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Traffic Signal Timing and Trajectory Optimization
in a Mixed Autonomy Traffic Stream
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Abstract— This study introduces a methodology for cooperative
signal timing and trajectory optimization at intersections with a
mix of connected automated vehicles (CAVs) and human-driven
vehicles (HVs). We represent joint signal timing and trajectory
control as a mixed-integer non-linear program, which is com-
putationally complex. The developed methodology provides a
balance between computational efficiency and solution quality
by (a) linearizing the nonlinear constraints and reformulating
the problem with a tight convex hull of the mixed-integer
solutions and (b) decomposing the intersection-level program
into several lane-level programs. Hence, a unique controller
jointly optimizes the trajectories of CAVs on a lane and the
signal timing parameters associated with that lane. This setting
will allow finding near-optimal solutions with small duality
gaps for complex intersections with different demand levels.
Case study results show that the proposed methodology finds
solutions efficiently with at most 0.1% duality gap. We compared
the developed methodology with an existing signal timing and
trajectory control approach and found 13% to 41% reduction in
average travel time and 1% to 31% reduction in fuel consumption
under different scenarios.

Index Terms— Signal timing, trajectory optimization, con-
nected and automated vehicles, Lagrangian relaxation.

I. INTRODUCTION

PAST research shows that optimizing the trajectory of
connected automated vehicles (CAVs) and the timing of

traffic lights at signalized intersections offers a great potential
to improve traffic operations [1]–[5]. Joint CAV trajectory
and signal timing optimization helps plan the arrival time of
vehicles to the intersection more accurately to utilize green
durations more efficiently. Therefore, the number of stops,
fuel consumption, and travel delay at intersections will be
reduced significantly. However, the cooperation between a
signal controller and approaching vehicles requires an exten-
sive amount of communication and computational power [6].
It is not likely that a signal controller can handle all the
required computations. In fact, previous studies show the
effectiveness of signal timing and trajectory optimization (a) in
intersections with simple layouts (e.g., one-way streets [2], [7],
or no turning movements [8]), (b) under low traffic vol-
umes [2], [7]–[9], or (c) using simplifying or restrictive
assumptions (e.g., using first-order traffic flow model to update
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Fig. 1. Connected signal controller interacting with CAVs and HVs.

trajectory of CAVs [4], [10] or optimizing the trajectory of a
portion of CAVs [1]). Approximation methods and heuristic
algorithms are also used to solve the problem in more complex
conditions; however, at the expense of sacrificing the quality
of the solutions [11], [12].

This article presents a methodology for joint CAV trajectory
and signal timing optimization at signalized intersections that
provides a balance between computational efficiency and solu-
tion quality. As Fig. 1 shows, the methodology is designed for
a mixed traffic stream of CAVs and HVs, where the movement
of CAVs is controlled centrally and communicated with them
through a vehicle-to-infrastructure communication system at
the signalized intersection. The methodology requires the
initial location and speed of all vehicles (CAVs and HVs) in
the vicinity of the intersection and predicts the location of HVs
over a planning horizon using car following concepts. The
movement of HVs are not optimized. We assume that either
all vehicles are connected (just to collect vehicle location and
speed), or the intersection is equipped with detectors (e.g.,
radar units or video cameras) that can provide the location and
speed of vehicles. Note that the proposed algorithm works if
HVs do not send information to the signal controller as long as
detectors are available to collect the required data. This study
formulates the joint optimization as a mixed-integer nonlinear
program, whose objective reduces the total travel time and
speed variance at the intersection. The decision variables are
the acceleration rates of CAVs and signal timing parameters.
The interaction between HVs and CAVs is incorporated into
the optimization problem using a linear car-following model
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developed by Helly [13]. We modified the linear model to
become responsive to traffic lights by incorporating signal
timing parameters. The signal timing parameters are optimized
through a cycle- and phase-free plan that satisfies the minimum
and maximum green constraints in addition to yellow time
interval.

The signal timing and trajectory optimization (STTO) prob-
lem is complex, especially with the presence of human-driven
vehicles, and there is a need to develop computationally effi-
cient algorithms to find near-optimal solutions. Previous stud-
ies showed that there is a trade-off between the computational
efficiency and optimality of results. This study introduces a
solution technique that reduces the complexity of the STTO
problem using Lagrangian relaxation technique to decompose
the intersection-level signal timing and trajectory optimization
problem into several lane-level optimization sub-problems,
where a controller optimizes the signal timing parameters and
trajectories of CAVs at each lane of an intersection, separately.
As a result, STTO can be extended to more complex intersec-
tion layouts with high demand levels. In addition, a problem
reformulation is proposed using maximal clique sets based on
intersection conflict graph to tighten the convex hull of the
mixed-integer feasible area and therefore, improve the conver-
gence properties of Lagrangian relaxation technique, which
reduces the optimality gap. The near-optimal intersection-
level signal timing parameters and CAV trajectories are found
through a consensus process between all controllers at the
intersection. Furthermore, we propose a simple optimization
problem to provide a feasible solution for signal timing plans.
Therefore, finding a feasible and high-quality solution is
possible without the mentioned restrictive assumptions.

In the remainder of this article, relevant literature is
reviewed. The problem formulation is discussed next. Then,
the solution technique, including the problem reformulation
and Lagrangian relaxation technique is detailed. The result
of applying the proposed algorithm to a case study will be
provided next, and finally concluding remarks are presented.

II. BACKGROUND

A. Trajectory Planning at Intersections

Optimizing the trajectory of CAVs at signalized intersec-
tions with an advanced knowledge of signal phasing and
timing (SPaT) information improves traffic safety, mobility,
and fuel consumption efficiency [14]–[17]. The national high-
way traffic safety administration (NHTSA) reported that SPaT
broadcasts are capable of reducing red-light violations and
energy consumption by 90% and 35%, respectively [18].
Moreover, vehicle trajectories can be planned with the goal
of avoiding stops at an intersection and minimizing fuel
consumption. Xia et al. [19] showed that a 14% reduction
in fuel consumption is possible as a result of an advisory
speed system experiment at a fixed-time signalized intersec-
tion. Wei et al. [20] showed that optimizing the trajectory of
the leading vehicle in a platoon approaching a signalized
intersection can effectively manage the traffic congestion and
increase the capacity of the intersection. When all vehicles
are autonomous, controlling the trajectory of CAVs in a

signal-free intersection provides the opportunity to achieve the
highest capacity of the intersection while maintaining safety by
preventing collision between vehicles [21]–[24]. For instance,
Mirheli et al. [25] showed that the total travel time at a
signal-free intersection with 100% CAVs could be reduced
up to by 70.5% in comparison with optimized fully actuated
signal timing plans.

B. Trajectory and Signal Timing Optimization

Li et al. [7] found signal timing and trajectories of CAVs on
an intersection of one-way streets, assuming that all vehicles
are fully connected and will follow the assigned optimal
trajectories. They enumerated all possible signal timing plans
and optimized trajectories for each CAV, with the objective
of minimizing the average delay. Their proposed approach
reduced the average delay by up to 36.9% and increased the
throughput by up to 20.2% compared to a fully-actuated signal
controller. This approach was not applicable to more complex
intersections due to the need to enumerate all possible signal
timing plans. Jung et al. [8] developed a bi-level program to
find traffic signal timing parameters and CAV trajectories at
a simple four-leg intersection with only one through link at
each direction and only CAVs in traffic stream. An exhaustive
search method found the lowest intersection delay at the
upper level based on the estimated arrival time of vehicles
to the intersection. Then, genetic algorithms determined the
trajectories of CAVs at the lower level with the objective
of minimizing the total fuel consumption. As a result of
this study, the travel time and fuel consumption reduced
by up to 12% and 10%, respectively. The combination of
the exhaustive search and genetic algorithms might not be
efficient enough to solve complex optimization problems.
Similarly, Yang et al. [2] found signal timing parameters at an
isolated intersection with two one-way streets using a branch
and bound technique. This study considered three categories
of vehicles, including conventional, connected human-driven,
and connected and automated vehicles with different market
penetration rates. In the upper-level, the total intersection delay
was minimized based on the estimated arrival time of vehicles.
The trajectories of CAVs were optimized in the lower-level
problem for each signal timing plan to maximize their entry
speed to the intersection. This study assumed that each platoon
leader is a CAV and platoon leaders always arrive at the
intersection at the unset of the green signal. The algorithm
might not be efficient in complex intersections with high traffic
volumes since the trajectories need to be optimized for each
set of signal timing parameters identified by the branch and
bound algorithm.

Xu et al. [9] developed a bi-level program to minimize the
total travel time in the upper level and minimize the fuel con-
sumption of each vehicle at the lower level. The signal timing
plans were found by enumeration. Then, the optimal trajectory
of vehicles for each plan were found by approximating the
state and control variables using an interpolating polynomial
function. Pourmehrab et al. [26] proposed a methodology to
adjust the existing signal timing plans based on vehicles arrival
time to maximize the utilization of green time. In addition,
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trajectory of leading automated vehicles is optimized to mini-
mize the travel time delay. However, this study mainly focused
on the feasibility of the signal timing plans rather than their
optimality (adjusted the signal timing parameters based on
a set of defined rules to find feasible coordination with
optimized trajectory). The signal timing control strategy was
to extend the signal or switched it to another phase repeatedly
until finding a combination that provides arrival on green.
In contrast, our proposed approach jointly optimizes signal
timing parameters and vehicle trajectories, which leads to more
efficient traffic operations.

The enumerative methods such as the ones described in
previous studies become ineffective when the intersection
layout is complex, the number of phases increases, or the
demand level is high. Therefore, some studies proposed heuris-
tics or considered simplified assumptions to solve the signal
timing and trajectory optimization problem efficiently. For
instance, Feng et al. [27] developed a joint optimization
method for signal timing and trajectory of platooning CAVs.
They divided the signal phases into several stages and used
a dynamic programming method to find the signal timing
parameters at each stage. The proposed approach could find
optimal solutions analytically with the assumption that the
platoon leader arrives at the intersection stop bar exactly at the
beginning of the green time interval. However, this assumption
may limit the choices of signal timing plans in the dynamic
programming framework, especially when platoon leaders are
not CAVs. Moreover, the effectiveness of the proposed method
for high traffic volume was not clear since the study showed
the performance results for simple scenarios, where the traffic
volume was very low. The result of this study showed that the
joint optimization of signal timing and trajectory of platoon
leaders reduced vehicle delay and CO2 emission by up to 24%
and 13.8%, respectively. Guo et al. [3] proposed a two-step
approach to optimize signal timing and trajectory of CAVs.
In the first step, the signal timing parameters were found to
minimize the intersection delay. In the second step, the optimal
trajectories were designed for the planned signal timings. The
signal timing parameters were found by dynamic program-
ming, and the effect of each signal plan on trajectories was
evaluated through a shooting heuristic, iteratively. Shooting
heuristic was shown to estimate high-quality trajectories for
CAVs. However, the feasibility of this approach is limited to
intersections with links that are long enough to let a vehicle
select an appropriate maneuver. In addition, the existence
of long queue at the intersection yields finding infeasible
solutions by the shooting heuristic.

Yu et al. [1] optimized signal timing parameters such as
phase sequence, green start time, duration of each phase,
and the cycle length at an isolated intersection. Besides, they
optimized arrival time of vehicles and lane changing decisions
in a four-leg intersection with through, right-turn, and left-turn
movements. This study utilized a planning horizon procedure
to solve an MILP problem. However, it assumed that (1) all
vehicles were CAVs and (2) the vehicles that were in the
same lane passing through the intersection in the same cycle
were in the same platoon. As a result, they only optimized
the trajectory (arrival time) of the leading vehicle, and other

following vehicles followed the leader with a car-following
model. In addition, they assumed that all vehicles arrived the
intersection with their desired speed and no queue existed at
the intersection. These assumptions restrict the application of
the proposed methodology to low CAV market penetration rate
levels. Li et al. [28] optimized trajectory of electric vehicles
in combination with signal timing plans for an arterial street
with multiple intersections. The objective of this study was to
minimize the traffic delay by optimizing signal timings and
save the energy of electric vehicles by optimizing their tra-
jectory. To solve this complex optimization problem, a hybrid
heuristic technique comprised of genetic algorithm and particle
swarm optimization was utilized to generate feasible signal
timing plans and consequently evaluate optimal trajectories
for that signal. The study reduced the problem complexity by
considering optimal trajectories from each vehicle perspective
without coordination among them. Therefore, the solution may
not improve system-level performance.

Li and Zhou [4] optimized signal timings and trajectories
of CSVs in a mixed environment with human-driven vehicles.
They reduced the complexity of the problem by representing
the traffic dynamic and signal timing constraints within a
phase-time traffic hyper-network. However, this representation
required a first-order heterogeneous traffic model. Although
their proposed approach allows studying large-scale networks,
its accuracy for operational purposes is not as high as the pro-
posed model in our study that uses car-following models. The
performance of the phase-time traffic hyper-network approach
is not clear when a second-order traffic flow or microscopic
car following model is considered, where the complexity of
the problem will increase significantly. In a similar study,
Li et al. [10] used Lagrangian relaxation technique to solve
the signal timing and routing problem in a transportation
network. The Lagrangian relaxation was used to relax the
link capacity constraints and to decompose the optimization
program into routing guidance and signal optimization sub-
problems. However, optimizing vehicles’ routes is different
than trajectory optimization since route optimization does
not control the location of vehicles over short time interval.
Although the Lagrangian relaxation technique reduced the
complexity of the proposed problem, the reported optimality
gaps in this study was as high as 30%, which lead to
suboptimal solutions.

C. Summary of the Literature and Contribution of the Paper

The signal timing and trajectory optimization problem is
complex and there is a need to develop algorithms providing
a balance between computational complexity and solution
quality. Previous studies showed that there is a trade-off
between the computational efficiency and solution quality,
where more efficient algorithms are associated with more
simplifying assumptions. The contributions of this study are
three-fold: 1) this study introduces a solution technique that
provides a balance between computational efficiency and solu-
tion quality: it reduces the computational complexity of STTO
without significantly sacrificing the quality of the solution.
We achieved this balance by developing an efficient solution
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Fig. 2. Defined sets and parameters in STTO problem.

technique using Lagrangian relaxation method to decompose a
centralized STTO problem into several lane-level optimization
sub-problems. Therefore, intersections with various layouts
and different demand levels can be analyzed; 2) we reduced the
optimality gap of the proposed Lagrangian relaxation approach
so that the solutions that it finds are close to the optimal
solutions. We did so by proposing a problem reformulation
using maximal clique sets to tighten the convex hull of
mixed-integer feasible region. As a result, we improve the
convergence property of Lagrangian relaxation technique for
STTO problem and ensure finding near optimal solutions
efficiently with reduced duality gap; 3) the proposed algorithm
does not require the following simplifying assumptions: a)
fleet of all automated vehicles, b) forcing vehicles to move
in a platoon, c) arriving at the intersection with the desired
speed, or d) no initial queue existing at the intersection during
red phases. Therefore, the effect of joint signal timing and
trajectory optimization of CAVs can be studied in a mixed
autonomy environment with various market penetration rates
of CAVs.

III. PROBLEM FORMULATION

This study optimizes the trajectory of all CAVs and signal
timing parameters cooperatively. The initial location and speed
of human-driven vehicles are assumed to be known by the
infrastructure through radar units, video detectors, or connec-
tivity. We define L as the set of all lanes at an intersection and
I as the set of all vehicles at the intersection neighborhood.
Moreover, I l , I l

A , and I l
H represent the sets of all vehicles,

CAVs, and HVs on lane l ∈ L, respectively. We define Cl as
the set of all lanes conflicting with lane l ∈ L. Fig. 2 shows
the defined sets in an isolated intersection.

We define Ts and Tt as the set of signal timing and
trajectory optimization time steps, respectively. Note that vehi-
cle trajectory and signal timing update time steps (�Tt and
�Ts , respectively) are different. The trajectory are updated
more frequently than signal timing parameters to take into
account the uncertainty in driver behaviors and capture any
differences between the predicted and actual vehicle trajectory.
Equations (1) shows the relation between these two time steps.
The �� operator rounds down the corresponding argument
inside it.

p =
⌊

t × �Tt

�Ts

⌋
t ∈ Tt , p ∈ Ts (1)

TABLE I

DEFINITION OF SETS, DECISION VARIABLES, AND PARAMETERS

The status of the signal timing variables including green
time g p

l and yellow time y p
l on lane l ∈ L and time-step

p ∈ Ts will be optimized based on information on location xt
il

and speed v t
il of vehicle i ∈ I l approaching the intersection

on lane l ∈ L at time-step t ∈ Tt . The acceleration rate
at

il of vehicle i ∈ I l
A at time t ∈ Tt is also the control

variable in motion planning of CAVs. Table I provides a
detailed definition of variables, sets, and parameters used in
the problem formulation.

A. Objective Function

The objective function of STTO is shown in (2) with two
terms. The first term maximizes the distance of each vehicle
from the beginning of lane l ∈ L, where vehicle i ∈ I l

is located on (see Fig. 2) [29], [30]. Weight factor wil for
vehicle i ∈ Il on lane l ∈ L is multiplied by the first
term of the objective function to avoid constantly serving
approaches with higher demand and preventing queue buildup
at the minor direction of the intersection. We set the value
of this weight equal to the current delay that each vehicle
has experienced after entering the intersection vicinity (i.e.
free flow travel time minus actual travel time). Therefore,
a higher priority will be assigned to vehicles on a lane with
higher experienced delays. Note that the weight factor is fixed
over the planning horizon. The second term of the objective
function smoothens the motion of CAVs by minimizing the
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difference of speeds of each CAVs between two consecutive
time steps. Tajalli and Hajbabaie [14] showed that minimizing
the difference in speeds yields to a smaller number of stops at
intersections. The weight factor β ∈ (0, 1) is an input to the
optimization program to provide a desired balance among the
two terms of the objective function. A higher value of β gives
more priority to the first term and a lower value of β provide
a higher priority to the second term of the objective function.

f = Max
a

(
β

∑
t∈Tt

∑
l∈L

∑
i∈I l

wil x
t
il − (1 − β)

∑
t∈Tt∑

l∈L

∑
i∈I l

A

∣∣∣v t+1
il − v t

il

∣∣∣) (2)

B. Constraints

The speed and position of all vehicle are updated based on
basic equations of motion, as shown in constraints (3) and (4).

v t+1
il = v t

il + at
il�Tt ∀i ∈ I l , l ∈ L, t ∈ Tt (3)

xt+1
il = xt

il + v t
il�Tt + 1

2
at

il�T 2
t ∀i ∈ I l , l ∈ L, t ∈ Tt (4)

1) Car Following Constraints: The estimated location and
speed of HVs are needed for optimizing the signal timing
parameters and trajectory of CAVs. Hence, the future trajectory
of HVs are predicted based on a car-following behavior. This
study considered the linear car-following model developed by
Helly (1959). This car-following model is used in modeling
adaptive and cooperative adaptive cruise control systems [31],
[32]. Furthermore, Panwai and Dia (2005) showed an appro-
priate fit of Helly’s car following model to real-world traffic
data. Although the nature of human driving is stochastic, a
deterministic car-following model works appropriately in our
approach. The reason is that the initial location of vehicles is
observed from the network every 0.5 seconds by the receding
horizon control methodology, which will be explained in the
methodology section. The followers respond to both relative
speed and distance from their preceding vehicle in this car
following model, see Equations (5) for calculation of the
acceleration rate. Parameters α1 and α2 are fixed, have positive
values, and should be within the ranges of [0.17, 1.3] and
[ 1

4α1,
1
2α1], respectively [34], [35].

a�t
il =α1

(
v t

i−1,l − v t
il

)+α2
((

xt
i−1,l − xt

il − Lv

) − ξ − οHv t
il

)
∀i ∈ I l

H , l ∈ L, t ∈ Tt (5)

The first term in Equations (5) considers the relative speed
between the leading and following vehicles. A positive speed
difference (i.e., leader travels at a higher speed) results in a
positive acceleration rate for the follower, while a negative
speed difference forces the follower to decelerate. The second
term takes into account the relative distance between succes-
sive vehicles.

We enhance the car-following model to account for traffic
signals so that a vehicle decelerates when approaching a red
signal. The traffic light is considered as a virtual vehicle
with either zero speed at the stop bar (for a red signal) or
max speed for from the intersection (for a green signal).
Equations (6) show how a vehicle’s acceleration rate is updated
while approaching the stop bar. Note that when the signal is

red, g p
l = 0, the virtual stopped vehicle is located at the inter-

section stop bar χ l and there would be desired safety distance
ξ between the vehicle and the intersection stop bar. However,
when the traffic light is green, the location of preceding virtual
vehicle changes to a far distance from the following vehicle
and the desired safety distance to the intersection stop bar
will be reduced to zero. Moreover, it should be noted that the
connection between vehicles and traffic light is only needed
when vehicles are before the intersection stop bar with xt

il ≤
χ l . Equations (6) should become inactive after a CAV passes
the intersection. Multiplying signal timing variable g p

l with big
coefficient M in the second term of Equations (6) moves the
virtual car to a very long distance from the following vehicle
when signal is green. As such, the vehicle does not react to it
anymore.

Binary variable γ t
il is introduced in Equations (6) to relax

the connection between the traffic light and vehicles after they
pass the intersection stop bar (xt

il > χ l). Variable γ t
il becomes

zero when the vehicle is upstream of the intersection stop bar
and becomes one when the vehicle has passed the intersection
stop bar. Equations (7) defines the value of γ t

il for vehicle
i ∈ I l on lane l ∈ L at time step t ∈ Tt .

a"t
il = α1

(
g p

l υ �−v t
il

)+α2

((
χ l + Mg p

l − xt
il

)
−(1 − g p

l )ξ
)

+ Mγ t
il ∀i ∈ I l

H , l ∈ L; t ∈ Tt , p ∈ Ts (6)

γ t
il =

{
0 if xt

il ≤ χ l

1 otherwise
∀i ∈ I l , l ∈ L, t ∈ Tt (7)

The linear car-following model presented by Equations (5)
and (6) does not limit the acceleration rate and speed between
minimum and maximum values. As a result, we formulate the
car following model based on a max-min function, as shown
in Equations (8). This formulation is a complete form of the
proposed car-following model that describes situations such
as moving in free-flow condition, following other vehicles
in stationary and non-stationary conditions, and approaching
slow or standing vehicles and red signals.

at
il = max

(
σ,

υ − v t
il

�Tt
, min

(
σ �,

υ � − v t
il

�Tt
, α1

(
g p

l υ � − v t
il

)
+ α2

((
χ l + Mg p

l − xt
il

)
− (1 − g p

l )ξ
)

, a�t
il , a"t

il

))
∀i ∈ I l

H , l ∈ L, t ∈ Tt , p ∈ Ts (8)

2) CAV Motion Constraints: Objective function (2)
smoothens the trajectory of CAVs to prevent frequent stops
at the intersection. Constraints (9) ensures a safe distance
between a CAV and its preceding vehicle. The distance
between two consecutive vehicles is a function of desired
safety distance ξ , average vehicle length Lv , and distance
οAv t

il that can be passed within the reaction time of the
following vehicle. Parameter οA represent the reaction time
for CAVs.

xt
i−1,l − xt

il ≥ ξ + Lv + οAv t
il ∀i ∈ I l

A, l ∈ L, t ∈ Tt (9)

Constraints (10) is used to prevent a CAV from entering the
intersection area when the signal is not green. When a CAV has
not arrived at the intersection and the signal is red, the distance
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Fig. 3. The allowed movements for northbound and southbound approaches.

between the vehicle and intersection stop bar should be greater
than or equal to a safety distance, as shown on the right-hand
side of constraints (10). The safety distance is a function of
the maximum distance �Ttv

t
il that a vehicle can travel in

one time step with its current speed at time t ∈ Tt . These
constraints need to become inactive when either the signal
is green, or the vehicle has passed the stop bar. Therefore,
variables g p

l and γ t
il are multiplied to a large number (M) to

ensure that constraints (10) are always satisfied when either
the signal is green, or the vehicle has passed the stop bar.

χ l − xt
il ≥ �Ttv

t
il − Mg p

l − Mγ t
il

∀i ∈ I l
A, l ∈ L, t ∈ Tt , p ∈ Ts (10)

Constraints (11) and (12) limit the acceleration and speed
of CAVs between allowed ranges, respectively.

σ ≤ at
il ≤ σ � ∀i ∈ I l

A, l ∈ L, t ∈ Tt (11)

υ ≤ v t
il ≤ υ � ∀i ∈ I l

A, l ∈ L, t ∈ Tt (12)

3) Signal Timing Constraints: The signal timings are
assumed to be cycle- and phase-free; however, restricted to
non-conflicting movements. Fig. 3 shows all allowed move-
ments for northbound and southbound approaches, as an
example. We assume that through and right-turn movements
can go on the same lane.

Several constraints are considered to prevent collisions
between vehicles on conflicting movements. The signal timing
decision variables g p

l and y p
l respectively take on the value

of one when the traffic light serving lane l ∈ L at time step
p ∈ Ts is green or yellow. Otherwise, both g p

l and y p
l take

on the value of zero simultaneously, which means that the
signal is red. Constraints (13) ensure that no pair of conflicting
movements can receive a non-red traffic light at time step
p ∈ Ts . In other words, the traffic signals serving lanes with
conflicting movements can be red at the same time, but only
one of them can be either green or yellow at a time. In addition,
constraints (13) prevent the signal status of a lane to be green
and yellow at the same time.

g p
l + g p

l� + y p
l + y p

l� ≤ 1 ∀l ∈ L, l � ∈ Cl , p ∈ Ts (13)

Constraints (14) ensure that green time assigned to a lane is
less than or equal to maximum green time ω�

l . Constraints (15)
ensure that the green time duration for lane group l ∈ L is
greater than or equal to minimum green time ωl .∑p+ω�

l

j=p
g j

l ≤ ω�
l ∀l ∈ L, p ∈ Ts (14)∑p+ωl

j=p+1
g j

l ≥
(

g p+1
l − g p

l

)
ωl ∀l ∈ L, p ∈ Ts (15)

Constraints (16) define the duration of yellow time, and
constraints (17) make sure that the signal switches from green
to yellow at the end of the green time interval. Parameter
�� is the yellow time interval. Constraints (18) ensures the
integrality of signal timing variables.∑p+Y

j=p
y j

l ≤ �� ∀l ∈ L, p ∈ Ts (16)∑p+Y

j=p+1
y j

l ≥
(

g p
l − g p+1

l

)
�� ∀l ∈ L, p ∈ Ts (17)

g p
l , y p

l ∈ {0, 1} ∀l ∈ L, p ∈ Ts (18)

To summarize, signal timing and trajectory optimization
problem can be shown as follows:
ST T O :
f = Max

a

(
β

∑
t∈Tt

∑
l∈L

∑
i∈I l

wil x
t
il − (1 − β)

∑
t∈Tt

×
∑

l∈L

∑
i∈I l

A

∣∣∣v t+1
il − v t

il

∣∣∣)
s.t.

(3) − (4), (8), (9) − (12), (14) − (18)

IV. METHODOLOGY

The proposed formulation is a mixed-integer nonlinear pro-
gram. This optimization program is intractable and cannot be
solved efficiently due to the presence of nonlinear constraints
and binary variables. We first linearize the objective func-
tion (2), car-following model (8), and conditional constraints
to reduce the computational complexity of the proposed
formulation. We use the Lagrangian relaxation technique to
decompose the intersection-level problem into several lane-
level sub-problems with reduced computational complexity
and the possibility of allocating one controller to each of
them. The controllers will reach a consensus on signal timing
parameters and CAV trajectories through sharing Lagrangian
multipliers to ensure that a near-optimal solution is found
when conflict avoidance constraints (13) are satisfied.

A. Linearization

The second term of the objective function (2) contains
an absolute value function, which is convex but nonlinear.
We introduce two auxiliary non-negative variables zt

i and ut
i

for each vehicle i ∈ I l
A at time step t ∈ Tt to linearize the

absolute value function. Constraints (20) and (21) are added
to the original problem to enforce that the difference of zt

i and
ut

i equals the terms in the absolute value function. The linear
form of objective function (2) is shown in (19), where the sum
of auxiliary variables is minimized.

Max
a

(
β

∑
t∈Tt

∑
l∈L

∑
i∈I l

wil x
t
il − (1 − β)

∑
t∈Tt∑

l∈L

∑
i∈I l

A

(
zt

il + ut
il

))
(19)

zt
il − ut

il = v t+1
il − v t

il ∀i ∈ I l , l ∈ L, t ∈ Tt (20)

zt
il ≥ 0, ut

il ≥ 0 ∀i ∈ I l , l ∈ L, t ∈ Tt (21)

Constraints (8) are nonlinear due to the existence of a max-
min function. We provide a linear form of these constraints
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by converting the equality constraints to several inequalities
and adding a penalty term to the objective function. Auxiliary
variable bt

il ∈ Rn is introduced to represent the min part of the
max-min function (8). Note that bt

il has the same unit as accel-
eration ( f t/s2) and can take both positive and negative values.
As constraints (22)-(25) show, the min part of constraints (8)
are represented by less than or equal inequalities.

bt
il ≤ σ � ∀i ∈ I l

H , l ∈ L, t ∈ Tt (22)

bt
il ≤ υ � − v t

il

�Tt
∀i ∈ I l

H , l ∈ L, t ∈ Tt (23)

bt
il ≤ a�t

il ∀i ∈ I l
H , l ∈ L, t ∈ Tt (24)

bt
il ≤ a"t

il ∀i ∈ I l
H , l ∈ L, t ∈ Tt , p ∈ Ts (25)

Constraints (26)-(27) relax the max part of function (8),
which is represented by greater than or equal inequalities.
Constraints (28) ensure that at

il is greater than or equal to
bt

il from the relaxed min function.

at
il ≥ σ ∀i ∈ I l

H , l ∈ L, t ∈ Tt (26)

at
il ≥ υ − v t

il

�Tt
∀i ∈ I l

H , l ∈ L, t ∈ Tt (27)

at
il ≥ bt

il ∀i ∈ I l
H , l ∈ L, t ∈ Tt (28)

The proposed linearization (22)-(28) is loose and cannot
equivalently represent the max-min form of (8). To fix this
issue, we penalize the non-negative difference at

il − bt
il ≥ 0

with big penalty coefficient M in the objective function. The
new objective function is shown by (29) that pushes bt

il
towards at

il .

max
a

(
β

∑
t∈Tt

∑
l∈L

∑
i∈I l

wil x
t
il −(1 − β)

∑
t∈Tt

∑
l∈L∑

i∈I l
A

∣∣∣v t+1
il − v t

il

∣∣∣−M
∑

t∈Tt

∑
l∈L

∑
i∈I l

H

(
at

il − bt
il

))
(29)

Constraints (7) are nonlinear due to the if-else condition.
The Big-M method allows linearizing the constraints as shown
in (30) and (31). If γ t

il takes the value of 0, constraints (30)
show that the location of vehicle i ∈ I l is before the location
of the intersection stop bar on lane l ∈ L at time t ∈ Tt .
However, when γ t

il takes the value of one, constraints (31)
ensure that vehicle’s location is after the intersection stop bar.

xt
il − χ l ≤ Mγ t

il ∀i ∈ I l , l ∈ L, t ∈ Tt (30)

xt
il − χ l ≥ M(γ t

il − 1) ∀i ∈ I l , l ∈ L, t ∈ Tt (31)

B. Lagrangian Relaxation

The linearization techniques described in the previous
section converts a mixed-integer nonlinear problem (MINLP)
to a mixed-integer linear problem (MILP). Although this
conversion reduces the complexity of the problem, the exis-
tence of integer signal timing and other variables makes the
problem still intractable and difficult to solve. We develop a
Lagrangian relaxation technique that decomposes the problem
into several lane-level optimization sub-problems, where the
optimal signal timing and vehicles trajectories on each lane
of the intersection are found separately in parallel. However,

Fig. 4. Conflict graph for a four-leg intersection with through and left-turn
movements.

Lagrangian relaxation might not hold a strong duality for
MILPs [36], [37]. Hence, we reformulate the problem with a
superior solution space structure to overcome this issue. Then,
a simple optimization problem is introduced to ensure having
a feasible solution for signal timing plans.

1) Problem Reformulation: Pairwise constraints (13) are
the only common constraints between the lanes that prevent
conflicting movements to receive a non-red signal at the
same time. Relaxing these constraints and adding them to
the objective function with Lagrangian multipliers leads to a
lane-level decomposition. The Lagrangian relaxation provides
an upper-bound to the optimal solution of non-convex signal
timing and trajectory optimization problem based on the weak
duality theory. The feasible convex polyhedron provided by
the pairwise constraints has non-integer extreme points due
to the weak structure of pairwise constraints [38]. In other
words, there are too many constraints associated with pair-
wise constraints (13), hence the continuous linear relaxation
contains many fractions in most of the cases [38]. Therefore,
there is no guarantee that the Lagrangian relaxation converges
to the desired integer solutions with non-zero duality gap [37].
Finding hyperplanes that define the convex hull of integer
solutions helps overcome finding infeasible solutions after the
relaxation in addition to satisfying the pairwise constraints.

Pairwise conflicting constraints (13) can be represented by
an undirected conflict graph G = (N, E) that contains edge
{i, j} ∈ E if and only if two nodes within a pair of binary
nodes i, j ∈ N cannot be selected at the same time (i.e.,
two conflicting movements). In other words, E is the edge
between two binary nodes when at most one of them can
take the value one in the solution of MILP. Fig. 4 shows
the conflict graph for an intersection with four approaches
and eight lanes containing through and left-turn movements.
The nodes of the graph are signal heads associated with lane
l ∈ L, and each edge represents a pairwise conflict constraints
represented by (13).

The graph shown in Fig. 4 represents all conflicts at intersec-
tions with exclusive left-turn movements, assuming the right-
turn movements are operated with the through movements.
Pairwise conflicting constraints (13) are a special case of a
more powerful set of constraints called cliques [39]. A clique
is a set of several mutually conflicting movements that at most
one of them can receive a non-red signal at a time in this
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study. We define clique k ∈ K as a set of mutually connected
nodes in the conflict graph G, where K is the set of all
possible cliques. Respectively, set Ck represents all members
of clique k, where each member is mutually connected in
graph G. In order to have set Ck in clique k, it is required
that all potential nodes i, j ∈ Ck be connected to each other
through the edges of graph G. For instance, k = {8, 6, 7}
is a clique for the intersection shown in Fig. 4 since at
most one of the movements among 8, 6, and 7 can get a
non-red signal. Multiple pairwise constraints (13) between
different movements can be represented in one clique. Hence,
it is possible to define a complete set of clique constraints
that impose all edge restrictions with a smaller number of
constraints. Respectively, we define the maximal clique as
a clique that cannot be enlarged by adding any additional
node. Let define variable s p

l as the sum of green g p
l and

yellow y p
l signal timing variables on lane l ∈ L and time

p ∈ Ts . This is binary because at most one of the green
and yellow signal timing status take on the value of one, see
constraints (32)-(34).

s p
l = g p

l + y p
l ∀l ∈ L, p ∈ Ts (32)∑

l∈Ck
s p
l ≤ 1 ∀k ∈ K , p ∈ Ts (33)

s p
l ∈ {0, 1} ∀l ∈ L, p ∈ Ts (34)

The intersection graph with exclusive left-turn movements
cannot have cliques of a size of larger than four. Therefore,
any clique of size four is a maximal clique. In addition, it can
be confirmed that the maximal cliques in the intersection
conflict graph maintain all the necessary restrictions to prevent
two conflicting movements to receive a non-red signal at the
same time. Besides, the maximal cliques with size four are
facet-defining for the convex hull of all feasible area from
pairwise constraints (13) [40]. As a result, the feasible convex
hull is tightened and the number of relaxed constraints is
reduced significantly. Therefore, the duality gap reduces in
Lagrangian relaxation problem.

2) Simplified STTO and Corresponding Dual Formulation:
As described in the previous section, constraints (13) are
replaced with constraints (32)-(34) to achieve the simplified
STTO (SSTTO) as follows.

SST T O :
f � = Max

a

(
β

∑
t∈Tt

∑
l∈L

∑
i∈I l

wl x
t
il − (1 − β)

∑
t∈Tt∑

l∈L

∑
i∈I l

A

(
zt

i + ut
i

) − M
∑

t∈Tt

∑
l∈L

∑
i∈I l

H(
at

il − bt
il

))
s.t.

(3) − (4), (9) − (12), (14) − (18), (20) − (28), (30) − (31),

(32) − (34) (35)

Relaxing complicating constraints (33) decomposes the
SSTTO problem into lane-level sub-problems. Therefore,
the Lagrangian problem is obtained by dualizing clique

constraints (33) as follows:
L R − SST T O :

L (µ) = Max
a

(
β

∑
t∈Tt

∑
l∈L

∑
i∈I l

wl x
t
il −(1 − β)

∑
t∈Tt∑

l∈L

∑
i∈I l

A

(
zt

i +ut
i

)−M
∑

t∈Tt

∑
l∈L

∑
i∈I l

H(
at

i,l − bt
i,l

)+∑
p∈Ts

∑
k∈K

∑
l∈Ck

μ
p
lk

(
1 − s p

l

))
s.t.

(3) − (4), (9) − (12), (14) − (18), (20) − (28),

(30) − (31), (32), (34) (36)

where μ
p
lk ∈ R+ is the Lagrangian multiplier for lane l ∈ Ck

that belongs to clique k ∈ K at time step p ∈ Ts . Vector µ is
defined as the vector of all Lagrangian multipliers. Since the
objective function and the remaining constraints of problem
L R are separable over lanes, the sub-problem for each lane
l ∈ L can be solved separately in parallel when the dual
multiplier µ is available. The values of the dual function L(µ)
at dual feasible point µ are always upper-bounds to the optimal
value f �. Hence, the sharpest upper-bound can be found from
the optimal value of dual problem (37), which is defined as µ∗.

L
(
µ∗) = min

µ∈R
L (µ) (37)

By duality theory, dual problem (37) is always convex.
In other words, solving Lagrangian dual problem (37) is
equivalent to minimizing a convex piecewise linear function.
A function f : Rn → R is a piecewise linear convex function
if f is attained as the maximum of the finite number of affine
functions fi : Rn → R. We can use this feature to find
the optimal Lagrangian multipliers µ through the dual cutting
plane method.

3) Update Lagrangian Multipliers: The subgradient method
is a common approach to solve the Lagrangian dual problem
and update the Lagrangian multipliers. However, it suffers
from a slow convergence [41], [42]. The subgradient method
utilizes the information of only the last iteration to update the
Lagrangian multipliers. On the other hand, using the dual cut-
ting plane method helps store the information of all previously
found Lagrangian multipliers (µn), the optimal Lagrangian
relaxation function L(µn), and the subgradient r(µn) up to
iteration n and use them to find the new Lagrangian multiplier
µn+1 at next iterations [43]. The subgradient r p

k corresponding
to each relaxed constraints is found from (38).

r p
k = 1 −

∑
l∈Ck

st
l ∀k ∈ K , p ∈ Ts (38)

Based on the definition of subgradient, inequality (39) is
satisfied for all µ.

L (µ) ≥ L
(
µn) + r

(
µn)T

(µ−µn) ∀µ ∈ Rn (39)

To update the Lagrangian multiplier, a stabilized version
of the cutting plane is introduced as the proximal bundle
method [44]. Similar to the cutting plane method, a polyhedral
model of dual function (41) is considered in the proximal
bundle approach. In addition, a quadratic penalty term is
added to the objective function (40) to stabilize the optimal
Lagrangian multiplier around the center point µcp. The center
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point is considered as the best Lagrangian multiplier that has
been found so far that significantly improves the solutions.
Parameter h ∈ R+ controls the weight of the quadratic term.
Solving this optimization problem over iterations provides
a sequence of Lagrangian multipliers {µn}n=1,...,N . Iteration
N is considered as the last iteration in the cutting plane
optimization.

DO :
min
μ∈R

v + 1

2h

∥∥µ−µcp
∥∥2 (40)

s.t.

v ≥ L
(
µn) + r

(
µn)T

(µ−µn) n = {1, . . . , N} (41)

4) Making Infeasible Solutions Feasible: Solving the
Lagrangian relaxation problem iteratively converges to
µ∗,g∗, and y∗ as the optimal Lagrangian multipliers, green
signal status, and yellow signal status, respectively. In addition,
it yields the corresponding optimal trajectory of all CAVs.
Although reformulating the problem reduces the duality gap
to a very small value, the optimal solution of Lagrangian relax-
ation still may be an infeasible signal timing parameter, that
does not satisfy relaxed constraints (33). We introduce a simple
optimization problem that finds a good feasible signal timing
solution in such conditions. Reformulating constraints (13)
with (33) pushes the solution of signal timing variables from
Lagrangian relaxation problem to close proximity of the feasi-
ble integer values in the convex polyhedron. As a result, there
would be no need to change the structure of the Lagrangian
relaxation solution. We need to project the final infeasible
signal timing solutions to the closest feasible integer point.
The complementary optimization problem FP is introduced
to ensure the feasibility of the solutions from the relaxed
problem.

The decision variables in F P are all signal timing variables.
In addition, g∗ and y∗ found from the Lagrangian relaxation
are inputs. The objective function of the proposed optimiza-
tion problem minimizes the difference between signal timing
variables and the corresponding solutions from the Lagrangian
relaxation. In addition, all signal timing constraints, includ-
ing the relaxed pairwise constraints, are considered in F P .
Constraints (43) are also added to the problem, assuming
that the optimal signal timing parameters always give non-red
signal status to at least two movements at the same time. The
optimization problem FP is always feasible if the prediction
horizon of signal timing Ts is greater than the minimum green
time for all approaches of the intersection.

F P :
min

g,y ∈{0,1}
∑

l∈L

∑
p∈Ts

∥∥g p
l − g∗p

l

∥∥2 + ∥∥y p
l − y∗p

l

∥∥2
(42)

s.t.

(13) − (18)∑
l∈L

g p
l + y p

l ≥ 2 ∀l ∈ L, p ∈ Ts (43)

5) Receding Horizon Control: The Lagrangian relaxation
for finding the optimal signal and trajectory optimization
problem is embedded in a receding horizon control (RHC)
to take into account the dynamic nature of the problem.

Fig. 5. Lagrangian relaxation procedure embedded in RHC.

Fig. 5 shows the general solution technique framework. First,
we initialize the Lagrangian multipliers at time step 0. Then,
the LR-SSTTO program is solved for each lane group, which
determine signal timing parameters and vehicle trajectories.
The solutions are passed to the DO program to update
Lagrangian multipliers. The convergence criteria are evaluated
with calculating the difference between upper- and lower-
bounds of SSTTO problem. Then the feasibility of signal
timing parameters is checked. If the solutions are infeasible,
the optimization problem FP is solved, which updates the
optimal CAV and HV trajectories based on the feasible signal
plan. If the solutions from Lagrangian relaxation are feasible,
they are optimal solutions to the original problem and there
is no need to solve FP. RHC implements the trajectory of
CAVs in addition to signal timing plans at the first time
step into the Vissim micro-simulator. Then, the Lagrangian
multipliers will be updated from the last updated solutions of
Lagrangian relaxation, and the planning horizon rolls one time
step forward until the study period is finished.

V. CASE STUDY

We applied the proposed solution technique to an isolated
four-leg intersection with exclusive left-turn lanes, as shown in
Fig. 4. It is assumed that vehicles are on the desired lane before
arriving the intersection neighborhood. The detection range is
1000 ft before and after the intersection. The signal status is
updated every two seconds, while vehicle acceleration, speed,
and position are updated every 0.5 seconds. The prediction
horizon of RHC is 20 seconds. More details are provided in
Table II.

The STTO problem is solved for a 15-minute study period.
Table III summarizes different scenarios tested in this study.
For each scenario, six different market penetration rates of
CAVs (i.e., 0%, 20%, 40%, 60%, 80% and 100%) are consid-
ered to evaluate the effects of cooperative signal timing and
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TABLE II

CASE STUDY PARAMETERS

TABLE III

DEMAND PATTERNS IN STTO CASE STUDY

trajectory optimization planning. Vissim [45] is used to test the
proposed algorithm. The COM interface is used to collect the
information of vehicles in the network and apply the optimal
trajectories to the motion of CAVs. The proposed algorithm is
coded in Java running on a desktop computer with Intel core
i-9-9900 CPU and 64 GB memory. CPLEX [46] is used to
solve the MILP optimization problem.

VI. RESULTS

Fig. 6 shows the duality gaps in scenario 4, the highest
demand level tested in this study, as a result of solving STTO
problem with the proposed Lagrangian relaxation technique
when pairwise conflicting constraints (13) are replaced with
tighter cliques. Since the problem is solved through receding
horizon control, the Lagrangian relaxation problem is solved
every two seconds to find the optimal signal timing plans.
Hence, the duality gaps are reported overtime for all relaxed
problems that are solved dynamically. Fig. 6 indicates that
the duality gap is mostly zero, meaning that the proposed
solution technique mostly holds the strong duality. Moreover,
it is shown that the duality gaps are always less than 0.1% in
all cases tested with different CAV market penetration rates in
scenario 4. Note that results for other scenarios also confirm
the same patterns.

Table IV shows the average computational runtime of the
proposed model for scenarios 1 to 5. The average runtime is

Fig. 6. Duality gaps for Lagrangian relaxation after reformulation.

TABLE IV

THE AVERAGE RUNTIME (S) FOR DIFFERENT SCENARIOS

shown for two optimization programs where (1) signal tim-
ing parameters and trajectories are optimized simultaneously,
and (2) only trajectories are optimized with fixed signal timing
parameters. In both cases, the optimization runtime decreases
when CAV market penetration rate increases since the number
of variables associated with car-following model of HVs
decreases. It is also shown that increasing the traffic volume is
associated with a higher runtime. The minimum and maximum
average runtime for signal and trajectory optimization with
enhanced Lagrangian relaxation technique was 0.8 s and 5.9 s,
respectively. It should be noted that the proposed method is
an iterative approach and might not find the optimal solution
in real time since the signal timing parameters are optimized
each 2s. However, real time solutions are achievable by setting
the optimality gap to higher values or updating signal timing
parameters in higher intervals. Table IV also shows that the
minimum and maximum runtime for trajectory optimization
with fixed signal parameters are 0.04 s and 0.22 s, respectively.

Table V compares the average travel time for different CAV
market penetration rates of the STTO strategy with three state-
of-practice signal control approaches: (a) fixed-time [47]–[49],
(b) actuated, and (c) adaptive signal control. The fixed-time
signal control can be seen as a baseline, where signal timing
parameters are optimized based on a prediction on demand
levels in different times of day. Fixed-time signal control is
not responsive to unforeseen demand variations. The actuated
control utilizes vehicle detectors and can react to changes in
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TABLE V

AVERAGE TRAVEL TIME (S) FOR DIFFERENT SIGNAL CONTROLLERS

Fig. 7. Comparing the performance of STTO with fixed-time signal for
various market penetration rate of CAVs.

traffic demand as they are observed. However, does not predict
near future conditions. The adaptive signal control can predict
traffic conditions in near future and can proactively change
signal timing parameters. We used PTV Vistro [50] to find the
optimal fixed-time and actuated signal timing plans. Moreover,
the results of an adaptive signal control methodology based on
the Cell Transmission Model [51]–[53] is provided for further
comparisons.

The results show that STTO yields significantly shorter
average travel time compared to the fixed time, actuated, and
adaptive signal control in all scenarios with different CAV
penetration rates. The results also show that the average travel
time decreases as the CAV penetration rates increase, which
is as expected. However, this reduction is less significant in
low traffic volumes. For instance, the average travel time is
almost the same when the CAV penetration rates are 60%,
80%, and 100% in scenarios 1 and 2. On the other hand,
increasing the CAV penetration rate in scenarios with higher
demand levels (e.g., scenario 4) still improves the performance
of the intersection by reducing the average travel time of all
vehicles. Moreover, we compared the performance of STTO
with fixed-time signal timing plan when the market penetration
rate of CAVs changes. Scenario 4 was considered for this
analysis since it has the highest demand. When signal timing
is fixed, only the trajectory of CAVs is optimized to utilize
the green time efficiently and reduce the number of stops at
the intersection. Fig. 7 shows that STTO always outperforms
the fixed-time signal timing plan in terms if average travel
time. In addition, the rate of decrease in travel time is higher
with STTO compared to the fixed-time plan when the market
penetration rate of CAVs increases.

Fig. 8. Average queue length in scenario 4.

Fig. 9. Comparing signal timing plans under 0% and 100% CAV pen. rates.

Fig. 8 shows the average queue length in all movements
in different approaches of the case study intersection with
different CAV penetration rates in scenario 4, which has
the highest tested demand level. The average queue length
decreases with an increase in CAV market penetration rate.
The average queue length is about 450 ft when there is no
CAV on the road to control the movement of human-driven
vehicles. The average queue length reduces to less than 50 ft
when all vehicles are CAVs.

Fig. 9 shows the signal timing parameters for all movements
in different approaches of the intersection with 0% and 100%
CAV penetration rates in scenario 4 with the highest tested
demand level. The green period for all movements of the
intersection is longer when the CAV penetration rate is zero.
This is due to the high start-up-lost time of human-driven
vehicles. On the other hand, the green period is shorter and
more frequent when all vehicles are CAVs. This is due to a
low start-up lost time of CAVs when they are stopped before
the intersection. Moreover, CAVs adjust their speed to pass
the intersection with the maximum speed; hence, they require
shorter green durations to pass the intersection.

Fig. 10 shows the trajectory of CAVs and HVs on east-
bound through (EBT) for different market penetration rates
in Scenario 4 with the highest tested demand. Increasing
the penetration rate of CAVs is associated with a smoother
trajectory for all vehicles to travel through the intersection.
In addition, the back of the queue gets closer to the intersection
as the market penetration rate of CAVs increase.

Since none of current state-of-practice strategies jointly
optimize the signal timing plans with the trajectory of CAVs,
we have compared the result of STTO with a recently
developed state-of-art strategy in Guo et al. [3]. This study
optimizes the signal timing plan and trajectory of CAVs in a
mixed environment using dynamic programming and shooting
heuristic. The findings show that the proposed algorithm in our
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Fig. 10. The trajectory of CAVs and HVs in Lane 1.

TABLE VI

COMPARING WITH GUO ET AL. [4]

paper could find lower average travel time and fuel consump-
tion with lower computational times. The fuel consumption
is calculated based on VT-Micro model [54] with similar
parameters to Ma et al. [55]. The following parameters are
set exactly the same as the studied case in Guo et al. [3]:
Length of intersection link: 1312 f t , Saturation rate fs : 0.6,
Maximum speed for through movement: 98 f t/s, Maximum
speed for left turn movements: 79 f t/s, Planning horizon:
122 s, Car following parameter: maximum acceleration = 4.72
f t/S2, maximum deceleration = 5.48 f t/S2, and Step size
to optimize signal timing plans: 8 seconds.

Table VI shows that the average travel time and fuel con-
sumption is reduced by increasing the market penetration rate
of CAVs. In addition, our proposed algorithm performs better
than the best results in [3] for different market penetration
rates of CAVs. It should be noted that Guo et al. [3] assumed
that there are four phases for signal timing plans. However, our
study includes eight phases, which represent a more general
condition. Moreover, phases in [3] are considered in fixed
order in a cycle even though some phases could be skipped.
On the other hand, in our study, no order for phases are

TABLE VII

STTO PERFORMANCE WITH DIFFERENT STUDY PERIODS

considered. Therefore, these differences in parameters could
potentially affect the result of this comparison. All these
differences created a larger feasible area for our problem,
which led to the significant difference in the solution quality
presented in Table VI.

Table VII shows average travel time, average fuel consump-
tion, and total runtime obtained by STTO for 5, 10, 15, and
30 minutes of study period. The performance measures are
provided for scenario 4, which has the highest demand, and
two CAV market penetration rates of 40% and 100%. The
trends in Table VII shows that increasing the study period
is associated with higher average travel time and average fuel
consumptions due to presence of more vehicles in the network.
In addition, the runtime increases by increasing the study
period due to higher number of variables and memory usage.

VII. CONCLUSION

This study developed a methodology for coordinated signal
timing and trajectory optimization at signalized intersections in
a mixed traffic environment of CAVs and HVs. We formulated
STTO as a mixed-integer nonlinear program assuming that
either all vehicles were connected, or the intersection was
equipped with detectors (e.g., radar units) that could provide
location of vehicles. The trajectory of HVs were predicted
using Helly’s car-following model.

The proposed optimization program is complex due to
nonlinearity and the presence of binary variables. Hence,
we reduced the complexity of the problem by lineariz-
ing the nonlinear constraints and decomposing the inter-
actable optimization problem into lane-level sub-problems
using Lagrangian relaxation technique. Thus, the signal tim-
ing parameters and trajectory of vehicles in each lane of
the intersection could be controlled with a single controller.
We also reformulated STTO problem with a tight convex hull
of the feasible area to reduce the duality gap. In addition,
a complementary optimization problem was introduced to
find high-quality feasible signal timing parameters when the
relaxed constraints were not satisfied after the convergence of
Lagrangian relaxation problem. The proposed solution tech-
nique was embedded in a receding horizon control technique
to capture the dynamic nature of the problem.

The result shows that the developed methodology can find
solutions within an optimality gap of at most 0.1% in the
cases tested. It is also shown that STTO outperforms the
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signal timing parameters found by an adaptive controller by
decreasing the average travel time by 5% to 51% for different
CAV market penetration rates tested in this study. Furthermore,
increasing the penetration rate of CAVs reduces the average
travel time for all vehicles at the intersection. This reduction
is more significant in higher traffic volumes.

The proposed methodology is applicable to intersection
layouts that operate left-turn movements exclusively. It will
be worthwhile in the future to generalize the methodology and
find optimal signal timing parameters and vehicles trajectory
in all intersection types. In addition, this study assumed
that vehicles do not change the lane within the detected
range of intersection and did not use CAV lane change to
further control the flow of traffic. Developing an algorithm for
predicting the lane changing behavior of HVs and optimizing
the lane changing decision of CAVs could further improve
traffic operations. This study utilized a linear car following
model and it is worthwhile to explore using more complex
car fallowing models. Studying the effects of the signal timing
and trajectory control in a transportation network, where
intersections communicate and coordinate their decisions with
each other offers great potential for further improvement in
traffic operations and safety and needs to be studied.
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