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Hierarchical Optimization of Charging
Infrastructure Design and Facility Utilization

Amir Mirheli

Abstract—This study proposes a bi-level optimization
program to represent the electric vehicle (EV) charging
infrastructure design and utilization management problem with
user-equilibrium (UE) decisions. The upper level aims to mini-
mize total facility deployment costs and maximize the revenue
generated from EV charging collections, while the lower level
aims to minimize the EV users’ travel times and charging
expenses. An iterative technique is implemented to solve the
bi-level mixed-integer non-linear program that generates theo-
retical lower and upper bounds to the bi-level model and solves
it to global optimality. A set of conditions are evaluated to
show the convergence of the algorithm in a finite number of
iterations. The numerical results, based on three demand levels,
indicate that the proposed bi-level model can effectively deter-
mine the optimal charging facility location, physical capacity, and
demand-responsive pricing scheme. The average charging price
in medium demand level is increased by 38.21% compared to
the lower level demand due to the surge in charging needs and
highly utilized charging stations.

Index Terms— Global optimal, bi-level, hierarchical optimiza-

tion, network design, dynamic pricing, equilibrium, electric
vehicle, charging facility.

I. INTRODUCTION

HE adoption of fully electric mobility technology, among

alternative-fuel vehicles, can be considered as a promis-
ing solution to reduce environmental pollution and energy
consumption caused by transportation systems. The trade-off
between availability and cost of public charging resources can
affect the large-scale adoption of the technology. Therefore,
an effective resolution would be to locate sufficient charging
facilities to serve the public charging demand in the trans-
portation network. On the other hand, managing the charging
load over time and space at the facilities will become very
important: as the EV penetration rate grows, a large number
of EVs will connect to the electricity grid to charge. Lack
of proper management can lead to additional peak loads at
certain times-of-day due to home charging attempts during
evenings, end-of-day charging of EV fleets when returning
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to their businesses, among other factors. Consequently, large-
scale EV penetration rates can lead to more frequent load peak
occurrence at high magnitudes for long durations. Therefore,
managing the charging facilities will be crucial to help dis-
tribute the charging load over the utilization periods.

This paper aims to determine optimal location and physi-
cal capacity for public charging infrastructure and applies a
dynamic pricing strategy to manage the proposed charging
facilities in an integrated infrastructure design and utilization
management framework. The proposed problem involves two
entities, i.e., charging network operator (a.k.a. agency) and EV
users, with hierarchical decisions, where the realized outcome
of a decision made by the agency affects (is affected by) the
users’ decisions who seek to optimize their own outcomes.
The conflicting objectives of the agency and users, sharing
a competitive environment, can be represented by a bi-level
optimization model that also captures the interactions between
the two entities. The bi-level model structure can appropriately
incorporate the two perspectives, where the charging agency
(i.e., leader) defines its objectives in the upper level and passes
the decisions to EV users (i.e., followers) in the lower level
using a non-cooperative game theoretical strategy. The reaction
of each entity to decisions taken by the other is captured with
no binding agreement, where each player seeks to maximize
its benefits.

The proposed bi-level optimization program represents the
EV charging network design and utilization management under
user-equilibrium (UE) decisions. The upper-level formulation
minimizes total facility deployment costs and maximizes the
revenue obtained from collecting EV charging fees. The lower-
level model aims to minimize the EV users’ travel and
charging costs. Hence, the agency (upper-level) determines
the charging locations, physical capacity, and charging pricing
scheme, while EV users (lower-level) make charging deci-
sions, based on appropriate charger availability, to meet their
charging demand. Figure 1 presents the interactions between
charging facility design (i.e., location and physical capacity)
and EV users’ charging choice (e.g., travel distance, waiting
time at charging facilities). We utilize a technique proposed
by Mitsos [1] that solves the problem to global optimality
by generating theoretical lower and upper bounds to the
proposed bi-level problem. The proposed approach is applied
to a hypothetical case study to evaluate the applicability of
the proposed formulation and methodology to solve the EV
charging network design and dynamic utilization management.
The numerical results indicate that the algorithm can provide
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Fig. 1. Interactions of EV charging facility utilization and travel flow.

high quality solutions. A sensitivity analysis is conducted to
study an alternative procedure in generating the cuts in the
lower bounding procedure. Furthermore, a real-world dataset
in Long Island, NY has been utilized to evaluate the compu-
tational efficiency of the algorithm.

The remainder of this paper is organized as follows.
Section II introduces the existing literature in the charging
station location domain and bi-level optimization methods.
Section III presents the mathematical model formulation
for dynamic charging facility location problem. Section IV
explains the proposed approach to solve the problem and
Section V presents the numerical results. Finally, Section VI
concludes the paper and discusses future research directions.

II. LITERATURE REVIEW

We study relevant literature on (i) charging network design
and operation in Section II-A and (ii) bi-level optimization
strategies in Section II-B, as follows.

A. Charging Infrastructure Management

This section first summarizes a category of research, solely
on the EV agency perspective, that focuses on the classical
location models (e.g., [2], [3]) for re-charging EVs. The
proposed models (i) capture the need for re-visiting EV
facilities to replenish charge or fuel and (ii) introduce the
range limitation concept to charging facility location problems.
For example, Zheng and Peeta [4] have researched optimal
facility location problems with p-stop limit problem, where
EVs should drive on paths with p stops in a feasible range
for intercity trips. Bahrami ef al. [5] have also formulated
a constrained shortest path problem under EV travel range
limitation. In a related study, Zheng ef al. [6] have used
a bi-level structure, where the upper level determines the
optimal location of charging facilities that minimizes total
costs, including travel time and energy consumption, under
range limitation constraints and the lower level determines EV
traffic flow with regard to the feasible travel paths. Besides,
Zhang et al. [7] have developed a flow re-fueling location
model to find the optimal level-3 EV charging locations
including the number of charging modules at each station.
The problem is solved heuristically utilizing a forward strategy
over multiple time periods considering dynamic demands and
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capacity constraints. Li er al. [8] have investigated EV sharing
system design, including the fleet size and charging station
deployment, that aims to minimize the cost of facility con-
struction, transportation, and vehicle balancing under dynamic
trip demands. This study employs a continuum approximation
approach to find near-optimal solutions to the EV sharing
system design problem. Furthermore, Arslan and Karasan [9]
have explored charging infrastructure location design for EVs
and plug-in hybrid vehicles using an arc-cover formulation that
aims to maximize the EV travel mileage. This study employs
a Benders decomposition technique to solve the problem.
Similarly, Liu and Wang [10] have studied the deployment of
different types of charging facilities (e.g., plug-in station, static
wireless station, and dynamic wireless charging lane) to mini-
mize public social costs under routing choice of battery electric
vehicle (BEV) users. They have proposed a tri-level model as
a black-box optimization program and solved it via a response
surface approximation technique following a stochastic radial
basis function method. Besides, Hof et al. [11] have studied a
capacitated location-routing problem considering battery swap
stations to minimize the total cost of facility construction and
routing. An adaptive variable neighborhood search algorithm
(originally designed for vehicle routing problems with inter-
mediate stops) is used to solve the problem. On the other
hand, several studies have analyzed the impact of incentives on
BEV adoption rates [12] and EV routing decisions [13], [14].
He et al. [13], in particular, have studied the effect of travel
range limitation on BEV users’ path choice and equilibrium
flow when charging facilities are sparse in the network.
Xu et al. [15] have developed a mixed logit model to study
BEV users’ choice of (i) charging mode (e.g., normal versus
fast) and (ii) location of charging facilities (e.g., home versus
public stations). The study identifies a set of factors that play
a significant role in users’ decisions, e.g., battery capacity and
initial state-of-charge (SOC).

Another line of research on the EV infrastructure design
focuses on the inter-relationships between specific destina-
tions and demand variation of EV facilities. For instance,
Momtazpour et al. [16] have studied a coordinated clustering
technique to identify appropriate charging locations based on
several factors (e.g., residential ratios, electricity loads, and
charging needs of each facility) to address the EV user demand
from specific population groups (e.g., income levels and
geographical locations). By applying hierarchical clustering
method, Ip et al. [17] have determined the demand clusters
of BEVs, representing road traffic information, to allocate
the charging stations over an urbanized area under budget
constraints. Simulation-based optimization methods have also
been extensively used to identify appropriate deployment
of charging facilities under certain criteria. For instance,
Xi et al. [18] have presented an integer programming
model that aims to maximize the EV service level using
slow-charging technologies for privately-owned EVs. They
have analyzed the impacts of EV driving patterns and charging
locations on traffic flows by simulating the inter-relationships
between charging facility locations and associated service
levels. Moreover, Jung et al. [19] have developed a model in a
bi-level simulation optimization form that integrates multiple
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EV charger allocation problems. The model aims to minimize
the queuing delay under EV charger capacity constraints in
the upper level, while minimizing the passenger waiting time
in a taxi dispatch simulation subject to EV driving range
and passenger detour length in the lower level problem.
Dong et al. [20] have utilized GPS-based travel survey data
in the greater Seattle area and applied a genetic algorithm
to find the location of charging stations while maximizing
electric miles and minimizing the number of missed trips
(i.e., when the required battery level to reach to a destination
exceeds the remaining level). Sweda and Klabjan [21] have
presented an agent-based decision support system, with under-
lying interactions between agents, that adopts the patterns
observed in residential EV ownerships and driving activities
to identify the best strategy for the deployment of charging
facilities. Similarly, Asamer et al. [22] have described another
agent-based decision support system that captures the charging
demand of EV taxis to deploy fast-charging facilities. This
study uses a variant of maximum coverage location problem
in an MILP to maximize the sum of covered taxi trip counts.

A category of literature has focused on EV user concerns
on finding routes with charging facilities to guarantee that
sufficient electricity is available for long trips. For instance,
Adler et al. [23] have considered a feasible set of sub-trips in
the network with maximum length that requires full battery
to travel. The problem aims to minimize the travel length
through a shortest-walk problem, where each EV is con-
strained to have one charging opportunity in each sub-trip.
He et al. [24] have proposed a distributed scheduling problem
that aims to minimize the EVs’ charging costs. Each local
controller bridges the connection between a group of EVs
and the central controller to gather (i) predicted load of the
day from the controller and (ii) real-time EV information
from local charging stations. Wang et al. [25] have developed
a distance-constrained traffic assignment model through an
iterative linear approximation strategy, where the model is
decomposed based on origin-destination pairs and activity
sequences to solve the sub-problem in each iteration. They
assume the activity sequences capture the EV users’ behaviors
(e.g., the tendency on charging location, travel range anxiety).
Similarly, Wen et al. [26] have studied the charging choices
for EV drivers using stated preference data, obtained from
U.S. battery electric vehicle owners. Three logit models are
developed based on the information collected in the survey to
indicate the EV users’ charging choice under pre-defined sit-
uations. Besides, the interaction between dwell time, charging
price at different locations, charging range, and the distance
among charging facilities are derived and the effects of them
on the probability of charging are tested. The results indicate
an estimation for the willingness to pay the extra charging
price for faster charging compared to level 1 charging option.
Besides, Yu and MacKenzie [27] have studied the probability
of having EV supply equipment at the end of the trip as well
as the interaction of battery SOC and dwell time based on data
from 125 pre-production Toyota Prius plug-in hybrid vehicles.
Moreover, He et al. [28] have proposed a bi-level tour-based
model, to minimize total costs including travel time and
charging duration, considering public charging stations under
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drivers’ risk-taking attributes given BEVs’ SOC and limited
driving range. An iterative approach is used to tackle the model
complexity due to tour enumerations within a genetic algo-
rithm framework that solves for the charging facility deploy-
ments. He et al. [29] have developed a bi-level optimization
program to determine the optimal charging facility locations
considering the driving range limitation and required charging
duration by a path-based equilibrium traffic assignment. Rather
than the amount of flow captured by charging facilities, the
objective function models the maximum flow that can use
charging facilities en-route. The proposed model structure
and path-based traffic assignment reduce the computational
efficiency. Liu and Song [30] have proposed a non-linear
complementarity model to determine the UE traffic assignment
in a network with battery swapping stations for BEVs with
the consideration of flow-dependent electricity consumption
and driving-range limitation. The model is then formulated
as a variational inequality, converted into a non-linear model
following the duality approach, and solved using a column
generation algorithm (similar to [31], [32]). While the algo-
rithm solves a large-scale UE problem, it assumes a fixed BEV
demand.

B. Bi-Level Optimization Strategies

Literature has shown various strategies to represent the
inter-relationships between leaders and followers in bi-level
optimization problems. A common approach is to find an
equilibrium condition in the bi-level optimization program
that satisfies the objectives of both levels. However, finding
an optimal solution to a bi-level program has always been
a challenge. A review study by Lu ef al. [33] has revealed
that the solution approaches for a linear bi-level decision-
making problem can be classified into (i) implementation of
vertex enumeration techniques [34], (ii) application of Karush-
Kuhn-Tucker (KKT) conditions and transformation of the
bi-level optimization program into an equivalent single-level
problem [35]-[37], and (iii) utilization of penalty function
approaches [38], [39]. For example, Mirheli and Hajibabai [40]
have formulated an integrated plan for parking utilization
management, involving users and agency perspectives, into a
bi-level optimization program. The problem is then converted
into an equivalent single-level model and solved using a
stochastic look-ahead technique, embedded in a Monte Carlo
tree search algorithm, via a dynamic programming framework
(similar to [41], [42]). Besides the existing approaches, liter-
ature shows that a number of meta-heuristic approaches have
been implemented to solve bi-level optimization programs
that offer higher computational efficiency, where their solution
quality is not guaranteed. For instance, Hejazi et al. [43] have
developed a genetic algorithm (GA) to solve a linear bi-level
optimization program, where the bi-level problem is converted
into a single-level optimization problem and the GA is uti-
lized to solve the single-level problem with complementary
constraints. Each feasible chromosome represents an edge of
the feasible region and simplifies the optimization model to
considerably reduce the search space; similar to [44]. Besides,
scenario-based techniques to solve bi-level programs have
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been proposed in the literature. For instance, the study by
Xu and Wang [45] has presented an algorithm to solve a linear
mixed-integer bi-level program under three simplified cases:
finite optimal, infeasible, and unbounded problems.

Few studies have attempted to develop global optimization
techniques to tackle the non-linearity (or non-convexity) in
bi-level optimization programs (either in the lower- or upper-
level formulation). Various simplifying assumptions have been
made in previous studies to solve the bi-level problems under
specific conditions (e.g., [46], [47]). For example, Bard [46]
has assumed all functions (i.e., objective functions and the
feasible region in both levels) are convex and proposed a
hybrid technique to search for local optimal solutions in
an inducible region. Then, a branching scheme has been
developed to find the global optimum. Jan and Chern [48§]
have studied a non-linear integer bi-level problem, where
the upper level is formulated with no constraints and the
objective function and constraints of the lower level are
defined as the summation of non-decreasing univariate terms.
Thirwani and Arora [49] have defined a bi-level program with
a fractional linear objective function, linear constraints, and
integer variables. Mersha and Dempe [50] have replaced the
bi-level program with an equivalent single-level problem under
specific model structure, i.e., convex lower-level problem with
strongly stable optimal solutions. Approximation techniques
are also proposed to solve bi-level problems that include non-
convex functions. For instance, a study by Farvaresh and
Sepehri [51] has approximated the link travel time through the
definition of a piece-wise linear function to achieve a convex
formulation. Besides, Al-Khayyal ef al. [52] has replaced the
complementary slackness condition by an equivalent system
of convex and separable quadratic functions and developed an
integrated branch-and-bound and piece-wise linear approxi-
mation technique to find the global minimum. Finally, a study
by Mitsos et al. [53] has proposed a bounding algorithm to
find the global solution to a non-linear bi-level program that
includes non-convex functions in both upper- and lower-level
problems. A lower bounding problem is defined as a relaxed
program including the constraints of lower- and upper-level
models as well as a parametric upper bound to the optimal
solution of the lower-level problem. Later, Mitsos [1] has
proposed an algorithm to find the global solution to non-
linear mixed-integer bi-level programs. This study examines
the impact of upper-level integer decision variables on the
generation of parametric upper bounds to the lower-level
problem.

C. Summary

This paper formulates the integrated network design and uti-
lization management of EV charging facilities while account-
ing for charging agency and user perspectives. The problem is
presented in a hierarchical optimization program that models
the charging agency as a single leader in upper level and EV
users as followers in the lower level using a non-cooperative
game theoretical framework. While the literature is rich in
the charging station location domain, the proposed integrated
framework with distinct perspectives has not been addressed in
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previous studies. This study proposes a bi-level optimization
program to represent the EV charging infrastructure design
and utilization management problem with UE decisions. The
problem involves integer decision variables and non-linear
terms in both upper- and lower-level formulations. Thus,
an iterative technique is implemented to solve the problem
to system-level optimality that generates theoretical lower and
upper bounds to the proposed bi-level model [1].

III. MODEL FORMULATION

This section introduces a bi-level mathematical program,
where the upper level aims to minimize the one-time charger
deployment expenses and maximize the charging network
operator’s revenue through effective utilization of suggested
facilities. A demand-responsive dynamic pricing policy is
incorporated into the upper-level model that is restricted by
each facility’s capacity constraints. Besides, a queuing theory
driven model is embedded to gauge the level of service of
each facility considering the average waiting time to find an
available charging spot. On the other hand, the lower-level
formulation aims to minimize the EV users’ travel and charg-
ing expenses. The users’ travel behavior is formulated as an
equilibrium traffic assignment, where charger locations help
identify the feasible EV paths and aggregated arc trips fulfill
the origin-destination demands. We assume that EVs start their
travels with a sufficient initial SOC to get to charging facilities
and that EVs will leave charging facilities with enough SOC
to get to their final destinations. Additionally, the utilization
metric is defined by the charging duration at each facility.

Table I illustrates the definition of sets, variables, and para-
meters used in the model formulation. The planning horizon
is defined by ' = {0, 1,---, T — 1}, where T represents the
number of discrete time steps at which we make the charging
decisions. Let G(N, A) represent the transportation network
with the set of all nodes N and arcs A. We define the set of
inbound/outbound arcs to/from node i € N by A;, A?L C A.
The decision variable #; € Z represents the physical capacity
of a charging facility deployed at node i.

We denote the charging facility installation at node i € N
by decision variable y; = {0, 1}. The charging pricing scheme
of facility i at each time ¢ is shown by decision variable p;.
The occupancy of charging facility at node i € N over time
t € T is captured by state variable f;. Hence, the available
capacity fyf of facility at i at time ¢ is calculated by subtracting
the existing occupancy prior to time ¢ at node i (i.e., fit )
from the physical capacity 7#;, i.e., 7l = 7; — fi’_l.

To ensure effective utilization of all charging facilities
and avoid long queues in finding available charging spots
(particularly, in high demand cases), a queuing theory concept
is applied. We define function ¢ to represent the probability
of finding a vacant charger at a facility installed at node i
within a v time window, i.e., {(¢(f/, 7)) < v)i, to measure
the waiting time spent in finding available charging spots.
Besides, the occupied facilities, e.g., in more popular areas,
tend to be over-utilized more often. Hence, it is beneficial, for
the arriving users, to capture the impact of usable capacity
on each facility’s expected service level. Therefore, function
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TABLE I
DEFINITIONS OF SETS, DECISION VARIABLES AND PARAMETERS

Sets

T Set of all time steps; i.e., {0,1,...,7 — 1}

N Set of nodes

A Set of arcs

AL, Aj Set of inbound and outbound network arcs
to/from node i € N

OD Set of origin-destination

A Set of users with od € OD at time ¢t € T’

Var.

Ys Binary variable, 1 if there is a facility at node
i€ N, or 0 O.W.

i Number of chargers at node i € N

pf Price of getting charge at node ¢ € N att € I

crf) d Equilibrium disutility for all users on od € OD
attel

zhodt Flow of arc a € A on od € OD to charge at
nodet € NatteTl

ZLod Flow of arc a € A on od € OD at time t € T’

v Aggregated flow of arc a € A at time ¢t € T

Rt (vt)  Travel time of arc a € A at time t € T

eZ’Od Binary variable, 1 if arc a is on a feasible path
for EV users on od € OD att € T", or 0 O.W.

u;?d Maximum distance traveled from the last visited
facility located at node ¢ € N with od € OD

u;Od Dummy variable, 0 at facility located at i € N

U Host set of all upper-level variables (y,n, p)
L Host set of all lower-level variables (x, z, v)

Par.

Ci Unit cost of building facility at node ¢ € N

ft Occupancy of facility at node : € N att € I

ﬁ% Available capacity of facility at node ¢ € N
atte’ll

M Large positive constant

B Available budget

l; Lower bound for charging price at node i € N

Ui Upper bound for charging price at node ¢ € N

A Driving range of the EVs

gz d Linear demand curve’s intercept for EV users
withod € OD att € I

b Elasticity coefficient of the demand function

Nmax Maximum physical capacity

0 Average charging duration

g‘ EV users’ arrival rate in node i € N att € I'

da Length of arc a € A

q,w BPR function parameters

v Time window for finding an available charger

Ca Traffic capacity of arc a € A

K Lower bound for probability of a vacant charger

Q; Slope of the linear waiting function at node i € N

o Update factor in subroutine

¢ represents the relationship between physical capacity #;
and occupancy f/ of facility at node i at time r. Similar
to Xie et al. [54], we have utilized the Erlang C formula of
queuing theory to characterize the waiting time since each
facility with #; chargers can serve a queue of EV users
with an expected service time ¢ and user arrival rate ¢ at
time 7. Hence, a non-linear relationship between #; and f; is
introduced by

CP(ffmi) = v);

Eoy (&) &0 " (Eo)Ty -1
ni! n;! ni 4=0 q:
e~ =0T i e N reT. (D
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We define the sets of travel origins and destinations by O
and D, respectively. Total elastic demand of EV users A ,,
follows an inverse demand function H of equilibrium disutility
aéd of users travelling on od € OD at time ¢, i.e.,

igd = H(O‘éd) = gf)d — baéd, Yod €e OD,t eI, (2)

where H is defined as a linear function, gé J is the intercept of
EV demand curve, and b is the demand elasticity coefficient.
In other words, ¢/, represents the minimum cost imposed to
EV users due to (1) charging price p; at charging facility
i € N and time ¢ and (2) travel time from origin 0 € O to
charging facility i and beyond (i.e., final destination d € D).
The EV traffic flow on arc a = (i, j) € A from 0 € O to
d € D, that visits charging facility installed at node i € N
at time 1, is represented by x;°?*". The UE traffic flow of
arc a on od € OD at time ¢ is defined by the non-negative
decision variable z;°¢, where Za-eA,~+ 22 = ZaeAT 2,
unless node i is either the origin or destination of user demand,
ie.,

[ .
Aog» Yie€eO
Z 24 — Z 2 =1-2,, YieD
aeA; acA; 0, O.W.

Yod € OD, teI, (3)

which represents the conservation of EV user flow at node i.
Besides, the aggregated EV flow on arc a at time ¢ is
represented by v;, as follows.

o= > %", VaeA tel. 4
0odeOD

Travel time on arc a € A follows an increasing function R/, of
aggregated EV flow v/, captured by Bureau of Public Roads’
performance function [55], represented by

t\4

R0 = R[1+w (z—:) 1. ®)
where ﬁ; represents the free-flow travel time on arc a at
time 7. In addition, w and ¢ are the BPR function parameters,
and ¢, is the traffic capacity of arc a. The traffic assignment
is dynamic and follows the approach suggested by [56] that
is later adopted by other researchers (e.g., [57], [58]). The
charging pricing decisions are determined at each time period
and network flows are assigned in response to the charging
prices at every time period. The charging prices are based on
the most recent travel times in the network.

As EVs’ driving range limit influences their route plan,
we define feasible paths where EV users travel within their
maximum driving range unless there is at least a charging
facility en-route. We introduce variable e;’Od e {0,1} to
identify arcs a € A on the feasible paths; i.e., e;’Od is 1 if arc
a € A is on a feasible path for EVsonod € OD att €T, or
0 otherwise. We represent the range constraints (similar to [6])
at node i on a path with od € OD with auxiliary variables
u?, uf’d > 0. Variable u?d represents the maximum distance

1
traveled from the last visited charging facility located at node
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i € N on a feasible path with od € OD. In addition, ugo" i

defined as a dummy variable that is zero at facilities.
2 < Mel? Vae A,od €OD,teT,
u?d > uQOd + 0, — M (1 — e;’Od),
Va=(,j)eA,od € OD,tel, (6b)

N

(6a)

u <A, VieN,odeOD, (6¢)
u? >u% —My;, VieN,odeOD, (6d)
u? <u?® 4+ My;, VieN,odeOD, (6e)
uf <M (1 —y;), VieN,odeOD, (61)
u? >0, u’ >0, VieN,odeOD, (62)

where 0, > 0O represents the length of arc ¢ € A and A
denotes the driving range limit. Constraints (6a) ensure that
EV flow selects arcs located on the feasible path. Constraints
(6b) update the auxiliary variable u?d for all j € N and
od € OD based on the traveled distance J, on the feasible
path. Constraints (6¢) guarantees that EV users do not violate
the driving range limit. Constraints (6d) and (6e) indicate that

;’d = u§0d when there is no charging facility at node i.
Constraints (6f) enforce u?”d = 0 when there is a charging
facility at node i, where M represents a large positive constant.
Finally, Constraints (6g) represent that the value of auxiliary
variable ug’d , u;”d should be non-negative. The bi-level pro-
gram is defined by

u

TP LTINS 30 3 N F N
T ieN tel’ acAodeOD
subject to (1) —(2) and
liyi < pi <ujyi, YieN,teT, (7b)
fit Zfitfl _ Z Z x;,od,i+ Z Z x;’(’d’i
odeODaeA;r odEODaEAlf
Vie N,teTl, (7¢)
D D <@, Vie N, teT\{0), (7d)
odEODaEA’_—
fl<m, VieN,teT, (7e)
> niCi < B, (7f)
ieN
ni <Myi, VieN, (72)
i < Nmax, Vi €N, (7h)
Co(ffom) <v)i=k, VYieN,tel, (7i)
and x,z,v €
Vi

: t t _t,od,i :

;{IZ}};Z(/O Ri@do+y >, > pix, ) (7j)
acA ieN odeOD

subject to (3) — (5), (6a) — (6g), and
xhodii < 70d g — (i, j) € A,od € OD,t €T, (7k)

xbodi >0, 700 >0 Vae A,i e Nyod € OD,t €T,
(7D
1)220, YVaeA, teTl, (7m)

where C; is the unit charger installation cost at node i € N
and « is a positive integer that represents the operation periods
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of each charging facility, e.g., number of operation days in a
year. The upper-level objective function (7a) aims to minimize
the cost imposed by facility installation and maximize the
revenue generated from charging collections. Constraints (7b)
enforce a minimum and maximum charging price at time ¢
for an available charging facility at node i. Constraints (7c)
define the occupancy of facility at node i at time ¢ considering
its inbound and outbound EV flow. Constraints (7d) ensure
that EV traffic flow at time ¢ does not exceed the available
capacity 77;. Constraints (7e) show that the occupancy of each
facility at node i at time ¢ cannot exceed its physical capacity.
Furthermore, charging facility deployment can be subject to
budget constraints, as enforced in (7f), where B denotes
the budget. Constraints (7g) show that chargers can only be
installed in an open charging facility at node i, where M is
a large positive value. Constraints (7h) enforce a maximum
physical capacity 7,,4x for each charging facility installed at
node i. Besides, constraints (7i) enforce a lower bound x for
the probability of finding an available charger in a facility
installed at node i at ¢.

The lower-level model (7j) aims to minimize EV users’
travel times and charging expenses, where y denotes the
monetary value of time. Constraints (7k) ensure that EV
charging demand at node i does not exceed the flow through
arc a = (i, j) at time ¢. Finally, constraints (71)-(7m) represent
the non-negativity of traffic flows.

IV. SOLUTION TECHNIQUE

The problem (1)-(5),(6a)-(6g),and (7a)-(7m) is a non-
convex bi-level optimization program with mixed-integer deci-
sion variables and non-linear terms in both upper- and lower-
level formulations. We first introduce a linear function to
capture the relationship between each facility’s maximum
occupancy and physical capacity with relatively high proba-
bility of finding an available charger within a reasonable time
window, as follows.

fl<Qini, VieN,teT, ®)

where €; represents the slope of the linear function. The
proposed approximation provides an upper bound on the
occupancy of facility located at node i.

The non-convexity of lower-level models introduces addi-
tional complexity to the bi-level problems. Hence, we apply
a solution technique, developed by Mitsos [1], to generate
theoretical lower and upper bounds and add cuts to the
lower bounding procedure until the upper bound procedure
generates an e-optimal point. We first introduce the underlying
definitions and assumptions, and then describe the iterative
exact algorithm to solve the proposed bi-level optimization
program.

A. Definitions and Assumptions

For notation simplicity, we let F* and F! represent the objec-
tive function of upper- and lower-level problems, respectively.
We first define the host sets, parametric optimal solution
function, and candidate upper-level points as follows. The
host set of all upper-level variables (y, n, p) is defined as
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U= ({O, 1} X {O, 1, ey 7’lmax} X [minieN li, oL, MaX;e N ul])
Similarly, we define the host set of lower-level vari-
ables (x,z,v) as L = ([0,...,xmax] X [0,..., Zmax] X
[0, ..., 0max]). Let F™*(y, 5, p) denote the parametric optimal
value of the lower-level problem as a function of upper-level
variables. We let F'*(y, n, p) = 400 if no feasible solution
is found to the lower-level problem. We define U C U that
is applicable to both upper- and lower-level problems, where

® ={(y,n, p) € UA(x,z,v) € L:(2) — (5),
(6a) — (6g), (7b) — (7h), (7k) — (7m), and (8)}. (9)

Similarly,

UY(F*)y ={(y,n, p) € UA(x,z,v) € L:(2) — (5),
(6a) — (6g), (7b) — (7h), (7k) — (7m),

and(8), F“(y,n, p,x,z,v) < F'}, (10

where F“ € R represents an upper bound for the upper-level
objective function F“.

The following assumptions are made to ensure con-
vergence of the algorithm in solving the proposed prob-
lem. We first assume that all variables should be defined
with explicit bounds. The assumption will be satisfied
by defining variables (y, 7, p,x,z,v). Second, all func-
tions defined in the proposed bi-level program (2)-(5),
(6a)-(6g), (7a)-(7Tm),and (8) are assumed to be continuous for
the given values of upper-level integer variables (y,7n) €
{0, 1} x {0, 1, ..., max}. By the continuity of the proposed
constraints (2)-(5), (6a)-(6g), (7b)-(7h), (7k)-(7m),and (8) and
the compact host sets {U,L}, we do not observe any
non-continuity in the proposed constraints for known values
of integer variables. Third, for each vector of fixed upper-level
values (y, 5, p) € U™, there is a lower-level vector (¥, Z, V) €
L, Vs%l > 0, such that:

(3) —(5), (63)—(60) (6g), (7k) — (7m), and
Wt — My —u'; 20, VieN,odeOD, (la)
J/j.’d — @+ M35 <0, YieN,odeOD, (llb)
W M(1-75) <0, VieN,odeOD, (llc)
5

Z(/ R (@)do + 7 Z Z —t~t0dz)
acA 0 ieN odeOD

< F*(3.0.p) +efp,  (11d)

where 85;1 represents the maximum interval for the parametric

optimal solution of the lower-level program F*(¥, 1, p),
to avoid infeasibility. Given values of upper-level decision
variables (y, 7, p) help sketch the feasible network (satisfying
(6a)-(6g) equations) that determines lower-level decision vari-
ables (x, z, v). The lower-level problem defines an equilibrium
traffic assignment for EVs driving on feasible paths and the
solution always exists as there will be a feasible path for each
od € OD. Therefore, the lower bounding procedure finds
feasible solutions based on the recently added cuts, declared
by (13b). We will later see in Proposition 1 that the algorithm
will lead to convergence given a feasible solution at each
iteration.
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B. The Global Optimization

In this section, we generate theoretical lower and upper
bounds to the original bi-level program (2)-(5),(6a)-(6g),
(7a)-(7Tm),and (8) through an iterative algorithm to solve
it to exact optimality. We first start the solution technique
with a lower bounding procedure. The proposed bi-level
problem can be re-written based on the definitions introduced
in Section IV-A [1], as follows.

FM* —

y,nfi‘f?,z,vz (miCi—ap > > pixi*), (20

tel’ aeA odeOD

subject to  (2) — (5), (6a) — (6g), (7Tb) — (7h),
(7k) — (7Tm), (8), and
Va .
Z(/ R (w)dw+ y Z Z pl{x";(’d”)
acA 0 ieN odeOD
< F*(y,n, p), (12b)

y S {O’ 1}5 77 S {09 15 M 77max},

p €[minl;, ..., max u;], x € [0, ..., Xmax],

ieN ieN
ZG [O""azmax]a UE[O""avmax]a (12C)

where F“* represents the optimal objective value of the bi-
level problem. We replace the right-hand side of (12b) with
the parametric upper bound of the lower-level problem and
solve problem (2)-(5), (6a)-(6g), (7a)-(7m), (8),and (12a)-(12c)
by adding cuts iteratively. Each cut includes sets U ¢ U and
points (x*, zK, v*) € L, Vk € K, where K is an index set
that represents the collection of obtained cuts. In other words,
we add a new cut to the problem in each iteration k utiliz-
ing the defined subsets UK~! and points (x¥=1, zk=1, v*=1)
obtained in the previous iteration k — 1. Therefore, the problem
can be relaxed, i.e., Vk € K,

LBD =
min ancl—azz Z pix “’d’
M tel’ aeA odeOD
(13a)
subject to  (2) — (5), (6a) — (6g), (7b) — (7h),

(7k) —
y.n,pelU =

Z(/O“a Rl (w)dw + y Z Z P! x;,od,i)

acA zEN odeOD
.05, VkeK,

(7Tm), (8), (12¢), and

< Fl(y,n, p,x*, 2* (13b)

where LBD represents the lower bound and is obtained from
(13a). Iterative generation of sets U* and points (x*, z¥, v*)
can ensure convergence of the lower bound through the
following steps. First, the lower-level problem (3)-(5),
(6a)-(6g), and (7j)-(7m) is solved to global optimality given
the value of upper-level decision variables (y, 3, p), i.e.,

Fl* —

;n;%Z(/D

acA

R’(w)dw—i—yz Z pt todl)

ieN odeOD
(14a)



MIRHELI AND HAJIBABAI: HIERARCHICAL OPTIMIZATION OF CHARGING INFRASTRUCTURE DESIGN AND FACILITY UTILIZATION

subject to (3) —(5), (6a) — (6¢), (6g), (7k) — (7m), and
uf >u — M3, YieN,odeOD, (14b)

uf <u?® + M3, YieN,odeOD, (14c)

uf <M1 —73), VieN,odeOD, (14d)

xe€[0,...,xpax], 2 €0, ..., Zmax],

vel0,...,0marxl, (14e)

where p} and y! represent the fixed values of p! and y;, Vi €
N, respectively.

The second step is to find a triple of lower-level variables
(xk, zk v%) e L given the optimal value of upper-level
variables (y, 1, p) , Vem > 0, as follows.

T* = min Y (15a)
X,Z,0
subject to  (3) — (5), (6a) — (6¢), (6),
(7k) — (7m), (14e), and
ol .
Z(/ Ri(@)ydo+y > > ﬁ;x;’w)
aeA \70 ieN odeOD
< F™* b, (15b)
—~ M35 —uf? <Y, YieN,odeOD, (l5c)
uf® —u — M3 <Y, VieN,odeOD, (15d)
u?d M(l—yl)<T Vie N,od € OD, (15¢)

where Y represents an auxiliary variable.

The final step is to find subsets UX using the bounds
of upper-level decision variables (y, 7, p) that satisfy the
constraints of the lower-level problem (3)-(5),(6a)-(6g), and
(7k)-(7m). Therefore, we implement a sub-routine applied by
Oluwole et al. [59] and Mitsos [1]. For a given point (y, i, p),
a point (¥, z¢, 9¥) and U, we calculate the bounds of box
Uk = [ k.l y’““] X [1'7“, ﬁk°”] X [1‘7“, i)k°“] and construct
smaller boxes through interations to finally obtain a con-
servative estimate of lower-level constraints, as described in
Algorithm 1. For simplicity, the upper-level decision variables
(y,n, p) are shown by @ in the following subroutine.

We now resume the exact solution technique through an
upper bounding procedure. The upper bound of the proposed
bi-level program is obtained by solving the following problem
that includes the constraints of lower-level problem given the
values of upper-level decision variables, i.e., points (y, i1, p)
found in the lower bounding procedure.

UBD_mmZ (mCi — “Zz z

ieN tel' acAodeOD
subject to  (3) — (5), (6a) — (6¢), (6g),

(7k) — (7m), (14b) — (14e), and

t,od,i
2 2%

odeODaeAlf

+ D> D> xl VieN,terl,

odEODaEAlf

t,od,i =
2 2w =i -

OdEODaEAi_

5t x todz

pixg’"),  (16a)

(16b)

7Y, YieN,teT\{0},

(16¢)

15581

Algorithm 1 Subroutine
1: Set u¥ =1
2: Loop t =0, .
(a)fOVM—l |F|+|N|
if @y — 2(cu — ot )<wm,then
Set okl = ol ok — o, +d@y —al).
then

a))c?)z"

/

elsezfa)m—i—/—(a) —a&h) > o

m?
Akl o
Set & = @Y — ut (04 —

else

A
u
= Q.

M) form=1,... |N|
Set yfi{’ = [yml] 77m = [nm ],
= L Yni" 7]m = 77m J
(c) Check lower- level constraints (3)-(5), (6a)-(6g),
and (7k)-(7m) with given point &% on U*
if the constraints are satisfied, then
Terminate.
else Set u® = pu*tl,

End.

A, =H@G!) =g y~bal,, YodeOD,teT, (16d)

Z(/O Ri(@)do+y D> > ﬁfx;"’d°i)

acA ieN odeOD
< F* 4+ le,

LBD<Z ”lcl—azz z pt I()dl

ieN tel’ acAodeOD

(16¢)
(16f)

where eﬂp represents the maximum violation of the lower-level
objective value F'*. The proof of convergence of the proposed
exact algorithm is described below, based on Mitsos [1].

Proposition 1: Based on Theorem 1 in Mitsos [1], the
proposed exact algorithm terminates finitely if the optimality
gap of the mixed-integer non-linear problem (MINLP), i.e., &
and 86;2, satisfies

0 <& < min{e/2, 8%, e} and 0 < &'y < ', — 2.

Proof: See the appendix. 0

V. NUMERICAL EXPERIMENTS

We have coded our model (2)-(5), (6a)-(6g), (7a)-(7m), and (8),
and the solution technique described in Section IV in Java,
utilizing a commercial solver LINDO [60]. Parameters w and
g in BPR function (5) are set to 0.15 and 4, receptively.
A Poisson distribution is applied to generate the initial demand
patterns for early AM, AM peak, mid-day, PM peak, and
evening time-of-days in a business day.

A. Hypothetical Dataset

This section first summarizes the assumptions and then
presents the numerical results and sensitivity analyses based
on a hypothetical network dataset including 18 nodes and
58 links, as shown in Figure 2. We assume that 30% of
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10

Fig. 2. Hypothetical network.

EV travel demand originates from node 1 and completes in
node 8, while the remainder goes to node 11. We have assumed
a planning horizon from 8§ AM to 5:30 PM with 30 min
time periods. EV users are assumed to get charged in one
time period. The average vehicle arrivals over time-of-days are
assumed to be 10, 20, 15, 10, and 20 for early AM, AM peak,
mid-day, PM peak, and evening, respectively, for a medium
demand level. We assume that the low demand level is half of
the medium demand. Assuming the same demand distribution
on different days, we set the objective function parameter o
to 365, representing the number of days in a year. We assume
a maximum driving range limit of 15 miles for EVs. All
network nodes except the ones located on the outer border
are assumed as candidate locations for the deployment of EV
facilities. Furthermore, it is assumed that at most five chargers
can be deployed in a selected charging facility. The upper and
lower bounds of charging prices per time step are assumed
to be u; = $15.0 and /; = $0.1,Vi € N. We have run the
code on a desktop with quad-core 3.6 GHz CPU and 16 GB
of memory.

1) Results: EV travels are originated from node 1 and
completed at nodes 8 and 11 in a day from 8 AM to 5:30 PM.
Considering a medium demand level, nodes 6 and 7 are
selected as optimal locations to deploy EV charging facilities,
as shown in Figure 2.

The physical capacity of facilities installed at nodes 6 and
7 is 4 and 2 chargers, respectively. To address the EV users’
range anxiety concern, Figure 3 shows the maximum distance
traveled from the last visited EV charging facility for the same
demand level. As indicated, the travel range limit of 15 miles
is not violated by EV users, which confirms the appropriate
location of selected charging facilities in the network.

Table II presents the charging pricing scheme in the selected
EV facilities. Since charging demand from node 1 to node 11 is
high, charging prices in facility 6 are higher than facility 7 to
properly respond to the user arrivals. Besides, the charging
prices increase during the AM and PM peak hours due to
significantly higher demand that increases the waiting time of
users to find available chargers. When user arrivals decrease,
so does the charging prices, because more chargers are vacant.

Table III presents the average and standard deviation of
charging prices over a day from § AM to 5:30 PM for low
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Fig. 3. Max distance traveled from last visited node in med. demand.

TABLE I

CHARGING PRICE ($) AT SELECTED FACILITIES
OVER THE PLANNING HORIZON

Time step 08:00 08:30 09:00 09:30
Facility at node 6  0.15 0.45 0.87 3.34
Facility at node 7 0.15 0.36 0.71 2.83
Time step (cont.) 10:00 10:30 11:00 11:30
Facility at node 6  5.13 5.27 6.21 5.08
Facility at node 7 4.32 492 5.52 4.10
Time step (cont.) 12:00 12:30 13:00 13:30
Facility at node 6  4.62 4.79 4.38 2.92
Facility at node 7  4.44 3.66 3.80 2.84
Time step (cont.) 14:00 14:30 15:00 15:30
Facility at node 6  2.47 3.40 5.12 5.69
Facility at node 7 2.26 2.90 4.00 4.26
Time step (cont.) 16:00 16:30 17:00 17:30
Facility at node 6  7.64 9.04 10.79 11.31
Facility at node 7 6.18 7.72 8.83 9.05

TABLE III

AVERAGE AND STANDARD DEVIATION OF CHARGING PRICES AT
SELECTED FACILITIES FOR LOW AND MEDIUM DEMAND LEVELS

Low demand Med demand % Diff
avg ($) 3.68 4.54 23.36
std ($) 1.99 2.76 38.69

and medium demand levels. The standard deviation indicates
the impact of user arrivals on the pricing scheme over time.
As indicated, both values increase by 23.36% and 38.69%
in medium compared to low demand level. Numerical results
show that the number of chargers is affected by various
demand distributions. For instance, the number of chargers
shall be increased from one to two at charging facility 7 when
the demand level switches from low to medium. Therefore,
it is expected that the agency installs at least two chargers at
the designated node to ensure higher demand satisfaction in
the future. Similarly, the agency deploys a facility at node 6 to
serve users in all demand levels, while the number of chargers
depends on the demand intensity.

Figure 4 shows the convergence of upper and lower bounds
with a gap of 4.58% in the bi-level optimization program.
The CPU time for the algorithm is 21.4 Ar in the medium
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demand level. As indicated in Figure 4, adding cuts in the
lower bounding procedure improves the solution during the
initial iterations, while its improvement rate decreases as the
tightening procedure of the feasible region in lower bounding
proceeds.

2) Sensitivity Analysis: We perform an analysis to show
the sensitivity of the solutions to parameter x in Algorithm 1.
Hence, an alternative updating procedure is implemented to
obtain x, as shown in Figure 5. In the one procedure, the value
of u is divided by 2 at each iteration, while in the alternative
case, the iteration number affects the value of x as 4 = 1/7
(see Figure 5). Tightening the bounds of upper-level decision
variables (y,n, p) by a factor of 2 in successive iterations
leads to a convergence after 12 iterations with a gap of 4.58%
in 21.4 hr. However, the alternative updating procedure based
on x4 = 1/t increases the number of iterations by 58.33%, and
therefore the CPU time increases by 8.87% (i.e., 23.3 hr) as
the alternative procedure offers a more relaxed feasible region
in the lower bounding procedure.

B. Real-World Dataset

The proposed methodology is applied to a real-world case
study in Long Island, NY. The network includes 30 nodes,
340 links, and seven candidate charging facility locations in
Stony Brook University campus, as shown in Figure 6(a). The
average arrivals over time-of-days are assumed to be 40, 50,
45, 30, 55 EVs for early AM, AM peak, mid-day, PM peak,
and evening, respectively. EV users make their trips from
three origins to three destinations in Long Island, NY. The
origins and destinations are located in Brooklyn, NY, Queens,
NY, Hempstead, NY, Hampton Bays, NY, Greenport, NY, and
Mattituck, NY that represent an average trip length of 50 miles
from origins to campus. The real-world dataset includes
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Fig. 6. (a) Candidate facility locations in real-world case study. [Map source:
Google, accessed August 7, 2019.] and (b) Max distance traveled from last
visited node in med. demand.

2,219,855 decision variables. Due to the computational burden,
a more efficient desktop computer with 72 2.10 GHz CPUs
and 128 GB memory (compared to the test case) is utilized.
The charging price is assumed to vary between a minimum of
/; = 0.1 and maximum of u; = 15.0,Vi € N, per time step.
We also set a = 365.

Figure 6(a) shows the location of candidate facili-
ties to deploy EV chargers, selected facilities, and ori-
gins/destinations of EV trips. Since the majority of EV trips
take the routes going to the south campus, three candidate
facilities at nodes 14, 15 and 16 are suggested to satisfy the
demand. Besides, the remaining demand will go to the center
of the campus that encourages the deployment of chargers
at nodes 18 and 19. As indicated in Figure 6(b), all EV
users reach a charging facility or their final destination with
an adequate charging level without violating the travel range
limit of 50 miles. Figure 7 presents the impact of selected
locations to install charging facilities on their pricing scheme
over the planning horizon. The results indicate that higher
demand in AM and PM peak hours imposes higher prices at
the selected facilities. When a higher number of chargers are
available, the charging price decreases. This trend is observed
at the beginning of the planning horizon (when the majority
of chargers are available before new arrivals) and later during
the day. The increasing trend in prices towards the end of the
day, in this case study, is due to the demand accumulation (as
faculty/graduate students often tend to work for longer hours).
In addition, Figure 8 suggests that a higher occupancy can
impose higher charging prices in AM and PM peak hours.
For instance, as shown in Figure 8(a), at charging facilities
located farther away from popular locations (e.g., facility
at node 14), higher prices can lead to lower occupancy
(e.g., at time period 7) as users tend to park and charge at
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Fig. 7. Charging price ($) at selected facilities over the planning horizon
(8:00 AM to 5:30 PM).

TABLE IV

AVERAGE AND STANDARD DEVIATION OF CHARGING PRICES AT
SELECTED FACILITIES FOR LOW AND MEDIUM DEMAND LEVELS

Low demand Med demand % Diff
avg ($) 2.97 411 38.21
std ($) 1.78 2.58 45.19

facilities closer to their destination. Another interpretation is
that lower occupancy can lead to an increase in the charging
price at certain un-popular locations to compensate for the
associated loss of revenue, particularly at locations that do
not get sufficiently high number of customers (except for users
whose destinations are nearby). On the other hand, Figure 8(e)
indicates that facility at node 19 increases the charging
prices even with the growth in the occupancy (e.g., at time
periods 6 and 7) that is primarily due to its relatively conve-
nient location.

Table IV presents the average and standard deviation of
charging prices over a day (8:00 AM to 5:30 PM) based on
low and medium demand levels. Similar to the hypothetical
case study, higher demands can increase the charging prices.
Besides, the selected charging facilities are fully utilized in
the medium demand case. Given a large number of available
chargers, EV users can have highly random choices that
can lead to under-utilizing the un-popular charging locations
(e.g., those that are farther away from main destinations).
Such behavior can enforce the charging agency to adjust the
charging prices by location based on the available demand
level to better regulate the usage of all charging facilities.
This behavior can be observed in Table IV as the average
and standard deviation of charging prices are increased by
38.21% and 45.19% in the medium demand compared to the
low demand level.

Figure 9 presents the convergence of upper and lower
bounds of the proposed bi-level optimization program that
reaches to a 2.89% gap after 21 iterations in 68.8 hr for the
medium demand level. It can be observed that the solution
considerably improves (i.e., the gap between the upper- and
lower-bound substantially decreases) by adding cuts in the
lower bounding procedure during the initial iterations. How-
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Fig. 9. Convergence of upper bound and lower bound ($) of the bi-level
program and the runtime over iterations.

ever, the improvement rate decreases as the lower bounding
proceeds. The CPU time in the global optimization algorithm
varies over iterations. A set of parametric upper bounds in
initial iterations lead to lower computational time, while tight-
ening the feasible area over iterations increases the complexity
of lower bounding procedure (see the increasing trend in the
runtime over the next iterations).

To evaluate the performance of the proposed solution tech-
nique on the operational aspect of the problem (i.e., dynamic
pricing scheme and EV users’ decisions given the strategic
charging network design), the proposed bi-level optimization
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program (7a)-(7m) is solved again given the optimal value
of integer variables y, n, and e obtained from our origi-
nal integrated optimization framework. Figure 9 shows the
comparison of the test case results to those of the original
framework. It can be observed that the computational time is
significantly lower in the operational problem. As expected,
the optimal operational decisions x, z, v, and p are found
in 1.2 hr after 17 iterations.

Figure 10 shows the values of upper- and lower-level
objective functions over the algorithm iterations. The optimal
number of chargers are also shown over iterations. Higher
charging prices in the initial iterations (obtained from upper-
level problem) has decreased the utilization. The initial itera-
tions indicate that the algorithm suggests the deployment of a
lower number of chargers (i.e., at most five chargers at each
facility) to meet the demand. This trend is obtained without the
consideration of EV users’ travel time (obtained from lower-
level problem). Therefore, the lower-level objective function
will be added by improving the parametric upper bound (that
is the parametric optimal value of lower-level problem as a
function of upper-level variables) over iterations to capture
the impact of EV travel times (see constraints (13b)) and
update the adequate number of chargers. Hence, a better under-
standing of the number of chargers will be obtained while
the algorithm proceeds. As indicated, the optimal number of
chargers is identified from iteration 17; however, their location
has not fully optimized yet. Toward the convergence of the
upper- and lower-bound (i.e., starting from iteration 19), the
optimal location and capacity of charging facilities will be
obtained that are facilities located at node 14 with 7 chargers,
node 15 with 8 chargers, node 16 with 5 chargers, and nodes
18 and 19 each with 10 chargers.

VI. CONCLUSION

This study proposes a bi-level optimization program for net-
work design and utilization management of EV charging facil-
ities. The upper level aims to minimize facility deployment
costs and maximize the revenue generated from charging
activities, while the lower level aims to minimize the users’
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travel times and charging expenses. An iterative algorithm is
applied to solve the problem that generates theoretical lower
and upper bounds to the proposed bi-level problem. We find
the lower bound by solving a global optimization problem that
consists of the upper-level objective function, constraints of
both upper- and lower-level models, and the parametric upper
bound of the optimal solution to the lower-level problem.
Then, the parametric upper bound is improved through an
iterative process by dividing the feasible region of upper-level
program into tighter bounds and finding an optimal solution
at each interval. The lower bounding procedure iteratively
adds cuts to improve the solution, while it decreases the
efficiency of the algorithm due to the generation of new
constraints (13b). The computational results show that the
algorithm yields the desired optimality gap (i.e., 2.89%) within
21 iterations in 68.8 hours. The proposed solution technique
is applied to a (i) hypothetical network to confirm its solution
quality and (ii) real-world case study in Long Island, NY to
evaluate its computational performance. The results present
the impact of added cuts on the solution quality in each iter-
ation. As observed, the optimal location of charging facilities
that offer feasible paths for EV users are determined over
the initial iterations, while the optimal number of charging
spots are obtained over the final iterations. An analysis of
sensitivity has also been conducted to assess the behavior of
the methodology based on the choice of updating processes
and parameters. It will be interesting, in the future, to compare
the computational performance of the proposed methodology
with a benchmark technique. It will be worthwhile to study
the interaction, partnership, and competition among multiple
charging network operators and assess the impact of their
business on the pricing scheme and utilization of charging
facilities using a multi-leader multi-follower model. Another
interesting future direction is to integrate the electric power
distribution network with transportation network to account
for energy dispatch and underlying traffic flows in the EV
charging infrastructure design. In addition, the impact of
non-EVs on travel behavior and traffic assignment can be
considered as an interesting future research.

APPENDIX
PROOF OF PROPOSITION 1

Proof: We let F* = F"* 4 g%. The lower bounding
procedure globally generates points z € UY (F"*+4¢). Assum-
ing & < &Y, we have 7 € UV (F"). The third assumption in
Section IV-A guarantees that sets U* and points (x*, z¥, v*)
can build the parametric upper bounds of optimal solution to
the lower-level problem. Besides, adding cuts associated with
newly defined sets and points in iteration k leads to tightening
the lower bound. We let (3,1, p, X, Z, ) refer to the new
solution obtained from the lower bounding procedure, based
on newly added cuts. Solution (y,#, p,x,Z,0) will be &-
optimal if y = y,# = n and p is sufficiently close to p.
Besides, the feasible region of lower-level problem does not
depend on continuous upper-level decision variable p. Hence,
according to Lemma 3 in [1], there exists a pair (y, ) such
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that point (xk , 72k, vk) generated in (15a)-(15e) satisfies

(3) — (5), (6a) — (6g), (7k) — (7m), and
t,k
Ri(@)do+y D > plakotik

([

acA ieN odeOD

< F*(3,0, p) + &y (17)

1 l

Based on assumption ¢ — & — &, > 0, there exists d; > 0:

F™*(y,#,p) < F*(3, 0, p)
+.5(h —& —¢hn), Ypillp—pll <1
By the continuity of
t,

k
> /0 Ri(@)do+y D > piagot*

acA ieN odeOD

on the host set of p, we can derive the following for d» > O:

t,

k
Z /Ova Rl (w)dw + y Z Z phxlodsik

acA ieN odeOD

1.k
Ri(@)do+y D > piago®

Vg
=>(/
ieN odeOD

acA 0
+.5(eh —&—¢by), Vpillp—pll <o
According to (17)-(19), we can conclude

t,k

Z /00“ R (w)dw + y Z Z plxlodik

acA ieN odeOD

< F*(y,#,p) + ¢ —&, Vp:llp— pll <min{d), &)}

On the other hand, according to (17), points (xk, ZF, v¥) are -
optimal to the lower-level problem for V(y = y,n = 17), Vp :
[lp — pll < 0 = min{dy, d}. Thus, after a finite horizon,
if the lower bound is feasible, a point (3, 9, p, X, Z, v), with
y=2y,7=1,and p : ||p — pll < o will be generated.
Since this point is the solution to (13a)-(13b), the following
inequality is valid: F'(3, 4, p, £, 2, 9) < F*(§, 4}, p)+eh.—¢.

Additionally, we have LBD > F“(y,9, p,%x,2,0) — &.
By the feasibility of point (y, 4, p, X, Z, D) in the bi-level pro-
gram (2)-(5), (6a)-(6g), (7a)-(7m),and (8), the upper bounding
procedure (16a)-(16f) generates an upper bound as UBD <

F“(y,%, p,x,Z,0) + & Therefore, the assumption &

e /2 will lead to UBD — LBD < 2& < &Y, which confirms

finitely termination of the global optimization algorithm.
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