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What Do We Know When? Modeling
Predictability of Transit Operations

Beda Büchel and Francesco Corman

Abstract— Predictions of transit delays are crucial to passen-
gers and operators. Passengers utilize the predictions to decide on
departure time, route choice, and mode choice, whereas operators
decide on schedules, timetables, rolling stock allocation, and
control actions. We introduce the concept of predictability of
transit travel times as the study of the reduction of the predicted
variability with the temporal approaching of a predicted event.
We evaluate predictability on a real-life test case in Zurich,
Switzerland, spanning multiple transit lines over one year of
operations. The concept is shown based on predictions obtained
by a state-of-the-art Bayesian network approach, where we show
how predictability (in general) can be modeled as an exponen-
tial decay phenomenon. The study of predictability of transit
operations leads to additional insights for control actions and
system analysis compared to other complementary concepts such
as punctuality or regularity, for instance, concerning bunching,
identification of bottlenecks, and passenger routing.

Index Terms— Transit operations, predictability, Bayesian net-
work, stochastic predictions, travel time variability.

I. INTRODUCTION

TRANSIT operations are crucial to welfare in urban net-
works, providing mobility for a wide range of users.

Smart cities are expected to leverage data about past operations
to quantify, predict, and especially improve mobility. Transit
systems are known to be subject to delays and non-punctuality,
which constitutes a gap between passengers’ desires, opera-
tors’ goals, and realized performance. Observed data (running
and dwell time, arrival and departure times) have often been
used to evaluate punctuality or regularity of operations. When
running times deviate from the timetable or show large vari-
ability, operations can be managed by inserting appropriate
buffer time or control points. In this paper, we focus without
loss of generality on urban bus systems.

The importance of accurate delay predictions in transit
systems is undisputed. For control purposes (i.e., actions such
as holding or short turning), a model of future operations
is required [1]. Moreover, accurate predictions of delays,
disseminated through real-time information systems, assist
passengers in decision making considering route, mode and
departure time [2].

Prediction models are getting progressively sophisticated
based on analytic paradigms and the increased availability
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of data. Technologies such as automatic vehicle location (AVL)
or identification (AVI) systems have been implemented in
transit vehicles all over the world [3].

Passengers and operators need predictions for different
purposes and are affected differently from their prediction
horizons. We define a prediction horizon as the time period
between the time the prediction of an event (e.g., the arrival
of a bus) is made and the time the event takes place. For
instance, passengers planning their trip in a transit system
might be interested in a long prediction horizon (e.g., one day
in advance). While en route, they are interested in their arrival
time prediction horizon comparable to the length of the trip,
say 15-30 minutes in urban areas. At transfer stops, they are
interested in the arrival time of the next bus (prediction horizon
comparable to headway; ∼ 5min in urban areas). On the
other side, operators are interested in predictions horizons
compatible with possible control actions. For instance, the
prediction horizon for inserting additional vehicles from the
depot is comparable to the length of a line run (∼ 30 min -
1 hour). Generally, predictions can be made at any desired
prediction horizon. Their accuracy is related to the error
between the predicted and the realized outcome, aggregated
over all the outcomes; this hints to a distribution of error. The
smaller the variance of the distribution of the error (sharp),
and the smaller the mean of the distribution of the error
(unbiased), the more accurate the prediction is. The accuracy
of a prediction is assumed to improve with a decreasing
prediction horizon.

Here we address the problem of formally describing this
phenomenon, propose mathematical models that represent the
real-life dynamics that can be estimated from the study of
networked systems over time, and explain its relevance.

We, therefore, introduce the concept of predictability, which
determines the time horizon at which a prediction becomes
sufficiently accurate. The predictability informs about the
remaining variability given an event, a prediction model,
and observed input data (variability describes the character-
istic spread of a phenomenon; variation is its quantification;
variance is a specific quantification function). Predictability
improves with the temporal approaching of an event.

To quantify it, our framework processes data, considers a
stochastic prediction, and repeatedly analyses the prediction
over time. The evolution of the predictions is described by
a specific model. A stochastic prediction (compared to a
point-based estimate as current in the literature) is required,
which can dynamically include online, real-time information
(compared to not using it or using it only once as a snapshot) to
predict bus operations interconnected in a network. We model
predictability by the variance of the predicted outcome at
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different prediction horizons. We experimentally find a con-
vergence from a maximum to a minimum value, modeled well
as an exponential decay.

Predictability allows understanding which temporal and
spatial factors have the strongest impact on predictive per-
formance, highlighting the dynamics of the transit system.
Predictability is relevant in prescriptive analytics frameworks
or for customer information.

The contributions of the paper are as follows:

• The concept of predictability is introduced, which com-
plements the descriptive (punctuality, regularity), pre-
dictive (prediction accuracy), and prescriptive analytics
(observability, controllability) of networks.

• The predictability fits well an exponential decay based on
a state-of-the-art Bayesian network approach.

• Comparing predictability of different events over time and
space, transit operations can be analyzed, optimized, and
communicated to passengers, for improved performance.

This paper is structured as follows: Section II proposes
a literature review; Section III defines our interpretation of
predictability. Section IV introduces the prediction model and
the framework to analyze predictability. Section V and VI
report on the test case and an empirical evaluation. Section VII
and VIII discuss applications, and conclusions respectively.

II. LITERATURE REVIEW

A. Transit Operations

Transit systems are considered an essential backbone of
suitable urban development [1]. Bus operation consists out
of alternating running and dwelling processes while a bus
travels along a route. Both running and dwell times are
subject to stochastic variability (i.e., statistical dispersion),
which can be attributed to different factors [4]. Among others,
running times are affected by traffic conditions, infrastruc-
ture, and driver behavior [5]; dwell times are affected, for
instance, by boarding and alighting passengers and vehicle
characteristics [6].

Low-frequency transit systems are typically operated
according to a timetable; hence punctuality (i.e., the adherence
to timetable) is an important aspect of reliability. On the other
hand, in high-frequency transit systems, regularity (i.e., adher-
ence to headway) is crucial for reliable operations. To increase
transit reliability, it is therefore vital to detect irregular oper-
ations [7], [8] and to implement control strategies [1]. These
control strategies aim to reduce the variability of departure
times or headways and improve the regularity and punctuality
of timetable-based operations. Timetable-based bus operations
are typically scheduled so that the timetable includes buffer
times in addition to the minimal dwell and running times, such
that operations are feasible also if a bus is impeded to operate
at optimal conditions. At specific stops, called time points,
early buses wait to adhere to schedule again. Introducing
buffer times forces dealing with the trade-off between minimal
travel times and maximal punctuality. The service quality is
optimized when, among other indicators, buses show high
punctuality (i.e., low deviations from the published timetable)
and high reliability (i.e., low variability) [9].

Accurate predictions of delays, given as deviations from
a planned timetable, are beneficial to passengers. Real-
time information reduces the waiting time uncertainty of
passengers [10]. Additionally, passengers can adapt their
travel choices in terms of route, departure time, and mode
according to the provided information leading to better
decision-making [11].

Furthermore, in recent years research focus has been put
on reliability issues, “arriving when planned” is an essential
desire of transit users, and reliability and variability are critical
for analyzing a bus system [12].

B. Transit Operations

The prediction of bus arrival times or the linked delays
got, given its practical usefulness, plenty of research attention
in the past decades [13], [14]. Research contributions in
bus arrival time predictions can be divided into three areas:
route construction, impact factors (related to modeling the
processes and their interconnection), and models (related to
the algorithmic performance and accuracy) [15].

Routes are most commonly either constructed basing on
links (e.g., [16]) or stops (e.g., [17]). Link-based models
divide a bus route basing on infrastructure configuration
(e.g., intersections), whereas stop-based models divide the
bus route basing on stop locations [18]. It has been shown
that stop-based models show a higher prediction accuracy,
especially if dwell times are explicitly modeled [18], [19].

Most prediction models make use of traffic information
either based on real-time data (online, e.g., [15]) or archived
data (offline, e.g., [20]). Moreover, weather (e.g., [21]),
passenger counts (e.g., [22]), crowdsourced data were used
(e.g., [23]).

A variety of statistical and machine learning models have
been proposed to predict bus travel times. Early models often
applied historical averages (e.g., [19], [24]) or multivariate
linear regression (e.g., [25]). Kalman filter models (e.g., [16]),
support vector machines (e.g., [16]) or hybrid approaches
(e.g., [26]) were applied. In recent years, prediction frame-
works basing on artificial neural networks became popular.
Various types of neural networks have been proposed for
bus arrival time predictions, such as feedforward neural net-
works (e.g.,.( [27], [28]), recurrent neural networks (e.g., [26],
[29]–[31]), or convolutional neural networks (e.g., [17]).

Most of the proposed models predict single values. How-
ever, for smart decision-making, it is not only important to
have predictions (as point estimates) as accurate as possible but
also to quantify their associated variability (statistical disper-
sion). The variability of a prediction describes how the spread
of possible outcomes is. Only a few studies have analyzed it in
detail [32]. Formally, the variability of a prediction describes
how the spread of possible outcomes is. Measures of variation,
e.g., variance or interquartile range, can be used to evaluate
it, as far as stochastic prediction techniques are used. For
instance, quantile regression [33], relevance vector machine
regression [34], or prediction intervals for neural networks [35]
have been used to model the variability of bus arrival time
predictions. Those studies provide, however, a prediction range
rather than a fully-specified distribution.
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TABLE I

OVERVIEW OF LITERATURE

C. Influence of Prediction Horizon

It is generally reported that the accuracy of arrival predic-
tions decreases with an increasing prediction horizon in terms
of space and time (e.g. [10], [24], [36]). The reason for this
behavior is that there is greater uncertainty regarding future
conditions. However, the error of travel time prediction does
not grow linearly. Reference [24] showed that the relative
prediction error of a travel time prediction decreases as the
remaining travel time increases. Finally, [37] investigated the
horizon at which the prediction of the arrival time outperforms
averaged past observations, which resulted in being 6km in
their specific case.

D. Research Gap and Contribution

To summarize, various models exist in the literature,
• describing past performance, or predicting future perfor-

mance, given some knowledge of the system offline, and
online, and some assumed mathematical model;

• using deterministic or stochastic approaches;
• modeling the performance of a process with its con-

straints and specific aspect (for instance, identify vari-
ables that physically influence performance); or relating
multiple processes of a networked system into an inter-
connected chain of dependencies;

• studying the dynamics of how the prediction changes as
more online information is revealed, and the event to be
predicted becomes closer in time.

In Table I, we comparatively categorize the literature with
respect to those four factors. For the most relevant combina-
tions found, we describe some typical problem settings and
provide some exemplary references. The table does not claim

to be a complete summary of the vast literature but compares
the different problems tackled so far.

Table I shows that many works cover specific aspects of
the descriptive and predictive modeling of bus operations.
Various approaches that predict bus arrival times identify more
variation in a prediction (i.e., lower predictability) at a long
prediction horizon than at a short horizon. However, in the
current literature, no framework models quantitatively such a
relation.

Hence, we propose a model to describe the information
regarding an event over time, modeled as a process happening
in a networked system, subject to online information; that
is, what we know when. We define a characteristic, the
predictability, modeling the variation of the predicted value
of an event, computed a certain time before the event occurs.
In other terms, we characterize how the information revealed
over time results in changes for the prediction error of an
event.

III. PREDICTABILITY

Events, as running or dwell times of buses, do not take
the same duration on different days but are subject to natural
variability. This natural variability can be learned from past
observations of an event and can be considered as the Day-to-
Day variability [12]. An event observed with similar values on
multiple days has a low natural variability, whereas an event
that takes vastly different values has high natural variability.

For a specific event, its variability can be estimated by its
natural variability (i.e., the variability between similar trips on
different days [12]). Conditioning the event to specific other
events (covariates) might decrease the variability. For instance,
the travel time on rainy days is always a bit longer than on
sunny days. The travel time across all days is more variable
than on either sunny or rainy days. Prediction models exploit
this to associate a reduced variability once the predictors are
determined. A completely predictable event is an event where
the predicted variability is negligibly small. A small predicted
variability can either be achieved by a low natural variability
(e.g., a bus can always run at the speed limit on a dedicated
bus lane) or an informative (i.e., with high sharpness and low
bias) prediction model (e.g., a model finding that a bus running
time takes a fixed value on sunny days and another fixed
value on rainy days). Prediction models can only reduce part
of the variability. We call remaining variability the still out-
standing variability associated with the output of the prediction
model.

We refer to the predictability P of an event at a given
time, as the remaining variability of this event, given a
prediction model using selected data, observed at the given
time. High predictability means that an event is well predicted,
resulting in a low remaining variability. Low predictability is
associated with high remaining variability. P is highly time-
dependent, as the availability and precision of explanatory data
depend on the time. With a shorter prediction horizon, the
knowledge of the situation gets more complete and accurate,
possibly enabling a more informative prediction. Nevertheless,
even at the shortest horizon, there is a remaining variability.
P depends on the natural variability, the availability and
precision of explanatory data, and the prediction algorithm.
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TABLE II

PREDICTABILITY DEPENDING ON VARIABILITY
AND PREDICTION MODELS

For a given prediction model, P of an event is bounded
between a maximal and a minimal value. The lowest
predictability is observed at a long horizon. Assuming a perfect
prediction model, the predicted variability at a long prediction
horizon Plong would correspond to natural variability. For any
prediction model, the predicted variability is higher than the
natural variability due to epistemic uncertainties (due to mod-
eling simplifications). The maximum predictability is achieved
when the predicted variability is minimal, i.e., just before
the event takes place. Assuming a perfect prediction model,
the predicted variability at a short prediction horizon Pshort
corresponds to the aleatoric (process) uncertainty. In practice,
any prediction model can only approximate the true dynamic
of operations and interdependencies of events.

Table II displays the characteristics of predictability by com-
paring four different cases of operation. It shows which com-
binations of high/low natural variability and non-/informative
prediction model result in what predictability at short and long
time horizons. An informative prediction model can reduce
the variability with a decreasing prediction horizon, whereas
a non-informative prediction model cannot reduce the variabil-
ity. A non-informative prediction model can be attributed to a
combination of aleatoric and epistemic uncertainties.

Given a low natural variability, an investment in a more
informative prediction model might not be worthwhile, as the
variability is already low, i.e., there is nothing to improve.
In the presence of high natural variability, an informative pre-
diction model can reduce the variability significantly. However,
we need to keep in mind that the prediction is typically only
informative if the required covariates are observed or can be
well predicted.

The predictability directly answers the question of how
reliable a prediction is at a given time. Thus, it delivers
relevant information for passengers and operators, which is
more beneficial than a measure that solely evaluates the natural
variability or how much the prediction model is informative.
The predictability combines both the evaluation of the nat-
ural variability and the prediction model and hence gives
information on the remaining uncertainty – without requiring
assumptions on the reason for it.

IV. METHODOLOGY

Analyzing the predictability over time requires probabilistic
predictions. Hence, we first introduce a prediction framework
in section A, which delivers predictions that can be ana-
lyzed later. In section B, we present a model for analyzing

Fig. 1. Flowchart of the methodology.

predictability. Fig. 1 shows the flowchart of the methodol-
ogy for modeling predictability, with an explicit comparison
against descriptive and predictive analytics.

A. Prediction Framework

A prediction framework is needed to evaluate the pre-
dictability. We require the prediction approach to deliver
probability distributions (as opposed to point estimates) to
quantify the variability of the prediction. Furthermore, it needs
to include online information such that the predicted variabil-
ity changes with the temporal approaching of the predicted
event. Any prediction approach fulfilling these requirements
is applicable. In this paper, we use a Bayesian prediction
framework, as it fulfills those requirements and is state-of-
the-art [43], [45], [47].

In a Bayesian prediction framework, the crucial assumption
is that the time value of a node Xi only depends on its
parents PaXi and it is independent of any other preceding
node in the graph given its parents:

P (Xi |X1, . . . , Xi−1) = P(Xi |PaXi ) (1)

This property allows simplifying the joint distribution for
the Bayesian network to:

P (X1, . . . , Xn) =
n∏

i=1

P(Xi |PaXi ) (2)

This allows reducing the amount of required computation
since most nodes have few parents, even for large networks.
The proposed Bayesian network uses the following (standard)
assumptions. The dwell time dt of a given bus run r at a
given stop s depends on the dwell time of the same bus at
the previous stop dtr,s−1, dwell time of the previous bus at
the same stop dtr−1,s , and the headway from the previous bus
hr,s . The running time depends on the running time of the
same bus in the previous section r tr,s−1 and the running time
of the previous bus in the same section r tr−1,s . Hence, the
dependency structure is given by

P
(
dtr,s | . . .

) = P
(
dtr,s |dtr−1,s , dtr,s−1, hr,s

)
P

(
r tr,s | . . .

) = P|(r tr−1,s, r tr,s−1) (3)

The described framework builds on running times at a
section level and dwell times at a stop level. The arrival time
ATr,s and the departure time DTr,s of a bus run r at a specific
stop s can be described by summing up all upstream running
and dwell times and adding to the initial departure time of the
bus run. DT r,0 describes the initial departure time at the start
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of a bus run r .

AT r,s = DT r,0 +
s∑

σ=1

r tr,σ +
s−1∑
σ=1

dtr,σ (4)

DT r,s = DT r,0 +
s∑

σ=1

r tr,σ +
s∑

σ=1

dtr,σ (5)

The model is furthermore adapted for controlled bus oper-
ations and can account for holding strategies. In practice, this
means that buses ahead of schedule wait at predefined time
points. By deliberately forcing buses to wait, headway variance
and average waiting time of passengers can be reduced. Our
model extends the dependency structure of dwell times at time
points. The dwell time of early buses is prolonged such that
the early arriving buses depart exactly on time at such time
points.

The proposed model assumes that all bus trips are the
same (i.e., same stops are served), buses do not overtake each
other, buses are independent of other bus lines, only holding
strategies are applied; and at terminal points, there are no
dependencies between buses. To apply the model in a case
study where these assumptions do not hold, the model should
be adapted.

B. Modeling Predictability Over Time

To mathematically characterize predictability at different
time horizons P (T ), we identify few parameters, which
describe its behavior well. Here, we quantify the P by the
predicted variance v. Hence, low v symbolizes a high P.
First, we model the variance v at an event level, that is
isolated running and dwelling events. At a long prediction
horizon T we can define the variance vlong , which corresponds
for a good model approximately to the empirical variance of
all recorded events used for training the model. At short T
we expect the variance vshort , which corresponds for a good
model approximately to the aleatoric uncertainty in the data.
A short T symbolizes the time just before the event takes
place, hence vshort is the minimal predicted variance.

lim
T →∞ v(T ) = vlong

lim
T →0

v(T ) = vshort (6)

A descriptive analysis of statistical moments of operations
(e.g. standard deviation of delay) is comparable to an estimate
of the variance vlong . Prediction algorithms aim to reduce
prediction error, i.e., reduce the estimated variance vshort to a
minimum value. Predictability fills the gap between those two
values, studying the variance depending of T .

With the approaching of a predicted event, i.e., a decreas-
ing T , the model can explain more and more of the variance
due to its real-time update. At a long prediction horizon, the
variance explained by the real-time update is 0. This latter
value increases with a decreasing prediction horizon and just
before the predicted event is observed, the variance explained
by the real-time update vexpl is maximized.

lim
T →∞ vexpl(T ) = 0

lim
T →0

vexpl(T ) = vlong − vshort (7)

To approximate the variance at different T , we assume
that the predictors are observed regularly over time and that
they can reduce the variance similarly in every step. This
assumption is a major simplification, but can be defended
as, in reality, following sections or bus stops share similar
properties (e.g., in terms of infrastructure, passenger demand,
traffic). The rate parameter λ characterizes the continuous
reduction. Given these assumptions, which can be accepted
as a first approximation, we state:

dvexpl

dT
= −λ·vexpl (8)

Through rearranging and integration, we find an expression
for vexpl (T ), which contains an integration constant

dvexpl

vexpl
= −λ · dT

ln
(
vexpl

) = −λ · T + C

vexpl (T ) = eCe−λ·T (9)

From the expression for vexpl of equation (7), derives

vexpl (T ) = (vlong − vshort)e
−λ·T (10)

Finally, we find

v (T ) = vlong − vexpl

= vlong − (
vlong − vshort

)
e−λ·T

= vlong − vexpl(0) · e−λ·T (11)

Fig. 2 shows the proposed modeling, where the variance
explained through the real-time update decays exponentially
with an increasing prediction horizon.

An interpretation of how fast a prediction increases from
vshort to vlong with an increase in prediction horizon, is given
by the half-life, solely dependent on λ:

t1/2 = ln(2)

λ
(12)

A large t1/2 means that the operations become predictable
early (i.e., the variance is reduced early). A small t1/2 instead
means that gains in predictability are only achieved just
moments before the event will occur.

Arrival times, as well as departure times or delays, depend
on multiple upstream running and dwell times (4),(5). Hence,
the variability of a specific arrival time consists of the variabil-
ity of the running and dwell events leading to it. We assume
the total variance to be a linear combination of the variances
of the relevant running and dwell events. This assumption is
justified, as the dwell and running distributions are predicted
distributions. Any assumed dependency structure is already
described by the prediction model, i.e., we assume no covari-
ance between the distributions of the individual running and
dwell times. Hence, the total variance of the arrival time is
given as:

V ar(AT r,s) = v

(
DT r,0 +

s∑
σ=1

r tr,σ +
S−1∑
σ=1

dtr,σ

)

=
s∑

σ=1

v
(
r tr,σ

) +
s−1∑
σ=1

v
(
dtr,σ

)
(13)
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Fig. 2. Modeling the variance as a function of the prediction horizon.

Fig. 3. Case study considering lines 32 (blue) and 80 (green) in Zurich.

The reduction of the total variance has thus two reasons.
First, when the running or dwell process is observed, it is a
deterministic value and not probabilistic anymore. Hence, the
variance of the arrival time is reduced due to the observation of
events. Second, as discussed in the last paragraph, the variance
is reduced due to the real-time update.

V. TEST CASE

For this study, we consider two urban bus lines in Zurich,
Switzerland. The lines 32 (blue) and 80 (green), shown in
Fig. 3, are major lines that cross the city with similar char-
acteristics. Both are about 11 km long; a journey from the
origin to the terminal station takes ∼40 min, during peak
hours. The service frequency is 10 bus/h at peak hours.
Line 32 is a trolleybus line, whereas line 80 operates with
conventional buses. Stop 14 of bus line 32 is a time point,
whereas line 80 has no time points. At stations that are no
time points, buses may arrive and depart earlier than planned.
Both lines are amongst the most delayed lines in the public
transport network of Zurich.

The planned and realized arrival and departure times of
buses at stations of the network are publicly available on
the open data portal of the city of Zurich (https://data.stadt-
zuerich.ch). The dwell and running times are computed as the
time stopped at a bus stop, and the time running between
stations, respectively. For this study, the data of 2018 is used,
available at an accuracy of seconds. The raw data are filtered
for regular trips on lines 32 and 80, meaning special routes to
and from depots/garages are neglected. After data collection

Fig. 4. Sample of a probabilistic predictions of bus line 32 in Zurich.

and cleaning, the next steps are the preparation in suitable
data structure; fit of a stochastic prediction model, systematic
analysis of the prediction model over time; and fit of the data
to the decay model.

Automatically collected data can be subject to anomalies
and inconsistencies, such as missing data points and unseen
bus overtaking (see, e.g., [48], [49]). Overtaking is no issue in
the selected case study, but we excluded the small number
of runs with no recorded data, which might result in an
overestimation of headways [48]. We do not impute bus runs
(as done in [49]) as we have no way to assess if they took
place in reality, or not.

Running times are assumed to be lognormally distributed
(as shown in [39]), dwell times are modeled as normally
distributed, and the initial departure of the route follows a
normal distribution. A linear dependence structure between a
node and its parents is assumed. Furthermore, the dependency
of the time of the day was incorporated by discretizing the
day into periods of similar behavior in terms of dwell and
running time variability and fitting separate models for each
period of 1h. Training the models for every hour of the day
took ∼ 2h for the proposed Bayesian network models (Intel
Xeon E3-1595Lv5 CPUs; 32GB of DDR4; 4 cores used). The
prediction is evaluated for ∼200’000 single-step predictions,
requiring ∼ 60min. Hence, the prediction of a single event
takes less than 0.02s. Consequently, the prediction for all
events of all buses of a line for the next 15min (∼ 150 events)
would require ∼ 3s, making the model applicable in real-time.

VI. EVALUATION

A. Fit of the Predictive Model

The application of the prediction model is shown in Fig. 4.
It reports at 17:25 (indicated by the vertical line) the recorded
and predicted variability of bus operations of line 32 in Zurich,
Switzerland, for a peak hour (17:00-18:00) of a selected day.
Past operation of buses (i.e., before 17:25) are known. They are
shown by lines with different colors in the time-space diagram.
The time-space position of buses is predicted for the future.
The variability of the probabilistic prediction is shown with the
10th, 25th, 40th, 60th, 75th, and 90th percentile values in
shades of color. The spread (i.e., the distance between the
percentiles) is small for an event in the near future. However,
even just before the event is observed, there is still some
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Fig. 5. Sample of evolutionary dynamics of predictions over time.

residual variability caused by exogenous factors, which can
not be described by the model (aleatoric uncertainty) and
modeling assumptions (epistemic uncertainty). The spread
increases from near-future events to events in the far future.
Predictions of events far in the future have a variability of
operations that coincides approximately with the empirical
distribution of all past observations of the event.

We further represent the evolutionary dynamics of increas-
ing sharpness over time at the example of predicted arrival
times in Fig. 5. We predict the arrival delay of the same bus run
of line 32 at stop 8 (top) and stop 20 (bottom). The percentiles
of the predicted delay are given as shades of blue. The dotted
lines indicated observed (orange) and planned (blue) arrival
times (vertical) and delays (horizontal). The top plot remains
almost constant until ∼ 10min before the event, and then the
accuracy of the prediction drastically increases. The bottom
plot, on the other side, shows significant evolution already
45min before the event.

We first assess how well the prediction model can describe
the realized operations. Table III shows the accuracy of the
mean of the Bayesian network prediction for running and
dwell times averaged over all events of lines 32 and 80. The
accuracy values in terms of RMSE and MAE are only in the
order of few seconds. The relative error quantified by MAPE
for running times is ∼20% for running times and ∼30% for
dwell times.

This accuracy could be improved by changing the prediction
approach, variables, or modeling; however, we accept this
quality as sufficient for the following predictability analyses.

B. Modeling Predictability of Single Running/Dwelling
Events

The resulting parameters of the fitted exponential functions
are shown in Fig. 6 (top) for dwell times. For every event
of the two bus lines, the diagrams depict the variances with
two points connected by an arrow. To increase interpretability,

TABLE III

ACCURACY OF THE PREDICTION MODEL

Fig. 6. Visual representation of parameters governing the reduction of
variance for dwell time (top) and running time (bottom) over time.

we picture the square root of the variances, i.e., the standard
deviation. The upper point (violet, see Fig. 2) gives

√
v long , the

lower point (light blue, see Fig. 2) gives
√

vshort and the color
of the arrow connecting the lines gives the half-life, where
red is a short half-live and green a long one. If the difference
between

√
v long and

√
vshort is less than 1s, the half live is

shown in grey.
For dwell times,

√
vlong is for ∼ 75% of the stations

low (below 10 s). Also, the difference between
√

v long and√
vshort is in many cases small; the real-time update often

does not reduce the variance by more than 10%. The half-
life, on the other side, is in many cases between 5 and
10 min. Consequently, the (small) reduction in variance can
be predicted well ahead.

The dwell time at station 14 of bus 32 exhibits an excep-
tionally large

√
v long of 96 s, which is reduced due to real-

time updates to
√

vshort = 15 s, just a fraction of the initial
variation. This station serves as a time point. Thus, the arrival
time at this stop is an important predictor. As this arrival time
depends on the sum of all running and dwell times until this
point, it has a rather high variance at a long prediction horizon.
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TABLE IV

ACCURACY OF EXPONENTIAL DECAY MODEL FOR PREDICTED VARIANCE

Fig. 6 (bottom) shows the parameters that govern the
predicted variance at different time horizons for running times.
The variance of running times is, in many cases, significantly
higher than the variance for dwell times at all prediction
horizons. Additionally, the real-time update improves the pre-
diction significantly, what can be seen by the oftentimes big
difference between

√
vlong and

√
vshort . Further, we see that

the half-life is typically lower than 5min; hence, the variance
is only reduced shortly before the event is observed. Line 32,
as compared to line 80, shows in many cases higher

√
vlong

and
√

vshort values. Especially in the middle (sections 12-15)
and at the end of the bus line (sections 22-25) the variability
can be reduced with the real-time update. In both cases, the
characteristics of the following sections are similar. Sections
12-15 is a corridor in the city center with many interactions
with other transport modes and sections 22-25 is an arterial
road exiting the city. In these sections, the prediction model
can reduce the variance the most, but only at rather short notice
(t1/2 ∼ 3 min). Especially, high variances can be reduced
through the prediction model. In general, the model can reduce
the variance of running times compared to dwell times much
better.

Now, we assess how well the exponential model can
describe the predicted variance at different time horizons.
Table IV shows the quality of the fit for the exponential model
for running and dwell times averaged over all events of lines
32 and 80. The model is evaluated at prediction horizons of 1,
2, 5, 15, 30, and 45 min. The errors of the fit, quantified by
RMSE and MAE, are in most cases small. The average errors
for dwell time of line 32 are higher than for the other cases.
This can mostly be attributed to the fit of the time point, where
variances of up to ∼ 80’000 s2 were observed. However, the
percentage errors (MAPE) are on average between 1% and 5%.
Hence, we can notice that the simple exponential model can
fit the variance at different prediction horizons well.

C. Modeling Predictability of Arrival Times

We here aggregate the running and dwell processes over
multiple sections of a bus line, to discuss the predicted
variance of the arrival times. Specifically, we look at the
variance of the arrival time at a stop in the middle of the
line and at the terminal station of the bus line.

Fig. 7 shows how the total variance is composed of the
variances of dwell (blue) and running times (red) for lines 32
(top) and 80 (bottom). Each plot reports the stacked represen-
tations of multiple variance curves, analogous to Fig 2, where

Fig. 7. Predicted variance, composed of running (red) and dwell (blue) events,
for the arrival time at a stop in the middle (left) and the terminal stop (right)
of lines of 32 (top) and 80 (bottom) at different prediction horizons.

the height of each curve describes the remaining variance
over time for each specific stop. Note that in contrast to
Fig. 6, we plot the variances and not the standard deviation.
This, as we make use of the cumulative property of the
variance, which would not hold for standard deviation. The
colors identify how the variance is explained by the respective
dwell/running times. For each event, we make the prediction
at multiple moments in time. Furthermore, the running times
last in average 80s and dwell times 20s (i.e., the average
rounded to the closest ten of seconds). So we can build an
approximation for the total variance by superimposing the
variances of the running and dwelling processes. The four
presented cases show different maximum values and temporal
evolutions of the variance.

The first observed events are in the representation on top;
events observed just before the arrival time at the terminal
stations, i.e., running in late sections or dwell times at late
stops, are on the bottom. A variance decreasing linearly is
a stacked profile decreasing uniformly from top right to the
bottom left. A large jump is a specific event, which explains
most of the variance. Across all situations and prediction
horizons, most of the variance is due to running processes
(red). The influence of real-time prediction update is visible:
the variance of individual events reduces with a decreasing
prediction horizon. A big share of variance of the arrival time
in the middle of route 32 (top left) is only reduced at a short
horizon; the variance of the arrival time at the end of route
80 (bottom right) is already drastically reduced at a longer
horizon.

The reduction of the variance of arrival times can have two
reasons. First, the variance can be reduced due to updating
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Fig. 8. Predicted variance for the arrival time at a stop in the middle (left)
and at the terminal stop (right) of lines of 32 (top) and 80 (bottom) at different
prediction horizons. The plot reveals how the total variance is composed of
reduced variance due to real-time update (green) and observation (violet).

the prediction, by including more accurate data (e.g., the
prediction of a dwell time upstream the predicted arrival
time is improved as its covariates are observed). Second, the
variance can be reduced due to observation of some events
(e.g., the dwell time upstream the predicted arrival time is
observed; thus it does not contribute any variability anymore).
Fig. 8 shows what share of the total reduction can be attributed
to what reason, with a 15-20% associated to real-time updates.
For line 32 (top), the influence of the prediction is greater
than for line 80 (bottom). The time point of line 32 lies in
the middle of the line and is not shown in Fig. 8. At such a
point the assumption of additive variance does not hold, as the
reason for the high variance of a dwell time is to reduce the
variance at later stops (i.e., the event has a duration negatively
correlated with its predecessors).

The real-time update of the prediction model can only
reduce the variance in a limited manner, whereas a major
part of the variance reduction is attributed to the observation
of events. Hence, it is crucial that the prediction system can
incorporate observed information in real-time. The influence of
the real-time update could be significantly higher in situations
where the empirical variability of the running and dwell times
are higher than in the presented case study. Furthermore,
the predictability could improve by incorporating factors now
assumed exogenous. Variations of running times could, for
instance, be attributed to traffic variations and variations
of dwell times could be attributed to passenger demand
and behavior, which is outside the scope of the predictive
model.

We can show how those predictability insights deliver
added value compared to descriptive studies. Punctuality
(measured as services with less than 3 minutes delay) is 92%,
85%, 99% and 95%, respectively for line 32, middle and end;
and for line 80, middle and end. Regularity (measured as
successive services with a deviation of less than 3 minutes
from the planned headway) is respectively 89%, 82%, 95%,
90%. We thus have the case of highly punctual/regular oper-
ations (80 middle), which are having large variance still
at 10 minutes ahead. The same line, analyzed at the last
stop, has much worse punctuality/regularity performance, but
10 minutes ahead is actually twice more predictable than the
middle stop, but with a late decrease. Similarly, the end stop
of line 32 has much worse performance than the middle stop
of that line, but its predicted variance is only half of this latter,
at any time horizon.

VII. DISCUSSION AND APPLICABILITY

OF PREDICTABILITY

The predictability – as opposed to punctuality or regularity
(realised variability computed after the event took place) –
quantifies the temporal reduction of the predicted variability,
as the event to be predicted gets closer in time. This concept
is highly beneficial to use in non-punctual operations, which
have low natural variability, or in the case of high natural
variability, which is highly predictable. If operations show a
low variability and high punctuality, such an approach does
not provide novel insights as punctuality or variance-based
interpretation of operations. Predictability focuses on the run-
ning/dwell times, and thus is independent on the timetable,
unless time points are considered, when the buffer times play
a role. We highlight the usefulness of predictability evaluation
by three use cases:

A. Bus Bunching Control

Bunching phenomena correspond to high differences in the
headway of successive buses [50]. This phenomenon cannot
fully be captured by means of punctuality as bunching requires
differences in punctuality of following buses; regularity mea-
sures can identify this. Such phenomena can be prevented, e.g.,
by introducing a relief vehicle that can take over a service of
a largely delayed bus at a specific stop. If only descriptive
analytics are used, the relief vehicle must be reserved close to
any specific stop in a static manner, i.e., assuming bunching
either always occurs; or never. This results in very high cost
due to the false positives (i.e., a relief vehicle is reserved for
a specific stop, but bunching does not occur or occurs else-
where). A predictability study allows, similar to probabilistic
prediction frameworks [46], [51], determining the probability
of such bunching phenomena (as defined as a critical headway
between two successive buses) at any given time horizon
ahead. When this situation is predicted, a relief vehicle can be
proactively dispatched from a central depot. Achieving a very
small prediction error shortly before the situation occurs is not
useful, as the relief vehicle might arrive just too late. High
predictability at a long time horizon is demanded to ensure
efficient, proactive control. In specific, we need sufficient
predictability of bunching at a time horizon where we can



BÜCHEL AND CORMAN: WHAT DO WE KNOW WHEN? MODELING PREDICTABILITY OF TRANSIT OPERATIONS 15693

react (i.e., running time from the depot to the relief stop, say
30 minutes). Predictability can deliver additional insights, for
instance, determining a priori the optimal parking locations of
relief vehicles, to maximize their timely deployment to specific
bunching situations. Considering the case of line 80 end station
(Fig. 7 bottom right), an ideal location for a relief vehicle
would be around 10min from the station, where the predicted
variance is decreasing sharply.

We assume a determined required probability threshold
for bunching to avoid false positives (i.e., a relief vehicle
is sent, but the operation resolves on its own, resulting in
costs as the sent vehicle is not used for service). A highly
variable but lowly predictable operation would only at short
notice provide a certain enough prediction of bunching.
A highly variable but highly predictable operation would
instead already at a long horizon provide a certain enough
prediction. Given the specific certainty threshold, to accept a
false positive, a predictability decay would determine the max-
imum intervention time that one can afford, given the recorded
operations.

B. Bottleneck Identification

The predictability-based analysis of a bus route allows the
categorization of running and dwell events based on natural
and predicted variability. The analysis below might apply
to both cases of satisfactory or unsatisfactory punctuality
and regularity, as we analyze only the ratio between vlong
and vshort , which is not studied by descriptive or predictive
applications. If the predictability at a long horizon is much
higher than at a short horizon (vlong � vshort ), the variability
can be largely reduced by the prediction. Thus the event is
highly dependent on close-by events. For that reason, actions
to reduce variability (e.g., dedicated bus lane, signaling) should
there be planned on a multi-section level. If the predictability
at a long horizon is only slightly higher than at a short horizon,
the prediction model is not informative and the event is defined
through aleatoric uncertainty. To reduce the variability of
events with this characteristic of having a small vexpl , actions
should focus on the section level. Especially in the case of
budget limitations, actions need to be prioritized. Given two
sections with high natural variability but different short-term
predictabilities, the section with low short-term predictability
should be treated with priority. The predictability has evidently
an associated value, similar to reliability [52].

C. Passenger Information

Real-time information results in many passenger benefits
increasing passenger satisfaction [2]. Predictability can be
crucial for improving real-time information systems. It allows
informing passengers about associated variabilities, which has
been related to an increased satisfaction [11], [53]. Further-
more, especially in complex interconnected networks, transfers
are not always guaranteed. The probability of a successful
transfer, from the perspective of passengers, depends on the
arrival time of the first service and the departure time of the
second service plus possible walking times at a transfer point
(including close bus stops) (see, e.g., [54]). A descriptive
approach would deliver an average success rate of transfer,

and its actionable insight is an expected travel time to possibly
choose a different route. A predictive approach might estimate,
given some current conditions known shortly in advance, how
much transfer time would be available. A predictability-based
approach can, at any time horizon, estimate the probability of
a successful transfer. Providing this information to passengers
might reduce their anxiety, improve their transport experience,
and lead to increased transit ridership. Furthermore, if the
probability of a successful transfer drops below a given thresh-
old, the passenger could be proactively rerouted to a different
route, resulting in a lower total travel time. This contributes
to the field of route choice under uncertainty, enriching the
existing models and optimization strategies [55], [56].

VIII. CONCLUSION

This paper introduces the concept of predictability to
describe the knowledge we have of a network system over
time. The concept is shown based on predictions obtained
by a state-of-the-art Bayesian network approach, where the
predictability is modeled as an exponential decay. It has been
demonstrated that predictability has the potential to enhance
the description, control, and communication of the current
state of the system.

We evaluate the predictability based on a given prediction
model, as opposed to a discussion of the entropy of the system
to determine the maximum predictability limit. The limitations
of the study are the need for data of sufficient quality to
model normal operations. We considered a Bayesian network
prediction model, but this is not a prerequisite. The presented
analysis could be performed with any prediction framework
capable of predicting variability and updating the prediction
in real-time with additional information. Multiple predictions
methods could also be compared with each other.

Future work should expand the proposed concepts in
a variety of directions, which include other public trans-
port systems, with associated different uncertainty factors
and specific processes and constraints, for instance, model-
ing mobility in a smart city. Moreover, predictability could
focus on specific non-performance, differentiating everyday
peak hours; and planned/unexpected maintenance [57]. Other
decay models, or considering lower/upper bounds, could be
studied.

Reliability and its costs have been recently included in the
assessment and appraisal of public transport projects [52].
Given the widespread availability of means to disseminate
information to travelers, a low reliability but high predictability
of services, could effectively be considered as a high reliability
for transport economics purposes. We did not discuss the case
of exceptional conditions, or erroneous data in the recorded
data, or actual situation. Such cases might threaten the data-
driven foundations of the concept and require a data collec-
tion and transmission method of high quality (as applied in,
e.g., [8], [58]). The impact of higher predictability towards
demand can also be identified, similar to [59]. A different
complementary direction is to compute how much predictabil-
ity is actually exploited by passengers in their choice process
by fitting realized choices [60].
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NOMENCLATURE

A. Prediction Framework

Xi node of a Bayesian Network.
PaXi parents of Xi .
P (Xi ) probability distribution of Xi .
n total number of nodes.
r tr,s running time of bus run r in the section before

stop s.
dtr,s dwell time of a bus run r at a stop s.
hr,s headway of a bus run r at a stop s compared to

the previous bus.
r a bus run.
σ a generic stop of a bus.
s a stop of a bus.
AT r,s arrival time of bus run r at a stop s.
DT r,s departure time of bus run r at a stop s.

B. Predictability Analysis

P predictability.
Plong predictability at a long time horizon.
Pshort predictability at a short time horizon.
v(α, T ) variance of a measurement α at time horizon T .
v (T ) variance at time horizon T , simplified version of

the above for a generic measurement.
v(α) variance of a measurement α, simplified version

of the above for a generic time horizon.
vlong variance at a long time horizon.
vshort variance at a short time horizon.
vexpl explained variance.
λ rate parameter of exponential distribution.
t1/2 half-life.
T a time horizon or time variable.
C an integration constant.
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