. 13 depicts the Google-Trends (GT) search queries pop-
ularity in the years 2004-2021 (2004 was the earliest available
data). Since GT provides data in a monthly resolution, the
data in Figure 13 is presented as the mean through a year.
GT does not provide absolute values of the number of queries,
only relative ones. The month with maximal queries gets a
100% value, and all others are measured relative to it. Each
term is presented relatively to its own average value, so the
values are not a comparison between the absolute popularity
of the terms. The trends reflected in the graph indicate only
the measure of interest in these terms. Note that many of the
terms in the graphs of GS and WOS do not have enough data
to be displayed as there are not enough previous searches on
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the specific terms. However, the terms that we use here present
examples of all groups of areas as discussed in this paper.

VII. SUMMARY

In this review paper we present the technological develop-
ment of autonomous vehicles and autonomous driving. We first
differentiate between the terms “Autonomous Vehicles (AV)”
and “Autonomous Driving (AD)”, where AD is a wider term
that incorporates AV as well as other terms and technologies.
The paper then presents the relevant research directly related
to AVs (e.g., vehicle control, lane detection, localization, and
motion planning), and other terms such as cooperative driving,
communication and road user behavior. We then discuss the
technological gaps in AVs as well as in AD. While the current
state of technology provides sufficient autonomy for a group of
vehicles operating in dedicated and controlled environments,
further research and development is required for the integration
of AD in existing traffic and roads. In particular, the integra-
tion of AVs with other road users (e.g. vehicles controlled
by humans, bicycle users and pedestrians) requires further
research, particularly in areas such as cooperative driving,
V2X infrastructure, human behavior and legislation. Finally,
the paper presents an analysis of the trends in AV and AD
as expressed by the number of annual search results listed
in Google Scholar and the Web Of Science over the last two
decades. The analysis clearly indicates a rapid growth in inter-
est in AD and AV (with a significant increase in AD compared
with AV since 2017). It also indicates moderate increase in
“traditional” research areas such as motion planning, local-
ization and vehicle control, with more significant increase in
the use of onboard sensors, particularly camera and LiDAR
technologies. An exponential increase in the number of search
results in the term V2C (Vehicle to Cloud) indicates that fur-
ther research is required in areas such as V2I and V2P. These
research areas require multidisciplinary and interdisciplinary
approaches that include specialist in the field of behavioral
science, as well as experts in liability and legislation.
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