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Abstract— Autonomous ships are expected to improve the level
of safety and efficiency in future maritime navigation. Such
vessels need perception for two purposes: to perform autonomous
situational awareness and to monitor the integrity of the sensor
system itself. In order to meet these needs, the perception
system must fuse data from novel and traditional perception
sensors using Artificial Intelligence (AI) techniques. This article
overviews the recognized operational requirements that are
imposed on regular and autonomous seafaring vessels, and then
proceeds to consider suitable sensors and relevant AI techniques
for an operational sensor system. The integration of four sensors
families is considered: sensors for precise absolute positioning
(Global Navigation Satellite System (GNSS) receivers and Inertial
Measurement Unit (IMU)), visual sensors (monocular and stereo
cameras), audio sensors (microphones), and sensors for remote-
sensing (RADAR and LiDAR). Additionally, sources of auxiliary
data, such as Automatic Identification System (AIS) and external
data archives are discussed. The perception tasks are related to
well-defined problems, such as situational abnormality detection,
vessel classification, and localization, that are solvable using AI
techniques. Machine learning methods, such as deep learning
and Gaussian processes, are identified to be especially relevant
for these problems. The different sensors and AI techniques
are characterized keeping in view the operational requirements,
and some example state-of-the-art options are compared based
on accuracy, complexity, required resources, compatibility and
adaptability to maritime environment, and especially towards
practical realization of autonomous systems.
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I. INTRODUCTION

THE Maritime Safety Committee (MSC) of the Interna-
tional Maritime Organization (IMO) defines a Maritime

Autonomous Surface Ship (MASS) as “a ship which, to a
varying degree, can operate independently of human inter-
action” [1]. Although a vessel performs several operations
simultaneously, in this article we focus primarily on the
problem of sensing for autonomy in navigation and situational
awareness functions.

Automation of vessel navigation is aimed at increasing
safety and efficiency. These manifest differently in the oper-
ational phases of a ship. Before departure, a ship route is
planned. In this planning, automated route optimization is
important with respect to weather conditions, especially in
ice covered waters [2], [3]. While steaming, this route plan
is altered if safety (or efficiency) can be increased. Autonomy
may play a critical role here.

Autonomous systems consist of perception and control
elements. On a ship, the perception elements include the
ship positioning, RADAR, and other sensors that scan the
environment, while control elements include for example
the propulsion and steering systems. Control systems for
ship maneuvering are well advanced so that even the most
difficult propulsion needs can be satisfied with so-called
azimuth thrusters. Each thruster incorporates an (often
electric) engine and a propeller in an underslung pod [4].
These azimuth thrusters may be rotated without restrictions
by 360 degrees around the named angle, enabling even the
largest vessels to enter narrow harbors quickly and safely.
Moreover, when Global Navigation Satellite System (GNSS)
positioning is integrated with the control system in a so-called
Dynamic Positioning (DP) system, a vessel can counteract
the environmental forces acting on it for the purpose of
maintaining its position and heading as close as possible to
its working position (without anchor), or it can stay on course
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and steady rather than get carried away by the fluctuating
winds and waves [5]. In contrast to these rather sophisticated
control systems, integrated perception systems for maritime
environment are still inadequately developed for autonomous
operations. There is a need to complement the well-developed
RADAR and GNSS1 techniques with other perception sensors
and multi-sensor fusion through Artificial Intelligence (AI).

The key benefits of multi-sensor perception systems are
increased availability and integrity through complementary
sensing, that is, targets that cannot be detected with one sensor
may be detectable with another sensor, and redundancy, that is,
an observation can be cross-validated from different sources.
While multi-sensor perception systems are well-known in the
context of autonomous cars [6], mobile mapping [7], airborne
and Unmanned Aerial Vehicle (UAV) based remote sensing
[8], and robotics [9], the maritime context has received less
attention. This is because research in maritime perception
systems is hindered by multiple factors. Maritime weather
is harsh, especially in the polar regions. The harsh weather
makes the maritime environment less attractive for initial
sensor research, as the sensor systems need be developed
beyond the first experimental phases in order to be weather-
proof. Performing research experiments on board a ship may
become prohibitively expensive if it interferes with normal
ship operations. Ship systems are protected by proprietary
interfaces, which means that accessing the data requires sub-
contracting and such data is seldom inexpensive. The tra-
ditional approach to cyber-security of ships, and in many
cases still the norm for safety and security conscious ship
owners, is based on the principle that the ship systems are
kept isolated from the Internet and ship/company intranets.
Even when the proprietary interface can be accessed, the data
transfer is usually serial-data and unidirectional. Maritime
safety protocols and company Safety Management Systems
(SMS) - as encouraged by the IMO [10] - also set boundaries
for experimental ship instrumentation, as the functionality of
the built-in systems must be guaranteed. However, these fac-
tors have not deterred the research community from initiating
explorations in this field. A white paper from the Advanced
Autonomous Waterborne Applications (AAWA) initiative led
by Rolls Royce [11] lists a range of perception sensors with
strengths and weaknesses. It also depicts a futuristic vision of
the manifestation of autonomous ships.

In recent years, artificial intelligence algorithms have
achieved huge success in both academia and industry. There-
fore, it is natural to seek the exploitation of AI techniques also
in autonomous ship navigation and sensor fusion problems.
There are numerous studies and applications on different
maritime sensor data using AI [11]–[13], but few focus on
high-level situational awareness. In this case, we study from
the viewpoint of fusing sensor data with the means of AI
methods to provide the required situational awareness and
sensor integrity monitoring.

We set out to review the relevant background research,
equipment, and methods regarding the perception systems for
autonomous ships. This includes reviewing the suitable sensors

1Moreover, Automatic Identification System (AIS) is based on the GNSS
techniques.

and artificial intelligence techniques. As there is yet little
research done in this field, our approach is to cover also
those works that appear to be outside of the main area of
interest but that introduce methods that are likely to be useful
in constructing multi-sensor perception systems for maritime
environments.

The paper is structured as follows. First, we present
the state-of-the-art in this technology domain and a review
of the regulations relevant for autonomous vessels. Sec-
ond, we review the Key Performance Indicators (KPIs)
for autonomous vessels and translate these into operational
requirements. Third, we review the sensor technologies that are
relevant with respect to these indices. Fourth, as the sensors put
out data in several different formats, we review the artificial
intelligence techniques that have been successfully applied in
fusing multi-modal data. Lastly, we conclude the paper with
recommendations about future work.

II. BACKGROUND

Maritime transport is experiencing similar types of evo-
lution towards autonomous systems as road, rail, and air
transport. The business drivers are largely the same, that is,
autonomous and intelligent systems are foreseen to reduce
risk of human (operational) errors and its associated cost,
and enable new types of robotic operations which can, when
properly implemented already in the design phase of the
system and vehicle, also reduce building and operating costs.

A. Research and Projects

Autonomous vessel research and projects have had a con-
siderable concentration in North Europe and more specifically
Norway and Finland. Lately also Asian countries have entered
this race and we see activities emerging in China, Japan,
Korea, and Singapore. The main activities are usually concen-
trated around a larger group of companies and research bodies,
which is a clear indication of the willingness to cooperate in
this industry. The best-known endeavours include the MUNIN
project [14], the AAWA project [11], the Finnish OneSea
Ecosystem2 with its Jaakonmeri test area, the Norwegian
Yara Birkeland3, SIMAROS, AUTOSEA [15] and ROMAS
projects, the Chinese Unmanned Cargo Ship Development
Alliance (UCSDA) and test areas, Japanese NYK’s plans
for remote operation, and Singaporean endeavors related to
autonomous maritime operations.

Other notable activities include test areas and joint
industry projects in Belgium such as the De Vlaamse
Waterveg’s Smart Shipping initiative4, the Dutch Joint
Industry Project Autonomous Shipping5 and Smart Shipping
Challenge (SMASH)6 in the Netherlands and the Danish
ShippingLab7. We also note the Smart Ships Coalition Marine

2oneseaecosystem.net/
3yara.com/news-and-media/press-kits/yara-birkeland-press-kit/
4vlaamsewaterweg.be/smart-shipping/
5autonomousshipping.nl/
6smashnederland.nl/
7shippinglab.dk/
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Fig. 1. MUNIN-project - context and module diagram for autonomous ship
control (reproduced from [14]).

Fig. 2. AAWA-project - Autonomous Navigation System structure (repro-
duced from [11]).

Autonomy Research Site (MARS)8 in the Great Lakes in
Canada/USA, the UK Maritime Autonomous Systems
Working Group (MASWRG) and its UK Code of Practice
for autonomous ships [16], as well as governmental work
by the IMO on the topic of MASS and what needs to happen
in the regulatory space [17]. Other relevant work is published
by the European GNSS Agency (GSA) regarding User Needs
and Requirements related to GNSS [18], white papers and
studies by Futurenautics [19], and the Comité Maritime
International (CMI) [20] on the topic of maritime law.

B. Situational Awareness Concepts

Various international projects have presented and outlined
concepts for autonomous vessel navigation and situational
awareness.

The MUNIN-project [14] looked widely at the whole
concept of an autonomous cargo ship and presented also a
high-level software architecture for autonomous vessel con-
trol. The main principle included an Autonomous Ship Con-
troller (ASC) and a Shore Control Centre (SCC) and involved
the idea of an Advanced Sensor System (ASS), which feeds
data to an ASC and an Autonomous Navigation System
(ANS), as shown in Figure 1. The concept also included a
Autonomous Engine Monitoring and Control System (AEMC).

The AAWA-project [11], one of the main up-to-date ref-
erence studies, outlined an ANS structure based on four
modules, and this general structure is likely to be found in
future autonomous vessel systems. The ANS was envisioned
to consist of a Situational Awareness (SA) module, a Collision
Avoidance (CA) module, a Route Planning (RP) module and
a Ship State Definition (SSD) module. The ANS was further
thought to be linked to a DP system, which in turn controls
the ship’s propulsion and steering, as shown in Figure 2.

The Norwegian AUTOSEA-project [15] (Sensor fusion and
collision avoidance for autonomous surface vehicles) has also

8smartshipscoalition.org/

Fig. 3. AUTOSEA system concept (reproduced from [15]).

presented a system concept based on a sensor fusion module
consisting of imaging and navigation sensors, which together
with AIS and external chart material produce target tracking
data for a separate collision avoidance module linked to control
system(s), as shown in Figure 3.

C. Regulations, Standards, and Practices

Looking at how autonomous vessels and autonomous vessel
technology is envisioned to work, we can conclude that, from
a purely technical perspective, there exists already today a vast
amount of performance standards and regulations concerning
various types of sensor systems on board conventional seago-
ing ships. On the other hand, there are very few standards
and regulations specifically targeted to autonomous ships, and
the main actors in this arena - concerning new regulations
and practices - seem to be the classification societies and the
industry itself.

The main actors and entities for regulations, standards and
guidelines are:

• IMO – International Maritime Organisation
• IACS – International Association of Classification Soci-

eties
• The various classification societies themselves
• ISO – International Organization for Standardization
• IEC – International Electrotechnical Commission
• ITU – International Telecommunication Union
• IALA – International Association of Marine Aids to

Navigation and Lighthouse Authorities
• CIRM – International Association for Marine Electronics

Companies
• GSA – European GNSS Agency

Of the above listed actors, we note that IMO is already
working on its MASS strategy [17], where one of the first
steps has been to do a comprehensive scoping exercise into
existing regulations. And of the Class societies, American
Bureau of Shipping (ABS) is active in cyber security, while
Bureau Veritas (BV), Chinese Classification Society (CCS),
Det Norske Veritas (DNV GL), Lloyd’s Register (LR), and
ClassNK have all published guidance related to autonomous
vessels and systems. ISO, ITU, IALA, and CIRM are not
specifically focusing on autonomous vessels, but many of their
existing technical standards are applicable as such also to
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these new vessel types and their associated systems. GSA has
quite recently published a comprehensive study [18] on the
Position-Navigation-Timing (PNT) and GNSS user needs and
requirements, factoring in also autonomous vessels. This study
of existing regulations and standards feeds into establishing
operational requirements for autonomous vessels, as described
in Section III.

III. REQUIREMENTS FOR SITUATIONAL AWARENESS IN

AUTONOMOUS VESSELS

The human navigator on-board the vessel will trust the
technical devices such as differential-GNSS, Electronic Chart
Display and Information System (ECDIS), and RADAR to a
varying degree, while especially older and extensively experi-
enced captains will have the least trust in any single device on-
board [3]. The captains tend to do continuous cross-referencing
of the ship’s location based on RADAR targets, ECDIS screen
(which derives its location from the DGNSS), and visual
observation of the view outside of the ship. This means that a
similar functionality will be implemented also on autonomous
vessels, that is, create a system which itself primarily distrusts
any single data source and prioritises cross-referencing and
verification of data from multiple sensors.

Therefore, Situational Awareness (SA) means the
autonomous vessel will be able to recognize the presence of
certain objects along its intended maritime route using one or
more of the installed sensors. It will also identify and classify
these objects, and possibly perform ranging and validation
by ensuring the results tally within a redundant subset of the
sensors.

We therefore, study requirements from three different view-
points; namely requirements for vessel PNT, requirements for
sensing, and requirements for the AI and Machine Learn-
ing (ML) software.

A. Requirements for Vessel PNT

Requirements for positioning have been derived by studying
existing IMO requirements, DP requirements and the GSA
study of user needs. The proposed consolidated positioning
values for Port approach and Coastal area operations are
presented in Table I. The first line of each requirement shows
the current IMO requirement level, while the second line indi-
cates the proposed and achievable target value for autonomous
vessels as well as what this proposed value is based on. For
example regarding fix intervals the IMO requirement is one fix
each second - 1 s (IMO) - while we claim that an achievable
and acceptable level - to be tested with a Proof-of-Concept
(PoC) equipment - for an autonomous vessel is two fixes
each second - 0.5 s.

B. Requirements for Sensing

Requirements for sensing are somewhat more difficult to
define, since these are largely unregulated. However, based on
data from past studies - mainly MUNIN - and IMO sources we
present proposed consolidated values for target detection range
in Table II. In addition to detection range, there exists also

TABLE I

PROPOSED CONSOLIDATED POSITIONING REQUIREMENTS

TABLE II

PROPOSED CONSOLIDATED SENSING REQUIREMENTS

other requirements which mainly relate to practical needs, such
as being able to detect targets simultaneously with more than
one sensor and the need to calculate trajectories and categorise
targets with sufficient accuracy. An autonomous vessel AI-
function will also need to have a working output interface
system for sharing target data with downstream components.

C. Requirements for AI/ML Software

The AI software and ML functions are used to fuse data
from different sensors, process this data, provide target detec-
tion and classification, analyse the data with regard to the
operational requirements and perform an output of the results.
The AI-function has therefore the following key requirements.
It should have the ability to:

• work offline from the Internet, once properly trained
locally or in the cloud,

• compute SA results in online mode within reasonable
time (less than 60s),

• both detect and classify targets with reasonable accuracy
(true and false positive, true and false negative),

• analyse input sensor and its own performance and result
quality (integrity monitoring of sensor assembly),

• work with Commercial-Off-The-Shelf (COTS) hardware
as well as custom equipment,

• output data in a suitable format.

IV. REVIEW OF SENSORS FOR AUTONOMOUS VESSELS

A. Proposed Architecture for the Experimental Sensor
Assembly

A comparison between the different maritime situational
awareness sensors is shown in Table III. The original
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TABLE III

COMPARISON OF RELEVANCE OF MARITIME SITUATIONAL AWARENESS SENSORS (ADAPTED FROM [11])

version of this table is available in [11]. The experimental
sensor assembly proposed here includes 4 sensor families:
visual (cameras), remote sensing (RADAR and LiDAR),
audio (microphones), and localization (satellite navigation
and Inertial Navigation System (INS)). In addition, AIS
broadcasts can be integrated along with maritime data from
other external databases. The most prominent AI techniques
are related to image and sound processing, namely the
detection and identification of objects or features embedded
inside data snapshots generated by the different sensors.

In theory, there are a number of other potential sen-
sors which can be included here, for example, depth-sensor,
3-dimensional Sound Navigation and Ranging (SONAR),
Radio Direction Finder (RDF), Automatic Dependent Surveil-
lance – Broadcast (ADS-B), and visibility meter. Some of
these sensors already exist on board many ships. However,
due to limitations of space and time we do not include them
in this study.

A potential deployment strategy for the sensors is shown
in Figure 4. This strategy assumes that the autonomous vessel
is a ship of size greater than 12 m, although it can be easily
adapted to other vessel types as well. GNSS/INS provides the
absolute position for the ship. For sensor fusion, the detection
zone can be divided into two regimes: (1) long range - from
about 1 NM and above, where AIS, RADAR, and stereo
cameras (in good weather conditions) are relevant, and (2)
close range - below 1 NM, where LiDAR, cameras, and
microphones are applicable. Cameras can provide overlapping
functionality between the two regimes. The overall processing
strategy in our suggested deployment is: (1) an object is
detected at long range with conventional ship RADAR and
can be matched against camera and AIS observations in terms
of position, velocity, and heading, as stereo cameras enable the
calculation of distances. (2) On close range, LiDAR is used in
conjunction with AIS, cameras, and sound sensors. The data
integration plan for the proposed sensor assembly is depicted
in Figure 5.

B. Sensors for Precise Absolute Positioning

Global Navigation Satellite Systems (GNSS) have become
the primary source of position and timing information for
the vessel bridge. GNSS currently offers users a number
of constellations (American GPS, European Galileo, Russian
GLONASS, and Chinese BeiDou) each transmitting more than
one signal on separate frequencies. Additionally, augmenta-
tion systems and sophisticated techniques for error mitigation
aim to increase the quality, availability, and integrity of the

Fig. 4. Potential deployment strategy and spatial range of operation for the
on-board sensors of an autonomous vessel.

Fig. 5. Data integration strategy for the proposed sensor assembly.

Position-Velocity-Time (PVT) solution [21]. The COTS GNSS
receivers available today vary significantly in their capabilities
depending on the target market segment.

Table IV lists some example receivers relevant to the
maritime domain. The design of maritime-oriented GNSS
receivers enables their use also in harsh weather conditions.
Usually, the receiver and antenna are assembled in one rugged
enclosure to be mounted in a place with a good sky view. Some
receivers support two external antennas for heading determi-
nation [22], [23]. However, a common technique to determine
heading, roll, and pitch is to use an Inertial Measurement
Unit (IMU) integrated with the GNSS receiver [24]. Such
integration also improves the position accuracy under dynamic
conditions. The standards used for interfacing the PVT data to
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TABLE IV

OVERVIEW OF THE FEATURES OF COMMERCIAL GNSS RECEIVERS

a computer or a display unit are typically NMEA 0183 and its
successor NMEA 2000 [25] developed by the National Marine
Electronics Association. At the moment of this writing most
of the maritime receivers support both of these standards.

From Table IV it can be observed that more and more
maritime receivers are starting to provide support for multiple
constellations, multiple frequencies, and precise positioning
techniques. We believe that these features are necessary assum-
ing that operational requirements for positioning accuracy
and availability; and robustness to interference are expected
to become more stringent in future autonomous vessels. For
example, using Real-Time Kinematic (RTK) is likely to be
useful in port approaches where the vessel proximity to the
land-based GNSS base station is within the recommended
limits.

Support for multiple constellations significantly increases
the number of potentially visible satellites and, consequently,
the availability of navigation information. The ability of a
receiver to track multiple signals from the same satellite is
essential for improvement of positioning accuracy by compen-
sating the frequency dependent ionospheric delay. Additional
signals have other advantages as well, provided by the unique
design of their signal structure. The most significant benefits
are towards increased resistance to interference. Furthermore,
support for RTK enables the receiver to provide centimeter-
level accuracy by utilizing corrections generated by either
National, regional, or international publicly owned or com-
mercial Continuously Operated Reference Station (CORS)
networks.

C. RADAR and LiDAR

Radio Detection and Ranging (RADAR) and Light Detec-
tion and Ranging (LiDAR) measure ranges using radio fre-
quencies and visual or infrared light, respectively. Ranging
devices have an emitter that transmits signals and a receiver

that measures Time-of-Flight (ToF) delay and arrival direction
of pulses reflected from target surfaces. Intensity of the signal
that is reflected from a given target depends on the target
characteristics, such as reflectivity and size, that is, its cross
section.

A significant difference between RADARs and LiDARs is
in the spatial dispersion of the signal. RADARs use relatively
wide beam width antennas making it very difficult to distin-
guish small structural details of the target. Modern LiDARs,
on the other hand, are almost exclusively based on lasers and
consequently have very narrow and well collimated beams.
Hence, LiDAR can construct a more detailed model of the
target, even from a distance. The downside of LiDARs is that
they are very susceptible to weather phenomena, for example,
precipitation. In contrast, radio waves penetrate clouds, smoke,
and fog better than visual wavelengths and therefore, RADARs
are the obvious choice for the main long range remote sensing
system on-board ships.

International convention mandates the use of X-band
RADAR on ships of 300 gross tonnage and above. A second,
typically S-band RADAR is required on ships with 3000 gross
tonnage or more. Table V lists the basic differences between
S- and X-band RADARs [26].

Typical minimum operating range of a marine RADAR
depends on the vertical beam width of the RADAR antenna
and hence, on the height between the RADAR and the target.
For larger vessels, in which the RADARs are usually placed
at the top of the ship, the minimum range can be several
hundred meters. The maximum detection range for a given
target depends on the receiver sensitivity, and either on the
transmitter power for continuous wave RADAR or the emitted
pulse energy for pulse RADAR. It is common to have the
RADAR horizon beyond the visual horizon due to refraction
of radiowaves in the atmosphere. The range can therefore
easily exceed 10 NM for typical RADAR and surface target
heights.
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TABLE V

BASIC CHARACTERISTIS OF THE TWO RADAR TYPES USED IN MARITIME
VESSELS. THE GIVEN VALUES AND RANGES ARE TYPICAL FOR COM-

MERCIAL RADAR UNITS

The implementation and technology of RADARs used in
commercial and civilian vessels have remained relatively
unchanged for several decades and can be considered mature
and reliable. The most significant recent trend lies in the
increasing adoption of fully solid state transmitter designs.
These systems overcome reliability and controllability issues
in traditional magnetron-based designs, allowing novel and
more agile signal processing methods, for example, pulse
compression. With pulse compression, range resolution and
target detection can be improved. In addition, doppler mea-
surements can be performed from single echo pulse. Further-
more, solid state transmitters are considered more stable with
less internal noise, allowing increased sensitivity. New state-
of-the-art technologies in other RADAR applications include
phased array antennas, enabling electronical scanning and
beam steering. While such systems and technology certainly
provide better performance, it is unclear whether the impact on
navigational safety would offset the significantly higher cost
and complexity of these systems.

Since the class of vessels for autonomous navigation consid-
ered in this study will most probably have at least one manda-
tory RADAR, it seems reasonable to utilize these existing
RADARs to the largest possible extent. Consequently, as the
existing RADARs fulfill the mandatory requirements and are
one of the pivotal equipment relied on for safe navigation,
we expect the currently available systems to be sufficient for
autonomous systems. We will therefore skip a detailed discus-
sion on suitable RADAR selection for autonomous vessels in
this article – and discuss LiDARs.

There are reasons why LiDARs are not currently used in
maritime detection. For instance, their use is limited by the
constraint that the laser power usually cannot be increased
due to eye-safety issues. Lower cost commercial LiDARs are
typically geared towards automotive applications, where the
range requirements are below 300 m and the main design
goals are size and cost. For these LiDARs, the typical oper-
ational range is from 0.1 m to 200 m for targets with 80%
reflectivity. For darker targets, the range decreases rapidly.
Since the range of these devices is limited, they typically have
rather low angular resolution. This also limits the operational
range, as smaller targets can pass undetected when they are

sufficiently far. Therefore, these LiDARs can be considered
inadequate for larger vessel, but could suffice for smaller slow
moving vessels.

Longer range LiDARs are manufactured for e.g. geological
survey purposes, and these instruments can achieve measuring
distances of several kilometers. This increase in the range is
typically achieved with larger and more efficient collection
optics. Unfortunately, this optics size-to-distance relationship
is exponential, making optical improvements increasingly
expensive. Therefore, the LiDAR research has focused on
improving photosensor sensitivity and read-out electronics
noise margins. Currently, the research on LiDAR optics and
electronics is shifting on single photon techniques [27]. The
followup efforts (e.g. [28]) may well lead to significant
advances also for maritime detection, even if advances are not
achieved within the more traditional pulsed- and continuous-
wave techniques.

When considering LiDARs for maritime environment,
in addition to the measuring range and angular resolution,
of particular interest is the scanning pattern or the horizon-
tal and vertical Field-of-View (FOV). The first commercial
LiDARs utilized rotating optics which allowed 360 degree
view horizontally, while vertical FOV was limited by the
number of discrete laser transmitter-receiver pairs on the unit
and their angular separation. Due to the cost of implement-
ing freely rotating optics, more recent LiDAR designs have
adopted different scanning techniques which generally have
more limited FOVs. Novel LiDAR technologies, such as flash
LiDARs and optical beam steering, are inherently limited in
FOV. Consequently, several units need to be employed if
360 degree FOV is required. For smaller vessels, 360 degree
scanning patterns might be suitable as the LiDAR can be
placed at the top of the ship without significant blind spots
around the ship. For larger vessels, the blind spots can become
significant, and hence, several discrete LiDARs would have to
be employed around the ship for full coverage.

Secondly, if using LiDARs with 360 degree view, a sig-
nificant amount of the scanning time is lost due to the ship
blocking the view. Furthermore, the corresponding sections
would likely need to be removed in real-time from the point
cloud data due to bandwidth issues. Therefore, it seems
reasonable to utilize multiple discrete LiDARs with limited
FOVs dispersed around the vessel. This also allows a finer
control over the resolution in pivotal directions, e.g. the front
of the ship.

When considering LiDAR selection for autonomous vessels,
it is obvious that the low cost segment of the currently
available commercial LiDARs is inadequate for most use-
cases. On the other hand, the survey level LiDARs are
prohibitively expensive and mostly not designed for harsh
conditions, for example, constant motion and extreme weather.
Most importantly, the long range survey LiDARs tend to
have lasers exceeding the eye-safety limits, making their use
questionable. For larger vessel, a combination of low cost
and higher end units could be considered. It is also likely
that advances in LiDAR technology will improve the range
and resolution in the near future, allowing cost-performance
class suitable for maritime use. Testing LiDAR suitability and
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TABLE VI

TYPICAL CHARACTERISTICS OF COMMERCIALLY AVAILABLE MOBILE LASER SCANNING LiDAR UNITS

performance in maritime environment could be done using low
cost sensors and then scaled up when the technology advances.
We have listed in Table VI commercially available mobile laser
scanning LiDAR units that could be utilized for preliminary
evaluation purposes.

D. Visual Sensors

By visual sensors, we mean all sensors which capture
at least a two-dimensional image, one similar to a human
eye. These include RGB (Red-Green-Blue), monochrome, and
infrared digital cameras. Digital cameras can be used for
positioning, ranging, and object detection and classification,
all of which are essential tasks for an autonomous system.
However, we note that in open sea conditions, there are no
landmarks to perform camera-based positioning.

Measuring from images, that is, photogrammetry, has long
been used in surveying and various industries [29]. For situ-
ational awareness, the optical system needs to be designed to
have a suitable effective range, which is determined through
the concept of (ground) sampling distance. That is, the distance
between two pixels measured on the surface of the target. For
example, a sampling distance of 0.5 m at 1 km range would
result into a ship with a beam of 30 m showing on the image
to have a 60 pixels wide front. This sets limits for precision
in ranging and in object classification.

Ranging with cameras is usually done with a stereo camera
setup, where the two cameras used and the target form a
triangle. Otherwise, monocular distance estimation methods
exploit the camera movement, such as in [30], but these
methods can only estimate the distance to static targets. More
recently, methods which do not require camera movement have
started to emerge, such as [31], [32].

1) Ranging With Stereo Cameras: A stereo camera consists
of two (monocular) cameras. These cameras need to take

images at the same time (time synchronization) and the relative
position of the two cameras with respect to one another must
be known. This setup allows ranging by triangulation. In [33],
object detection in a maritime environment is achieved at
a range of 500 m. However, it is likely that much longer
distances are accessible with suitable optics and methodology.

The range estimation error �Z based on triangulation scales
quadratically with the range Z , linearly with disparity error
�D, and inversely with the baseline B (i.e. the distance
between the two cameras) and the lens focal length f [34],
namely

�Z = Z2

f B
�D.

The focal length and the disparity error are typically expressed
in pixels. Note the role that the sampling distance plays here:
even with a high resolution camera, the ranging depends
heavily on the optics and the geometry of the measuring
triangle. Briefly put, ranging becomes more imprecise the
farther the target is.

Limitations include the robustness (and possibly the fre-
quency) of the calibration of the stereo rig. Although stereo
vision is typically done using higher resolution cameras, that
is, RGB or monochrome cameras, the same techniques directly
apply also for infrared cameras [35].

2) Digital Cameras for Maritime Use: A short summary
of the comparison between different camera types is shown
in Table VII. There are so many COTS systems that we do
not list them here but rather discuss their different types.

Monochrome and color cameras have their own strengths
and weaknesses, and the choice depends on the application.
To obtain color images, cameras employ a color filter array and
infrared cut filter. This will both reduce the number of photons
and limit the wavelengths that can reach the sensor. This makes
monochrome cameras better in low light situations and in



72 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 1, JANUARY 2022

TABLE VII

COMPARISON OF CAMERA TYPES IN MARITIME CONTEXT

those situations where color information is not needed. Hence,
in ideal maritime conditions, color cameras are better suited
for detection and classification of objects, but in non-ideal
conditions monochrome cameras are likely to be better for that.
In fact, the two camera types can be seen as complementary
to each other, and many sensor setups utilize both of these.
For example, the autonomous car sensor setups of [36] and
[37] utilize both monochrome and color cameras. Limitations
of RGB and monochrome cameras include that they are reliant
on good visibility, and therefore they are heavily affected by
rain, fog, darkness, and other phenomena affecting visibility.
However, it should be noted that during the night most surface
vessels use lights, and these can be seen on images.

Infrared (IR) cameras sense thermal radiation. This makes
them an interesting choice in maritime conditions because
most objects of interest, such as ships and humans, have
very different temperature compared to water. Therefore, these
objects will generally be clearly visible on the images, also
during the night. However, IR cameras have a number of dis-
advantages as well. Currently they are much more expensive
and have quite poor resolution compared to cameras operating
on visible light, which limits the precision of ranging and
object detection and classification. In spite of this, IR cameras
have already seen use in maritime conditions, for example in
[38]. If the technology improves further and makes IR cameras
more accessible, then they could become a core sensor in
autonomous vessels.

Fusing cameras with RADAR and AIS, such as in [39], [40],
appears as an attractive goal. The cameras need a protective
casing or they need to be placed inside the ship, for example
on the bridge. Especially in large ships, many windows have
hydrophobic coating, which allows cameras to have good
visibility even from inside the bridge. However, most infrared
wavelengths do not penetrate window glass, and therefore
infrared cameras should be placed outside and be rugged.

E. Audio Sensors

Microphones, and especially microphone arrays, have the
potential to provide valuable information for context awareness
in maritime applications. Different types of vessels could
be detected, classified, localized and tracked by analyzing
the sounds that they produce, such as those from motors
(e.g., propulsion, ventilation, cranes) and whistles. Also,
the automatic detection of certain events (e.g., fault detection,
an object/person falling into the water) might be possible
by analyzing sounds. In some cases, the sound analysis can
produce new relevant information that enhances the situational
picture, such as the position of small boats not equipped with

AIS. In others, the information retrieved might be similar
to that obtained from other sensors, such as AIS messages.
In those cases, the redundancy can be used for cross-validation
and to trigger different levels of alarm. This potential makes
microphone arrays to deserve consideration for further study
in relation to maritime context awareness applications.

1) General Considerations for Maritime Applications:
Regarding context awareness in maritime applications, and
from a general, high level functional perspective, there are
several criteria that one has to consider when selecting a
suitable microphone to be used on its own or as part of
a microphone array. First, the microphone has to be placed
outdoors. Thus, it obviously has to withstand harsh weather
conditions and other severities associated to long term outdoor
maritime settings, such as wind, rain, snow, temperature vari-
ations, exposure to sun, and salty water. Second, its general
performance must be well defined, stable and predictable over
time. This is especially critical in microphone arrays, where
the performance of all the array elements shall match. Third,
it shall be optimized to cope with and minimize the effects
of the different noise sources that one can expect from the
context, such as the wind, sea, rain and noises induced by the
ship itself.

We have not found microphones explicitly designed for
maritime applications, nor scientific literature regarding mar-
itime experimental settings from which one can take rec-
ommendations. There are, however, commercially available
measurement microphones designed for long term outdoor
use, and thus we consider these as the most suitable ones
for maritime applications. Also, the outcomes of different rel-
evant disciplines such as acoustic sound localization, acoustic
environmental classification and/or outdoor acoustic signal
acquisition, can provide valuable lessons directly applicable
in a maritime context.

Outdoor acoustic signal acquisition is a rather mature field,
and its evolution has brought more stable microphones in harsh
weather conditions over time, as well as better wind and water
protection systems such as grids, foams and fur. However,
these protections do not completely remove the effect of
environmental factors, and some of them can still greatly
affect the performance of the sound registration and analysis.
Particularly important is the wind-induced noise produced by
the interaction of the wind with the elements surrounding the
microphone and the microphone itself, including the wind-
screen, as it can prevent the extraction of useful contextual
information [41], [42]. Clearly, the microphones need to have
state-of-the-art windshields, but these cannot fully compensate
for the wind effects. Fortunately, different signal processing
techniques can be used to isolate and mitigate them [43], [44],
[41], [45]. Techniques using microphone arrays are especially
effective [44], [46].

Other questions pertaining the microphone placement are to
be considered. Higher positions (e.g., settings in masts on the
uppermost deck) will typically reduce the vessel self-produced
noise (including sea-induced) and reflections, and will increase
the visibility angle. On the other hand, they will increase the
exposure to wind. A trade-off is then to be made, for which
a preliminary field study might be useful.
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TABLE VIII

KEY PERFORMANCE PARAMETERS OF MICROPHONES

2) Microphone Selection: The task of a microphone is to
convert the oscillations of the air pressure as they arrive to
the sensor into electrical signals. There are different physical
principles that can be exploited for this conversion, and
depending on which one is exploited, we can find carbon,
magnetic/dynamic, condenser, piezoelectric and optical micro-
phones, each with their own characteristics that makes them
more suitable for different applications. The most common
ones are the condenser and dynamic types, in that order.
Table VIII presents the main parameters that describe the
performance of a microphone. Measurement microphones are
different than ordinary microphones in that they are optimized
for one or several of these parameters, depending on the appli-
cation, and for stability over time. Measurement microphones
for environmental monitoring are generally, if not invariably,
of the condenser type.

There are different configuration aspects that need to be
decided when choosing a condenser measurement microphone
based on the particularities of the application and signal that
is to be captured.

• The diaphragm diameter mostly affects the frequency
response. 1/2” ones have good general purpose charac-
teristics.

• The microphones themselves affect the sound that they
are capturing. There are three types of microphones opti-
mized to minimize their effect in different measurement:
free field, pressure and random incidence. Free field
ones are optimized for sounds coming mostly from one
direction.

• The capacitor of the diaphragm needs polarization. There
are externally polarized microphones (require 200 V
power line, and usually leads to more expensive settings)
and prepolarized ones (use simpler cables, e.g. coaxial,
typically leading to lower cost settings).

In addition, the preamplifier selection is critical, and has to
be done so that its own characteristics do not restrict those

TABLE IX

EXAMPLES OF AVAILABLE MEASUREMENT MICROPHONES FOR LONG-
TERM OUTDOOR USE

of the microphone itself. Usually manufacturers provide the
microphone and preamplifier together.

The microphone’s sensitivity is a good indicator of its
health, and thus tracking its sensitivity is the best way to
assess the microphone’s stability. Measurement microphones,
specially for outdoor use, require periodic checking and cal-
ibration, for example, on-site every three months and every
18 months in a certified laboratory, depending on the applica-
tion and working conditions.

The most typical use of outdoor measurement microphones
is noise level monitoring in urban scenarios and airports. The
goals are typically to understand the underlying phenomena,
asses the effectiveness of actions against noise and/or measure
the noise pressure or intensity so that complaints can be
verified with an accuracy that allows for law enforcement.
Other uses with closer requirements to context awareness in
maritime scenarios are those targeting source localization and
context recognition using microphone arrays. As an example
of a commercially available solution, Rion’s Aircraft Noise
Monitoring System [47] uses a four element microphone array
mounted in the same mast to detect and estimate the direction
of arrival of the aircraft’s sound. It also identifies the aircraft
from its transponder data, and associates the noise measure-
ments to specific airplanes. It can also classify the activity of
the aircraft (e.g., landing, taxiing, take off, and engine testing)
based on the analysis of the sound. Other close examples of
available solutions are real-time acoustic gunshot detectors.
These estimate the position of the origin of a shot by analyzing
the shock-waves and muzzle blasts produced by the projectile
and received by an array of sensors/microphones. These can be
based on microphone arrays mounted in the same mast [48],
[49] as well as distributed across large distances [50].

Finally, Table IX presents examples of outdoor measurement
microphones that can be found in the market together with
some of their main characteristics.

F. AIS Receivers

Automatic Identification System (AIS) is a Very High
Frequency (VHF) system used for broadcasting the location
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TABLE X

COMPARISON OF AIS RECEIVERS AND TRANSPONDERS RELEVANT FOR AUTONOMOUS VESSEL NAVIGATION

of vessels, fixed and floating Aids to Navigation (AtoN),
or other obstacles in the sea such as oil platforms and wind
farms [51]. A vessel equipped with an AIS receiver will be
able to locate these objects in its vicinity irrespective of the
visibility conditions or if the nearby vessel is approaching
from non-line-of-sight in inland or archipelago waterways
[52]. In addition to the location, AIS messages may also
contain the vessel’s dynamic information, static information,
and voyage related information. Most commercial vessels
will broadcast their own information via AIS messages. Such
vessels therefore carry a transponder (also called transceiver)
capable of both transmission and reception of AIS messages.

Two VHF channels are used for the communication, called
AIS1, or channel 87B (161.975 MHz) and AIS2, or channel
88B (162.025 MHz) [53]. Therefore, AIS receivers can be
either single- or dual-channel. The benefit of dual-channel is
that it will display more information, complete messages, and
more frequently updated information than a single channel
receiver [54]. A basic AIS receiver assembly includes the
receiver module, a VHF antenna with cables, a laptop with
software to record and interpret the message streams, and a
separate power source if the assembly is not powered via the
laptop.

COTS AIS devices offer a wide variety of make and models
which can be compared based on the supported frequency
channels (single- or dual-), spatial range (in Nautical Miles

(NM)), format for the output data (e.g. NMEA0183) and
connection (USB, or other), power supply type, and cost.
Some example state-of-the-art commercial AIS receivers and
transponders are compared in Table X.

G. Public Maritime Datasets

A-priori recorded and archived data accessible via the
internet is another source of situational awareness information
to future autonomous vessels. This data can also be used for
training the machine learning algorithms and as supplementary
information to verify the correctness and completeness of real-
time situational awareness provided by the on-board sensor
assembly - in effect monitoring the reliability of the deployed
sensor system. For instance, the position of a navigation
aid detected along the vessel path can be cross-checked by
referring to the public register of aids to navigation, if one is
available from the local maritime authority. Table XI presents
some examples of public maritime datasets relevant to the
Baltic Sea.

V. REVIEW OF AI TECHNIQUES FOR

AUTONOMOUS VESSELS

The primary focus of this section is to provide an
overview of the state-of-the-art in artificial intelligence meth-
ods that are relevant for autonomous vessels. Such methods



THOMBRE et al.: SENSORS AND AI TECHNIQUES FOR SITUATIONAL AWARENESS IN AUTONOMOUS SHIPS: A REVIEW 75

TABLE XI

EXAMPLES OF PUBLIC MARITIME DATABASES

are characterised by their application area (e.g., traditional
or autonomous navigation, navigation phase), by their data
requirements, by computational complexity (e.g., online or
offline), and by robustness. We, on the other hand, are inter-
ested in problems and challenges in maritime scenarios, for
example, situational abnormality detection, vessel classifica-
tion, and localization. Hence, our attempt is to connect the
operational requirements of Section III onto (well-defined)
problems that may be solved with AI methods.

AI is a broad concept. John McCarthy referred to it as
“the science and engineering of making intelligent machines,
especially intelligent computer programs” [63]. The term AI
in this context mainly refers to machine learning methodology
that is used for regression or classification problems [64], [65].
Popular examples are the Deep Learning (DL) and Gaussian
Processes (GPs) [66], [67]. They have already been used
successfully in the maritime domain, for example, in detect-
ing and classifying ships from images (see e.g., Table XII)
and analyzing the navigational behavior of observed ships

(see, e.g., Table XIII). These tables are discussed further in
Section V-C and V-E.

A. Key Requirements of AI for Maritime Problems

As stated previously, safety is the key in autonomous
maritime systems, and thus the algorithms need to be robust
in diverse operational situations. We understand the robustness
of AI as the generalisation capability of AI methods, which
is gradually becoming more important in this field [64]. The
Probably Approximately Correct (PAC) framework states that
we could achieve better generalisation performance of a certain
model with larger training dataset [68]. However, it requires
the algorithms to be able to examine large-scale data, which
might be problematic in many cases [65], [69], [70]. A dataset
is considered large-scale when the dimensionality of data
record or the number of records is large. For example, many
medical images (e.g., retinopathy and histology) are consid-
ered as high-dimensional data, as they usually contain millions
of pixels. Deep learning methods [66] are known to be good
at dealing with very large amount of data if enough computa-
tional resources are provided, but still behave poorly for data
with large dimensions. The increasing of dimensions leads to a
huge growth of trainable parameters for deep learning models.
On the other hand, Gaussian Processes (GPs) [67] are not
usually limited by the dimension of data, if the covariance
function is suitable. However, GPs have problems dealing
with large amounts of data, as the computational complexity
scales cubically with number of data records [67]. Therefore,
in practice, the state space modeling of GP is often used for
linear computational complexity on temporal data [71]–[73].

In maritime scenarios, the type of data can vary a lot, which
requires us to use different AI methods for different types of
data. For example, the data of AIS or GNSS are typically low-
dimensional with the number of observations accumulating
typically at 1 Hz rate. With time, these data may become
large. In this case, deep learning models, especially recurrent
neural networks [74], might have better capabilities for the
analysis of a ship’s trajectory. For the maritime audio signals,
the number of dimensions is large. For example, an audio
piece with 44.1 kHz and 1 s length has 44100 dimensions.
Instead, we could use, for example, Short Time Fourier
Transform (STFT) to transform the audio signal into spectral
domain and use the spectro-temporal representation (image) as
data features [75], [76]. RGB or RGB-depth9 (RGB-D) images
from camera(s) are challenging both in data dimension and
quantity, however deep learning especially deep convolutional
neural networks [77], have successfully been employed for
such type of data.

For deep learning methods, the predictive distribution is not
easy to obtain, because complicated hierarchy neural network
functions are involved when taking the integral to obtain the
posterior. However, in many cases, the Gaussian processes
method can give the closed-form solution to the predictive
distribution [67].

9The depth in consumer-grade RGB-D is typically measured using NIR
illumination with an effective range of about 10 meters. In maritime scenarios,
depth images can be estimated from a stereo rig (see Sec. IV-D) or by fusing
other ranging data.
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Fig. 6. The system architecture for batch, online, and robust sensor
processing. The batch training phase is typically done outside the vessel (e.g.
in a computation cloud). The online learning and sensor fusion is done inside
the vessel.

Another requirement for machine learning algorithms is the
capability of online and offline learning. As shown in Figure 6,
the computation might need to be done in real-time or offline
depending on different situations. For example, while learning
to classify the objects can be done offline, when we localise the
maritime objects from camera or microphones the estimation
has to be done in real-time. The online and offline charac-
teristics define the way of learning from data and making
prediction of a machine learning algorithm [78].

Online learning methods learn from sensor data on the
fly, for example Bayesian state-estimation methods [79] and
online probabilistic machine learning methods [65], [72].
These methods are especially suited for learning dynamics
and prediction models. While offline learning, which we refer
to as batch supervised machine learning type of methods,
requires predefined training data. They learn from the entire
training dataset at once, and do not utilize any new data for
refining the learnt model. Deep learning [66] and probabilistic
machine learning [65] are typical offline machine learning
methods. These offline methods are especially applicable to
the identification and classification tasks in image and sound
analysis.

Based on the above requirements, the selected machine
learning algorithms need to take into account the following
aspects: scale of data, uncertainty of prediction, and need for
online learning.

B. AI for Maritime Self-Situational Awareness

The main task in achieving total situational awareness of a
vessel is to present a safety and abnormality level analysis.
We mainly refer the abnormality level as the uncertainty of
object identification and localisation. As shown in Figure 7,
such information can be delivered by utilizing AI methods and
fusing the data from maritime sensors, such as, AIS/GNSS,
images, and audio signals listed earlier in this article. If the
attributes from detection and classification matches the meta
data from AIS messages for example, we may consider a
positive situational awareness to have been achieved. This
forms a basis towards the next stage, which is to track the
identified neighbouring objects and compute the probability
of collision using predicted trajectories.

Fig. 7. An overall view of AI driven maritime situational awareness system.

The application areas of AI methods in maritime naviga-
tion and vessel situational awareness are identified as object
identification, localization, and trajectory analysis. We will
also focus on the state of the art review for these tasks, and
especially on the use of deep learning and Gaussian processes
in them. The viability of such sub-task division and focusing
on deep learning and Gaussian processes for the total maritime
situational awareness systems is demonstrated by an industrial
study in 2017 [12], where they propose to use deep learning
and different sensor fusion to give vessel situational awareness.
Other related demonstrative studies can also be found in, for
example, [11], [13].

C. Maritime Object Detection and Classification

The term “objects” here refers to anything that manifests
on the maritime landscape and is distinguishable from the
background, for example, ships, sea birds, and motor boats.
The aim is to detect or classify the objects in the sensor range
of a vessel. Such tasks are usually performed using one or
multiple cameras due to the advances of image processing
techniques and implementation simplicity. Audio data can also
be applied here for this purpose. Interestingly, we observed
that it is actually very rarely studied for maritime applications.
We argue that, due to the large proportion of background
noise from the environment (e.g., rain, wind, sea waves, bird
sounds, humans shouting, and own engine), using sound for
the detection and classification of maritime objects would
require additional signal conditioning. The main challenge of
using image data for object detection is that the dimension of
data is quite large.

Using classical CNNs directly is non-trivial, because the
classical CNNs are designed for image classification, not for
detecting/classifying multiple objects from an image. In prac-
tice, small sliding window is applied to recursively search
all area of a large image. The drawback is that it costs
vast amount of computational efforts, and the size of sliding
window must be determined beforehand. This is not always
possible in the maritime scenario, because the size of objects
in an image varies according to the distance. The Region
Proposal Network (RPN) [80] is a potential candidate solving
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Fig. 8. Experiments of vision-based ship recognition conducted on board
MS Megastar. The rectangle box gives the location and label of detection.
The number in parenthesis is the confidence of detection. The images are
challenging to detect, as they have low brightness and ill exposure problems.

Fig. 9. A general framework for ship detection using RPNs. Ship image is
taken from Helsinki–Tallinn line by authors.

this problem. As shown in Figure 9, the main difference
between a classical CNN and RPN is the region proposal
layer, which gives potential area of object manifestation. This
significantly reduces the search area for objects in an image.
It is particularly useful when objects (such as a small boat)
cover just a very small amount of area in terms of pixels. A list
of recent related studies on maritime objects detection and
classification using different sensors are listed in Table XII.

In addition, to show the effectiveness of CNN based vision
detector for ships, we conducted an experiment on MS Megas-
tar operating from Tallinn to Helinski at January 20th, 2020.
We obtained hundreds of ship images in resolution 1920×1200
pixels. The detector we use is the Single Shot Detector (SSD)
[81]. It is trained on public datasets including PASCAL VOC
[82], and COCO [83], so that the detector does not see the
test data. To test the detector, we selected several challenging
images from our MS Megastar dataset, as shown in Figure 8.
The results show that the SSD detector can recognize the ship
to a reasonable extent with good detection confidence.

D. Maritime Object Localisation by Sound

The benefits of using audio data for localisation is that
they can be omnidirectional with proper setting of mic array,
and the localisation algorithms are feasible once proper care

TABLE XII

RELATED STUDIES FOR MARITIME OBJECTS DETECTION
AND CLASSIFICATION

Fig. 10. Sound source localisation using neural networks. The idea is to
encode the sound-source location (label) in few-hots binarized vector, where
“1” represents sound manifestation.

is taken to eliminate background noise. One of the current
state-of-the-art binaural sound localisation framework is called
Head-Related Transfer Function (HRTF) [105], [106]. The
idea is to recover how human ears receive and perceive sound,
and treat the human way of localising sound as a transfer
function.

Instead of hand-crafting features for Sound Source Local-
isation (SSL), deep neural network can achieve it in an end-
to-end way. The key insight is how to formulate the SSL
problem in neural network regression/classification and how
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TABLE XIII

RELATED STUDIES FOR MARITIME TRAJECTORY ANALYSIS

to design or choose a suitable architecture. To our knowledge,
the earliest work is from 1996 by [107], where the authors
put the differences in intensity and phase from the inputs
to a three-layer neural network. Further studies [108]–[110]
binarize the data lables rather than using real-valued data,
as shown in Figure 10. Several studies have been conducted
on wind noise reduction [109]–[117]. However, for a maritime
scenario it is still an open problem. The sound in the maritime
environment also has a tendency to travel with the wind,
which may disturb the procedure of object localisation through
sound data. Fortunately, the information about the strength
and direction of the wind might be available on board (e.g.,
weather forecast and wind sensor), which can be included into
the end-to-end training as a-priori knowledge to eliminate the
wind problems.

E. Maritime Trajectory Analysis

Ship trajectories are part of the measured data used in situ-
ational awareness systems. Two of the most common sources
of trajectory information are the ship’s AIS transponder and
the ship’s own GNSS receiver. Through the GNSS receiver,

the position of that vessel can obtained. This position is then
communicated to other ships via the AIS transponder while
obtaining data that contains the other ships’ positions. AIS
systems are widely installed on ships for safety purposes, but
for other benefits these data have been recorded by ground
stations into numerous publicly accessible datasets [118].
Related to the use of this data, the recent studies on maritime
trajectory analysis are listed in Table XIII.

VI. CONCLUSION

This study about state-of-the-art in situational awareness for
autonomous vessels is divided into three core areas: a consoli-
dation of operational requirements from background literature,
a review of relevant and available commercial sensors, and a
review of applicable Artificial Intelligence (AI) algorithms for
the sensor fusion.

A review of the relevant existing regulations and standards
for autonomous vessels, as well as global efforts in this domain
reveals that such activities involve several key industry players,
National and international agencies, and regulators working in
collaboration. Although IMO is a key driver towards standard-
izing operational requirements in this domain, there exist few
other references which recommend additional requirements at
the hardware, software, and performance levels. This article
consolidates the essential requirements. In general, we con-
clude that positioning requirements for autonomous vessels are
in line with the requirements for dynamic positioning of ships.
This means that the ship shall always have two independent
position reference sources to ensure reliability and integrity;
have a positioning error of less than 3m; and be able to provide
sensor system integrity information.

The paper considers a hardware sensor assembly designed
around four sensor families: visual sensors, audio micro-
phones, positioning receiver, and RADAR/LiDAR. This set
of sensors was chosen in view of simplicity and brevity
of the text, although this in no way restricts the use of
additional sensors (some of which are listed in the paper).
The paper describes state of the art in these sensors including
recommendations on the most relevant requirements for each
of them. The sensor assembly should provide an autonomous
vessel with holistic situational awareness. This includes at
minimum information about its own position and of objects
and other vessels in its path.

The primary purpose of AI here is to fuse the sensor data
resulting in vessel localization and situational awareness as
well as monitoring the integrity of the sensor assembly. For
this, deep learning and Gaussian processes are the state of the
art. These two methods are ready for industrial deployment in
the maritime scenario, and their performance in object classifi-
cation, regression, and localisation problems is promising. The
combination of deep learning and Gaussian processes with the
sensor data has the potential to solve the maritime situational
awareness tasks in future autonomous vessels.

REFERENCES

[1] International Maritime Organization. (2018). IMO Takes First Steps to
Address Autonomous Ships. Accessed: Jun. 12, 2020. [Online]. Avail-
able: http://www.imo.org/en/MediaCentre/PressBriefings/Pages/08-
MSC-99-MASS-scoping.aspx



THOMBRE et al.: SENSORS AND AI TECHNIQUES FOR SITUATIONAL AWARENESS IN AUTONOMOUS SHIPS: A REVIEW 79

[2] V. Lehtola, J. Montewka, F. Goerlandt, R. Guinness, and M. Lensu,
“Finding safe and efficient shipping routes in ice-covered waters:
A framework and a model,” Cold Regions Sci. Technol., vol. 165,
Sep. 2019, Art. no. 102795.

[3] V. V. Lehtola, J. Montewka, and J. Salokannel, “Sea captains’ views on
automated ship route optimization in ice-covered waters,” J. Navigat.,
vol. 73, no. 2, pp. 364–383, Mar. 2020.

[4] C. C. Liang and W. H. Cheng, “The optimum control of thruster
system for dynamically positioned vessels,” Ocean Eng., vol. 31, no. 1,
pp. 97–110, Jan. 2004.

[5] R. Skjetne et al., “AMOS DP research cruise 2016: Academic full-scale
testing of experimental dynamic positioning control algorithms onboard
R/V Gunnerus,” in Proc. ASME 36th Int. Conf. Ocean, Offshore Arctic
Eng., vol. 1. Trondheim, Norway: Offshore Technology, Jun. 2017,
Art. no. V001T01A080, doi: 10.1115/OMAE2017-62045.

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2722–2730.

[7] V. Lehtola et al., “Comparison of the selected state-of-the-art 3D indoor
scanning and point cloud generation methods,” Remote Sens., vol. 9,
no. 8, p. 796, Aug. 2017.
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