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Abstract— Understanding the inter-relationships between traf-
fic flow, density, and speed through the study of the fundamental
diagram of road traffic is critical for traffic modelling and
management. Consequently, over the last 85 years, a wealth of
models have been developed for its functional form. However,
there has been no clear answer as to which model is the most
appropriate for observed (i.e. empirical) fundamental diagrams
and under which conditions. A lack of data has been partly to
blame. Motivated by shortcomings in previous reviews, we first
present a comprehensive literature review on modelling the
functional form of empirical fundamental diagrams. We then
perform fits of 50 previously proposed models to a high quality
sample of 10 150 empirical fundamental diagrams pertaining to
25 cities. Comparing the fits using information criteria, we find
that the non-parametric Sun model greatly outperforms all of
the other models. The Sun model maintains its winning position
regardless of road type and congestion level. Our study, the first
of its kind when considering the number of models tested and
the amount of data used, finally provides a definitive answer
to the question “Which model for the functional form of an
empirical fundamental diagram is currently the best?”. The
word “currently” in this question is key, because previously
proposed models adopt an inappropriate Gaussian noise model
with constant variance. We advocate that future research should
shift focus to exploring more sophisticated noise models. This
will lead to an improved understanding of empirical fundamental
diagrams and their underlying functional forms.

Index Terms— Empirical fundamental diagrams, review, flow-
density relationship, speed-density relationship, loop detector
data, model comparisons.

I. INTRODUCTION

THE macroscopic description of traffic flow along a road
requires the definition of quantities characterising the

average properties of the vehicular traffic at a specific location
x and time t ; namely, traffic density k(x, t) as the number of
vehicles per unit length at time t (veh km−1), traffic flow
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q(x, t) as the number of vehicles passing location x per unit
time (veh h−1), and space-mean speed v(x, t) as the arithmetic
mean of the instantaneous speeds of the vehicles over some
distance (km h−1) [1], [2]. Following naturally from their
definitions, these three quantities are related to each other by
the fundamental equation of traffic flow:

q(x, t) = k(x, t) v(x, t) (1)

If a speed-density model is adopted such that speed is a
function of density only [3], [4], then one may write:

q(k) = k v(k) (2)

Haight [5] named the flow-density diagram and the relation-
ship therein as the “Fundamental Diagram of Road Traffic”.

The importance of the fundamental diagram (FD), originally
conceived for uninterrupted flow facilities, lies in traffic mod-
elling (e.g. [2], [6]–[8]) and management (e.g. [9], [10]). While
there is value in understanding the theoretical FD relationship
for uninterrupted flow facilities, we also believe that it is of
great benefit to be able to correctly model the observed FD
for any road. This relates more to the practicalities of traffic
management and real-time control both at the individual link
and urban network levels (e.g. [11]–[13]). For instance, the
flow-density FD, which has a concave functional form (often
approximated by a triangle), exhibits a peak flow qcap (the
capacity) at a certain density kcrit (the critical density), with
zero flow at zero density and at jam density kjam. Therefore,
it is to the benefit of the road users for the traffic to be
regulated on each road so as to minimise congestion (i.e.
to avoid k > kcrit) and avert gridlock (k = kjam). This
is only possible with a clear understanding of the actual
inter-relationships between traffic flow, density, and speed on
any road under a wide range of conditions.

The functional form of the observed FD, referred to here-
after as the empirical fundamental diagram (EFD), usually
differs from that of the theoretical FD due to the existence
of flow interruptions (e.g. intersections, bottlenecks) and the
effects of non-stationary traffic conditions. Even precise data
gathered from hypothetical identical driver-vehicle units would
not necessarily lie on the theoretical FD, but below it due to
the dynamic nature of traffic flow. Since this paper deals with
modelling EFDs, whenever we refer to the functional form of
the FD relationship, we are referring to that of the EFD.

There is an extensive literature on the study of EFDs.
Importantly, the EFD in flow-density, speed-density, and
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speed-flow form has been observed to exist for different road
types (i.e. highways, freeways, urban roads) in a large number
of studies (e.g. [14]–[19]). Starting with Greenshields [14],
this has lead to the publication of many papers proposing a
plethora of different models that can be used to fit EFD data.
However, most of these studies have relied on limited data
sets from just a few detectors that are hardly enough to claim
the superior performance of the models proposed to emulate
the observations (e.g. [20], [21]). Furthermore, only small
subsets of available candidate models have been compared
in any single study (e.g. [22]), while in some cases, invalid
statistical comparisons between models with differing numbers
of parameters have been made (e.g. Wang et al. [23] compare
model performance using mean relative error). We also note
that most of the existing studies have focussed on fitting EFD
data for freeways, and only very few have used urban data
(i.e. from interrupted flow facilities).

It is blatantly clear then that the question as to which
model(s) for the functional form of the FD are the most
appropriate for EFDs, including how this may depend on road
topology, is still unresolved. This is the issue that we aim to
tackle with this work, and the path to an answer lies in testing
the performance of as many as possible of the existing models
on a very large and varied data set. The intention here is not
to obtain an estimate of the theoretical FD, but instead to find
the best model for representing the observed data. As to be
expected, traffic observations have improved in quality and
quantity over time, especially as more and more cities begin
to collect and store ever increasing amounts of traffic data. Yet
it is only now that the traffic research community has started to
capitalise on this “big data” deluge (e.g. [24], [25]). The Urban
Traffic Data 2019 (UTD19) data set [24] is particularly suitable
for discriminating between FD models, since it is currently
the largest and most diverse data set on EFDs, pertaining to
41 cities worldwide and 23,767 detectors located on several
different types of road.

Having chosen an appropriate data set, the next logical
step is to identify a comprehensive list of FD models to
be tested. In our own investigation of the literature on the
subject, we found that reviews such as those by Gerlough and
Huber [26] and Carey and Bowers [27] were useful for guiding
our reading. However, it became clear to us that the available
reviews, the latest of which is now somewhat out of date, have
a number of gaps and shortcomings that require addressing.
For instance, none of the reviews cover all of the published FD
models and some are inevitably left out. Furthermore, small
errors in formulae and a failure to credit some of the most
popular FD models to the correct researchers are issues that are
being propagated forwards through the literature. All of this
provides strong motivation for including our own improved
and up-to-date review in this paper.

It is important to realise that any model for an EFD
involves assumptions about the noise properties of the data,
even though these assumptions are rarely stated explicitly
(or even recognised by the practitioners!). Since our work in
this paper is focussed on reviewing and comparing previously
proposed models, we adopt the same curve fitting method as
that employed in the vast majority of previous studies; namely,

the method of least squares, which is equivalent to adopting
a Gaussian noise model with constant variance and applying
maximum likelihood (ML) estimation (Section III-D). Even
though it is conventional to use the Gaussian noise model, it is
now known that it is a rather poor choice for modelling EFD
data because of the complicated properties of the observed
noise (e.g. due to driver behaviour, traffic dynamics, hysteresis
effects, etc., [28]–[30]). Some researchers have argued that
an EFD should be “cleaned” prior to fitting by discarding
measurements taken during non-stationary traffic conditions
(e.g. [31], [32]). While this goes some way to simplifying
the noise in EFDs, the noise properties after data filtering
are still far from Gaussian with constant variance (e.g. see
Figs. 8 & 9 in Cassidy [31]). Furthermore, since the filtering
step requires detailed analysis of high-resolution data from
before aggregation, this approach is infeasible (or highly cum-
bersome) for many valuable data sets. Therefore, in practice,
a significant number of studies on fitting EFDs use unfiltered
data (e.g. [20], [23]). The results and conclusions derived from
fits employing an unsuitable noise model, like those presented
in Section V, should be evaluated bearing in mind this caveat.
An extension of our investigation to include alternative and
more sophisticated noise models that can better account for
the observed scatter in EFDs (filtered or not), while sorely
needed, is beyond the scope of this paper.

In Section II, we describe the subset of data from
UTD19 that we select for the analysis. In Section III,
we gather together and review all of the previously proposed
speed-density and flow-density models for the functional form
of the FD, where we also identify the gaps and shortcomings
in previous reviews. We outline the methods used to fit the
data and compare the models in Section IV, and we present
and discuss our results in Section V. Finally, in Section VI,
we provide a brief set of conclusions and recommendations
for future research directions.

II. LOOP DETECTOR DATA

Loop detectors (LDs) are inductive wire loops embedded
in the road surface, covering one or more lanes, that are
connected to a controller cabinet at the side of the road. They
work by detecting the change in loop inductance caused by
the ferrous material in the vehicles passing over them. In a
given time interval, an LD reports the number of vehicles that
have passed over it (called the flow and commonly quoted as
a number of vehicles per hour per lane), and the fraction of
time that a vehicle was within its detection zone (called the
occupancy, which is a number in the range 0 to 1). It is worth
noting that LDs are prone to various types of malfunction
(e.g. [33], [34]), and even under “normal” conditions, they
may yield noisy measurements (e.g. they can be confused
by multi-axle trucks [32]). Some of the main sources of LD
measurement errors include pulse breakup (increases observed
flow and reduces observed occupancy [35]) and splashover
(increases both observed flow and occupancy [36]).

LDs are a type of point sensor in that they measure traffic
states at fixed locations in a road network during specific
time intervals (i.e. they provide “temporal” measurements).
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While this enables LDs to perform direct measurements of
traffic flow, they are unable to measure traffic density directly
because density requires measurement at a single instant of
time over a specific length of road (i.e. density is a “spatial”
measurement). However, the occupancy measured by an LD
is approximately proportional to the traffic density, despite
being a temporal as opposed to a spatial measurement. The
constant of proportionality is the mean (effective) vehicle
length as “seen” by the LD (i.e. the length of the vehicle plus
the length of the detection zone [37]–[39]). Deviations from
proportionality may be observed if the mix of vehicle types
and/or speeds varies significantly, especially since vehicle
lengths and speeds can be correlated (e.g. a higher truck-to-
car ratio during night time combined with the fact that trucks
tend to travel at lower speeds than cars [39]). Furthermore,
in urban networks, the occupancy measurements are biased by
the location of the LD along the road. Specifically, sections
of the road where vehicles tend to move slower will result in
higher occupancy measurements (e.g. close to the downstream
intersection [5], [17], [40]–[43]).

An accurate calibration of occupancy to density therefore
requires detailed external information (e.g. vehicle lengths and
speeds) that is not often available, or that is only available as
a gross approximation (e.g. an estimate of the mean effective
vehicle length). Fortunately, in the absence of the necessary
external information for the calibration, the approximate pro-
portionality between occupancy and density allows one to
model traffic flow as a function of occupancy as a proxy for
modelling the calibrated flow-density FD. This is especially
important for single LDs that in general provide only flow
and occupancy measurements, and it has therefore become
standard practice in this situation to model flow (veh h−1

lane−1) as a function of occupancy directly (e.g. [16], [20]).
This is also the approach that we take in this paper since the
data that we use consist only of flow-occupancy measurement
pairs.

A. Source of the Data

We use the UTD19 data set for 41 cities and 23,767 detec-
tors curated by Loder et al. [24], and we supplement it
with an extra year of LD measurements data for Zurich
(1st July 2017 to 30th June 2018 inclusive). The combined
data set includes 271,656,127 pairs/triples of flow-occupancy,
flow-speed, or flow-occupancy-speed measurements, where
each measurement pair/triple corresponds to a time inter-
val, typically of 3 or 5 minutes in duration, within which
the raw LD signals have been aggregated. Note that we
use the flow-occupancy-speed measurements as provided by
Loder et al. [24] from before the application of the com-
bined noise and outlier filtering (detailed under “Methods” in
Loder et al. [24]) since the noise filtering introduces strong
correlations between consecutive measurements.

Cassidy [31] has demonstrated that by discarding data cor-
responding to transient/non-stationary traffic conditions from
the raw LD signals, the scatter in the aggregated measurements
can be reduced. Whether this is desirable or not, this is not
possible in our case given that the raw LD data have already

been aggregated. In fact, this “cleaning” of the data is often
not possible and it is rarely ever done. We also note that
the UTD19 data set does not provide any information on the
heavy vehicle fractions (and their time-dependencies) for the
roads in each city, which may lead to uncontrolled distortions
in the EFDs, and as such this may negatively impact our
modelling results. However, the data mostly pertain to urban
areas where heavy vehicles are not so common, and any impact
that they may have on the EFDs should therefore be small.
The UTD19 data set was collated from a different source
in each city (typically the local authorities) and consequently
it is somewhat heterogeneous between cities with regards to
quantity, quality, and time coverage.

The data for three of the cities consist of flow measurements
from LDs, but no occupancy measurements, and speed mea-
surements from Bluetooth detectors that are not necessarily at
the same location as the LDs. Hence we exclude the data for
these cities (Groningen, 55 detectors; Melbourne, 1,630 detec-
tors; Utrecht, 1,072 detectors). A further six cities use LDs to
provide flow and speed measurements, but they do not provide
any occupancy measurements. Speed measurements from sin-
gle LDs are generally unreliable as they require calibration
with information that is usually poorly approximated (i.e.
LD lengths, individual car lengths [38], [44]). Furthermore,
for these cities, we lack any documentation from the data
providers on the procedure(s) they employed to derive speed
from flow and occupancy. Hence we also exclude the data for
Birmingham (66 LDs), Bolton (166 LDs), Innsbruck (16 LDs),
Manchester (181 LDs), Rotterdam (259 LDs), and Torino
(399 LDs). Compared to the other cities, Paris has a very long
aggregation time-interval of 1 hour, which cannot capture the
typical variations in traffic flow, and hence we reject these data
(247 LDs). Another three cities only provide data on a single
date with too few measurements in total, and we therefore
reject the data for Frankfurt (112 LDs), Munich (520 LDs), and
Vilnius (581 LDs). Finally, the data for Duisburg (190 LDs)
cannot be used because a non-disclosure agreement is in force.
This leaves a data set with 18,273 LDs across 27 cities.

B. Data Filtering

In the spirit of creating reproducible science, we explain
here how we filter the data described in Section II-A. We retain
only those LDs for which the road on which they are located
has a classification1 from the set:

{ living_street, motorway, motorway_link,
primary, primary_link, residential,
secondary, secondary_link, service,
tertiary, tertiary_link, trunk,
trunk_link, unclassified }

This leads to the rejection of 133 LDs. If an LD covers more
than a single lane, then the occupancy that is measured is very
difficult to interpret, and it is unclear that it would be propor-
tional to the traffic density. Therefore we reject the 3,043 LDs
for which the number of lanes that they cover is undefined or
greater than one. We reject 2 LDs in Toulouse because they

1Road classifications in UTD19 follow the Open Street Map convention -
https://wiki.openstreetmap.org/wiki/Key:highway
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Fig. 1. Examples of EFDs that exhibit the problematic features described in Section II-B. The category into which each of these example EFDs has been
classified is indicated in each plot.

have duplicated detector IDs. We find that 138 LDs do not
have any associated flow-occupancy measurements, and that
for 2,775 LDs, all of the flow-occupancy measurements are
flagged as errors. Hence we also reject these LDs. Further-
more, we reject 924 flow-occupancy measurement pairs for
which no information about the corresponding time interval
has been recorded. Finally, to ensure that each LD provides
sufficient data for all of our model fitting and comparison
purposes (see Section IV-B), we require that an LD has at least
900 flow-occupancy measurement pairs that are not flagged
as errors (i.e. 900 “good” measurements). This results in the
rejection of 605 LDs.

On visual inspection of the flow-occupancy EFDs for the
remaining LDs, we observe that a non-negligible number
of EFDs exhibit features that will either require special
modelling, or that are indicative of a malfunctioning LD.

We classify these problematic EFDs into seven broad types.
Examples of EFDs for each of the below categories are
displayed in Fig. 1.

I. Most likely due to changing speed limits, some EFDs
exhibit two or more free-flow branches. Efforts to model
such EFDs will require special treatment that is beyond
the scope of this paper, and so we reject 426 LDs with
EFDs that fall into this category.

II. EFDs in this category exhibit a second branch of
points at very low (or zero) flow that is independent
of occupancy. In some cases, intermittent periods of
queueing (low flow, medium/high occupancy) could be
the source of the second branch. The remainder of these
EFDs can be explained by numerous other causes (e.g.
a malfunctioning LD, an incident, etc.). Regardless of
the underlying causes, fitting multiple branches in EFDs
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TABLE I

PROPERTIES OF THE FINAL FILTERED DATA SAMPLE DESCRIBED IN SECTION II-B

is beyond the scope of this paper, and we reject the
267 LDs with EFDs in this category.

III. We reject 57 malfunctioning LDs for which the
flow-occupancy measurements form a cloud of seem-
ingly random points in the EFD with very little or no
discernable structure.

IV. The “straight line” structures of flow-occupancy mea-
surements observed in these EFDs are the result of
Loder et al. [24] using linear interpolation to fill in miss-
ing data over relatively large data gaps. The interpolated
measurements contaminate the bona fide measurements
with highly correlated samples that cannot be modelled
using the methods presented in this paper. We reject the
164 affected LDs.

V. A fraction of the occupancy measurements suffer from
a systematic zero-point offset that shifts them to higher
occupancy values, creating a horizontally shifted “copy”
of the EFD structure. This is clearly an LD controller
malfunction and we reject the 293 affected LDs.

VI. A fraction of the flow measurements suffer from a
systematic zero-point offset that shifts them to higher
flow values, creating a vertically shifted “copy” of the
EFD structure. Again, this is clearly an LD controller
malfunction and we reject the 18 affected LDs.

VII. The “loop” structures observed in these EFDs are a
problem that is unique to the Los Angeles LDs. No other
cities are affected. The Los Angeles LD flow-occupancy
measurements suffer from a large fraction of missing
data, and these have been smoothly interpolated over by
Loder et al. [24]. However, this contaminates the bona
fide measurements with highly correlated samples that
cannot be modelled using the methods presented in this
paper. We therefore reject all 202 LDs for Los Angeles.

Notice that all of these features are important in the context of
this paper as our focus is not on network aggregated metrics,
but on proper fitting of individual EFDs.

Our final data sample consists of 10,150 LDs from
25 cities with 168,183,675 flow-occupancy measurement pairs,
of which 147,034,646 measurement pairs are good (i.e. not
flagged as errors). We provide a summary of the properties of
these data in Table I, and a breakdown by road classification
of the LD sample in Table II. Note that the majority of
the LDs are located on interrupted flow facilities (i.e. roads
with intersections) which are typically monitored for the
purpose of controlling the traffic flow on to the highest level
roads. This filtered version of the UTD19 data set can be
downloaded from the Harvard Dataverse [45], while the code
used to generate the data sample is available on GitHub at
https://github.com/danlegend5/LDRD_41_Cities_Pipeline.

III. LITERATURE REVIEW ON MODELLING EMPIRICAL

FUNDAMENTAL DIAGRAMS

Due to the importance of the FD, there happens to be a vast
literature on modelling flow-density-speed inter-relationships.
Before we delve into the review, it is important to emphasise
that any model for an EFD actually consists of two main
components; namely, a model component that specifies the
functional form of the FD relationship, and a model compo-
nent that specifies the noise properties. The model component
for the functional form is what is discussed in depth in the
literature. Regrettably, the model component for the noise is
rarely even recognised, although it is implicitly defined by the
adopted fitting procedure(s). A few notable exceptions to this
are the papers by Inman [46], Heydecker & Addison [16],
Wang et al. [47], Ni et al. [48], and Bai et al. [49].
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TABLE II

BREAKDOWN BY ROAD CLASSIFICATION OF THE LDS IN THE FINAL
FILTERED DATA SAMPLE DESCRIBED IN SECTION II-B

A. Motivation and Scope

The data that we analyse in this paper are flow-occupancy
measurement pairs. Therefore we review all of the models in
the literature for the functional form of the FD relationship that
are stated analytically in flow-density form with q expressed
as a function of k, or that can be rearranged as such. Numer-
ically solving equations to determine the functional form is
beyond the scope of this paper, and we generally do not
consider any models that do not provide explicit analytical
expressions between flow, density, and speed. We also include
in our review any models for the functional form of the
FD relationship that are stated analytically in speed-density
form with v expressed as a function of k because they
can be trivially transformed into flow-density form by using
Equation 2. Models for the functional form that are in density-
flow, density-speed, flow-speed, or speed-flow form can rarely
be manipulated via a direct analytical transformation into flow-
density form, while specifically the density-flow and speed-
flow forms have the further problem that they are multi-valued
for each flow value. Hence, we generally do not consider these
models, which are covered in [50]–[59]. We have tried to make
this list reasonably complete, although it is quite possible that
we may have missed some relevant papers given the extent of
the available literature.

There are a handful of papers in the literature on numerical
simulations of traffic flow where the authors have adopted
their own specific formulae for the flow-density functional
form with fixed values in place of coefficients that could
potentially be allowed to vary (e.g. [60], [61]). In these works,
justifications for adopting these formulae are not provided, and
their properties and performance when used to fit real data are
not studied. It is not within the remit of our paper to generalise
these functional forms for the flow-density relationship, and
hence we do not include them in our review.

One of the desirable properties of a model component for
the functional form q(k) of the flow-density relationship is that
it should predict zero flow at zero density (see property P.2 in
Section III-B). We believe that this property is indispensable.
Therefore we do not consider the relevant models described

in [52], [62], [63] since they do not have this property. Again,
we have tried to make this list complete.

We only include the simplest multi-regime models for q(k)
in our review, because the sheer multitude of possibilities for
multi-regime models (of which many have been proposed in
the literature, especially as part of traffic simulation software)
makes it nearly impossible to assess them all. Some exam-
ples of better known multi-regime models which we do not
consider include [7], [64]–[73].

Most of the model components for q(k) that are reviewed
in Section III-C are specified with q expressed as an explicit
analytical function of k. Such expressions are referred to as
“parametric” in the sense that they include a fixed and clearly
defined set of parameters to be estimated. Non-parametric2

smoothing functions, on the other hand, allow the data to
determine the functional form of the flow-density relationship,
including the amount of smoothing involved (or equivalently
the effective number of free parameters [74]). This is done
without stringent prior specifications on any structure that
may exist within the data. In fact, non-parametric smoothing
functions can be viewed as a generalisation of multi-regime
models for q(k) where the number of regimes is allowed to
vary in a systematic and controlled way.

The idea of employing non-parametric smoothing functions
for q(k) is not new. Chen et al. [75] proposed using the
method of principal curves for generating a non-parametric
representation of q(k), and Locally Weighted Scatter-
plot Smoothing (LOWESS) was applied by Antoniou and
Koutsopoulos [76] to fit speed-density data. Neither method is
considered in our review. Principal curves are not guaranteed
to predict a single value for the flow at each density, and
the LOWESS implementation in the software that we use
in Section IV-A is too restrictive for our purposes. How-
ever, we do consider the monotonically-decreasing penalised
B-splines proposed by Sun et al. [20] (Section III-C17) for
modelling the functional form of the speed-density rela-
tionship. Finally, we exclude from our review any machine
learning techniques that have been used to model q(k) where
training is required (e.g. [77]), since tackling the extra com-
plications involved in the training of such models is beyond
the scope of this paper.

Our review concentrates in detail on flow-density relation-
ships, and it is necessary and timely for five main reasons.
Firstly, other similar reviews are now somewhat out of date,
with the most recent dedicated review being nearly a decade
old [27]. Secondly, the immense amount of data available
in UTD19 (a factor of ∼100-1000 times larger than any
of the data sets used in previous studies) enables a large
scale comparison of models for q(k) to be carried out for
the first time. Thirdly, none of the other reviews are fully
comprehensive in that some models for q(k) inevitably get left
out. Fourthly, we have noticed that small errors in the formulae
for some of the flow-density relationships are being propagated
forwards through the literature. For example, the exponent

2The term “non-parametric” is actually somewhat misleading since all
smoothing functions contain (hidden) parameters to be estimated including a
dominant parameter that controls the amount of smoothing (i.e. the smoothing
parameter).
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in the so-called “Drew” model is often written incorrectly
as n + 1/2 instead of (n + 1)/2. Fifthly, there has been a
systematic failure in the literature to attribute some of the most
important models for q(k) to the correct researchers. In the
paper by Gazis et al. [78] (hereafter GZ1961), a generalised
car-following model is used to derive a family of steady-state
flow-density relationships. The models for q(k) now referred
to as the “Drew”, “Northwestern/Drake”, and “Pipes” models
are actually special cases of this family, and yet GZ1961
are not referenced/credited appropriately3 by Drew [79],
Drake et al. [80], or Pipes [81]. Furthermore, only Drew [79]
provides a derivation for the special case that is proposed.
Considering only reviews of flow-density relationships, which
by now should have clarified this oversight, we find that
the failure to attribute these models correctly seems to trace
back to the monograph by Gerlough and Huber [26] and the
book by May [82]. This is surprising since the author of the
latter had previously worked on the GZ1961 family of models
(e.g. [83]). Unfortunately, even the modern review by Carey
and Bowers [27] continues to propagate this last issue. All of
these shortcomings are addressed in the review presented here.

As noted by Del Castillo and Benítez [84], there have gener-
ally been two approaches to specifying FD relationships. The
first approach is simply to formulate an analytical expression
for the functional form that possesses at least some of the
desirable properties of the FD relationship under consideration,
and that can be fitted to traffic data by adjusting some free
parameters. The analytical expression can be bestowed with a
phenomenological meaning by relating the free parameters to
useful properties of traffic flow (e.g. free-flow speed, jam den-
sity, capacity, etc.). The second approach relies on developing
an underlying theory of traffic dynamics at a micro-, meso-, or
macroscopic scale (e.g. car-following, cellular-automata, gas-
kinetic, etc.) that can predict a functional form for the FD
relationship (see [85] for a genealogy of traffic flow models).
The latter approach is more desirable since it allows traffic
flow theories to be tested by observations.

In Section III-B, we describe a set of desirable properties
for the functional form q(k) of the flow-density relationship.
These will be used to help characterise the previously proposed
model components for q(k), which we review in Section III-C
in chronological order of when they first appeared in the
literature. In Section III-D, we detail the model component for
the noise that is inherently assumed when using the method
of least squares for fitting. Each model component (functional
form or noise) is given an abbreviated name in the rele-
vant subsection for easy reference (e.g. GS1935, GZ1961A,
GaussSigCon).

B. Desirable Properties of the Flow-Density Functional Form

Del Castillo and Benítez [84] discuss desirable properties
of the model components for the functional forms of the
speed-density and flow-density relationships. These properties
were conceived from logical considerations about traffic flow,
and from observed features of EFDs. We gather the properties

3This is potentially due to the limited flow of information between
researchers at the time.

specifically pertaining to the flow-density relationship into a
list for the purpose of aiding in the characterisation of pre-
viously proposed model components for q(k) (Section III-C).
The overall flow-density model, and the desirable properties
for its functional form q(k), are only applicable for physically
relevant density values k ranging from zero to jam density
(i.e. for 0 ≤ k ≤ kjam). For some model components, kjam
is a model parameter to be estimated, or computed from the
estimated model parameters/relationship. Other model com-
ponents may fail to predict kjam, in which case this quantity
can be computed by counting the number of vehicles required
to cover 1 km of a single lane of roadway when positioned
bumper-to-bumper.

At this point, the following equation, derived by differenti-
ating Equation 2, is required:

q �(k) = v(k)+ k v �(k) (3)

where (�) represents the first derivative with respect to k.
The desirable properties of the model components for q(k)

are:
P.1 The predicted values of the flow q(k) are strictly

non-negative ranging between zero and a maxi-
mum called the capacity qcap (which occurs at the
critical density kcrit). This is written concisely as
0 ≤ q(k) ≤ q(kcrit) = qcap.

P.2 As vehicle spacing tends to infinity, vehicle speeds tend
to the free-flow speed vff, and density tends to zero.
Hence v(0) = vff, and Equation 2 implies that q(0) = 0.

P.3 At jam density kjam, vehicles are stopped (i.e.
v(kjam) = 0), which, using Equation 2, also implies that
q(kjam) = 0.

P.4 As vehicle spacing tends to infinity, vehicle speeds
tend to the free-flow speed vff, and density tends to
zero. Hence v(0) = vff, and Equation 3 implies that
q �(0) = vff.

P.5 From a speed of vff at k = 0, the speed decreases with
increasing density (i.e. v(k) ≤ vff and v �(k) ≤ 0). From
Equation 3, this implies that q �(k) ≤ vff.

P.6 The functional form q(k) of the flow-density relationship
is concave for at least some of the density range from
zero to jam density, which allows for the formation
of back-propagating shock waves. Mathematically, this
property translates into q ��(k) < 0 for some range of k.

P.7 The functional form q(k) is continuous. Whether this
property is desirable or not is certainly debatable
(see [84] for a discussion).

P.8 The functional form q(k) is differentiable. Again,
whether this property is desirable or not is certainly
debatable (see [84] for a discussion).

Table III lists the previously proposed model components for
q(k) that are described in Section III-C along with the sets of
desirable properties that they each possess.

We remind the reader that since occupancy is proportional
to density (Section II), any model component for q(k) is also
valid when k is replaced by occupancy, although some model
parameters may need rescaling appropriately. Furthermore, all
of the above considerations P.1 to P.8 for q(k) also apply to
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the flow-occupancy relationship with rescaled vff, kcrit, and
kjam. For any model component for q(k) that includes kjam
as a free parameter, we also consider a version with kjam
fixed, which we identify with “kjf” appended to the model
component name. For these “kjf” model components in flow-
occupancy form, we make the equivalent assumption that the
jam occupancy is fixed at unity.

C. Model Components for the Flow-Density Functional Form

In this section, we gather together and review a com-
prehensive collection of 50 model components for q(k).
All of these model components have been previously pro-
posed in the literature, although we have improved on a
few of them through reparameterisation and/or generalisation
(e.g. VA1995, BD1995, WG2011A, SN2014, SN2014kjf).

1) The Free-Flow Model (FF): Many of the LDs in our data
sample only provide observations in the free-flow uncongested
traffic regime (i.e. at low densities). Assuming a constant speed
independent of density in this regime, then the corresponding
flow-density relationship is given by:

q = vff k (4)

where the free-flow speed vff is the only free parameter.
We include this elementary linear model in our collection as a
potentially competitive model component for EFDs from LDs
that only ever measured traffic in the free-flow regime.

2) The Greenshields Model (GS1935): Based on his pio-
neering photographic study of road traffic in lightly congested
conditions, Greenshields [14] postulated the existence of a lin-
ear relationship between average speed and average density.4

In flow-density form, this relationship may be written as:
q = vff k − vff

kjam
k2 (5)

with free parameters vff and kjam. For physically meaningful
parameter values, this formula specifies an inverted parabola
with critical density kcrit = kjam/2. Although this model
component possesses all of the desirable properties P.1 to P.8
(Table III), its simple form imposes some limitations such as
the fact that the back-propagating wave speed at jam density
is forced to match the free-flow speed. This model component
is linear in the explanatory variables k and k2.

3) The Greenberg Model (GB1959): Assuming that a
traffic stream behaves like a continuous one-dimensional
fluid, Greenberg [86] derived the following flow-density
relationship:

q = vbw k ln

(
kjam

k

)
= (vbw ln kjam) k − vbw k ln k (6)

with free parameters vbw and k jam, where vbw is the
back-propagating wave speed at jam density. A deficiency

4Interestingly enough, the data used for the formulation of this hypoth-
esis are rather sparse (only seven speed-density measurement pairs) and
have varied provenance (they come from three different roads observed on
different dates). Furthermore, only one measurement pair has a medium
density of k ≈ 90.5 veh km−1, while the remainder are at low densities
k < 35 veh km−1.

of this model component is that the speed tends to infinity
as the density tends to zero. The critical density is given
by kcrit = kjam exp(−1). This model component is linear
in the explanatory variables k and k ln k. Gazis et al. [87]
subsequently showed how to derive Equation 6 from a car-
following model.

4) The Edie Multi-Regime Model (ED1961): By refining
a car-following model for uncongested traffic, Edie [88]
independently derived the UW1961A model (Section III-C5),
and then proposed combining it with the GB1959 model to
create a two-regime model for q(k) that avoids the principal
deficiencies of UW1961A and GB1959. Being a two-regime
model, there is a break-point 0 < kb < kjam to be determined
such that for 0 ≤ k ≤ kb, the UW1961A model is used,
while for k > kb, the GB1959 model is used. This model
component is non-linear with five free parameters vff, kcrit,
kb, vbw, and kjam.

5) The Underwood Models (UW1961A-B): Traffic data col-
lected from two different sites were used by Underwood [89]
to postulate an exponential speed-density relationship, which
in flow-density form, is given by:

q = vff k exp

(
− k

kcrit

)
(7)

This model component, which we refer to as UW1961A, has
two free parameters vff and kcrit, and it is non-linear.

A deficiency of UW1961A is that the flow never reaches
zero as the density increases. To remove this deficiency,
Underwood [89] suggested modifying the formula as follows:

q = vff k exp

(
− k

kcrit

)
−a k (8)

where a is an extra free parameter to be determined with
0 < a < vff. Doing this, however, means that vff and
kcrit lose their physical interpretations. The jam density for
this model component, which we refer to as UW1961B,
is kjam = kcrit ln (vff/a). The model component UW1961Bkjf
with fixed kjam can be formed by substituting the expression
a = vff exp(−kjam/kcrit) into Equation 8.

6) The Franklin-Newell Model (FN1961): Newell [90] con-
sidered non-linearities in car-following models and analysed
a specific example model for the functional form of the
speed-density relationship, although the author admitted that
“no motivation for this choice is proposed other than the
claim that it has approximately the correct shape and is
reasonably simple”. Independently, Franklin [91] derived an
equivalent steady-state flow-density relationship by adopting
a car-following model where available acceleration decreases
linearly with speed and a driver adjusts the actual acceleration
in proportion to the relative velocity of the vehicle ahead. The
flow-density formula corresponding to the Newell parameter-
isation is given by:

q = vff k

(
1 − exp

(
− λ

vff

(
1

k
− 1

kjam

)))
(9)

which is non-linear with three free parameters vff, λ, and kjam.
Note that λ is related to the back-propagating wave speed at
jam density via vbw = λ/kjam. There is no simple analytical
expression for kcrit.
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7) The Gazis Models (GZ1961A-H): By generalising the
sensitivity term in a car-following model, GZ1961 were able
to derive the following family of steady-state solutions:

fm

(q

k

)
= c1 fl

(
1

k

)
+ c2 (10)

where c1 and c2 are free parameters. The numbers m and l are
fixed constants (not necessarily integers) that define the form
of the sensitivity term in the underlying car-following model.
The function f p(x) is defined as follows:

f p(x) =
{

x1−p for p �= 1

ln x for p = 1
(11)

Various combinations of m and l generate model components
that have already been considered (i.e. (m, l) = (0, 2) yields
GS1935, (m, l) = (0, 1) yields GB1959, and (m, l) = (1, 2)
yields UW1961A). However, there are of course an infinite
number of possible model components that can be generated
by choosing different combinations of m and l. Easa and
May [92] provide a useful table of formulae corresponding
to the different regions in the (m, l) plane.

We limit ourselves to testing a selection of the potential
models that were plotted by GZ1961 in their Figs. 1-3. Each
model component has two free parameters taken from the set
vff, vbw, kcrit, kjam, and qcap. We call the first model component
GZ1961A which corresponds to (m, l) = (0, 1/2):

q = 2 vbw k1/2
jam k1/2 − 2 vbw k (12)

A deficiency of this model component is that the speed tends
to infinity as the density tends to zero. The critical density is
given by kcrit = kjam/4. This model component is linear in the
explanatory variables k and k1/2.

For GZ1961B we adopt (m, l) = (0, 3/2):

q = vff k − vff

k1/2
jam

k3/2 (13)

The critical density and back-propagating wave speed at jam
density are given by kcrit = 4 kjam/9 and vbw = vff/2,
respectively. This model component is linear in the explanatory
variables k and k3/2.

For GZ1961C we adopt (m, l) = (0, 3):

q = vff k − vff

k2
jam

k3 (14)

The critical density and back-propagating wave speed at jam
density are given by kcrit = √

3 kjam/3 and vbw = 2 vff,
respectively. This model component is linear in the explanatory
variables k and k3.

For GZ1961D we adopt (m, l) = (−1, 0):

q = 2 qcap

(
k

kjam

(
1 − k

kjam

))1/2

(15)

A deficiency of this non-linear model component is that the
speed tends to infinity as the density tends to zero. Further-
more, the back-propagating wave speed becomes unbounded
as the density tends to kjam. The critical density is given by
kcrit = kjam/2.

For GZ1961E5 we adopt (m, l) = (−1, 1):

q = √
2 exp

(
1

2

)
qcap

k

kjam
(ln kjam − ln k)1/2 (16)

A deficiency of this non-linear model component is that the
speed tends to infinity as the density tends to zero. Further-
more, the back-propagating wave speed becomes unbounded
as the density tends to kjam. The critical density is given by
kcrit = kjam exp(−1/2).

For GZ1961F6 we adopt (m, l) = (1, 3):

q = vff k exp

(
−1

2

(
k

kcrit

)2
)

(17)

A deficiency of this non-linear model component is that the
flow never reaches zero as the density increases.

It is interesting to note that the family of flow-density
relationships subsequently derived by Drew [79] from gen-
eralising the fluid-flow analogy of Greenberg [86] actually
forms a subset of the family of model components defined by
Equations 10 & 11. Specifically, they correspond to m = 0 and
l > 1. If one considers l as a free parameter (limited to l > 1)
as opposed to a fixed constant, then one obtains the following
non-linear model component with three free parameters:

q = vff k − vff

k l−1
jam

kl (18)

which we refer to as GZ1961G. The critical density and
back-propagating wave speed at jam density are given by
kcrit = l 1/(1−l) kjam and vbw = (l − 1) vff, respectively. As
l → 1 from above, this model component converges to
GB1959.

Reading further forwards through the literature, one finds
that the family of flow-density relationships proposed by
Pipes [81] in his review of car-following models7 also forms
a subset of the family of model components defined by
Equations 10 & 11. Specifically, they correspond to m < 1 and
l = 2. If one considers m as a free parameter (limited to
m < 1) as opposed to a fixed constant, then one obtains
the following non-linear model component with three free
parameters:

q = vff k

(
1 − k

kjam

)1/(1−m)

(19)

which we refer to as GZ1961H. The critical density is given
by kcrit = (1 − m) kjam/(2 − m). A deficiency of this model
component is that, as the density tends to kjam, the back-
propagating wave speed becomes unbounded for m < 0 and
it tends to zero for 0 < m < 1. For m = 0, vbw = vff.
As m → 1 from below, this model component converges to
UW1961A.

5Over a decade later, El-Hosaini [93] showed how to derive this formula
by assuming that traffic behaves like a compressible gas under piston action.
However, no reference to GZ1961 was made.

6A few years later, Drake et al. [80] explicitly proposed this same formula
with “no theoretical foundation” and without credit to GZ1961.

7There is no reference to the work of GZ1961 in Pipes [81], and he states
incorrectly that his proposed flow-density relationship “is a purely empirical
one and not based on any definite following law”.
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Finally we note that if m and l are both treated as free
parameters in Equation 10, then one obtains the most gener-
alised Gazis model. However, this model component is highly
non-linear in its four free parameters, and fitting it to data is a
very tricky process that requires careful optimisation across
nine distinct regions of the (m, l) plane [92]. This task is
beyond the scope of this paper.

8) The Drake Multi-Regime Models (DK1966A-B): As part
of their comparison study of speed-density relationships using
freeway traffic data, Drake et al. [80] proposed a set of new
multi-regime models.8 We consider the two simplest of these
multi-regime models here. The first, which we refer to as
DK1966A, has two regimes with a different linear trend in
speed as a function of density in each regime. In flow-density
form, this relationship may be written as:

q =
{
vff k−c k2 for 0 ≤ k ≤ kb

vbw k − (vbw/kjam) k2 for k > kb
(20)

This model component is non-linear with five free parameters
vff, vbw, kjam, c, and kb, where kb is the break-point. DK1966A
suffers from the deficiency that it may exhibit two peak flows.

The second multi-regime model, which we refer to as
DK1966B,9 has two regimes comprising of the FF and
GB1959 models with continuity imposed at the break-point.
In flow-density form, this relationship may be written as:

q =
{
vbw (ln kjam − ln kb) k for 0 ≤ k ≤ kb

(vbw ln kjam) k − vbw k ln k for k > kb
(21)

This model component is non-linear with three free para-
meters vbw, kjam, and kb, where kb is the break-point.
The free-flow speed and critical density are given by
vff = vbw (ln kjam − ln kb) and kcrit = max{ kjam exp(−1), kb},
respectively.

9) The Munjal Multi-Regime Model (MJ1971): The earliest
description that we can find of the ubiquitous triangular
flow-density FD is in [95]. This multi-regime flow-density
relationship is defined by:

q =
{
vff k for 0 ≤ k ≤ kcrit

vbw (kcrit−k)+ vff kcrit for k > kcrit
(22)

which is non-linear with three free parameters vff, kcrit, and
vbw. The critical density kcrit is also the break-point. The jam
density is given by kjam = (vff + vbw) kcrit/vbw.

10) The Boardman Model (BM1977): Boardman and
Lave [52] used highway traffic data to assess various speed-
flow, flow-speed, speed-density, and flow-density relationships.
One of their proposed speed-density relationships has not been
considered so far in this review, and in flow-density form it is
given by:

q = vff k exp(−c1 k) exp(−c2 k2) (23)

This model component is non-linear with three free parameters
vff, c1, and c2. The critical density is the positive root (if it
exists) of the quadratic equation 2c2 k2+c1 k = 1. A deficiency

8Two of the multi-regime models were attributed to an unpublished report
by Ellis from 1964.

9This particular multi-regime model was independently proposed by
Dick [94].

of this model component is that the flow never reaches zero
as the density increases.

11) The van Aerde Model (VA1995): By proposing a rela-
tively simple car-following model for the minimum desired
separation between consecutive vehicles, van Aerde [96]
derived a flow-density relationship that we have reparame-
terised in the form:

q = α

(
1 − β k −

(
(γ k − 1)2 + δ k2

)1/2
)

(24)

This flow-density relationship is non-linear and the four free
parameters α, β, γ , and δ relate to the original parame-
terisation in [96] via α = (2 c3)

−1, β = c1 − c3 vff,
γ = c1 + c3 vff, and δ = 4 c2 c3. Physically meaningful
non-negativity constraints on c1, c2, and c3 combined with
vff > 0 translate directly to non-negativity constraints on
α, γ , and δ, while β may take on any value. The critical
density can be computed by solving a rather complicated
quadratic equation in k, and the jam density is given by
kjam = 2 (γ − β)/(γ 2 − β2 + δ). The model com-
ponent VA1995kjf with fixed kjam requires an alternative
reparameterisation:
q = α

(
1 − (

k−1
jam − ψ − ω

)
k

−
( ((

k−1
jam − ψ + ω

)
k − 1

)2 + 4ψ ω k2
)1/2

)
(25)

with three free parameters α, ψ , and ω, where
ψ = c2/vff ≥ 0 and ω = c3 vff ≥ 0.

12) The Bando Model (BD1995): In their numerical traffic
simulations, Bando et al. [97] proposed a simple formula that
directly relates vehicle speed to vehicle headway. By including
appropriate scale factors in the formula, one obtains the
following steady-state flow-density relationship:

q = vff k

(
tanh

(
c1 k−1 − c2

) + tanh c2

1 + tanh c2

)
(26)

where vff, c1, and c2 are the three free parameters, and c1 > 0.
A deficiency of this non-linear model component is that the
flow converges to a positive value as the density increases.
Note that there is no simple analytical expression for kcrit.

13) The Del Castillo Models (DC1995A and DC2012B):
Del Castillo and Benítez [84] proposed a set of four
speed-density formulae as examples of “generating func-
tions” that possess certain properties desirable of a speed-
density relationship. However, as the authors themselves
noted, the shapes of the “rational”, “double-exponential”,
and “reciprocal-exponential” families of curves “can be very
well reproduced by the exponential generating functions”. For
this reason, and following [84], we also only consider the
“exponential” family of speed-density curves, which have the
following formula in flow-density form:

q = vff k

(
1 − exp

(
1 −

(
1 + vbw kjam

m vff

(
1

k
− 1

kjam

))m))
(27)

where vff, vbw, kjam, and m are the four free parameters, and
m > 0. This non-linear model component, which we refer to
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as DC1995A, is a generalisation of the Franklin-Newell model
(Section III-C6) since DC1995A reduces to FN1961 when
m = 1. We note that there is no simple analytical expression
for kcrit.

Nearly two decades later, Del Castillo [22] revisited his
earlier work with the aim of developing new flow-density
formulae that include the Munjal multi-regime model
(Section III-C9) as a particular limiting case. From three
similar flow-density relationships that were considered, Del
Castillo [22] settled on the “negative power model” as the
best option for various practical reasons. This non-linear model
component, which we refer to as DC2012B, has the formula:

q = vff k

(
1 +

(
vbw kjam

vff

(
1

k
− 1

kjam

))−m
)−1/m

(28)

with four free parameters vff, vbw, kjam, and m, where m > 0.
The critical density can be computed analytically in this case
using:

kcrit = kjam

(
1 +

(
vff

vbw

)m/(m+1)
)−1

(29)

As m → ∞, this model component converges to MJ1971.
14) The Ghandehari Model (GD2008): In a short technical

report, Ghandehari and Ardekani [98] proposed a modified
Greenberg model by introducing an extra free parameter as
follows:

q = c1 k ln

(
kjam + c2

k + c2

)
(30)

where kjam, c1, and c2 are the three free parameters, and
c2 ≥ 0. The free-flow speed and the back-propagating wave
speed at jam density are given by vff = c1 ln ((kjam + c2)/c2)
and vbw = c1 kjam/(kjam + c2), respectively, while there is no
simple analytical expression for kcrit. This non-linear model
component is equivalent to GB1959 when c2 = 0.

15) The MacNicholas Model (MN2008): Without any par-
ticular theoretical justification, MacNicholas [99] proposed the
following non-linear flow-density relationship:

q = vff k
1 − (k/kjam)

n

1 + c (k/kjam)n
(31)

where vff, kjam, c ≥ 0, and n > 1 are the four free parameters.
The back-propagating wave speed at jam density is given by
vbw = n vff/(1 + c), while the critical density can be computed
by solving a quadratic equation in (k/kjam)

n . When c = 0,
this model component reduces to GZ1961G, and then further
converges to GS1935 as n → 1 from above.

16) The Wang Models (WG2011A-C): For aesthetical rea-
sons as opposed to theoretical ones, Wang et al. [23] put
forward a set of generalised logistic functions as candidates
for representing the functional form of the speed-density rela-
tionship. We have partly reparameterised the five-parameter
formula, which now reads as follows in flow-density form:

q = c1 k + c2 k (1 + exp (c3 (k − kref)))
−m (32)

where c1, c2, c3, kref, and m are free parameters that control
the shape of the curve,10 and c3 �= 0 and m > 0. A deficiency
of this non-linear model component, which we refer to as
WG2011A, is that if all of c2, c3, and kref are strictly positive
as one might expect, then the formula only predicts a finite
jam density when c1 < 0. Otherwise, for c1 = 0, the flow
tends to, but never reaches zero, as the density increases, and
for c1 > 0, the flow increases without bound. We note that
there is no simple analytical expression for kcrit.

By setting m = 1 in WG2011A, Wang et al. [23] obtained
a four-parameter model component,11 which we refer to
as WG2011B. Then, by setting c1 = 0 in WG2011B,
the three-parameter model component WG2011C is derived.
These less flexible model components still suffer from the
same deficiencies as those outlined for WG2011A.

17) The Sun Model (SN2014): Sun et al. [20] proposed
using penalised B-splines (a type of non-parametric smooth-
ing function), constrained to be monotonically decreasing,
to model the functional form of the speed-density relationship.
In their work, they used a quadratic B-splines basis, varied the
number of knots from 2 to 9, and kept the penalty parameter
fixed at unity. In this case, it is the number of knots that acts
as a smoothing parameter, and because this number is limited
to a finite set of discrete values, the full flexibility of these
smoothing functions is underexploited.

In our own improved implementation of the Sun model,
also constrained to be monotonically decreasing, we employ
a cubic B-splines basis with 11 equally spaced knots. The
effective number of free parameters contributed to a fit by
the penalised B-splines, estimated by computing the trace
of the smoother matrix, acts as the smoothing parameter in
our case [74], and it is allowed to vary continuously with a
minimum value of unity. Estimation of the effective number of
free parameters for a regularised model enables its comparison
in terms of degrees of freedom with unregularised models,
where the latter have discrete numbers of free parameters.
Equal knot spacing is important for penalised B-splines [100],
and the only impact of our choice for the number of knots is to
limit the maximum effective number of free parameters to 13.
Let B−

pen(k) represent the monotonically-decreasing penalised
B-splines. Due to certain limitations of the modelling software
that we use in Section IV-A, in order to force a prediction of
zero flow at zero density, we must write the corresponding
flow-density formula as follows:

q = k exp
(

B−
pen(k)

)
(33)

This non-linear model component has no physically meaning-
ful free parameters, and kcrit must be estimated numerically.
The free-flow speed may be evaluated via vff = exp(B−

pen(0)).
Since the penalised B-splines are not constrained to be strictly
monotonically decreasing, the flow can potentially diverge in
a linear fashion for densities above the maximum observed

10Contrary to what is stated in [23], the parameters of the generalised
logistic function do not have any physical meaning when applied to the FD.
For example, c1 is not the speed at jam density, and c1+c2 is not the free-flow
speed.

11Wang et al. [23] are in error when they state that kref is the critical density
for the four- and three-parameter models.
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density. A further deficiency that is specific to our implemen-
tation of this model component is that the flow never reaches
zero as the density increases.

The Sun model, regardless of implementation details, is not
guaranteed to predict a jam density. To construct the model
component SN2014kjf and force the prediction of zero flow
at a fixed jam density, we rewrite Equation 33 as follows:

q = k

(
1 − k

kjam

)
exp

(
B−

pen(k)
)

(34)

While it is certainly possible to treat kjam as a free parameter
in this formula, we have not yet managed to develop a
practical implementation of this feature using the software
tools available to us.

D. The Gaussian Noise Model With Constant Variance
(GaussSigCon)

The noise that is observed in an EFD originates from
the stochasticity inherent to the underlying system dynam-
ics (e.g. driver behaviour, driver types, traffic composition,
transient states, hysteresis effects, etc.) combined in some
measure with the uncertainty introduced during data collection
and/or processing. To fit curves to the noisy data, regardless
of whether measurements taken during non-stationary traffic
conditions have been rejected or not, all but a few of the
studies on EFDs have employed the method of least squares,
which consists of adjusting the curve parameters to minimise
the sum of the squared residuals from the fitted curve. This is
equivalent to:

(i) assuming that the observations of the dependent variable
(i.e. the flow in our case) are independent of each other
and that they all follow a Gaussian distribution,

(ii) assuming that the Gaussian distribution has a mean
that matches the curve to be fit, and a variance (or
standard deviation) that is constant (i.e. independent of
density/occupancy in our case),

(iii) adjusting the model parameters to maximise the likeli-
hood function (i.e. ML estimation).

In the literature on modelling EFDs, Inman [46] seems to have
been one of the first authors to recognise that “implicit in the
ordinary least squares regression analyses of previous studies
has been a presumption of a normal error structure for the
dependent variable”. For this reason, the author assumes that
“transformed observations of volume . . . are independently
normally distributed with constant variance” and then he
applies ML estimation to perform the fits.

Using Qi to denote a univariate random variable for flow
corresponding to the i th flow measurement, we may write
this particular model component for the noise in the flow
observations as:

Qi
ind∼ N (q(ki), σcon) for i = 1, 2, . . . , Ndat (35)

where N (μ, σ ) represents a Gaussian distribution with mean
μ and standard deviation σ , ki is the i th density measurement,
q(ki) is the predicted flow at ki given the adopted model com-
ponent for the functional form, σcon is the standard deviation,
and Ndat is the number of flow-density measurement pairs.

This noise model component has a single free parameter σcon
(apart from the free parameters in q(k)).

The adoption of a Gaussian distribution in the noise model
ensures that the predicted distribution of flow values at any
given density is unimodal, although it has the drawback of
predicting negative flows with a non-zero probability. The
assumption of independence between observations is highly
likely to be violated to some extent, while the variance in the
flow is known to vary as a function of density12 (e.g. [31],
[102], [103]). Furthermore, this noise model component fails
to take into account the fact that the density/occupancy mea-
surements also suffer from noise. Clearly, the GaussSigCon
noise model component is not particularly suitable for mod-
elling flow-density (or speed-density) EFD data. However, our
focus is on reviewing and comparing previously proposed
models for the FD, the vast majority of which have used
the method of least squares for fitting, and hence we adopt
GaussSigCon as the equivalent noise model component in
our study. Improving on these models by addressing the
deficiencies in GaussSigCon is not part of this work.

IV. METHODS

From this point onwards, we refer to a particular FD model
solely by the abbreviated name of its model component for
q(k) (e.g. GB1959) since all of the models that we consider
in this paper have the same noise model component (i.e.
GaussSigCon).

A. Model Fitting

For each of the 10,150 LDs in the data sample that we
selected in Section II, we fit all of the models reviewed
in Section III to the corresponding flow-occupancy EFDs
using ML estimation, or maximum penalised likelihood (MPL)
estimation, as appropriate. Flow-occupancy measurement pairs
that are flagged as errors are ignored in the fits. The data
include 3,196,239 non-flagged flow-occupancy measurement
pairs where the occupancy is zero, and 2,758,156 of these
also have zero flow. The data with positive flow measurements
at zero occupancy are most likely erroneous, while the data
with zero flow at zero occupancy do not constrain either the
functional form or noise model components of any model since
we have required that all functional form model components
satisfy property P.2 (Section III-B). Furthermore, occupancy
values of zero can cause difficulties in implementing the
fitting algorithms for certain models (e.g. evaluating k ln k
in GB1959). Hence we ignore all of the flow-occupancy
measurement pairs with zero occupancy in the fits.

While there are many software options available for per-
forming fits via ML/MPL estimation, we have specifically

12Note that reweighting schemes for least squares fits to EFDs like the
one improvised by Qu et al. [101] are equivalent to modelling the flow
measurements with a non-constant standard deviation in Equation 35. The
motivation for the development of such schemes lies in the poor quality of
the fits that are obtained with certain q(k) model components when using
the GaussSigCon noise model for EFD data that (typically) have a heavy
imbalance in the number of flow measurements between the uncongested and
congested regimes. However, this imbalance ceases to be an issue when an
appropriate noise model (i.e. with a density-dependent variance) is employed.
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TABLE III

PROPERTIES OF THE PREVIOUSLY PROPOSED MODEL COMPONENTS FOR THE FUNCTIONAL FORM q(k) OF THE FLOW-DENSITY RELATIONSHIP THAT ARE
DESCRIBED IN SECTION III-C. IN THE COLUMNS P.1 TO P.8, “YES” SIGNIFIES THAT THE CORRESPONDING DESIRABLE PROPERTY IS FULFILLED

FOR A PHYSICALLY RELEVANT AND NON-TRIVIAL SUBSET OF THE MODEL COMPONENT PARAMETER SPACE

opted to use the gamlss software13 in the R14 programming
language for fitting Generalised Additive Models for Location,
Scale, and Shape (GAMLSS [104], [105]). The GAMLSS
statistical framework provides a very general approach to
regression analysis in which the dependent (or response)
variable is modelled using any parametric distribution, and
the distribution parameters for location (e.g. mean), scale
(e.g. standard deviation), and shape (e.g. skewness, kurtosis)
are allowed to vary as a function of a set of explanatory

13https://www.gamlss.com
14https://www.r-project.org

variables. The GaussSigCon noise model component is one
of the simplest noise models that can be specified within
the GAMLSS framework, and our motivation for employing
the gamlss software is to open up the door to exploring
alternative noise model components in future work.

For a model of EFD data consisting of the functional
form model component q(k) and the noise model component
GaussSigCon, the likelihood function L(θ) is given by:

L(θ) =
Ndat∏
i=1

(
2π σ 2

con

)−1/2
exp

(
−1

2

(
qi −q(ki)

σcon

)2
)

(36)
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where θ is a vector of model parameters (which includes σcon),
qi is the i th flow measurement, and the other symbols are as
previously defined. For practical reasons, the gamlss() func-
tion estimates the free model parameters by minimising the
log-likelihood function −2 lnL(θ) over the parameter space,
which is equivalent to maximising L(θ). From Equation 36,
we have:

−2 lnL(θ) = Ndat ln
(

2π σ 2
con

)
+ 1

σ 2
con

Ndat∑
i=1

(qi − q(ki ))
2

(37)

where the second term may be recognised as the chi-squared.
The penalised log-likelihood function that is minimised during
MPL estimation is the log-likelihood function in Equation 37
plus an appropriate penalty term (see [105]).

The fits of the models with parametric-linear model com-
ponents for q(k) (see Table III) are achieved by a single call
to the gamlss() function, as are the fits for UW1961A,
GZ1961F, BM1977, SN2014, and SN2014kjf, except that for
these last five models we replace the identity link function for
μ in Equation 35 with a log link function. For the remaining
models, repeated calls to gamlss() are required to iteratively
explore the log-likelihood surface for the parameter space of
the non-linear parameters. This is typically done using the
L-BFGS-B algorithm [106], and if convergence fails, a second
attempt is made using the Nelder-Mead simplex or Brent algo-
rithms as appropriate [107], [108]. A limit of 500 iterations
is placed on each of these non-linear optimisation methods.
However, for the models with multi-regime model components
for q(k), the break-point parameter is instead explored by
profiling the log-likelihood over the occupancy range of the
data (using 50 equally spaced occupancy values), and then
iteratively refining the best fit (7 iterations), since multi-regime
models are notorious for yielding multiple local likelihood
maxima. Initial parameter estimates are required for a number
of the models with parametric non-linear model components
for q(k), and these are obtained by first fitting one or more
of the models GS1935, GS1935kjf, GB1959, GB1959kjf, and
UW1961A to the data.

All calls to gamlss() use the default values for the
algorithmic control parameters, except when fitting SN2014
and SN2014kjf. We found that by increasing the maximum
number of cycles of the outer iteration of the GAMLSS fitting
algorithm from 20 to 300, and by relaxing the convergence
tolerance on the log-likelihood from 0.001 to 0.02, some
of the (very few) fits for these models that were failing
to converge with the default values would instead complete
successfully. Note that local ML estimation [109] is used to
determine the effective number of free parameters for SN2014
and SN2014kjf.

We have implemented all of the above fitting proce-
dures in an R software package called FitFun (v1.0),
which can be used to fit either speed-density or flow-density
EFD data with any of the models reviewed in Section III.
FitFun is publicly available for download from GitHub at
https://github.com/danlegend5/FitFun.

Fits can take anything from ∼1 sec to ∼10 min to complete,
depending on the complexity of the model and the number of
flow-occupancy measurement pairs. Any fits that require more
than 30 min of processing time15 are declared as timed-out,
since complicated non-linear models that take an unreasonable
amount of time to fit are of little practical use to traffic
engineers.

A total of 507,500 fits are required for 10,150 EFDs and
50 models. Of these, 505,291 fits complete successfully within
the 30 min time limit, while 490 fail (gamlss() declares
non-convergence or an error), and 1,719 are timed-out. The
breakdown by model for the fits that either fail or do not
finish within 30 min is given in Table VI in Appendix A.
Some examples of fitted models for selected EFDs are plotted
in Figs. 4 & 5 in Appendix B.

B. Model Comparison and Selection Using Information
Criteria

Very often in scientific modelling, one faces the task of
selecting an optimal (or best) model for a data sample from a
set of candidate models (multiple working hypotheses). In this
context, “optimality” refers both to the Principle of Parsimony,
in that the best model should constitute the simplest model that
provides a good fit to the data without under- or over-fitting,
and to appropriate/relevant model performance measure(s).
Model estimation via ML assumes a uniform prior probabil-
ity density function on the model parameters. Consequently,
as parameters are added to a model, the ML always increases,
rendering it useless for the purpose of model selection between
models with different dimensionalities. Error-based metrics for
comparing model fits (such as RMSE) also suffer from the
same problem since they are derived from likelihood functions.
Information criteria are used as an alternative for evaluating
models with different numbers of parameters.

Various information criteria have been developed from dis-
tinct statistical view-points as implementations of the Principle
of Parsimony and each one may be used to automatically
select a parsimonious model from a set of candidate models.
They may be applied regardless of whether the models under
consideration are nested or non-nested. Here we will compare
model fits using the Akaike information criterion (AIC [110])
and the Bayesian information criterion (BIC [111]). It is
conceivable that we could also reject any unreasonable fits
by filtering out those that have unphysical curve properties or
parameter values. However, doing this fairly and consistently
across all 50 FD models would be unfeasible given the fact that
each model has some kind of built-in deficiency (e.g. GB1959
predicts an infinite free-flow speed, UW1961A fails to predict
a jam density, GZ1961E predicts an infinite back-propagating
wave speed at jam density, etc.). Furthermore, the FD models
from our review have not been designed to account for the
effect that the LD location relative to an active bottleneck has
on the shape of an EFD, and evaluating them on this basis
would be unfair. Hence, we do not implement any further

15Each fit is run on a single core of a 14-core Intel(R) Xeon(R) 2.40 GHz
CPU (E5-2680 v4).
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filters or metrics on the fit properties, and we use only the
AIC and the BIC to assess model performance.

1) The Akaike Information Criterion: The AIC, which
applies to linear and non-linear models estimated via ML, may
be computed via:

AIC = −2 lnL(θ̂)+ 2Npar (38)

where θ̂ is a vector of ML estimators for the model parameters,
and Npar is the total number of free parameters in the model.
Model selection with the AIC is performed by minimising
−2 lnL(θ) for each model, and then minimising the AIC over
the full set of models under consideration.

The AIC is derived as an asymptotic approximation to
the Kullback-Leibler divergence [112] which measures the
distance of a candidate model from the true underlying model
under the (reasonable) assumption that the true model is of
infinite dimension. In this case the AIC provides an asymptot-
ically efficient selection of a finite dimensional approximating
model. However, if the true model is finite dimensional,
then the AIC does not provide a consistent model selection.
A model selection criterion is said to be consistent if it selects
with high probability the true model from the set of candidate
models whenever the true model is represented in the set of
candidate models. The aim of the AIC is to evaluate models
based on their prediction accuracy.

It is important to be aware that the AIC suffers from a
large negative bias when the number of model parameters is
a non-negligible fraction of the number of data values (e.g.
for Ndat/Npar < 40 [113]). This bias can be corrected for, but
at the cost of general applicability, since the formula for the
bias correction depends on the statistical model that is being
fitted. For example, Sugiura [114] derived a bias-corrected
version of the AIC for Gaussian linear regression problems
that is asymptotically the same as the AIC for Ndat � Npar.
In Section II-B, we expressly adopted the requirement that an
LD has at least 900 flow-occupancy measurement pairs that
are not flagged as errors so as to avoid the need to make any
model-specific bias corrections to the AIC.

Takeuchi [115] generalised the AIC with a more compli-
cated formula to create the Takeuchi information criterion
(TIC). Subsequently, Konishi and Kitagawa [116] derived a
further generalisation of the AIC and TIC, called the gener-
alised information criterion (GIC), that can also be applied
to model selection for models with parameters estimated by
MPL. The gamlss software only implements the AIC from
the available AIC-like information criteria. Consequently, for
GAMLSS models that employ a non-parametric smoothing
function estimated by MPL (i.e. SN2014 and SN2014kjf in
our case), the gamlss software computes the AIC via Equa-
tion 38 by using the vector of MPL estimators for the model
parameters in place of θ̂ and the trace of the smoother matrix
as an estimate of the effective number of free parameters
contributed to the fit by the smoothing function.

2) The Bayesian Information Criterion: An alternative
approach to model selection is a Bayesian approach where
the model with the largest Bayesian posterior probability is
chosen. The BIC is derived by approximating the posterior
probability of each model, and, like the AIC, it also applies to

linear and non-linear models estimated via ML. The formula
for the BIC is as follows:

BIC = −2 lnL(θ̂)+ Npar ln Ndat (39)

Model selection with the BIC proceeds in the same way as
for the AIC.

The BIC generally includes a heavier penalty than the AIC
(and the bias-corrected AIC) for more complicated models
(e.g. in the regime Npar < 20 for Ndat > 50), therefore
favouring models with fewer parameters than those favoured
by the AIC. Konishi et al. [117] performed a deeper Bayesian
analysis to derive an improved BIC, along with a version that
applies to model selection for models with parameters esti-
mated by MPL. The BIC and the improved BIC are consistent
model selection criteria. Again, the gamlss software only
implements the BIC from the available BIC-like information
criteria. Consequently, for GAMLSS models that employ a
non-parametric smoothing function estimated by MPL, the
gamlss software computes the BIC via Equation 39 by using
the vector of MPL estimators for the model parameters in place
of θ̂ and the trace of the smoother matrix as an estimate of
the effective number of free parameters contributed to the fit
by the smoothing function.

3) Model Likelihoods: For a set of Nmod models indexed by
j that have each been fitted to the EFD data from the lth LD,
one may rescale the corresponding AIC values as follows:

�AIC, j l = AIC j l − min
r=1,...,Nmod

{AICrl } (40)

This forces the model with the lowest AIC value (i.e. the best
model) for the lth EFD to have �AIC, j l = 0. Applying the
simple transformation exp(−�AIC, j l/2) converts the rescaled
AIC values into model likelihoods, which can then be nor-
malised to sum over the set of models to unity:

pAIC, j l = exp(−�AIC, j l/2)∑Nmod
r=1 exp(−�AIC,rl/2)

(41)

The quantity pAIC, j l can be interpreted as the probability that
the j th model is the best model for the lth EFD. Models for
which a fit fails or is timed-out are assigned pAIC, j l = 0. For
a set of NLD LDs, each with an EFD, the expected fraction
FAIC, j of EFDs from the full set of NLD EFDs for which the
j th model is the best model is given by:

FAIC, j = 1

NLD

NLD∑
s=1

pAIC, j s (42)

The above procedure may also be applied to the BIC values
for the model fits in exactly the same way. In a Bayesian
context, use of Equation 41 is equivalent to computing the
posterior probabilities of the models given the data under the
assumption that the prior probabilities of the models are all
the same and equal to 1/Nmod.

V. RESULTS AND DISCUSSION

We apply the rescaling and transformation procedure
detailed in Section IV-B3 to the AIC and BIC values computed
by the gamlss software (Sections IV-B1 & IV-B2) for the
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Fig. 2. Plots of curves of FAIC (left-hand column) and FBIC (right-hand column) for each model as a function of the maximum useful occupancy measurement.
Results are further broken down by road grouping (arterial, top row; collector/distributor, middle row; local, bottom row). For clarity in each plot, a curve is
only plotted for a model if the maximum value of FAIC or FBIC in the curve exceeds 0.05. Curves are colour coded appropriately with a legend in each plot
indicating which model they correspond to. The grey region displayed in the background of each plot tracks the number of LDs (or EFDs; right-hand scale)
used to compute the points on the curves.

fits that we performed in Section IV-A. This results in two
10, 150 × 50-element arrays of model probabilities. Applying
Equation 42 to each array by summing over all of the LDs
in our data sample allows us to rank the models based on the
full data set. In Tables IV & V, we report the top ten models
ranked according to the expected fraction of EFDs from the
full data set for which a model is the best model when using
the AIC or BIC, respectively, for model selection.

The clear winner by far is SN2014 for both information
criteria. Furthermore, the top three models in each list are the

same (SN2014, SN2014kjf, and ED1961). In fact, both lists
have nine models in common with orderings that only differ
slightly between them due to lower rankings for DK1966A
and DC2012B in Table V. The top ten models account
for the best models ∼97% and ∼88% of the time for the
AIC and BIC, respectively, leaving very little room for the
remaining models to have any impact. It is interesting to
note that the models that employ non-parametric smoothing
functions for q(k) are the winners, followed far behind by a
mix of the discontinuous multi-regime models and some of
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TABLE IV

TOP TEN MODELS RANKED ACCORDING TO THE EXPECTED FRACTION
FAIC OF EFDS FROM THE FULL DATA SET FOR WHICH A MODEL IS

THE BEST MODEL WHEN USING THE AIC FOR MODEL SELECTION

TABLE V

TOP TEN MODELS RANKED ACCORDING TO THE EXPECTED FRACTION
FBIC OF EFDS FROM THE FULL DATA SET FOR WHICH A MODEL IS

THE BEST MODEL WHEN USING THE BIC FOR MODEL SELECTION

the single-regime models with at least four free parameters.
For the winning model SN2014, one observes that FAIC >
FBIC. This happens because SN2014 typically employs a
greater (effective) number of free parameters than any of the
other models, and hence the SN2014 fits, relative to the other
model fits, receive larger penalties for the BIC than they do for
the AIC. The fact that SN2014 is the best model according to
both information criteria serves to highlight by just how much
SN2014 outperforms all of the other models.

To explore how the model rankings depend on the type of
road that an LD is located on, we split the data sample into
three road groupings named “arterial”, “collector/distributor”,
and “local” with 3,230, 5,595, and 1,325 LDs, respectively
(Table II). Performing the appropriate sums over the two arrays
of model probabilities using Equation 42, we find that each
road grouping yields the same top five models in the same
order as that listed in Tables IV & V for the AIC and BIC,
respectively, with similar sets of models for the rest of the top
ten in both cases. Furthermore, the values of FAIC and FBIC are
relatively insensitive to road type. For example, for SN2014 we
find FAIC ≈ 64.9% and FBIC ≈ 39.1% for the arterial roads,
FAIC ≈ 65.2% and FBIC ≈ 37.1% for the collector/distributor
roads, and FAIC ≈ 64.6% and FBIC ≈ 31.8% for the local
roads. This is an important finding as it surprisingly reveals
that model performance is mostly independent of road type,
despite the presence of localised disruptions to traffic flow (e.g.
intersections) on collector/distributor and local roads. We also
find that different choices for the road groupings do not affect
these results.

There are many ways that we could further partition the
data sample into subgroupings of LDs. An important aspect

to consider, and one that we will focus on here, is the occu-
pancy coverage of the flow-occupancy measurements in each
EFD. It is conceivable that EFDs that only have data in the
free-flow uncongested traffic regime (i.e. at low occupancies)
will require less complicated parsimonious models than those
that are required for EFDs with data extending into congested
traffic conditions (i.e. at medium/high occupancies). To enable
this line of investigation, for each EFD we attempt to identify
the highest occupancy measurement that can meaningfully
constrain any FD model. The procedure that we adopt to do
this for each individual EFD is as follows:

(i) For each occupancy measurement in descending order,
repeat steps (ii)-(iii).

(ii) Count the number of occupancy measurements within
±0.1 of the current occupancy measurement.

(iii) If the number of occupancy measurements identified
in step (ii) is less than 30 (chosen as a reasonable
minimum number of measurements required to locally
constrain any FD model), then move on to the next
occupancy measurement in step (ii). Otherwise, record
the current occupancy measurement as the maximum
useful occupancy measurement for this EFD, and finish.

The maximum useful occupancy measurement identified in
this way serves as a proxy for the effective occupancy coverage
of the EFD data when fitting FD models.

By selecting a subset of LDs from a specific road grouping
that have EFDs with maximum useful occupancy measure-
ments within a certain range (or bin), and then performing the
appropriate sums over the two arrays of model probabilities
using Equation 42, one obtains values for FAIC and FBIC for
each model. We use the three aforementioned road groupings
and a set of bins in maximum useful occupancy of half-
width 0.1, with centres following a dense arithmetic sequence
of values between 0 and 1, to construct curves of FAIC and
FBIC for each model. We plot these curves in the six panels of
Fig. 2, organised into rows by road grouping and columns by
information criterion. For clarity, a curve is only plotted for
a model if the maximum value of FAIC or FBIC in the curve
exceeds 0.05. The grey region displayed in the background
of each plot tracks the number of LDs (or EFDs; right-hand
scale) used to compute the points on the curves, which is at
least 100, and up to ∼1600, for all but the smallest values of
the maximum useful occupancy. This provides confidence in
the curves down to a maximum useful occupancy of ∼0.1. The
bin width of 0.2 was chosen as a reasonable trade-off between
resolution and noise in the curves. Consequently, points on a
curve that are separated by more than 0.2 in occupancy are
derived from fully independent data samples.

The plots in Fig. 2 reveal a number of interesting facts.
Firstly, the plots make it clear that the rankings of the top
three models according to the AIC and BIC are unchanged
and mostly insensitive to the effective occupancy coverage
of the EFD data, except for the BIC rankings for EFDs
from collector/distributor or local roads with maximum useful
occupancy measurements in the range ∼0.4-0.85 (here the
top three change to SN2014kjf, SN2014, and VA1995 in
that order). This also indicates that somewhat surprisingly,
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Fig. 3. Plots of (fitted) effective number of free parameters in the q(k)
component of the SN2014 model against the maximum useful occupancy
measurement (red dots) for each road grouping. The minimum and maximum
possible values for the effective number of free parameters are plotted as
horizontal dotted lines. The black continuous curve in each plot is the running
mean with a bin size of 0.2, while the black dashed curves represent the
running mean plus/minus the running standard deviation.

for LDs with data solely in the free-flow uncongested traffic
regime (i.e. with maximum useful occupancy measurements
below ∼0.1), the SN2014 and SN2014kjf models still prevail
as the best models according to both information criteria,
whereas the simplest models such as FF and GS1935 which
one might expect to be more suitable for this traffic regime
do not even reach the threshold of 0.05 for FAIC or FBIC
in order to be plotted. Secondly, the FAIC and FBIC values
for SN2014 tend to increase with increasing maximum useful

occupancy, with a faster increase above a maximum useful
occupancy of ∼0.75. Thirdly, for EFDs that cover the full
range of occupancy from 0 to 1, the SN2014 model achieves
FAIC and FBIC values of ∼80% and ∼60%, respectively,
indicating that in the majority of cases this is the most
parsimonious model for EFDs with the best observational
coverage.

These last two facts are explained by the ability of the
SN2014 model to adapt to increasingly complex functional
forms of the observed flow-density relationship as one consid-
ers EFDs with greater effective occupancy coverage. In Fig. 3,
for each of the three road groupings, we plot the (fitted)
effective number of free parameters in the q(k) component of
SN2014 against the maximum useful occupancy measurement
(red dots). The black continuous curve in each plot is the run-
ning mean with a bin size of 0.2, while the black dashed curves
represent the running mean plus/minus the running standard
deviation. There is a clear trend of increasing effective number
of free parameters from ∼7 parameters at a maximum useful
occupancy of ∼0.1 to ∼9.5 parameters at a maximum useful
occupancy of unity. This indicates that the SN2014 model
accommodates increasingly complex functional forms of EFD
data by gradually increasing its effective number of free
parameters. The same comments and observations also apply
to SN2014kjf, although this model is slightly more restricted
in that it is forced to predict zero flow at jam occupancy (unity
in our case). None of the other models that we have reviewed
in this paper have this adaptive ability, which undoubtedly puts
them at a disadvantage when considering the full spectrum of
EFDs.

Digressing briefly to consider the fixed jam den-
sity/occupancy (or “kjf”) versions of the model components
for q(k), we note that Coifman [32] has argued that the
jam occupancy should be ∼0.8. If this is correct, then by
fixing the jam occupancy to unity, we may have inadvertently
disadvantaged the performance of the corresponding models.
However, having inspected the plots of all EFDs in our data
sample, we have seen very few cases where the jam occupancy
could potentially differ substantially from unity, and the EFDs
shown in Figs. 4 & 5 provide unequivocal examples of where
the jam occupancy is very close to unity. Interestingly, from the
same figures, it can be observed that fixing the jam occupancy
in SN2014kjf leads to smoothing curves that are slightly more
stable (and therefore more appealing) than those for SN2014
in some cases.

The findings in this section reveal that, given a Gaussian
noise model with constant variance (GaussSigCon), the
UTD19 EFD data are not well-described by any of the para-
metric model components for q(k) (Table III). This statement
holds true regardless of the properties of the parametric
model components (e.g. linear or non-linear, number of free
parameters, single- or multi-regime, derived from theoretical
considerations or not) or the EFD data (e.g. road grouping,
effective occupancy coverage). However, as we have already
discussed in Sections I & III-D, while it has always been
conventional to use this simple noise model, it is now known
that GaussSigCon is not particularly suitable for modelling
flow-density EFD data. Specifically, the width and shape of
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Fig. 4. Plots of EFDs (red dots). Both plots on a single row show the same EFD data but with different fitted models. The plots in the left-hand column
always feature the same fitted model SN2014, whereas the plots in the right-hand column feature a different fitted model for comparison purposes. In each
plot, the fitted model is represented by a black continuous curve for q(k) and sequentially lighter grey regions for the ±1σ , ±2σ , and ±3σ standard Normal
quantile regions. The fixed jam density version of the model (if it is defined) is also fitted to the data and the corresponding q(k) is plotted as a black dashed
curve for further comparisons. The vertical dotted line corresponds to the maximum useful occupancy measurement for the specific EFD. The plot titles are
all of the same format listing the country, city, loop detector ID, road grouping and classification, and fitted model. The sub-captions provide information on
the length L and speed limit vlim of the road, and the distance D of the LD from the downstream intersection.

the flow distribution typically varies as a function of density,
and the density/occupancy measurements also suffer from
noise. Furthermore, the appearance of transient/non-stationary
traffic conditions shifts the (aggregated) measurements away
from their expected locations in the FD, the capacity drop
phenomenon skews flow measurements to lower values, and
hysteresis effects introduce time-correlations between mea-
surements. None of these complexities in the noise properties
of the data can be accounted for by GaussSigCon which
only confers a single parameter to the full model. Even for
EFDs constructed solely from measurements taken during

stationary traffic conditions, the noise properties of the data
are still far from Gaussian with constant variance. With a
non-parametric smoothing function for q(k), SN2014 is the
only model that is flexible enough to be able to partially
compensate for the rigidity of the conventional noise model,
and hence it is by far the best performing model overall.
A more sophisticated noise model component (defined within
the GAMLSS statistical framework for example) can account
for all of the aforementioned complexities in EFD data (filtered
or not), yielding unbiased fits for the functional form of EFDs.
We suspect that by adopting a more appropriate noise model
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Fig. 5. More plots of EFDs (red dots). The format of the figure is the same as in Figure 4.

component in the future, the results presented here could
potentially change substantially.

VI. CONCLUSION AND RECOMMENDATIONS

Taking advantage of the ever increasing amounts of traffic
data that are becoming available, we selected a high quality
and well-controlled sample of 10,150 flow-density EFDs from
the UTD19 data set (Section II). We then presented a detailed
and comprehensive review of the literature on modelling the
functional form of EFDs (speed-density and flow-density),
highlighting the fact that earlier reviews, now at least a
decade old, have been propagating a number of errors and
misattributions forwards through the literature, and that they
have inevitably left some models out (Section III). These gaps
and shortcomings in previous literature reviews, along with the
recent creation of UTD19, have motivated the need for a new

review and comparison study. We hope that our review, which
addresses all of these issues, will now become the one-stop-
shop for researchers wishing to understand the development
of FD models up to the present day.

We performed fits of all 50 of the previously proposed
models for the functional form of the flow-density relationship
to the selected EFDs by adopting the GaussSigCon noise
model and employing ML estimation (Section IV-A). This is
equivalent to curve fitting using the method of least squares,
which has been the method of choice by researchers up until
now. We compared the fits using two different information
criteria (AIC and BIC), which allow for the selection of a
parsimonious model from a set of candidate models with
different numbers of parameters (Section IV-B). We found
that the non-parametric Sun model (and its fixed jam density
version) outperforms any of the other previously proposed
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parametric models by a big margin, and that this result is not
affected by road type or the effective occupancy coverage of
an EFD (Section V). It seems that the Sun model adapts better
to the complexities of EFD data than the parametric models,
and evidence for how it does this can be seen in the way
that the fitted effective number of free parameters increases
as the effective occupancy coverage of the data increases.
Considering the types of roads to which the EFDs in our
data sample belong (Table II), it can be seen that this result
is mainly applicable to interrupted flow facilities (i.e. roads
with intersections). Additional data would be needed to study
uninterrupted flow facilities (i.e. freeways) in depth, and this
is left for future studies.

Our comparison study has finally provided a definitive
answer to the question that so many other researchers have
previously attempted to investigate; namely, “Which model
for the functional form of an empirical fundamental diagram
is currently the best?”. However, the answer that we have
found suffers from the caveat that it only applies to the
GaussSigCon noise model, which is a rather poor choice
for EFD data (filtered or not). It is quite possible that a
more sophisticated noise model could lead to substantially
different results. Furthermore, the fact that a non-parametric
smoothing function constitutes the best model for the observed
functional form of the FD relationship may be somewhat
disappointing to many traffic researchers, since this model has
no physically meaningful parameters to be estimated, and no
underlying traffic flow theory that can be validated, making it
difficult to relate to the theoretical FD. Another shortcoming
of the winning model is the fact that it does not provide any
reliable flow predictions outside of the occupancy range of
the data. We note that over the full data set, and also for the
three different road groupings, the best model with physically
meaningful parameters and an underlying traffic flow theory
is ED1961 (see Tables IV & V and Section V). For some
practitioners, the intended use of the fitted FD model may
further influence which model is selected from our tables of
rankings, in which case our results are an important first step
in the model selection process.

Since the pioneering work of Greenshields [14], there has
been an unbalanced focus on modelling the functional form of
EFDs to the detriment of understanding the noise properties
of the observations. While this may have been acceptable in
the early days, the research community now needs to work on
finding a better noise model. A massive amount of effort has
already been expended on inventing complicated non-linear
functional form models that simply cannot match the Sun
model when handicapped by a restrictive noise model with just
a single free parameter. The era of proposing such functional
form models and fitting them using the method of least squares
is over. Instead, the UTD19 data set ushers in a new era
of research into EFDs where the noise model component is
given just as much importance as the model component for
the functional form. This balanced approach is likely to lead
to a much better understanding of EFDs and the underlying
functional form of the FD relationship.

On a final note, we have tried with this work to create
fully reproducible science, which is still relatively hard to

TABLE VI

BREAKDOWN BY MODEL OF THE 2,209 FITS THAT EITHER FAIL OR DO
NOT FINISH WITHIN 30 min. IF A MODEL IS NOT LISTED, THEN ALL

OF THE CORRESPONDING 10,150 FITS COMPLETE SUCCESSFULLY

come by even in this digital age. Towards this end, we are
making the data sample that we prepared publicly available
(see Section II-B), along with the FitFun software that we
used to perform the fits (see Section IV-A). Furthermore, any
of the few remaining methods or procedures that we employed
that are not covered by the above have been described in this
paper in sufficient detail for repeatability. Hopefully this will
aid other researchers to reproduce and improve on our results
by developing better (noise) models, opening up a new golden
age in the study of EFDs.

APPENDIX A

From a total of 507,500 fits, 490 fail and 1,719 are timed-
out. The breakdown by model of these numbers is given in
Table VI.

APPENDIX B

In Figs. 4 & 5, we show some example plots of models that
have been fitted to selected EFDs.
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