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Overarching Sustainable Energy Management of PV
Integrated EV Parking Lots in Reconfigurable
Microgrids Using Generative Adversarial Networks

Seyed Soroush Karimi Madahi™, Arian Shah Kamrani, and Hamed Nafisi

Abstract—1In recent years, environmental issues have moti-
vated the wide usage of electric vehicles (EVs) due to their
zero tailpipe emission. However, this trend can pose severe
challenges to power systems, such as decreasing equipment
lifetime. Moreover, the CO, emission of EVs is closer to that
of internal combustion engine vehicles in some cases due to
the carbon footprint of EV charging. Modeling the uncertain
nature of EV users’ behavior is another obstacle due to the
complex dynamics of these uncertainties. To overcome these
problems, an overarching day-ahead smart charging method is
proposed in this paper from the perspective of distribution system
operators (DSOs), EV users, and governments simultaneously.
The aim of the proposed method is to minimize the operating
cost of microgrids, the degradation cost of EV batteries, and
emission cost by scheduling the active and reactive power of
EV parking lots integrated with photovoltaic (PV) systems as
well as finding the optimum network configuration. Previous
model-based methods cannot appropriately model uncertainties
in EV users’ behavior because of some statistical assumptions.
Nevertheless, this paper employs data-driven methods based on
generative adversarial networks (GAN) to represent these uncer-
tainties. The performance of the proposed method is evaluated
by implementing it on a real reconfigurable microgrid. The
results show that using the proposed method, the DSO and
emission costs can reduce by 11.96% and 3.37% compared to
the uncoordinated charging of EVs, respectively. Furthermore,
the share of sustainable energy in EV charging increases by 9%
using the proposed method.

Index Terms— Distribution system operator (DSO) cost, elec-
tric vehicle (EV), generative adversarial networks (GAN), pho-
tovoltaic (PV), reconfigurable microgrid.
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NOMENCLATURE

A. Indices and Sets
N Set of power system nodes
t  Time slot

B. Functions

D(.) Discriminator function
G() Generator function
Pdata(.)  Historical data distribution
p-() Generated distribution
V(@) Value function
C. PV Systems and Parking Lots Parameters
ap Temperature coefficient of PV module
[%/°]
Nabsorb Fraction of incident light absorbed by

the solar cell [%]

Efficiency of PV module [%]

Efficiency of PV module under

standard test conditions [%]

A’},V Surface area of the PV module
installed at the i-th parking lot [m?]

Nmp
Nmp,STC

Bry EV battery capacity [kWh]

Ch; Capacity of the n-th parking lot

Dg Daily distance traveled by EV [km]

Dy Maximum distance traveled by EV [km]

E. EV electrical energy consumption
[kWh/km]

E¢,y Total charging energy needed for the
n-th parking lot [kWh]

Gr Solar irradiation [kW/m?]

kreal Mean value of real data

k,G AN Value of generated data by GAN model
at time ¢

kreal Value of real data at time ¢

Nobs Number of observations

NprL Number of parking lots

NRMSE  Statistical measure

P},V Generation of the PV system installed

at the i-th parking lot [kW]

prV Generation of the PV array installed at
node x and time ¢ [kKW]
Rsquared Statistical measure
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c,n
SE VRated

SOCy/SOCy,
T,

Te.NocT
Te,sTc

T,

TMP,

Nominal rating of c-th EV at the n-th

parking lot [kVA]

Upper/lower limit of SoC [%]

Cell temperature [°]

Nominal operating cell temperature [°]
Cell temperature under standard test

conditions [°]

Number of EVs appearance time steps at

n-th parking lot

Ambient temperature at time ¢ [°]

D. System Parameters

At Time interval [h]

nflc Electricity price at time 7 [$]

Iy ..  Rating of power cable between node x and y [A]
M Node-branch incidence matrix of microgrid

N; Total number of time interval in a day

§loadx 1 oad demand at time ¢ and node x [kVA]

Sﬁfe’lj Nameplate rating of transformer [kVA]
Vu/Vr  Upper/lower limit of voltage magnitude [p.u.]
Yy /0y Magnitude/angle of admittance between node

x and y [p.u.]

E. Variables

DOCcapie
DOCTV{J}’ZS

Eloss
t
LY
P/ O;
pila;
pTrans /q Trans
t t

PEV{"/QEV{"

PL
S, =

Total temperature rise of cable [°]
Winding hottest-spot temperature [°]

Binary status of power cable between
node x and y at time ¢ [°]
Daily degradation cost of EV [$]

Total daily environmental cost of

cable [$]

Total daily environmental cost of

EV [$]

Total daily environmental cost of

transformer [$]

Daily energy losses cost of the grid

[$]

Daily operating cost of cable [$]
Daily operating cost of transformer

[$]

Energy losses of the grid at time

t [kWh]

Current of power cable between node
x and y at time ¢ [A]

Net injected active/reactive power

at node x and time ¢ [p.u.]

Net injected active/reactive power

at node x and time ¢ [kKW/kVAR]
Active/reactive power of transformer
at time ¢ [kKW/kVAR]

Active/reactive power of c-th PEV at
time ¢ at the n-th parking lot

[kW/kVAR]

Demand of parking lot at time ¢ and

node x [kVA]

SOC;" SoC of the c-th EV at time ¢ at the
n-th parking lot [%]

V*/oF Magnitude/angle of voltage at node
x at time ¢ [p.u.]

I. INTRODUCTION

A. Motivation

ONTINUOUS increases in greenhouse gas (GHG) emis-

sions and the high price of fossil fuels have raised the
interest of people and governments in using electric vehicles
(EVs) [1]. In 2016, more than a quarter of the total CO;
production was in the transportation sector, while more than
three-quarters of which is related to fossil fuel vehicles [2].
Currently, EVs are recognized as one of the most efficient
modes of transportation with zero tailpipe emission. It is
predicted that by 2030, due to the enactment of new laws
by governments, the number of EVs will exceed 250 million
units in the world [3]. Although EVs are considered a clean
resource, the CO, emission value of EVs is closer to that
of internal combustion engine vehicles in some cases due to
the carbon footprint of the battery production and charging
process of EVs [4]. Therefore, in order to reduce pollution,
it is essential to charge EVs with sustainable energy [5].
The increasing growth of EVs has also faced power systems
with some challenges. Some of the major challenges are the
emergence of a new peak in load profile [6], increase in power
grid losses [7], damage to power system equipment such as
transformers and cables [8], and uncertainties in EV users’
behavior (e.g., the arrival and departure time of EVs) [9].

B. Background and Related Works

Previous studies have attempted to cope with EV charging
challenges. In [10], the effect of various types of plug-in hybrid
electric vehicle charging on the optimal operation of reconfig-
urable microgrids has been investigated under the dynamic line
rating security constraint. In this article, the arrival time of EVs
has been modeled based on uniform and normal distributions
and a normal distribution has been used to model the daily
mileage of EVs. In [11], a two-stage optimization framework
has been proposed. In the first stage, the charging of EVs
has been scheduled to fill valleys and minimize the charging
and battery degradation cost of EVs. In the second stage, the
distribution feeder reconfiguration problem has been solved.
This reference assumes that the arrival and departure time
of EVs have normal distributions and the daily mileage of
EVs follows a lognormal distribution. The authors in [12]
have proposed a bi-objective optimization model for an EV
parking lot integrated with a photovoltaic (PV) system in order
to improve the economic and environmental performance of
the parking lot. The initial state of charge (SoC) and present
time of EVs in parking lots have been randomly consid-
ered. Article [13] has presented a multi-objective optimization
framework to demonstrate a conflict between the cost and
emission minimization of EV charging. Authors in [14] have
proposed a transactive energy management system for EV
parking lots equipped with rooftop PV systems to balance
the charging demand of EVs with supply. In this paper, the
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distribution of the arrival and departure time, and SoC of
EVs have been assumed to be normally distributed. In [15]
a co-optimization algorithm has been proposed to schedule
the charging of EVs from the distribution system operator’s
(DSO) point of view by managing the active and reactive
power of EVs simultaneously. Authors in this article have
modeled the arrival and departure time, and daily mileage
of EVs based on normal distribution functions. In [16], the
active and reactive power of EVs have been scheduled by
considering the simultaneous benefit of their users and DSO.
Moreover, in this article, a method called Route Mapping
has been used to model the arrival time and SoC of EVs
and the departure time of EVs has been modeled using a
normal distribution. In [17], an operational planning model
has been proposed for centralized charging stations integrated
with PV systems and an echelon battery system. A multi-
objective optimization model has been employed to minimize
the electricity purchase cost, load fluctuation, and the battery
system life-cycle loss cost. In this reference, EVs’ daily driving
mileage has been represented by a log-normal distribution.
The authors in [18] have introduced a bi-level optimization
method to schedule EV charging. At the upper level, the
price optimization model of EV charging and at the lower
level, the load optimization model of EV charging have been
established. In this paper, the behavioral modeling of EV users
has been determined based on mathematical relationships.
In [19], an optimal charging model has been proposed to
minimize the volatility of renewable energy sources (RES) as
well as the charging cost of EVs. In this article, EV users’
behavior has been modeled by normal distribution functions.

C. Research Gaps

In the day-ahead charging scheduling of EVs, the key step
is accurately modeling uncertainties in the generation of sus-
tainable energy and EV users’ behavior. Most previous studies
have used Monte Carlo simulation and probability distribution
fitting methods to model uncertainties in the driving behavior
and arrival and departure time of EVs. However, because of the
time-varying and dynamic nature of these uncertainties, these
model-based methods, which are based on some statistical
assumptions (e.g., Gaussian), cannot accurately represent these
uncertainties. To the best of the authors’ knowledge, this is
the first paper that uses a data-driven method to represent
uncertainties in EV users’ behavior. Furthermore, the profits of
all stakeholders should be considered in the charging planning
of EVs. The purpose of DSO is to reduce the operating
cost of distribution networks, including decreasing energy
losses and the operating cost of power grid components [20].
In order to persuade EV users to participate in the day-ahead
charging algorithm, the benefits of EV users (such as the
battery degradation cost of EVs) must be taken into account.
Furthermore, from the point of view of governments, they
should follow pathways to reduce GHG emissions. For this
purpose, life cycle assessment (LCA) of power system equip-
ment and electric vehicles can be considered in the charging
of EVs. LCA method assesses the environmental impacts of a
product throughout its entire life cycle, i.e., from production
and operating to final disposal [21]. Limited research studies
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have managed EV charging from the perspective of all DSO,
EV users, and governments. None of the previous articles has
managed the charging of EVs by considering the operating
cost of both distribution transformers and cables as well
as the effects of harmonics produced by PV systems and
the charger of EVs on the thermal model of distribution
transformers. Moreover, managing the reactive power of EVs
can decrease the operating cost of distribution networks by
reducing energy losses and the loading of transformers and
cables [16]. However, the management of both active and
reactive power has rarely been performed in the literature.

Shortcomings and weaknesses in the previous research
studies regarding the smart charging of EVs can be divided
into the following categories:

Shi: In the charging scheduling of EVs, uncertainties in the
generation of sustainable energy and EV users’ behavior are
represented based on model-based methods along with some
statistical assumptions [10]-[16].

Sh2: In the charging scheduling of EVs, the benefits of
EV users, DSO and governments have not been considered
simultaneously [10], [11], [14]-[16].

Sh3: The operating cost and environmental cost of power
grid components in the presence of harmonics have never been
considered simultaneously [10]-[16].

Sh4: Only the active power of EVs has been managed and
the reactive power exchange between EVs and the network
has not been considered [10]-[14].

D. Contributions

In this paper, a new day-ahead method for EV parking lots
integrated with PV systems is proposed in order to schedule
the charging of EVs from EV users’, DSO’s, and governments’
perspectives. From DSO’s perspective, energy losses cost and
the operating cost of distribution transformers and cables are
considered in the proposed method. From EV users’ perspec-
tive, the degradation cost of batteries is taken into account.
From the governments’ perspective, the environmental cost of
EVs, transformers, and cables are incorporated in the proposed
method. To deal with modeling uncertainties in EV users’
behavior and the generation of PV systems, a data-driven
method based on generative adversarial networks (GAN) is
employed. In the proposed method, both active and reactive
power of EVs are managed to make more profits for DSO.
Due to the harmonic injection of PV systems and EVs, the
effect of harmonics on the thermal model of transformers is
modeled. In order to reduce energy losses, a reconfiguration
technique is used in the proposed method. The robustness of
the proposed method is shown by changing the penetration
level of PV systems.

The main contributions of this paper are summarized as

follows:

o This paper introduces an overarching framework for the
charging of EVs in parking lots integrated with PV
systems, which aims to reduce the costs of DSO and EV
users as well as decrease GHG emissions (tackling Sh2
and Sh3)

o A data-driven method based on GAN is used to predict
EV users’ behavior (initial SoC, arrival and departure
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to/from parking lots, etc.) and the production of PV
systems (tackling Shl).

o The management of active and reactive power, as well as
a reconfiguration technique, are employed to minimize
the operating cost of DSO. (tackling Sh2 and Sh4).

E. Paper Structure

The rest of the paper is organized as follows. Section II
provides an outline of the proposed method. In section III, the
modeling of uncertainties is explained in detail. In section IV,
the proposed method is presented in detail. Section V dis-
cusses the case study, experimental protocols for modeling
uncertainties, and simulation results. Ultimately, the paper
is concluded in section VI. Power system equipment mod-
eling, and the LCA of power system components and EVs
are described in the Appendix, shown in the supplementary
material.

II. PROPOSED METHOD OVERVIEW

In this paper, a new method for the day-ahead charging
scheduling of EVs is proposed, taking into account the benefits
of EV users, DSO and governments simultaneously. The
overview of the proposed method is illustrated in Fig. 1. Home
chargers could be installed only at 40% of garages in the
US [22]. For this reason, in this method, EV parking lots,
which are integrated with PV systems, are located in com-
mercial workplaces. The main difference between residential
charging stations and commercial parking lots is in the hours
of the day that EVs are available for being charged. The
purpose of integrating EV parking lots with PV systems is
to supply the part of the energy needed for charging EVs with
sustainable energy in order to mitigate the carbon footprint of
EVs. Planning for the next day is based on forecasting some
uncertainties regarding EV charging, including the arrival and
departure time of EVs to/from parking lots, the SoC of EVs
when they arrive at parking lots, and the power production of
PV panels. In this method, charging demand for each parking
lot, the number of available EVs at each parking lot at each
time step, the initial SoC of EVs, and meteorological data are
predicted by GAN models and sent to the aggregator as the
historical data of the mentioned uncertainties. The historical
data can be stored on a cloud server due to a huge virtual space
for storing data provided by the cloud environment. In cloud
storing, a shared pool of configurable computing resources can
be easily and quickly accessed with minimal management or
service provider interaction [16]. The stored data on the cloud
server are accessible via an internet connection.

At the aggregator level, the charging of EVs is scheduled
with the aim of reducing GHG emissions and operating costs
of the power grid and EVs. The proposed objective function
consists of 3 sections. The first section is related to the carbon
footprint of EVs and the daily environmental cost of distrib-
ution transformers and underground cables. In the microgrid
operation section, energy losses cost and the daily operating
cost of distribution transformers and cables are considered.
The last section is related to the battery degradation cost of
EVs. Furthermore, a reconfiguration technique is employed
to provide more profits for DSO. Optimization variables in
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Fig. 1. The proposed method overview.

this method are distribution line status, and active and reac-
tive power exchanged between the EVs and the network at
each time step. Finally, scheduled active and reactive power
exchanged between EVs and the grid for each time interval are
sent to the parking lots and the optimum network configuration
for each time interval is sent to the DSO.

III. UNCERTAINTIES MODELLING

As uncertainties can affect the accuracy of day-ahead
scheduling, they must be properly modeled. The arrival and
departure time, daily driving, and initial SoC of EVs as well as
the generation of PV systems are the main uncertainties in the
proposed method. In this section, the stochastic and uncertain
behaviors of EVs and weather are modeled.

A. Generative Adversarial Network

GAN was firstly introduced in 2014 by Goodfellow and
since then has been widely used in image processing and
data generation [23]. GAN models include two deep neural
networks called generator and discriminator. The responsibility
of the generator is to try to generate fake data in a way that
fools the discriminator. The discriminator aims to distinguish
between generated data by the generator and true historical
data. For this reason, the generator and discriminator are
similar to two players that play a game. At the end of the
training procedure, the generator and discriminator reach an
equilibrium. At this stage, the discriminator cannot distinguish
between the true historical data and generated data. It means
that the generator can exactly follow the distribution of histor-
ical data. In Fig. 2, the structure of the GAN model is shown.

The loss function of the discriminator and generator are
respectively represented as follows [24]

m[a)lx V(D,G) = Exepuax) [logD (x)]

+Einp.(2) [log (1 — D (G(2)))]
mGax V(D,G) =E;~p.) [log (D (G(z)))]

(1
)
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Fig. 2. The structure of the GAN model.

where G and D are the generator and discriminator functions,
Pdata 1S the distribution of true historical data, and p, is
the generated distribution. By combining (1) and (2), a two-
player minimax game can be formulated with value function
V (D, G) as below.

max max V (D, G) = Erpyyy() [log D (x)]

+Ezvp.(o) [log (1 — D (G(2)))]
3)

The training process of GAN has two stages performed
iteratively: updating generator parameters with fixed discrim-
inator parameters and updating discriminator parameters with
fixed generator parameters. Since G and D are completely
independent functions, any standard gradient-based learning
rule can be used to optimize the performance of the generator
and discriminator. In this paper, the Adam algorithm is applied.
Adam algorithm is an efficient algorithm for stochastic opti-
mization based on calculating individual adaptive learning
rates for each parameter [25].

B. Output Power of PV Systems

In order to obtain the output power of PV systems, 24-hour
ambient temperature and irradiation must be determined. For
this purpose, daily ambient temperature and irradiation of the
specific month over the last four years must be gathered with
a resolution of 15 minutes. The configuration of the GAN
models, used to model uncertainties in weather, is illustrated
in Fig. 3. Both the generator and discriminator of the GAN
models are built by stacking two fully connected layers. The
output of the generator is a vector of dimension 96. The
output of the discriminator is a single scalar that represents
the probability that the input data belong to the historical data.

The power generation of PV systems can be calculated as
follows [26], [27]

Phy = Aby Grimp stc (1 + ap(Te — T s7¢)) 4)
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Fig. 3. The architecture of the GAN models to consider the uncertainties.
(a) Generator. (b) Discriminator.

where T, is obtained as

Gr Nmp
T.=TMP — ) (T, -20) (1 — ——— 5
‘ ' (800) ( enoct ) ( nabsorb) ( )

C. EV Users’ Behavior

By modeling the arrival and departure time of EVs, the
number of EVs at parking lots at each time step and the staying
duration time of each EV at parking lots can be modeled.
Since a high level of correlation exists between the arrival
time and departure time of EVs, the independent modeling of
these parameters is unrealistic. Independent modeling refers to
the probabilistic modeling of parameters by ignoring stochastic
dependence between them. Fig. 3 shows the architecture of the
GAN model applied to model uncertainty in the arrival and
departure time of EVs. In the GAN model, the generator and
discriminator include six fully connected layers. The output of
the generator is a vector of dimension 2 that the elements of
this vector represent the arrival time and departure time of an
EV. The output of the discriminator is similar to that of the
GAN models for modeling uncertainties in weather.

The SoC of EVs can be calculated as follows
socy — ExXPe o _p
U——F—— E =Dy
Bgvy (6)
SOoCy, Dg > Dy

SOC =

To increase the lifetime of batteries, upper and lower limits
are considered SoC. In this paper, the upper and lower limits
are assumed 80% and 10%, respectively. The characteristics
of EVs, such as their electrical energy consumption (E.),
battery capacity (Bgy), types of EVs, etc., are modeled
similarly to [15]. The daily distance traveled by an EV (Dg)
is modeled by GAN. To represent uncertainty in the daily
distance traveled by EVs, a GAN model is employed in which
both of the generator and discriminator are built by stacking
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eight fully connected layers. The output of the generator is a
continuous value that indicates the daily distance traveled by
an EV. The output of the discriminator is similar to that of
the GAN models for modeling uncertainties in weather. The
historical data of the proposed GAN models for representing
uncertainties in EV users’ behavior is the data collected in the
specific month over the last year.

Three AC and DC charging levels exist based on SAE
J1772 standard [28]. In this paper, a single-phase connection
to the grid with the maximum charging current of 32A and
the maximum power of 7.4kW is used to charge EVs. In other
words, AC level 2 charging is adopted for charging EVs.

IV. PROBLEM FORMULATION

As mentioned earlier, the aim of this paper is to manage
the charging of EVs from the perspective of EV users, DSO,
and governments. The objective function of the problem is
formulated as follows

OF = min { DOCryans + DOCcaple + DLCGrid

{
DSO cost
Trans Cable EV
+ DECTotal + DECTotal + DECTotal
Emission cost
+ Cdeg (7)
——
EV users cost
where DLC g,iq is obtained as
DLCgGria = ZN’ z e Eloss (8)
=1 1 1

The first section of the objective function represents the cost
of DSO that includes the daily cost of energy losses and the
daily operating cost of transformers and power cables. The
calculation of the daily operating cost of transformers and
power cables is explained in detail in appendix. The second
section of the objective function is related to the cost of
GHG emissions that contains the daily environmental cost of
transformers, power cables, and EVs. The daily environmental
cost calculation is described in detail in appendix. The last
section of the objective function indicates the cost of EV users
that is the battery degradation cost of EVs. The constraints of
the problem are described below.

A. Power Flow Equations and Voltage Constraints

Load flow equations are represented in the constraints
(9)-(11). The injected active and reactive power at time ¢ and
node x of the grid (p; and g;') are obtained by (11). According
to (11), the apparent power of a node in which a parking lot is
located, equals the sum of the apparent power of the parking
lot and other loads on the node minus the generation of the
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PV array installed at the parking lot.
y
Pf = ZyeN V5 x Vi X Yy
X €08 (Oxy — 0 + 5)) VxeN 9)
y
0r = ZWN VEx VY X Yy
x sin (Oxy — 5 +37) VxeN
p;c _,r_thx _ Stload,x +S[PL,x . P[PV,x VyeN

(10)
(1)

Constraint (12) indicates the limitation of the voltage of
buses in which parking lots are connected to them. The voltage
of the buses should be in the range Vi to Vy during the
charging time.

V<V <VWVy (12)

In this study, V7 and Vi are set to 0.95 and 1.05 per unit
(p.u.), respectively.

B. EVs and Parking Lots Constraints

Constraint (13) represents that the total energy demand of a
parking lot (E(,,, ) is equal to the total energy required for the
charging of EVs during their appearance time in the parking
lot.

T)L Cn
ElLyy = Zzii Zg PEV{"At, n=1,...,Np. (13)

According to (14), the SoC of EVs at each time step should
be lower than SOCy and upper than SOC 1, respectively.

SOCL<S0C;"<S0Cy, n<Npp&c<Ch &t <T},
(14)

Constraint (15) guarantees that when EVs leave parking lots,
they are fully charged. In some cases, meeting this constraint
is impossible due to staying in parking lots for a limited time
or a very low level of SoC. Thus, these EVs will not be
incorporated in the proposed method and they must be charged
with a constant charging rate. In other words, EVs that have the
potential to meet the fully charged constraint will participate
in the proposed method.

SOC;’;:SOCU, n=1,...,Nppr&c = 1,‘”’ch
(15)

Constraint (16) is related to the operating curve of EVs. This
constraint indicates the limitation of the operation of EVs on
equipment ratings. Based on the adopted charging level, the
value of SEV! . is 7.4 kW.

Rate

(PEVE™? + (QEVY"Y < (SEVGL,)"  (16)

C. Transformers and Power Cables Constraints

The operating limits of transformers are explained in con-
straints (17) and (18). The maximum allowed hottest-spot
temperature of transformers is 120°C and the loading of
transformers beyond the nameplate rating is constrained to
50% under normal cyclic loading conditions by IEC 60076-7
standard [29], [30]. Constraints (17) and (18) express that the
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hottest-spot temperature and loading of transformers should
not exceed the maximum permitted amounts.

L < 120°C (17)
V@I + (gl ey
ST <15 (18)
ate

Constraints (19) and (20) are associated with the operating
constraints of underground power cables. According to (19),
the current of cables should be limited to their maximum
rating. Constraint (20) represents that the temperature of cables
should not surpass the maximum permissible temperature of
cables that is 90°C [31].

117 ] < IRhiea (19)
OCape < 90°C (20)

D. Reconfiguration Constraints

Constraint (21) ensure the radiality of the microgrid [32].

det (M) = %1 1)

A node-branch incidence matrix is an oriented matrix that
its columns are branches and its rows are nodes. In order
for the matrix to be square, the generator located in the
slack bus is added to branches (columns). According to (21),
if the determinant of matrix M is %1, there is no loop in the
microgrid and a path exists between every two buses.

Constraints (22) is switching constraint. The number of
daily switching actions for each cable should not violate the
maximum permissible value that is 4 [33].

SN ol -0l <4

Fig. 4 demonstrates the overview of the proposed method.
The purpose is to determine the value of PEV{", QEV{",
and w;” such that (7) is optimized. Variables PEV{" and
QEV{" are continuous and variable ;" is binary (integer).
Because of the non-linear objective function and constraints,
a mixed-integer non-linear programming (MINLP) solver is
employed. For this purpose, the basic open-source non-linear
mixed-integer programming (BONMIN) optimization frame-
work is used to optimize (7) due to the superior performance
compared with metaheuristic optimization methods. The BON-
MIN solver combines the interior-point optimization approach
and the coin-or branch and cut method to solve MINLP
optimization problems [34].

(22)

V. SIMULATION RESULTS

In this section, the performance of the proposed method is
evaluated through simulations in MATLAB R2019a. To val-
idate the robustness of the proposed method, a sensitivity
analysis is carried out on the maximum output power of PV
systems. The numerical simulations are conducted on a 64-bit
computer with an Intel Core i3 CPU of 2.13 GHz and 4 GB
RAM.
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Fig. 5. The reconfigurable microgrid under study.

A. Case Study

The proposed method is implemented on the feeder of
the modified Sirjan (a city located in Iran) city center’s
distribution network illustrated in Fig. 5. More details about
the benchmark system can be found in [35]. It is assumed
that three parking lots equipped with PV arrays are sited in
commercial workplaces with the capacity of 160, 160, and
480 vehicles. The maximum output power of PV arrays and the
characteristics of transformers, which are installed on parking
lot buses, are tabulated in Table I [36]. The thermal data of
used transformers in this paper are shown in Table II. The
purchase price of transformers is 166.1 $/kVA [37]. The types
of used underground cables in this study are XLPE-insulated
cables with aluminum conductors and the cross-section of 150,
70, and 50 mm?. The power cable data and prices are shown
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TABLE IV
EVALUATING THE PERFORMANCE OF GAN MODELS

Parking lot Transformer PV GAN model PV Arrival Departure | Distance
Numb. c . Nominal size PuiL P, Generation Generation Time Time Traveled
umber | Capacity (kVA) kW) | kW) (kWp) Training Run time (s) | 1809.54 | 2971.95 | 2971.95 | 4899.03
1 160 315 105 | 42 68 Rsquarea 0.98 0.95 0.9 0.91
2 160 315 1.05 42 68
4.74% 4.73% 8.27% 9.4%
3 480 500 073 | 55 104 NRMSE 2 i 2 2
TABLE II initialized by the Glorot uniform initializer. The number of
TRANSFORMERS THERMAL DATA training iteration is set to 20,000. The proposed GAN models
— . . are implemented in Python using the Tensorflow platform [45].
RTSOS( ) R%SS( ) r11 1m6 TT"lggm) tu gr;nn) The average execution time for training the proposed GAN

TABLE III
THERMAL AND ELECTRICAL PARAMETERS OF CABLES

prs(°C. m/W) Ly(m) 8(m?/s) 05011 (°C)
1.5 0.3 0.5x 10~° 20
E(kV/mm) | E, (kV/mm) | bb(Kmm/kV) | B(K)
72 5 4420 12430

in [38]. The thermal and electrical data of cables and soil are
indicated in Table III. The purchase price of EV batteries is
considered 176 $/kWh [39]. The value of GHG emission cost
(m¢™) is equal to 0.156 $/kg. The amount of GHG emissions
in the production and end-of-life phases of transformers, power
cables, and EVs are extracted from [40]-[42]. The microgrid
is traditionally supplied by natural gas power plants that the
amount of their GHG emissions is presented.

B. Experimental Protocol for Uncertainties Modeling

The uncertainties in EV users’ behavior and the output
power of PV systems are modeled according to section III.
For modeling the output power of PV systems, daily ambient
temperature and irradiation of Sirjan during May from 2016 to
2020 with a resolution of 15 minutes are collected. The
historical data related to the years from 2016 to 2019 are
considered as the training data and the historical data related to
2020 are used as the test data. The historical data for the arrival
and departure time of EVs are provided by the EVnetNL
dataset [43]. This dataset includes 10000 transactions in
2019 from public charging stations operated by EVnetNL.
The data of transactions during May have been extracted and
considered as historical data. The historical dataset consists of
1668 samples. In order to model the driving pattern of EVs,
daily distance traveled by vehicles has been extracted from
CBS open data StatLine dataset [44]. The historical dataset
contains 1755 samples.

In order to prevent generating random results by the GAN
models, 5-fold cross-validation has been employed. For each
GAN model, the related historical data have been divided
into 5 folds in a way that each fold includes almost 20%
of total samples. Four of the folds have been selected as the
training set and the remaining fold as the testing set. All
GAN models are optimized by Adam optimizer with a learning
rate of 0.001. All weights of neurons in neural networks are

models is tabulated in Table IV.

C. Results and Discussion

For testing the performance of the GAN models related
to modeling the output power of PV systems, they have
generated the daily ambient temperature and irradiation of
31 days. Fig. 6a, Fig. 6b, and Fig. 6¢ illustrate the average
daily ambient temperature, irradiation, and the output power
of PV systems generated by the GAN models, respectively.
The GAN model related to modeling the arrival and departure
time has generated 800 pairs of the arrival and departure time
(because the total number of EVs in this research is 800).
In other words, the GAN model has generated the arrival and
departure time of 800 EVs. As the number of test samples
is not equal to 800, the percentage distribution of EVs has
been calculated to be able to compare the generated data with
test data. The GAN model related to representing the driving
pattern has generated the daily distance traveled by 800 EVs.
The generated arrival and departure time of EVs and the
generated daily driving distance of EVs by the GAN model
are demonstrated in Fig. 6d, Fig. 6e, and Fig. 6f, respectively.

To assess the performance of the GAN models, R-squared
and normalized root mean square error (NRMSE) are calcu-
lated as follows

ZNobv (kreal kGAN)Z
quuared =1- Nobs r1.real _t 2 23)
Zn:i (kt — krea )
1
NRMSE =
max kreal) min (ktreal)
Nobs kreal kGAN 2
\/ >0 T
Nobs

The amount of Ryqyuareq and NRMSE for GAN models are
indicated in Table IV. As the value of the statistical measures
and figures show, the GAN models can successfully follow
the distribution of historical data and can accurately model
uncertainties.

The case study is studied under four scenarios that are listed
as follows

« Base scenario: The uncoordinated charging of EVs.

e Scenario 1: Minimizing (7) by scheduling the active

power of EVs.

o Scenario 2: Minimizing the cost of DSO and EV users

by scheduling the active and reactive power of EVs.
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Fig. 6. The results of the GAN model for (a) ambient temperature (b) solar irradiation (c) the output power of PV system (d) the arrival time of EVs (e) the

departure time of EVs (f) daily distance traveled by EVs.

TABLE V
THE RESULTS OF DIFFERENT SCENARIOS

Scenarios Base scenario | Scenario 1 | Scenario 2 | Scenario 3 Scenario 4
Energy losses 1297.87 1279.28 1158.76 1168.92 1154.93
Operating cost ($) | Power system equipment 261.91 225.06 218.19 218.97 218.24
EV users 1790.87 1790.87 1790.87 1790.87 1790.87
Emission cost ($) Power system equipment 146.45 143.51 130.67 131.25 129.96
EVs 1577.57 1536.87 1572.15 1535.9 1535.9
EV users 1790.87 1790.87 1790.87 1790.87 1790.87
Total cost ($) DSO 1559.78 1504.34 1376.95 1387.89 1373.17
Environment 1724.02 1680.38 1702.82 1667.15 1665.86
Objective function ($) 5074.67 4975.59 4870.64 4845.9 4829.9

o Scenario 3: Minimizing (7) by scheduling the active and
reactive power of EVs.

o Scenario 4: Minimizing (7) by scheduling the active
and reactive power of EVs as well as reconfiguring the
microgrid.

Table V shows the results of different scenarios. In the
base scenario, most EVs are charged in the early hours of the
day when the electricity price is high and the production of
PV arrays is low. As a result, the DSO and environmental
costs in this scenario are higher than in other scenarios.
In Scenario 1, where EVs only exchange active power with
the microgrid, charging is mainly performed during hours
when the price of electricity is low, which reduces the cost of
energy losses. Moreover, due to charging EVs during off-peak
times, the lifespan of power grid components increases. The
operating cost of equipment in this scenario reduces by
14.07% compared to that of the base scenario. In the first

scenario, in order to decrease the emission cost of EVs, EVs
are charged more when the generation of PV arrays is high.
The environmental cost decrease by 2.53% compared with that
of the base scenario. The value of the objective function in
this scenario gets better 1.95% compared to that of the base
scenario. In Scenario 2, since the environmental cost is not
considered in the objective function, the total emission cost
in this scenario increases by 1.34% compared with that in
scenario 1. On the other hand, due to the injection of reactive
power from EVs into the microgrid, the total cost of DSO
in this scenario declines by 11.72% and 9.25% compared to
that of the base and first scenarios, respectively. In scenario
3, the DSO cost, environmental cost, and objective function
decrease by 11.02%, 3.3%, and 4.02% compared to those in
the base scenario, respectively. Reconfiguring the microgrid,
as shown in the results, reduces the cost of DSO and increases
the lifetime of power network components. The optimal con-
figuration of the microgrid is presented in Table VI. In this
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Hour 1 2 3 4 5 6 7 8
20-717 20-717 20-717 20-717 20-717 20-723 20-723 20-723
Open switches | 132-134 | 132-134 | 132-134 | 132-134 | 132-134 | 132-134 38-132 38-132
718-1232 | 718-1232 | 718-1232 | 718-1232 | 718-1232 | 718-1232 | 39-1232 | 39-1232
Hour 9 10 11 12 13 14 15 16
20-723 20-717 20-717 20-717 20-723 20-723 20-723 20-723
Open switches | 38-132 38-132 38-132 38-132 38-132 38-132 38-132 38-132
39-1232 | 39-1232 | 39-1232 | 39-1232 | 718-1232 | 718-1232 | 718-1232 | 39-1232
Hour 17 18 19 20 21 22 23 24
20-717 20-717 20-717 20-717 20-717 20-717 20-717 20-717
Open switches | 38-132 38-132 38-132 38-132 132-134 | 132-134 | 132-134 | 132-134
39-1232 | 39-1232 | 39-1232 | 39-1232 | 39-1232 | 718-1232 | 718-1232 | 718-1232
scenario, the total cost of DSO decreases by 11.96%, 8.72%, 300 —_— 150
0.27%, and 1.06% compared to the base, first, second, and ) = Raed SCiRENG
third scenarios, respectively. The total environmental cost in 250k i ——Scenario 1 122
this scenario reduces by 3.37%, 0.86%, 2.17%, and 0.08%, £ e[| £3
respectively, compared to the mentioned scenarios. Finally, the 200} . == Elactricity tirit
objective function in this scenario improves 4.82%, 2.93%, s y 4 1120 ';:f
0.84%, and 0.33% compared with the mentioned scenarios, 53—150 : 110%
respectively. Because of considering the battery degradation z E
cost of EVs in all scenarios, none of the EVs operates in the ; i 100 ‘E
V2G mode. For this reason, the total cost of EV users in all 3 §
scenarios is constant. 50 [
The daily active power of EVs for parking lot 2 is shown in d 9
Fig. 7. The uncoordinated charging of EVs causes emerging a ok
new morning peak because a large number of EVs are charged 170
at a constant charging rate when they arrive at the parking lot &
in the morning. In the final hours of the presence of EVs in 0 2z 4 6 8 10 12 14 16 18 20 2 24
the parking lot, the exchange of active power between the EVs e
and the network decreases. The active power consumption of ~ Fig. 7. The active power of parking lot 2.

the parking lot after 10 reduces significantly because most
EVs are fully charged before that time. In scenarios 1 to
4, two charging peaks can be seen, one from 6:30 to 7:30
and the other one from 12:30 to 14:30. From 6:30 to 7:30,
although the output power of PV systems is low, the electricity
price, the power consumption in the grid, and the loading of
transformers and power cables are low. As a result, EVs in
all scenarios are charged during this period of time. Charging
EVs in this period gains the environmental cost of EVs due
to low PV system production. Thus, EVs in scenarios 1, 3,
and 4 are charged less than scenario 2. From 12:30 to 14:30,
the electricity price and the power consumption in the grid are
low and the generation of PV systems is high. Consequently,
EVs are charged in all scenarios during this period. In all
scenarios, the second charging peak is greater than the first
charging peak due to cheaper electricity tariffs and larger PV
system generation during the second charging peak time. From
9:00 to 12:00, EVs in scenario 2 are not charged because the
electricity price and power consumption are high. Moreover,
EVs in this scenario are not discharged because it will expand
the wear cost of EVs. In the other scenarios, due to an increase
in the production of PV arrays during this period, EVs are
charged to reduce the total environmental cost.

The daily active and reactive power of the microgrid and
EVs are illustrated in Fig. 8a, Fig. 8b, and Fig. 8c. In the
base scenario, the peak value in the morning is 1.12 times
the peak value of the load profile without parking lots.
Increasing the peak value can cause problems in demand-side
management (DSM) and shorten the lifespan of power grid
components. As the most generation of PV arrays is after 10,
this scenario cannot efficiently use the capacity of sustain-
able energy. Consequently, the emission and carbon footprint
of EVs and power system equipment rise in this scenario.
In scenarios 1, 3, and 4, PV systems play a greater role in
charging EVs. The maximum generation of PV systems occurs
during peak time. On the one hand, charging EVs during
peak times gains the energy losses cost and the operating
cost of transformers and power cables. On the other hand,
charging EVs during this period provides an opportunity to
charge EVs using clean energy and zero-emission sources. For
this reason, there is a trade-off between minimizing the DSO
and environmental costs. The proposed method schedules the
charging of EVs during peak time in a way that the power
consumption of parking lots is equal to the generation of PV
systems. Therefore, the peak value does not change in these
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Fig. 8. (a) The active power of the microgrid including all loads, EVs, and

PV systems. (b) The reactive power of the microgrid including all loads, EVs,
and PV systems. (c) The scheduled active and reactive power of EVs under
proposed scenarios.

scenarios. In these scenarios, most EVs are charged in the
valley of the load profile. For this reason, the energy losses and
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Fig. 10. The contribution of PV systems to the charging of EVs in scenarios
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the lifespan of power grid components are in a better situation
than the base scenario. Scenario 2 improves the quality of
DSM compared to other scenarios because the load profile in
this scenario has the lowest peak value among scenarios 1 to
4. This is because a few EVs are charged during peak time in
this scenario compared with other scenarios. In this situation,
the generation of PV systems is injected into the grid which
causes peak shaving in the grid. The reactive power of EVs is
managed in scenarios 2 to 4. In these scenarios, as shown
in Fig. 8b, in the early hours, due to the low number of
vehicles at parking lots, the reactive power exchange between
EVs and the microgrid is low. Then, during hours when the
electricity price and power consumption in the microgrid rises,
the injection of reactive power from EVs into the microgrid
increases. By compensating reactive power during peak time,
the DSO cost can be significantly reduced without gaining the
degradation cost of EVs. During off-peak times, since EVs are
charged, the injection of reactive power decreases according
to constraint (16).
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Penetration level

60%

80%

100%

120%

140%

Operating cost ($)

Energy losses

1181.7

1167.88

1154.93

1141.46

1129.04

Power system equipment

231.3

225.14

218.24

213.86

208.51

EV users

1790.87

1790.87

1790.87

1790.87

1790.87

Emission cost ($)

Power system equipment

134.24

132.08

129.96

127.88

125.84

EVs

1587.59

1561.72

1535.9

1510.37

1484.88

Total cost ($)

EV users

1790.87

1790.87

1790.87

1790.87

1790.87

DSO

1413

1393.02

1373.17

1355.32

1337.55

Environment

1721.83

1693.8

1665.86

1638.25

1610.72

4925.7

4877.69

4829.9

4784.44

4739.14

Objective function ($)

The daily power loss profile of the grid is shown in Fig. 9.
In the base scenario and scenario 1, because the active power
of EVs is only managed, the pattern of the power loss profile
is exactly the same as the active power profile. In scenarios
2 to 4, the power loss significantly diminishes due to the
compensation of reactive power. Scenario 4 has the lowest
daily power loss because of employing the reconfiguration
technique. The average power loss during the charging time
enhances from 82.13 kW (in the base scenario) to 68.25 kW
(in scenario 4).

In Fig. 10, the contribution of sustainable energy to the
charging of EVs in scenarios 3 and 4 is demonstrated.
In the base scenario, the portion of using PV systems for
charging EVs is 29.32%. Nevertheless, the percentage of the
participation of PV systems in the charging of EVs is 38.32%
in scenarios 3 and 4.

A sensitivity analysis is carried out on the penetration level
of PV systems to study the robustness of the proposed method.
The cost of different stakeholders in scenario 4 is indicated
for the different percentages of PV system penetration in
Table VII. The results show that the DSO and environmental
costs and the contribution of PV systems to the charging of
EVs gain by increasing the penetration level of PV systems.
The DSO, environmental, and total costs for the 140% pen-
etration level of PV systems decrease by 5.34%, 6.45%, and
3.79% compared with that for the 60% penetration level of
PV systems, respectively. The contribution of PV systems to
the charging of EVs improves from 23.09% (for the 60%
penetration level) to 53.42% (for the 140% penetration level).
The daily active power of the microgrid and EVs for the
various penetration levels of PV systems is demonstrated in
Fig. 11a and Fig. 11b. As the penetration level of PV systems
increases, the proposed method tends to charge more EVs
using PV systems to reduce the DSO and environmental costs.
Another noteworthy point is that in all cases, the peak value
is constant and does not change, which has a beneficial effect
on DSM. In other words, in all cases, the charging of EVs
is scheduled in a way that the amount of energy needed for
charging EVs equals the generation of PV systems during
peak time.
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Fig. 11. (a) The active power of the microgrid including all loads, EVs,
and PV systems for the different percentages of the PV systems penetration.
(b) The scheduled active power of EVs for the different percentages of the
PV systems penetration.
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VI. CONCLUSION

In this paper, a new smart charging method for workplace
EV parking lots integrated with PV arrays was introduced
with the aim of optimizing the benefits of DSO, EV users,
and governments simultaneously. In the proposed method, the
active and reactive power of parking lots and the configuration
of the microgrid were obtained to optimize the operating cost
of power system components and energy losses cost (as the
DSO profit), the environmental cost of power system com-
ponents and EVs (as the governments profit), and the battery
degradation cost of EVs (as the EV users profit). One of the
salient parts of day-ahead EV charging scheduling is modeling
uncertainties in EV users’ behavior and the generation of PV
systems. Due to the dynamic nature of these uncertainties,
data-driven methods have superior performance to model-
based methods in modeling these uncertainties. In this paper,
GAN-based models were used to capture uncertainties in
the arrival and departure time of EVs, the daily driving
distance of EVs, and the output power of PV systems. The
evaluation of the proposed method was performed by imple-
menting it on Sirjan’s reconfigurable microgrid. The main
conclusions and findings of the paper are summarized as
follows:

o The performance of GAN methods was evaluated by
criteria Ryguareq and NRM SE. The results demonstrated
that the average amount of Ryguqres and NRMSE
for GAN models was 0.935 and 6.77 %, respectively.
Accordingly, GAN models can appropriately represent
the uncertainties.

o« From DSO’s perspective, the DSO cost decreased by
11.96% using the proposed method in contrast with the
uncoordinated charging of EVs. In addition, the improve-
ment in the average power loss of the grid during the
charging time was 16.9%. These enhancements are a con-
sequence of managing the active power of EVs, injecting
the reactive power of EVs into the grid, and employing
the reconfiguration technique in the proposed method.
From Government’s perspective, the environmental cost
was reduced by 3.37% compared with the uncoordinated
charging of EVs due to participating sustainable energy in
the charging of EVs. The contribution of PV systems to
the charging of EVs improved from 29.32% (in the unco-
ordinated charging of EVs) to 38.32% (in the proposed
method). From EV users’ perspective, the usage of the
proposed method did not influence the battery degradation
cost of EVs because EVs were scheduled to operate only
in G2V mode. Therefore, employing the proposed method
can satisfy all the stakeholders. As the results showed,
the amount of the objective function using the proposed
method got better 4.82%.

o The robustness of the proposed method was shown by
considering the different penetration levels of PV sys-
tems. The sensitivity analysis results demonstrated that
by increasing the percentage of the penetration of PV
systems, the DSO and emission costs decreased.

According to the results, the following policy recommenda-
tions are proposed for the stakeholders.
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o Increasing the penetration of RES in distribution systems
and integrating them with EV charging (DSOs and Gov-
ernments).

« Participating EVs in the reactive power support service
market (EV users and DSOs).

o Providing necessary historical data (the arrival and depar-
ture time, driving pattern of EVs, etc.) for parking lots
and DSOs to be able to accurately model uncertainties
(EV users and Governments).

In this paper, it has been assumed that parking lots are
located at commercial workplaces. For future research, the
proposed method can be generalized by considering the pos-
sibility of residential EV charging. In the residential charging
of EVs, since most EVs are connected to the grid from
the afternoon to the next morning, PV systems must be
equipped with battery storage. For this reason, battery energy
management must be carried out along with the smart charging
of EVs. Improving the accuracy of modeling uncertainties can
be another future work. Standard GAN models have been used
in this paper. However, using deep neural networks (such as
long short-term memory neural networks, convolutional neural
networks, etc.) instead of fully connected neural networks in
the architecture of GAN models may enhance results.
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