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Abstract— We propose a kinematic wave-based Deep Convo-
lutional Neural Network (Deep CNN) to estimate high-resolution
traffic speed fields from sparse probe vehicle trajectories.
We introduce two key approaches that allow us to incorporate
kinematic wave theory principles to improve the robustness of
existing learning-based estimation methods. First, we propose an
anisotropic traffic kernel for the Deep CNN. The anisotropic ker-
nel explicitly accounts for space-time correlations in macroscopic
traffic and effectively reduces the number of trainable parameters
in the Deep CNN model. Second, we propose to use simulated
data for training the Deep CNN. Using a targeted simulated data
for training provides an implicit way to impose desirable traffic
physical features on the learning model. In the experiments,
we highlight the benefits of using anisotropic kernels and evaluate
the transferability of the trained model to real-world traffic
using the Next Generation Simulation (NGSIM) and the German
Highway Drone (HighD) datasets. The results demonstrate that
anisotropic kernels significantly reduce model complexity and
model over-fitting, and improve the physical correctness of the
estimated speed fields. We find that model complexity scales
linearly with problem size for anisotropic kernels compared to
quadratic scaling for isotropic kernels. Furthermore, evaluation
on real-world datasets shows acceptable performance, which
establishes that simulation-based training is a viable surrogate
to learning from real-world data. Finally, a comparison with
standard estimation techniques shows the superior estimation
accuracy of the proposed method.

Index Terms— Traffic state estimation, traffic anisotropy, kine-
matic wave theory, convolutional neural networks, deep learning.

I. INTRODUCTION

TRAFFIC management agencies use a variety of moni-
toring and control tools to ensure the safe and efficient

operation of network road traffic. To meet their operational
goals, agencies employ tools that identify disturbances and
deploy effective control strategies in real time [1]. However,
this requires accurate and timely knowledge of traffic condi-
tions over the entire network, which is currently not possible
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given the limited sensory instrumentation in most (if not
all) cities today. Fixed sensors are expensive and tend to be
sparsely installed, offering limited spatial coverage. Data from
mobile sensors are expected to become more widely available
than data from point sensors, but remain extremely limited
in practice; their sparsity is temporal [2]. To address such
data sparsity (spatially or temporally), we need appropriate
mechanisms that fill the gaps in the traffic observations. These
are known as traffic state estimation (TSE) tools [3]. TSE is
a critical precursor to a number of real-time traffic control
strategies with either conventional vehicles or a mix with
connected and autonomous vehicles [1], [4]. Such strategies
include, but are not limited to, ramp metering, perimeter
control, traffic signal control, and vehicle routing [5]–[7].

Existing TSE approaches can be broadly divided into
two categories: model-based and data-driven [3]. The former
approach adopts a mathematical model of traffic flow such as
the first-order Lighthill-Whitham-Richards (LWR) model [8],
[9] or one of its many higher-order extensions, like the Aw-
Rascle-Zhang (ARZ) model [10], [11]. These methods assimi-
late flow model predictions with real-world observations using
an exogenous filter (e.g., Ensemble Kalman filter) [12]–[19].
Traffic flow models ensure that estimates respect basic traffic
principles. However, the models are based on simplifying
assumptions of traffic physics that can lead to numerical bias
when the assumptions are not met. Furthermore, approxima-
tion errors can arise from the data assimilation techniques
used in TSE. For instance, it is common to linearize a
non-linear flow model for the recursive estimation, and the
approximations are poor around the capacity region [3], [16].
Lastly, model-based methods require additional inputs (e.g.,
boundary conditions) which are difficult to obtain in real-time.

The other category of TSE approaches include data-
driven/learning techniques, which build statistical/machine
learning models from large volumes of (historical) traffic data.
Some commonly employed tools include (predominantly) deep
neural networks [20], [21], support vector regression [22],
principal component analysis [23], and matrix factorization
methods [24]. The estimation results from data-driven meth-
ods are often reported to be more accurate than model-
based approaches, but these methods also have shortcomings.
Being purely data-driven, the models are agnostic to the
physics of traffic flow and could lead to infeasible estimation
results. These methods are also not often interpretable and
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lack robustness. More importantly, the generalizability of
the models is often weak and depends on the training data
distribution.

We aim to develop a methodology that incorporates the
desirable features of both categories, namely the combina-
tion of domain knowledge with representational power. Such
structured learning methods can ensure robust and inter-
pretable estimation results, parsimonious model complexity,
and reduced data requirements. Some recent works along
these lines include [25]–[30]. A common flavor in these
approaches is to impose the physical constraints as cost
function regularizers (i.e., as soft constraints) or derive the
learning model architecture from physical principles. For
instance, [28], [30] combine predictions of stochastic traffic
flow model and limited probe vehicle data to infer vehicle
trajectory distributions that are consistent with traffic physics.
Reference [29] estimates queue lengths at signalized intersec-
tion as a solution to a convex optimization problem with queue
propagation constraints guided by the kinematic wave theory
of traffic flow. Reference [25] uses the dynamical equations
of macroscopic flow models to regularize a Gaussian Process
regression model, which is efficient in handling sparse and
noisy data.

In the context of deep learning, which is a more attractive
choice for non-linear modeling, [31]–[35] approximate the
solution of a macroscopic traffic flow model using deep
neural networks and use the governing physical dynamical
equations (in the form of PDE/ODE) as a regularizer in the
cost function. They demonstrate that these physics informed
regularizers reduce the space of feasible solutions and learn
solutions that are consistent with the chosen traffic flow models
under limited real-world data. However, this requires training
deep neural networks for every instance of initial/boundary
conditions, which is computationally expensive for real-time
implementation.

We propose an addition to this nascent literature on struc-
tured learning methods for TSE that incorporates traffic
domain knowledge into learning models. Specifically, we pro-
pose a methodology to estimate high-resolution macroscopic
traffic speed fields from limited probe vehicle measurements.
We use a Deep Convolutional Neural Network (Deep CNN) as
the learning model for estimation. The Deep CNN model takes
as input sparse vehicle trajectory measurements and outputs a
high-resolution speed field over a given space-time domain.
The model is trained offline and can then be applied for
real-time estimation. We incorporate traffic-specific features
into the learning model in two ways, which are described
below.

First, the naïve isotropic kernels in the Deep CNN model
are modified to capture the wave propagation characteristics
of free-flowing and congested traffic, in accordance with the
kinematic wave theory (KWT) of traffic flow [36]. We develop
a Deep CNN with anisotropic kernels designed to consider
space-time inputs that are in the direction of feasible traffic
waves, bounded by forward waves in free-flow and backward
waves in congested traffic. As a result, we can significantly
reduce the effective number of kernel parameters and hence the
Deep CNN model complexity. Further, restricting the CNN to

consider only the relevant spatio-temporal input points results
in feasible and robust estimation of traffic shockwaves.

Second, we train our Deep CNN model using simulated
traffic data. Apart from resolving the data availability issue,
this approach allows us to take an empirical distribution of
any desirable traffic flow model and use it to train the Deep
CNN. The empirical distribution is a surrogate representation
of the traffic physics underlying the simulation model. This
is a broader approach to incorporate the governing physics
as it is easier to generate data corresponding to complex
traffic behaviors rather than integrating them into the model
architecture as in existing physics-informed learning methods.
We demonstrate this by training the Deep CNN model with
data generated from a microscopic traffic simulator, which
consists of behavioral car-following, lane-changing and gap-
acceptance models, and then test it with real-world data
having similar traffic characteristics. A natural trade-off of this
approach is that the learning model does not capture the exact
physical traffic dynamics, but can incorporate a wide range of
complex traffic behaviors. Similar methods have been explored
in the context of automated systems such as robotic controls
and object detection, whereby researchers use high-fidelity
simulators or synthetic data instead of real-world data to train
deep neural network models [37], [38].

To summarize, the contributions of this paper are:
1) We develop an anisotropic kernel design for CNNs

following the wave propagation characteristics of traffic
flow. This could be applied to traffic state estimation,
prediction, and data imputation. We also suggest an
optimization procedure to learn the optimal weights for
the anisotropic kernels.

2) We propose to use simulated traffic data for fitting the
anisotropic Deep CNN model and test its performance
on real-world datasets.

3) We demonstrate the use of the anisotropic Deep CNN
model for speed field estimation at fine space-time
resolutions (10 meters ×1 second in our experiments)
using limited input vehicle trajectories (5% probe vehi-
cle penetration rates). We show sample estimations of
real-world traffic data from multiple sources.

4) We extend our estimation methodology to handle
unknown probe vehicle penetration rates by introducing
an ensemble version of our Deep CNN model.

The rest of the paper is structured as follows. We present the
estimation problem setting, the anisotropic kernel design, and
the optimization procedure in Section II. We then describe
the training data generation and the training experiments in
Section III. In Section IV, we present estimation results,
compare the anisotropic CNN with the naïve isotropic vari-
ant, discuss the transferability of the estimation model to
real-world freeway traffic, and explore the sensitivity of the
results to different probe vehicle penetration levels. Finally,
we conclude the study in Section V.

II. ESTIMATION METHODOLOGY

A. Traffic Speed Field Estimation Problem

A space-time domain D = X ×T representing a given road
section is discretized into homogeneous segments xi ⊂ X and
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Fig. 1. The architecture of the Deep CNN (speed reconstruction model).

time intervals ti ⊂ T , such that ∪i xi = X and ∪i ti = T . Let
V (x, t) denote the value of the macroscopic speed field in a
cell (x, t) ∈ D. We use the cell size |x | closer to the length
of a vehicle and |t| in the order of seconds (smaller than what
existing estimation methods use [3]) to enable high-resolution
speed field estimation. Probe vehicles (PVs) provide local
speed measurements

�
V p(xp

i , tp
i )

�
for some cells in D; we

represent this partial information by the tensor zp. We assume
sparse observation settings, where only a few cells (e.g., 5-
10%) in zp have speed information. We denote by zf a tensor
of estimates of the complete speed field V (x, t) for the entire
space-time domain D. The estimation problem can be formally
stated as learning a mapping function g : zp �→ zf .

The speed field V (x, t) in each cell of the input tensor zp is
encoded using a three-dimensional RGB array (with domain
{1, . . . , 255}) instead of a one-dimensional speed value. This is
to differentiate cells occupied with a stopped vehicle (i.e., with
V (x, t) = 0) from empty cells. The output tensor zf represents
the complete macroscopic speed field over the domain D and
can be encoded using the one-dimensional speed values. Thus,
we have, zp ∈ {1, . . . , 255}|X |×|T |×3 and zf ∈ R

|X |×|T |
≥0 .

B. Deep Convolutional Neural Network (Deep CNN) Model
for Estimation

We use a Deep CNN model similar to the one in [20] to
represent the mapping function g. The model architecture is
shown in Fig. 1. It comprises an encoder genc and a decoder
gdec, each consisting of three CNN layers. Each CNN layer
is composed of a 2D convolution operation, a non-linear
activation operation called ReLU (Rectified Linear Unit), and
a down-sampling operation called max-pooling (up-sampling
operation called nearest neighbor in case of gdec). As shown
in Fig. 1, the successive CNN layers of genc have reduced
spatio-temporal widths and the successive CNN layers of
gdec have increased spatio-temporal widths. The Deep CNN
model takes the input zp, passes it through the hierarchical
convolution layers, and outputs the estimated speed field zf .

Unlike other neural network architectures, CNNs have
proven to be effective in learning spatial data (e.g., images,
video, etc.), which is useful for our application since the
space-time diagram reflects spatial data. The CNN model
has two properties favorable for learning macroscopic traffic
features: local connectivity and parameter sharing. The former
assumes the traffic speed fields are locally correlated, and
the latter implies local traffic features can occur anywhere in

Fig. 2. Space-time correlations modeled by the isotropic kernel of the
convolution operation, and that in the real traffic (free-flow and congested).

the space-time plane, i.e., they are space-time invariant. Fur-
thermore, the specific encoder-decoder structure (bottleneck
formation) of the model shown in Fig. 1 can efficiently handle
the sparse nature of the model input [20].

The discrete convolution using local kernels in the CNN
forms the basis of traffic speed field estimation. In a given
CNN layer l, a convolution operation calculates the activation
in a cell (x, t) as a weighted sum of cell activations observed
in the previous layer (l − 1):

z(l)(x, t, χ) = z(l−1)(·, ·, χ) ∗ �(l)(·, ·)
=

�
(x j , t j )∈ Iiso

z(l−1)
�
x j , t j , χ

�
�(l) �

x j , t j
�
, (1)

where z(l)(x, t, χ) is the feature map value in layer l associated
with cell (x, t) and color channel χ ∈ {1, 2, 3}, �(l)(·, ·) ∈
R

|X |×|T | is the kernel (matrix), which is identical for all
cells. �(l)

�
x j , t j

�
on the right-hand side, an element of the

kernel matrix, determines the extent to which neighboring
cell (x j , t j ) ∈ Iiso is correlated with the subject cell (x, t).
Hereafter, we simply write � to represent the entire kernel,
and drop the ‘(·, ·)’.

The feature map value in cell (x, t) can be considered as
equivalent to (or some function of) the speed field V (x, t) in
that cell. Then, operation (1) simply says: the speed in cell
(x, t) is a weighted interpolation of speeds observed in its
immediate surrounding cells. The extent of local cell influence
Iiso is depicted visually on the space-time plane in Fig. 2(a).
Each kernel in a layer l represents a different weighting
function; together, the kernels learn to identify different traffic
features.

C. Anisotropic Kernel Design for Deep CNN

The isotropic kernel shown in Fig. 2(a) says that the speed
in cell (x, t) is correlated with the speeds observed anywhere
in the shaded rectangular region Iiso. This assumes that a speed
variation (such as that caused by slowdowns or speed-ups) at
(x, t) can propagate at unbounded velocities in the space-time
plane. However, this is not true in real traffic. In real traffic,
(i) the speed/density variations propagate at finite velocities
that are less than or equal to the free-flowing vehicle speed,
and (ii) vehicles respond (predominantly) to frontal stimuli
with a delay (approximately equal to the reaction time of
driver). The former condition is called hyperbolicity and the
latter is called anisotropy. Hyperbolicity is a necessary but not
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sufficient condition for anisotropy in traffic flow models [39]–
[41]. The use of local kernels (i.e., kernel dimensions 	
the dimension of space-time plane) captures the hyperbolicity
property, whereas anisotropy can be captured by modifying
the kernel shape as discussed below.

The actual propagation velocity of speed variations depends
on the traffic state (i.e., speed or density). We assume
that traffic at any point in the space-time plane is either
in free-flow or is congested in relation to the Fundamental
Diagram. There are different traffic conditions associated with
free-flow and congestion, respectively. Then, a speed variation
in cell (x, t) propagates downstream (i.e., in the direction
of traffic) in free-flowing traffic and upstream (i.e., in the
opposite direction of traffic) in congested traffic. This is an
empirically and theoretically established feature of traffic [36],
[42]–[45]. Thus, the extent of the space-time plane correlated
with cell (x, t) depends on whether the traffic state is free-flow
or congested. The respective correlated regions are shown in
Fig. 2(b) and Fig. 2(c) as shaded areas Ifree and Icong.

The regions Ifree and Icong are bounded by the free flow
traffic speed cv and the backward shockwave speed cw [39],
[41], respectively. The speed in cell (x, t) influences the region
Ifree downstream, and the region Icong upstream. Likewise,
the regions Ifree upstream and Icong downstream influence the
speed in cell (x, t). In summary, the speed predicted in cell
(x, t) is correlated with the speeds observed anywhere in Ifree∪
Icong. We use this knowledge of space-time correlations in
designing an alternate and causally correct kernel (in the traffic
sense) for the Deep CNN model in Fig. 1. We refer to this as
the anisotropic kernel, and represent it by the tensor �ani =
[�(l)

ani]l . The corresponding convolution operation is slightly
modified from (1) as,

z(l)(x, t, χ) = z(l−1)(·, ·, χ) ∗ �
(l)
ani

=
�

(x j , t j )∈ Iani

z(l−1)
�
x j , t j , χ

�
�

(l)
ani

�
x j , t j

�
, (2)

where the effective influence region is defined as Iani := Ifree∪
Icong. This way, we direct the convolution operator to consider
only that portion of the space-time plane which is relevant for
the speed interpolation according to traffic physics.

In this paper, we propose a specific anisotropic kernel
design, whose influence region is further restricted, motivated
by empirical observations: (i) congested traffic has a very
narrow range of wave propagation velocities (such that they
can be regarded as almost constant), and (ii) free-flow traffic
wave propagation velocities are limited within the maximum
and minimum desired vehicle speeds [36], [39], [41]–[43].
The anisotropic kernel design to replace the isotropic kernel
(from Fig. 1) is illustrated in Fig. 3. We create two kernels,
one each for free-flowing and congested traffic. The influence
region Ifree contains all the cells passing and bounded between
the maximum (cmax

v ) and minimum (cmin
v ) desired vehicle

speeds. This is relevant for heterogeneous traffic where the
desired speed distribution has a wide range. The free-flow
traffic kernel is shown in Fig. 3(a). The influence region
for congested traffic, Icong, contains only those cells passing
through the backward propagating shockwave speed cw; see

Fig. 3. The anisotropic kernel design for a 7 × 7 CNN kernel (width =
7). The naïve isotropic kernel is also shown here for comparison. Parameters
used: cmax

v = 100 kmph, cmin
v = 60 kmph and cw = 18 kmph.

Fig. 3(b). The proposed anisotropic kernel is a superposition
of the free-flow and congested kernel. This is shown in
Fig. 3(c). The corresponding isotropic kernel is shown in
Fig. 3(d) for comparison. One can see that the anisotropic
design requires 50% fewer parameters than its isotropic variant
for a 7 × 7 kernel.

In summary, our proposed anisotropic kernel design takes
three input parameters {cmax

v , cmin
v , cw}, whose values depend

on the traffic characteristics of the road section. The proposed
design aims to learn a broad range of forward propagation
speeds and a narrow range of backward propagation speeds.
Using a wide distribution for propagation speeds can simul-
taneously handle different road classes, e.g., highways with
different speed limits and arterials. The variability in the free-
flow speeds, in addition to capturing differences in speed
limits, allows our kernels to capture a variety of kinematic
wave speeds as combinations of free-flow waves and backward
waves.

A practical benefit of the proposed anisotropic kernel design
is the significant reduction in the model complexity of the
Deep CNN model. Model complexity here refers to the total
number of model parameters, and depends on the widths and
depths of CNN kernels. We quantify the parameter require-
ments for isotropic and anisotropic kernels as a function of
kernel widths in Fig. 4. The number of parameters scales
linearly for anisotropic kernels as opposed to quadratically for
isotropic kernels. This implies that anisotropic kernels result
in a simpler, lower complexity CNN model which is easier to
compute and optimize as compared to its isotropic counterpart.
This scaling advantage is realized for higher kernel widths
which naturally occur for larger problem sizes. We show these
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Fig. 4. Number of model parameters for different widths of isotropic and
anisotropic kernel.

benefits experimentally in Section IV as we compare the model
complexity requirements for different road network sizes.

We finally note that the proposed anisotropic kernel design
is similar to Treiber and Helbing’s adaptive smoothing method
for speed interpolation [42] except that: (a) we consider
a range of wave propagation speeds in free-flowing traffic
instead of a constant value, (b) the weights in the kernel are
not set apriori as in [42] but learned from data, and (c) the
actual speed predicted is a combination of several anisotropic
kernels as opposed to a single anisotropic kernel.

D. Learning Anisotropic Kernels

We use anisotropic kernels in all layers of the Deep CNN
model in Fig. 1. The optimal weights �∗

ani for the anisotropic
kernel are obtained from the following constrained optimiza-
tion problem:
�∗

ani := arg min
�∈R|X |×|T |×L

�
L

�
zf , g

�
zp,�

�� :�ani 
 � = 0
�
, (3)

where g(zp,�):{0, . . . , 255}|X |×|T |×3 → R
|X |×|T |
≥0 is the

mapping function (i.e., the Deep CNN) with the kernel para-
meterization � made explicit (i.e., g performs the mapping
zp �→ zf ), �ani is a binary tensor of the same dimension as
� with values of 0 for cells corresponding to the anisotropic
influence cell region Iani, e.g., the shaded cells in Fig. 3(c), and
1 elsewhere (
 is the Hadamard product). The loss function
L captures any discrepancies between the estimated and true
speed fields, e.g., the squared �2 distance (the squared error):

L
�

zf , g
�
zp,�

�� =
			zf − g

�
zp,�

�			2

2
. (4)

The constrained optimization problem (3) can be solved
using iterative schemes which can handle feasibility con-
straints, such as the projected gradient descent. In each itera-
tion i , the updates are calculated as follows:

�i+1
ani := PIani

�
�i

ani − γ i G(�i
ani)

�
, (5)

where γi > 0 is the step size (or learning rate) in iteration i and
G(�i

ani) is a gradient tensor (descent direction) at �i
ani. The

operator PIani assigns zeros to elements of �i
ani − γ i G(�i

ani)
corresponding to cells that lie outside of Iani, thereby ensuring
feasibility of the solutions.

Fig. 5. Visualization of the richness or the traffic features contained in the
simulated training dataset (300-second snapshot).

III. DATA AND TRAINING

As mentioned earlier, we use simulated traffic data consist-
ing of different traffic conditions for training the anisotropic
Deep CNN model. In the following, we describe the data used
for training and evaluating the model.

A. Training Data Generation

To generate data for training the CNN model, we simulate
a freeway segment using the Vissim microscopic traffic sim-
ulator. The simulated segment corresponds to the E-22 Abu
Dhabi-Al Ain road, UAE (2 miles in length and 3 lanes wide),
and includes an entry and exit ramp to a nearby suburban
region. The simulation model is calibrated with general traffic
behavior, for instance, prioritizing through movements, appro-
priate yielding gaps for on-ramp vehicles, and minimum gap
for lateral movements. A wide distribution of desired vehicle
speeds (ranging from 60 − 100 kmph) is used to produce
different free-flow wave propagation speeds as is the case for
heterogeneous traffic.

We simulate three traffic scenarios with different input vehi-
cle demand profiles on the freeway segment: 800-1200 vehs/hr,
2400-3000 vehs/hr, and 4200-5400 vehs/hr. We used these
demand profiles to replicate distinct traffic conditions on the
simulated freeway, namely free-flowing, slow-moving (moder-
ately congested), and (heavily) congested traffic. We used on-
ramp inflows that constitute 15-20% of the total freeway flows.
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Each traffic scenario is simulated for 2 hrs and the vehicle
trajectory data for an 800 m homogeneous section on the
freeway is recorded. The trajectory data corresponding to three
traffic scenarios and their traffic dynamics are summarized in
Fig. 5.

Fig. 5(a) shows a 300 second snapshot of vehicle tra-
jectories for the three simulated traffic scenarios. One can
note the backward and forward propagating waves due to
the stop-and-go, slow-moving, and heterogeneous free-flowing
traffic (respectively) in Fig. 5(a). The anisotropic kernel is
designed based on the range of wave propagation speeds seen
in these plots. Fig. 5(b) is a flow-density scatter-plot of the
three scenarios. Together, these figures show the richness of
traffic states contained in the training data.

B. Definition of Macroscopic Speed Field

An important auxiliary task is to define the “true” speed
field which the Deep CNN model uses as the “ground truth”
for evaluating the quality of the estimation. This is achieved
by translating the set of all vehicle trajectories (not just PVs)
into a speed field V (x, t). The commonly used generalized
definition of macroscopic speeds [46] results in V (x, t) =
0 for some cells due to the fine mesh size we use. Therefore,
we propose a simple interpolation method for this purpose
instead. Our method interpolates the speeds over the road cells
at a fixed time according to:

V (x, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vup

�
ddn

dup + ddn

�
+ Vdn

�
dup

dup + ddn

�
, if dup < lup

and ddn < ldn

Vup

�
1 − dup

lup

�
+ Vmax

�
dup

lup

�
, if dup < lup

and ddn > ldn

Vdn

�
1 − ddn

ldn

�
+ Vmax

�
ddn

ldn

�
, if dup > lup

and ddn < ldn

Vmax, otherwise,

(6)

where Vmax is the highest free-flow speed (or speed limit of
the highway section), Vdn (resp. Vup) is the speed of the down-
stream (resp. upstream) vehicle, ddn (resp. dup) is the distance
between the cell (x, t) and the cell containing the downstream
(resp. upstream) vehicle, and ldn (resp. lup) is the length of
spatial interaction downstream (resp. upstream) of (x, t).

Equation (6) can be understood as follows: the speed field
V (x, t) in cell (x, t) is a weighted combination of the speeds
upstream and downstream of the cell. The speed Vdn of the
vehicle downstream of (x, t) has an effect only if it is within
the downstream interaction range ldn from (x, t); otherwise,
its value is replaced by the maximum highway speed Vmax
(and analogously for the upstream vehicle). The weights of
the upstream and downstream components are proportional
to the proximity of the respective interactions. The spatial
interaction lengths are chosen to satisfy lup < ldn, to reflect
the asymmetrically greater influence of frontal interaction.

C. Training Procedure

The simulation output for each scenario is 7200 seconds of
trajectory data for each of the three lanes. We first map the
trajectories from a single lane onto a space-time plane to form
an input and output frame of dimension 80 × 7200 (i.e., the
mesh size is 10 m×1s). The PV trajectories for the input frame
are selected at random using a 5% sampling rate. The output
frame that forms the ground truth speed field is generated
using the interpolation procedure described in eq. (6). We then
extract samples of the input (zp) and output tensors (zf ) from
the input and output frames respectively, using a 80×60 sliding
window. We generate 6000+ samples for each trajectory
dataset using a 2 s spatial gap between sliding windows.
We proceed similarly to generate more data with different
sets of random input samples for each of the three traffic
scenarios using a 5% sampling rate. The final augmented
dataset has 64000+ input-output sample pairs for training the
Deep CNN model. Note that the samples extracted from a
specific trajectory record form a sequence, which violates the
i.i.d assumption (independent and identically distributed) for
the neural network training. However, this is rectified during
the optimization stage, where only a random subset of the
samples is used in each iteration of the CNN training (this is a
common trick employed while training reinforcement learning
models, for instance, the use of “replay memory” in [47]).
We use the following additional parameters for training data
generation: |x | = 10 m, |t| = 1 s, cw = 18 kmph, cmax

v =
100 kmph, cmin

v = 60 kmph, Vmax = 95 kmph, lup = 80 m
and ldn = 40 m.

We train five instances of the anisotropic and isotropic
CNN models, and report the average of their performance
results. We use the TensorFlow framework [48] to train all
the models. The two major hyper-parameters, namely the
CNN kernel width and depth in each layer, are independently
optimized using the Hyperband algorithm [49], which belongs
to the class of bandit-based algorithms. Other hyper-parameter
choices are: gradient descent batch size: 32 samples, total
training epochs: 300, (fixed) learning rate: 1e − 3, and opti-
mizer: Adam [50]. We use a GPU cluster with NVIDIA Tesla
V100 32GB for training the models. The run time for a single
training experiment is between 120 and 150 min. Note that
the training can be viewed as an offline procedure.

D. Testing Data

We test our model using three datasets: (i) a hold-out set
from the simulated data that is not used for training (from a
different lane of the freeway section), (ii) the Next Genera-
tion Simulation Program (NGSIM) dataset [51], and (iii) the
German Highway Drone (HighD) dataset [52]. We choose the
US-101 highway trajectory data from NGSIM, which contains
the locations and speeds of all vehicles crossing the observed
area during a 45 min time period with a 0.1 s resolution. The
HighD data consists of trajectory data from several German
highways, each consisting of a frame-wise recording of all
vehicles passing a 400 m section during a 20 min duration,
with a resolution of 25 frames/second. The input-output test
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TABLE I

MODEL ARCHITECTURE AS OBTAINED FROM THE HYPER-PARAMETER
OPTIMIZATION

samples are generated similarly to the training datasets with
the respective space-time discretization parameters.

We emphasize that we do not use the NGSIM or HighD
datasets for training the model. In other words, the model is
trained with data from a simulation using a freeway in the
United Arab Emirates; and then tested with additional data
from that same simulation, as well as real data from a freeway
in the United States and several freeways in Germany. This
allows us to evaluate the model’s transferability to diverse
traffic scenarios and dynamics not seen in the training set,
and the viability of using simulated data instead of real data
for training.

IV. RESULTS AND DISCUSSION

In this section, we present the anisotropic reconstruction
results and compare the isotropic and anisotropic models.
We also discuss the transferability of the trained models to
real-world traffic conditions and extend the results to handle
varying PV penetration rates.

The architecture of the CNN model obtained from the
hyper-parameter optimization is shown in Table I. We use
the same optimized architecture for both the anisotropic and
isotropic CNN models.

A. Anisotropic CNN Model Reconstruction

Fig. 6 shows five sample estimated speed fields from the
hold-out simulated test dataset using the anisotropic model.
The reconstruction window is 800 m × 60 s with a 10 m ×
1 s resolution. The true speed field, PV trajectories, and speed
profiles at three time instants (t = 10, 30, and 50 s) are also
shown for each sample. Three of the samples correspond to
congested traffic conditions, one corresponds to slow-moving
traffic conditions, and one corresponds to free-flowing traffic
conditions.

There are several points of interest to note about the recon-
struction: All the estimated speed fields are feasible in terms
of traffic physics and capture the different traffic states well.
The model reproduces the existence of free-flow, congested
and transition traffic dynamics correctly despite having very
limited input information from the PV trajectories. One can
observe the accurate prediction of shockwave dynamics in the
congested traffic samples (a)-(c). This is also evident from the
speed profile comparison. The true speed profile is often noisy,
and the reconstruction has a smoothing effect due to the local
convolutional operations in the CNN layers.

We have observed that the estimated speeds in slow-moving
traffic have a higher root mean squared error (RMSE) than
those in congested and free-flowing traffic; see Fig. 6 (d)-(e)
and Table II. In slow-moving traffic, heterogeneity (caused
by different vehicle characteristics, driving behaviors, etc.)
is predominant, and one can see different forward wave
propagation velocities in the speed field; see the example in
Fig. 6 (d). Therefore, estimation is inherently a challenging
problem unless we observe the actual travel speed. This is not
the case for congested traffic, where the collective dynamics
can be inferred from the trajectory of a single vehicle, or for
free-flowing traffic, where the traffic heterogeneity is limited.
In short, traffic speed fields with varied forward propagation
wave velocities are still difficult to infer. Interestingly, in all
the scenarios, the anisotropic model predicts the average
desired vehicle speed in areas where there are no PV trajec-
tories, which is a reasonable conclusion when no vehicles are
observed.

We interpret the Deep CNN model as an interpolation
function that locally propagates traffic characteristics (forward
and backward waves) using the sparse information from input
vehicle trajectories. The model ensures sound propagation of
traffic information in space and time, resulting in speed field
estimates with different traffic states - free-flowing, slow-
moving, congested, and their transition states. Introducing
anisotropic kernels further limits the propagation speeds of
traffic information, in accordance with the Kinematic Wave
Theory of traffic flow. This results in speed field estimates
with a gradual and physically reasonable transition between
the different traffic states. In contrast, traditional Kalman Filter
based assimilation techniques only exploit state information
from one (or a few) time step(s) when estimating the traffic
speeds. This is inefficient in terms of data usage and fails to
accurately reconstruct the dynamics.

In addition, we have tuned the Deep CNN model archi-
tecture to learn different traffic wave dynamics. Whether to
produce a backward or forward wave depends on the traffic
regime, which the model infers from the input trajectories.
This is confirmed from the latent space projection of the
data (i.e., the output from the encoder model), where three
distinct clusters were generated, corresponding to free-flowing,
slow-moving and congested traffic, respectively. Another way
to put this is that a neural network model can solve an
under-determined system - a major upside compared to other
machine learning models. This is in contrast with traditional
estimation methods which require additional information on
initial/boundary conditions or traffic demands.

B. Comparison of Anisotropic and Isotropic Models

We next compare the performance and computational
requirements of the anisotropic and isotropic models in
Table II. The RMSE calculation shown in the table is the
sample average for 4000+ simulated test samples. Overall, the
anisotropic and isotropic models have similar performance in
terms of accuracy, but the anisotropic model leads to more
physically plausible shockwave dynamics (this is discussed
below). In particular, the anisotropic model performs slightly
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Fig. 6. Estimated speed field for selected samples in the simulated test data using the anisotropic CNN model. The fourth column shows the speed profile
across the road section at t = 10, 30, and 50 secs (- true speeds, orange - estimated speeds, black vertical dashed line - input PV speed).

better in estimating the congested and free-flowing traffic
in comparison to slow-moving traffic. This is because the

slow-moving data samples comprise heterogeneous traffic in
the free-flow regime, which might be better observed by an
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TABLE II

COMPARISON OF ANISOTROPIC AND ISOTROPIC MODELS. PERCENT
CHANGE IS WITH RESPECT TO ISOTROPIC MODEL

isotropic kernel than a restricted anisotropic kernel. Depending
on the desired speed distribution, one can increase the extent
of the anisotropic kernel (i.e, values of cmin

v and cmax
w ) and

rectify this.
Table II also shows that the anisotropic model requires

only half as many parameters as the isotropic model, which
is a significant improvement in model complexity given that
the performance of the two models is very similar. From
a computational perspective, this is a substantial advantage,
leading to faster model convergence (RMSE reduction per
training epoch) and a potential reduction in the number
of training samples required. This confirms that exploiting
domain knowledge results in simpler and more interpretable
learning models.

Although the isotropic and anisotropic models perform
comparably in terms of the average error in estimating the
speed, there are some examples where they differ in terms
of the structure (speed and extent) of the shockwaves they
produce. This is illustrated in Fig. 7, which shows certain
examples where the anisotropic model clearly reconstructs
more physically plausible shockwave dynamics, as mentioned
below.

In the example in Fig. 7(a), the isotropic CNN under-
estimates the length of the shockwave at the top, whereas
the anisotropic CNN correctly predicts that it existed some
time prior to the two PV trajectories crossing it. This is
because the anisotropic kernel gets more activation along
the direction of the shockwave and hence reconstructs the
stop-and-go region correctly, whereas the isotropic kernel
considers all directions, which possibly results in averaging
out all the nearby activations. Similar patterns have been
observed in other test instances. The estimation in Fig. 7(b)
is obtained using a single input trajectory. The anisotropic
model gives a plausible reconstruction of the shockwave
whereas the isotropic reconstruction shows large dispersion,
which is also physically inconsistent with the input data. The
design of anisotropic kernels can rule out such inconsistencies
arising in the estimation. Fig. 7(c) shows a free-flowing traffic
estimation. Again the forward wave produced by the isotropic
kernel has more dispersion. In summary, one can see that the
anisotropic model produces more accurate wave propagation

Fig. 7. Estimated speed fields for some selected samples in the simulated
test data using the anisotropic and the isotropic CNN models. Black lines
show the probe vehicle trajectories used for the reconstruction.

dynamics consistent with traffic physics, even though the
RMSEs of the models are similar.

We finally compare the anisotropic and isotropic models
from the perspective of model complexity and over-fitting
measures. In order to understand how the complexity of
CNN models scales with the road network size, we optimize
the anisotropic and isotropic CNN model architectures for
different road lengths. The optimization is done using the
Hyperband algorithm [49]. The results are shown in Fig. 8(a),
where the optimal number of model parameters required for
different road lengths are compared (see the scatter plot).
We see that the model complexity scales quadratically for
isotropic kernels, whereas for anisotropic models it scales
linearly (see the curve plot). Thus, as the problem size
becomes large (for e.g., for long road sections, multiple lanes,
or network level settings), the optimal CNN model architecture
required for learning traffic dynamics becomes significantly
large with isotropic kernels. The anisotropic CNN model,
on the other hand, scales well to large problem sizes, results
in simpler and more manageable models, and is beneficial for
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Fig. 8. Comparison of model-complexity and over-fitting measures for
isotropic and anisotropic CNN models.

practical implementation. This observation is in-line with the
scaling results obtained in Fig. 4.

In order to measure the over-fitting in CNN models,
we define an over-fitting metric as,

Ofit =
����RMSE train − RMSE test

RMSE test

���� × 100, (7)

where RMSE train and RMSE test are the root mean squared
error metrics for training and testing data respectively. Ofit
measures the difference in the model’s performance on the
training and testing data; higher values for Ofit imply more
over-fitting. Over-fitting is an undesirable feature, and indi-
cates poor generalization to unseen testing data. Fig. 8(b)
shows Ofit for the isotropic and anisotropic CNN models
trained with different proportions of the total training data.
The simulated training and simulated testing data are used
to calculate Ofit. Note that the hyper-parameters of the CNN
models are optimized independently to ensure that Ofit is
compared for the optimal isotropic and anisotropic models.
The trend line in Fig. 8(b) shows that the isotropic CNN
model results in higher over-fitting. Since this observation is
consistent at all data levels (and thus independent of model
complexity), we conclude that the isotropic model has higher
tendency to over-fit than the proposed anisotropic model. This
is because the anisotropic CNN model reduces the number of
parameters in a principled way, which lowers the model com-
plexity without compromising test accuracy. In other words,
the introduction of anisotropic kernels is a natural way to train
CNN models that learn traffic speed dynamics with a lowered
risk of over-fitting.

C. Transferability to Real-World Traffic Dynamics

To understand how well the anisotropic CNN model per-
forms in scenarios with different traffic characteristics than
those observed in the training dataset, we test it on various
real-world freeway sections. Figs. 9 to 11 show the estimation
results for three sample freeway sections from the HighD and
NGSIM datasets using data with a PV sampling rate of 5%.

A quick observation shows that all three example recon-
structions are plausible, despite having different space-time
dimensions from those used in the training dataset. This
is possible because of the parameter sharing property of

Fig. 9. Estimated speed field of lane 4 of highway No. 25 in the HighD
dataset using 5% probe sampling rate. The road section is X = 400 m long
and the reconstruction period is T = 1140 s. The RMSE is 6.80 kmph.

Fig. 10. Estimated speed field of lane 2 of U.S. Highway 101 in the NGSIM
dataset using 5% probe sampling rate. The road section is X = 670 m long
and the reconstruction period is T = 2400 s. The RMSE is 10.50 kmph.

CNNs, whereby the features learned during training (traffic
characteristics in this case) are space-time invariant, and hence
can be used with any spatio-temporal reconstruction window.

Closer observation reveals variation in the performance
across the three examples. The estimated speed field in Fig. 9
has the lowest RMSE (≈ 6.80 kmph), and the speed, width and
duration of the predicted backward propagating shockwaves
are accurate. In the estimation in Fig. 10, the shockwave
reconstruction and speeds are reasonably correct, and the
RMSE is moderate (≈ 10.50 kmph). The model correctly
predicts the onset of shockwaves 400 m upstream of the road
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Fig. 11. Estimated speed field of lane 6 of Highway No. 44 in the HighD
dataset using 5% probe sampling rate. The road section is X = 400 m long
and the reconstruction period is T = 1140 s. The RMSE is 14.60 kmph.

section during the initial 600 seconds, though it underestimate
the shockwave width. Thus, the model can accurately estimates
speed fields for a road section that is simultaneously congested
and free-flowing during the same period. The estimation result
in Fig. 9 also supports this. The third freeway section, shown
in Fig. 11, comprises free-flowing traffic and has the highest
RMSE (≈ 14.60 kmph). Apart from the inherent difficulties
in the estimation of free-flowing traffic speeds, one can also
observe that the speed of forward waves predicted by the
model is slightly lower than that from the true waves; see
the slow-moving band around 400 secs as an example. This is
due to the difference in the traffic characteristics in the training
and testing data, which we elaborate on below.

Recall that the CNN model trained on the simulated data
encompasses the knowledge of traffic dynamics of a specific
freeway section. How well this model transfers to other test
scenarios depends on the traffic characteristics of the test
segment. One can explain the difference in the RMSE errors
in Figs. 9 to 11 by comparing the dynamics contained in
the simulated data and the test data. One useful tool for this
comparison is the flow-density scatter plot, which is shown in
Fig. 12. The reason for the low RMSE in the first two examples
is that the freeways are operating in the congested regime
and the shockwave speeds in the simulated and test data are
similar. Likewise, the reason for slightly lower prediction of
free-flowing speed in the third freeway section (which operates
in free-flowing traffic) is evident from Fig. 12(c). A similar
reasoning is applicable when one discusses the transferability
of the simulated section with its own real-world section, as the
simulation doesn’t capture the complete dynamics. Empirical
FD comparisons can be further exploited to calibrate the
trained deep learning model to match with the traffic dynamics
of the test data. This is beyond the scope of the current work
and represents a possible future extension.

TABLE III

COMPARISON RESULTS TO EXISTING ESTIMATION TECHNQIUES

In short, we observe that the Deep CNN models trained with
simulated data from minimally calibrated traffic flow models
transfer well to real-world traffic scenarios. Better results are
to be expected with simulation models that are calibrated to
the testing scenarios. Since the data required for calibration
is lower than that needed for training deep neural networks,
we can take advantage of well-developed microscopic traffic
simulations to fit data-hungry models like CNNs.

We finally compare the anisotropic Deep CNN model
performance with two other existing traffic speed estimation
techniques in the literature: (a) General Adaptive Smooth-
ing Method (GASM) from [43], and (b) Velocity-based
LWR Ensemble Kalman Filtering technique (LWR-v EnKF)
from [53]. While both techniques directly estimate the speed
field over a given time-space plane, the former is a data
assimilation technique using a macroscopic traffic flow model
and the latter is an informed traffic interpolation procedure.
The LWR-v EnKF method additionally requires initial and
boundary conditions as inputs. The estimation results for
the NGSIM US-101 highway lane 2 using the anisotropic
CNN model, GASM and LWR-v EnKF are compared in
Table III. The RMSE metric is evaluated for different input
PV penetration rates to understand how well the techniques
perform in sparse observation setting. Overall, we see that the
anisotropic Deep CNN model results in the least estimation
error for all PV penetration rates.

We found that the GASM method provides reasonable
estimates at higher PV penetration rates (for e.g., ≥ 10%).
However, at lower PV penetration rates (i.e., when the input
only consist of one or two PV trajectories), the GASM method
fails to reproduce correct traffic speed waves and results in
higher estimation error. We have also noticed that the GASM
method produces large dispersion in their estimates, which
implies it poorly captures short-term traffic variations and is
not suitable for high-resolution estimation. This is because the
GASM method only uses two (pre-defined) kernels for inter-
polation, while our anisotropic CNN model uses an ensemble
of (learned) kernels and hence interpolates low-level traffic
features well.

Traffic speed estimated using the LWR-v EnKF method
results in highest RMSE as shown in Table III. This poor
performance could be due to its myopic character − only
uses traffic speed inputs at the current time steps whereas
the anisotropic CNN model considers inputs from multiple
time steps. We also notice that the performance gets worse for
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Fig. 12. Flow-density scatter plot comparing the traffic characteristics of the real-world datasets with the simulated training data.

longer estimation intervals, since the LWR model predictions
deviate significantly from the actual data. Similar to GASM,
the LWR-v EnKF also captures macroscopic traffic features
and gets better at higher PV penetration rates.

In short, the anisotropic CNN model outperforms the exist-
ing traffic speed estimation techniques, especially at lower PV
penetration rates.

D. Variable Probe Vehicle Penetration Rates

To conclude our evaluation of the CNN model’s perfor-
mance, we investigate the effect of changing the PV penetra-
tion rate. We train six separate models using data consisting of
specific PV penetration rates 10%, 20%, . . . , 70% respectively
(in addition to the 5% probe model discussed so far in this
paper). The input-output pairs for training are generated in
the same way as explained in Sec. III B. Each of these probe
specific models is evaluated using testing data which has a
corresponding PV penetration rate to the respective model. The
average test RMSE results are shown in Fig. 13(a) (labeled
“probe specific model”). As expected, the RMSE decreases
with higher PV penetration rates.

However, we find that these probe specific models are not
trivially generalizable to handle penetration rates other than
what they were trained on, i.e., the models are penetration rate
dependent. We demonstrate this by evaluating the performance
of the two extreme probe specific models (i.e. the 5% probe
model and the 70% probe model) on testing data across
the whole range of PV penetration rates. It is clear that
these probe specific models perform well only in/near their
training domain. This could be due to the unconstrained latent
space representation while training the CNN models, and is
inevitable in any data driven models unless physical constraints
are imposed.

The actual PV penetration rate depends on the prevailing
traffic demand on the freeway, which is hard to measure in
practice. We aim for an estimation model that performs well
irrespective of the PV penetration rate. In other words, we want
an estimation model that doesn’t require prior knowledge of
the PV penetration rate. Therefore, we test three methods to
handle varying PV penetration rates. The first two methods
are brute force approaches, which consist of training the
CNN model on a dataset containing the whole range of PV
penetration rates 5%, 10%, 20%, . . . , 70%. The third method

Fig. 13. Probe vehicle (PV) penetration rate analysis.

is to use an ensemble CNN model. The RMSE results from
these models are compared in Fig. 13(b).

The first model (labeled generic model-eq) is trained on
a dataset consisting of all PV penetration rates sampled in
equal proportion. The second model (labeled generic model-
uneq) is similar except that we give more importance to lower
PV penetration rates which are more difficult to learn. This
is achieved by including more data samples for lower PV
penetration rates, i.e., training data ∝ 1/(PV penetration rate).
Both these models, however, perform sub-optimally compared
to the probe specific models. The best method is the third
model (labeled ensemble average model), which takes the
average of the predictions of all the probe specific models.
This is referred to as “ensemble bagging” in the machine
learning literature, and performs better than a single model
trained on a wide range of penetration rates. As seen in
Fig. 13(b), the ensemble CNN performs consistently well
across all the PV penetration rates, even outperforming the
respective probe specific models in certain cases. In addition to
the performance, the individual models in the ensemble CNN
(also called weak learners) can be trained in parallel, resulting
in significantly lower training time than the other two generic
models.

V. CONCLUSION

Deep learning models have shown success in solving sev-
eral inverse problems in traffic flow, but they are limited
by their lack of robustness and poor model interpretability.
In this paper, we overcome these limitations by proposing
an anisotropic Deep Convolutional Neural Network (CNN)
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model for estimating high-resolution traffic speed field using
measurements from probe vehicles. The model employs
anisotropic traffic kernels which are designed to explicitly
capture a broad range of forward and backward propagation
speeds in macroscopic traffic. Additionally, the Deep CNN
model is trained using simulated traffic data. Since the general-
ization of Deep CNN performance depends on the distribution
of training data, we note that using a targeted simulated data
is an alternate method of imposing desirable traffic physics
on the estimation model. For instance, we generate data
corresponding to different traffic conditions (congested, slow-
moving, free-flowing, etc.) so that the Deep CNN can learn
traffic wave propagation speeds originating in heterogeneous
traffic.

We present estimation results with input PV penetration
rates as low as 5% and output resolution as high as 10m ×1s.
In the experiments, we primarily focused on the benefits of
using anisotropic kernels in the Deep CNN model over the
naíve isotropic kernels. We found that anisotropic kernels
result in parsimonious model complexity and are less prone
to model over-fitting, although the estimation error is similar
to their isotropic counterparts. The model complexity grows
linearly with problem size for anisotropic kernels whereas it
grows as quadratic for isotropic kernels. Specific examples
are provided to demonstrate that the anisotropic kernels better
produce physically correct traffic shockwaves. We further eval-
uated the anisotropic Deep CNN on real-world traffic datasets
and found acceptable transferability performance. This sug-
gests that simulated data is a viable surrogate to real-world
data for training Deep CNNs. We also found that the Deep
CNN model performance is PV penetration rate dependent
and proposed an ensemble model to handle unknown PV
penetration rates.

We believe that the optimal way to apply learning tech-
niques to a specific domain such as traffic state estimation
is to integrate the fundamental principles of the domain into
the framework of the learning model. This paper represents
only one possible example of this general approach. In future
work, we aim to explore other methods to incorporate traffic
flow theory into learning models such as CNNs.
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