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Abstract— Air pollution and increasing traffic congestion
means the current way of navigating through a city needs to
be rethought. One of the possible solutions is to move away from
internal combustion engines and embrace electric and hybrid
vehicles. Electric Bicycles can offer an alternative to traditional
modes of transport and support an environmentally friendly
way to navigate an urban environment, with the benefit of
encouraging physical exercise. There are still several issues that
constrain a large-scale acceptance of Electric Bicycles, including
the need for personalised controller strategies and the energy
efficiencies. Current strategies do not include any analysis of
rider’s capabilities, physiological factors or pedalling techniques.
The research outlined in this paper involved 30 participants
that volunteered to take part in an Incremental Sub-Maximal
Ramp Test with the aim of understanding and quantifying
pedalling characteristics and demonstrating that a better motor
controller strategy tailored towards individual requirements is
possible. Gender and Cycling Experience were the most prominent
factors that differentiate the capabilities of the population. Three
novel controller techniques (i.e. Fixed Percentage, Torque Filling
and Real-Time Power mapping) are analysed and presented as
innovative methods for next generation personalised controller
strategies for Electric Bicycles.

Index Terms— Electric bicycles, electric vehicles, energy effi-
ciency, electric motor controller strategies, pedalling techniques,
personalisation, rate of perceived exertion, torque filling.

I. INTRODUCTION

SOCIETY is aware of the need for sustainable and environ-
mentally friendly transportation [1]. However, convincing

commuters to choose an electric bicycle (e-bike) and / or
public transport over the comfort and convenience of their
automobile is challenging. Nevertheless, the push towards
healthier lifestyles [2] and the concerns over the quality of
the air within cities leading to bans on diesel transport [3]
requires analysis of alternative methods of moving around the
urban environment [4]. Although there has been a sustained
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growth since 2005, particularly in the far east [5], by 2020
e-bike sales are expected to approach $10.8 billion [6] [7].
This situation has been mainly due to government policies that
either promote the use of e-bikes [8], [9] or discourage the use
of automobiles [10] coupled with an increasing environmental
awareness [11].

Although users do acknowledge e-bikes as a mean to
overcome issues with their fitness levels, to make commuting
by e-bike a viable and regular option, they are faced with
uncertainty in the e-bike’s autonomy (i.e. range, recharging
stations, ease of charge). This issue is significant as reported
in the study conducted by Cappelle et al. [12], which showed
that even after using e-bikes for a considerable period of time
(i.e. 7 weeks) and noting the benefits (considerable less time
spent in cars and traffic congestions) only 3% of the users
ended up buying one. The increase in e-bike autonomy and
associated efficiency is one of the main problems regarding the
widespread adoption and use of e-bikes. Until this is achieved,
the common view of e-bikes as either leisure vehicles or viable
means of transportation restricted to regular cycling enthusiasts
will continue.

One of the characteristics that affects the efficiency of
e-bikes is the controller strategy governing motor power deliv-
ery [13]. Although there is a considerable amount of literature
and experience dealing with efficient motor drives [14]–[16]
the influence of the riders’ pedalling capabilities (e.g. rate
of torque application, maximum torque location [17]) and
physiological characteristics (e.g. age, sex, experience [18])
have not been directly addressed to date. Focusing solely on
the magnitude of torque is an easy implementation but it has
major limitation as it amplifies the human inefficiencies and
does not take into account human capabilities. The inclusion
of some physiological characteristics in the control loop has
been reported [19]–[21] mainly using heart rate as a reference
level of cyclist effort hence controller support level. However,
heart rate presents difficulties in determining a specific strategy
for each individual user due to its variability as a result of
factors such as absolute and periodic changes in fitness levels,
fatigue, weather or stimulants (e.g. coffee, energy drinks, food
and alcohol) consumption [22].

In this paper three novel controller strategies for the next
generation of adaptive e-bikes are presented, these original
strategies are based on the pedalling characteristics observed
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from 30 participants, divided into 4 groups (i.e. not cyclists,
recreational, commuter, competition) subject to an incremental
submaximal ramp test. The research builds on established con-
troller strategies principles (e.g. proportional, fuzzy logic [23])
and integrates the strategies to accommodate the test results.
Having the possibility to compare gold standard pedalling
characteristics, i.e. those exhibited by competition cyclists,
with those observed for the other groups allows the identi-
fication of which performance characteristics the controller
should replicate for improved performance and better support
of cyclists’ requirements.

The main goal of the research outlined in this paper is
the adaptation of current controller strategies to include the
pedalling characteristics observed in the general population.
Note: dynamic modelling and real-world implementation of
these strategies will be reported in further publications by the
authors.

II. CURRENT STATE OF THE ART

There are three types of strategies currently adopted to
control the amount of power assistance given by the electric
motor on an e-bike: fixed gain, constant speed and constant
effort [24]–[28]. Out of the three, fixed gain is the most used
on commercial e-bikes.

In the fixed gain strategy, the assistance level is set as a
fixed percentage of the torque input by the rider, commonly
set to 70%, 150% and 230% [28], [29]. Given the fluctuation
of torque across the pedal cycle, this type of control tends to
amplify torque ripple and speed fluctuation and can lead to
situations where the net power (i.e. combined power between
the rider and the motor) is not enough to overcome the
resistive load on the rider (e.g. aerodynamic drag and rolling
resistance [30]). The fixed gain strategy is heavily dependent
on cycling cadence and many experience delays in power
deliveries especially at high cadences. Moreover, the current
fixed gain strategy requires, in the large majority of the cases,
the rider to choose their gain level, trusting in the ability of
cyclists to self-assess their capabilities.

Constant speed controllers depend upon either detecting
the movement type experienced (e.g. acceleration, constant
speed) or the response to a disturbance from a horizontal
road condition. It attempts to maintain the speed constant
(usually based on a throttle or the rider’s cadence) independent
of the environmental conditions (i.e. road incline, surface
resistance, wind resistance) adjusting the motor contribution
accordingly [31]–[33]. The simplicity of the hardware imple-
mentation (i.e. only requires torque transducer and cadence
sensor [34], [35]) is an advantage of these types of controllers.

Instead of focusing on the actual value of the torque and
cadence, a Fuzzy Logic Control (FLC) [16] implementation
using the behaviour of the variables to determine the move-
ment type has been discussed in the literature. Controller
response is fixed by constant multiplying factors of the motor
current (i.e. output torque) for each movement type [15], [36].
Inferences to determine the movement type are based on
assumptions such as a decrease in speed and increase in
torque during inclines, although such a pattern of behaviour is

not unique to inclines. However this method: (i) is impacted
by regulations (i.e. EU laws require electric assistance to
be delivered without a throttle [37]) and (ii) could result in
unstable operation as it takes control away from the rider in
attempting to fix a constant speed for the bicycle. Although
some authors highlight that the motor contribution [31] can be
varied to account for the user’s fitness level and experience,
there is no evidence presented in their publications on how
this should be implemented [31]–[33].

Most of the constant effort e-bike controller implemen-
tations focus on maintaining a physiological variable (e.g.
heart rate) at a constant level irrespective of the environmental
conditions encountered by the cyclist. Using heart rate based
dynamic models some authors predict the heart rate response
to a particular load. The motor contribution required is then
defined as the difference between the power input by the
rider and the power set for a particular heart rate according
to the model [19], [38]. Unfortunately, heart rate dynamics
are known to be subject to uncertainties due to intra-subject
differences and other non-linearities (e.g. oscillations and
unpredicted trends possibly connected to physiological factors)
not directly influenced by the physical effort which can limit
accuracy of control strategies [19], [39]. Instead of using heart
rate as the physiological variable Nagata et al. [40] used
oxygen uptake to measure the physical effort of the rider.
Based on deriving a value for effort from oxygen uptake
values, motor support was provided to increase or decrease
power output accordingly. Although oxygen uptake can be
used as an accurate determinant of physical performance, its
measurement involves complex hardware more suited to a
laboratory environment [41]. Furthermore, the authors have
fixed the effort/cadence model only for a small set of users
for which the preferred pedalling cadence was 65 rpm and
hence is not representative for other user types. According to
Abbiss et al. [42] the optimal cadence for cycling depends
on factors such as the distance to travel, fatigue and personal
preference (and can range between 70 and 120 rpm).

Although there are multiple strategies reported in the liter-
ature to determine the most adequate power motor assistance,
there is a general tendency to fix the motor contribution
values ignoring the effect of the cyclists’ characteristics on the
system. In addition, whenever the cyclist is taken into account,
the variables used to measure their influence are either highly
uncertain or difficult to measure. The results outlined in this
paper indicate that without adding any extra sensors to the
current most common design and by considering some non-
invasive physiological information it is possible to deliver a
personalised motor controlling strategy that can deliver a better
riding experience.

III. INCREMENTAL SUBMAXIMAL RAMP TEST

A. Previous Work

The purpose of the motor and controller on an e-bike is
to complement the power input by the rider [10], allowing
him/her to increase the travelling speed and/or ride for longer
distances whilst reducing the effort required. However, there is
no agreement on how much power the motor should contribute
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throughout the pedal stroke and no indication of the availabil-
ity of different strategies (i.e. designed for distance, speed,
acceleration) supported by controllers. Common approaches
include: (i) Providing a fixed percentage of the rider input
power [15] and (ii) Providing a varying torque aid as a function
of travel speed [43]. Individual rider characteristics (e.g. age,
fitness level, performance desires and requirements) are often
ignored.

Academic literature offers few examples of studies aiming
at understanding possible implementations of novel motor
controllers: few studies focus of novel techniques i.e. using
Fuzzy Logic [15], [16] or attempting to counterbalance envi-
ronmental disturbances [31]–[33]. Limited studies have looked
at energy harvesting [44] and others have mainly focused on
novel hardware applications [45], [46]. Very little research
has been undertaken to include human performances and
physiological factors in the controller strategy.

Many research reports focused on improved cycling
performance exist but only a few studies investigate a
connection with electric bicycles. Their aim is usually to
aid coaches and elite athletes with technical analysis of their
performance. Three main tests can be identified in this space:
performance-oriented studies; technique-oriented studies and
fatigue-oriented studies. Performance-focused studies usually
target determining factors as functional threshold power (FTP,
i.e. power a cyclist can sustain in 1h) or critical power (CP,
i.e. power output that will result in exhaustion after 1h)
and various studies use VO2 Max to determine efficiency
[47]–[49]; these tests do not target a wide population
and are often invasive. Technique-focused studies mainly
address four factors: cadence; torque; balance and rider’s
position [50]–[52]. Often these studies tend to contradict each
other [53] and very little has been written on rate of power
application or correlation with physiological factors. Finally,
fatigue focused studies look mainly at how fatigue impacts
technique factors [54], [55]. This study aims at addressing
the whole bicycle user’s population and was designed to be
as inclusive as possible. This led to the exclusion of tests like
ride-to-exhaustion and VO2 Max tests. The study attempts to
understand pedalling characteristics for cyclists with different
backgrounds and how they relate to physiological factors.

B. Design of Experiments

As shown in Fig. 1, the aim of implementing a test protocol
is to determine how much power the motor should deliver
while taking into account the rider’s age, sex, fitness level and
cycling experience. As highlighted by Cappelle et al. [12], one
way to increase interest on e-bikes is the personalisation for
different users.

A good test protocol should exhibit: (i) Validity (i.e. simi-
larity to the situation it is trying to replicate), (ii) Reliability
(i.e. repeatability between tests when no change has been
made) and (iii) Sensibility (i.e. the ability to detect small
but meaningful changes in the measured variables) [56].
Out of the three types of test protocols related to cycling
(i.e. aerobic, anaerobic, competition simulation) aerobic test
protocols replicate the demands observed during commuting

Fig. 1. Test protocol definition.

or leisure riding (see Fig. 1). Common commuting distances
(e.g. 5 to 15 km) [12] can involve periods of time up to one
hour and since they are neither a race simulation or maximum
efforts, aerobic type testing is valid [57]. Aerobic tests (e.g.
the incremental test where the participant is asked to sustain
an increasing power output over time) have been shown to
produce random errors of ∼1% and have been successfully
used to detect changes of <1% [56].

Although aerobic tests can be used to quantify performance
variables under similar conditions experienced on a common
e-bike ride/commute, typical load and termination criteria
reported in literature (e.g. ride to exhaustion [58]) are
appropriate to competitive cyclists but are not appreciated
by the main demographic groups targeted by e-bikes (i.e.
commuters, leisure cyclists). Hence, in order to be as inclusive
as possible the ride to exhaustion protocol has been excluded
from this study.

Targeting the general population also imposes constraints
on the selection of bicycle geometry setup that is comfortable
for the participant, the time demanded by the test (e.g. <
30 minutes) and the willingness to have physiological variables
(e.g. hearth rate) measured via attaching sensors to the body
(see Fig. 1).

According to Marsh and Martin [51], untrained cyclists
at submaximal efforts (i.e. efforts that are typically limited
between 10 to 20 minutes) exhibit unchanged Rated Perceived
Exertion (RPE) [59] levels for loads of up to 150 W. That is
to say that an effective and representative test protocol should
include loads above such a value.

Based on this, the cadence to be sustained by participants
during the test reported in this paper has been set to 80 ±
10 rpm (i.e. optimal cadence for endurance cycling [42]).
Although an occasional male cyclist with a weight of 80 kg
could struggle to sustain more than 200 W for periods of
time > 5 min [51], it is not uncommon for cyclists to



STILO et al.: PERSONALISED CONTROLLER STRATEGIES FOR NEXT GENERATION INTELLIGENT ADAPTIVE e-bikes 7817

encounter routes with > 5% gradients (i.e. the maximum
recommended incline for cycle routes according to the UK
Manual of the Streets [60]), which would demand, in no-wind
condition, up to 300 W [30] to maintain an average speed
of 20 km/h (i.e. average bicycle speed in urban area according
to Strava®tracking service [61]) Thus to support the evaluation
of performance at an even spread of loads both below and
above the 200 W mark, the protocol was designed to include
seven loads ranging from 42 W to 294 W in increments of
42 W. In order to maintain the duration of the test below 30
min, taking into account the time involved in the measurement
and setup of bicycle geometry (between 8-10 minutes) and the
warmup/cooldown period (i.e. 10-15 minutes recommended
[62]) coupled with the reported endurance capabilities of the
general public [51], the time at each load was set to 1 min.

Because cycling performance is affected by the bicycle
geometry setup (i.e. the relative distances between the han-
dlebar, saddle and bottom bracket. For example, an excessive
distance between bottom bracket and saddle can lead to an
ineffective torque production) [63] it was necessary to stan-
dardise the bicycle geometry for each participant. Although
different techniques are available to determine the optimum
geometry (e.g. video analysis [64], anthropometric measures
[64]) a simple technique was adopted that consists of mea-
surements for: (i) the knee angle when leg totally extended
(foot at 6 o’clock position) to determine saddle height, (ii)
the distance between the front of the knee and the pedal axle
for the saddle setback, (iii) the angle between a horizontal
line and the torso to determine handlebar height and (iv)
the angle between the humerus and torso for the handlebar
reach (see Table II for details on the magnitudes). This tech-
nique only requires the use of a goniometer [65] to measure
the angles and a plumb line and takes typically 5 minutes
to complete.

To minimise the invasiveness of the trial for the participants
during data collection, heart rate and RPE were the only
physiological variables/parameters measured during the test.
Heart rate was measured with a frequency of 100Hz using
a heart rate chest strap while RPE was recorded manually
at each 30 second mark for each load with a scale ranging
from 1 (i.e. easy, small effort) to 5 (i.e. maximum exertion).
Fitness levels were recorded during the warmup and were self-
assessed using a scale from 1 to 5, 1 being not active to 5 being
an elite athlete. Cycling experience was determined based on
the hours cycled per week (e.g. level 1 for less than 1 hour
cycled per week, level 5 for more than 11 hours cycled per
week). The test protocol, in terms of the features and recorded
measurements, are detailed in Table I and Table II. Mechanical
variables (i.e. torque and cadence) were recorded using a fully
instrumented cycling ergometer developed at Loughborough
University [66] that enables a 200Hz sampling frequency and
the capability to control active mechanical resistance both in
terms of torque and power.

C. Results

Fig. 2: Participants demographics information. shows the
demographics of the participants. Out of the 30 participants

TABLE I

TEST PROTOCOL SETUP

TABLE II

TEST PROTOCOL PARAMETERS

only 5 (17%) were female.1 constituted 40% of the participants
suggesting possible interest in e-bikes for this group. Compe-
tition, Fitness and Non-cycle groups contributed with 33%,
10% and 17% respectively. The large majority of participants
cycled on average between 2 (33%) to 3 (27%) hours per week
which suggests that the distances they are likely travel are
short (i.e. between 30-45 km in total), coinciding with the fact
that viable cycling commuting distances fall within the 5 to
15 km range [10]. In terms of perceived fitness levels, most
of the participants classed themselves as having an average
fitness (43%). It is worth noting that although 10 participants
were competition cyclists, only 40% of this category classed
themselves as having the highest fitness level of 5.

In order to determine whether physiological factors had
an impact of performance and techniques an analysis of
variance (ANOVA) was applied to the dataset. In order to
identify the most predominant factors a confidence of 95%
(resulting in a p-value smaller and 0.05) was chosen as a
threshold.

1Although not ideal this distribution is nevertheless representative of the
fact that male are over three times more inclined to cycle than females [73]
Commuters
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TABLE III

TEST PROTOCOL DESCRIPTION: STORED VALUES

Fig. 2. Participants demographics information.

The rate of power application (i.e. how fast the power is
delivered) resembles a general sinusoidal variation wave for
all loads (see Fig. 3). The magnitude, the phase and location
of the maximum/minimum outputs changes depending on the
load (see Fig. 3). For example, between Load 1 and Load 7 the
magnitude and phase differ by 3.4 W/◦ and � 40◦ respectively.
As the load increases, the maximum/minimum rate of power
application occurs earlier in the cycling stroke. For example,
the maximum value occurs at 70 ± 2.5◦ for Load 1 and at
50 ± 2.5◦ for Load 7. The same behaviour is observed for
females.

1) Analysis by Sex: Even under controlled indoor/laboratory
conditions, where the load can be kept constant, maintaining a

Fig. 3. Rate of power application per degree. Magnitude, phase and
maximum/minimum occurrence vary with load.

Fig. 4. Power test results by sex. No significant difference due to gender,
linear increase on normalised power due to load. (Note: Bands indicate the
uncertainties in the values).

TABLE IV

LINEAR FIT COEFFICIENTS FOR NORMALISED POWER PER SEX

constant output power is difficult [67]. To account for perfor-
mance variability, Normalised Power (NP) (i.e. a parameter
used to measure periods of intense effort during the overall
workout) can be used as an estimate of the constant power
that could have been maintained for the same physiological
effort [68] [69]. As seen in Fig. 4, normalised power increases
linearly with load (see III-C.2). Although this increase is
slightly higher (2% difference between males and females)
for males, there is no significant difference in the normalised
power due to sex (p > 0.05).

2) Analysis by Cycling Background: For all cycling back-
grounds (i.e. Commuting, Competition, Fitness, Non-cycle)
the normalised power has a linear increase with the load.
Up to Load 3 (126W) there is no significant difference
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Fig. 5. Normalised power per background. Less experienced cyclists output
larger normalised power for the same load.

TABLE V

LINEAR FIT COEFFICIENTS FOR NORMALISED POWER
PER BACKGROUND

(i.e. 165 ± 25, 125 ± 20, 155 ± 25, 180 ± 10 W) in perfor-
mance due to the cycling background (see Fig. 5), however
above these loads the difference becomes significant (p <
0.05) between the lowest NP observed which occurs for Com-
petition participants and other cycling background participants
increases (i.e. 310 ± 20, 260 ± 30, 440 ± 45, 360 ± 13 W
for Commuting, Competition, Fitness, Non-cycle at Load 7).

It is evident that more experienced participants output lower
normalised power for the same load. For example, the differ-
ence between Competition and Non-cycle participants is close
to 40±13% for Load 7. Based on the results observed for
groups other than Fitness, it might be expected for the NP to
be between the values observed for Commuting and Non-cycle
however, this is not the case.

However, it is possible for the participants to have chosen
a classification incompatible with their abilities [70]. Taking
into account that there is no significant difference (p > 0.05)
between the straight line fit for the Non-cycle and Fitness
groups (see Fig. 5 and Table V), the NP output by less
experienced cyclists is larger (i.e. 212 ± 13 W at Load 4 for
Commuting and Non-cycle) for the same load than the one
observed for experienced cyclists (i.e. 170 ± 30 W at Load
4 for Competition).

For larger loads (i.e. 5: 210 W, 6: 252 W, 7: 294 W; see
Fig. 6), less experienced cyclists (i.e. Commuting and Non-
Cycle) consistently produce higher maximum/minimum power
values and sustain larger power values for longer segments
during the pedal cycle. While Competition cyclists show a

Fig. 6. Mean power per background for Load 7. Less experienced cyclists
output larger power values across the pedal cycle.

Fig. 7. Mean cadence per background. Less experienced cyclists favour
lower cadences thus incurring in higher torques for the same load.

Full Width Half Maximum (FWHM) value of 65 ± 1◦, other
background type cyclists show a FWHM of 90 ± 5◦. These
findings would seem to be incompatible with the current
belief that technique improves with experience and poses
questions on the validity of cycling background as an accurate
performance discriminant.

Fig. 7 shows the mean cadence that leads to the power
difference observed in Fig. 5. While experienced cyclists
maintain a higher cadence (at the upper limit of the exper-
imental tolerance i.e. 86.4 ± 0.9 rpm throughout the test)
thus requiring a lower torque at the cranks for similar power
outputs, less experienced cyclists maintain lower (i.e. 78.9
± 0.8 rpm for Commuting, 76.4 ± 4.2 rpm for Non-cycle)
cadences (i.e. thus requiring in higher torques for the same
load for equivalent power outputs).

The rate of power application (i.e. how fast the power is
delivered) follows a sinusoidal pattern for all loads (see Fig. 3).
Depending on the load the magnitude, phase and location of
maximum/minimum occurrence changes (see Fig. 3).
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Fig. 8. Rate of power per background. Maximum rate of power application
occurs earlier for higher loads.

TABLE VI

LINEAR FIT COEFFICIENTS FOR NORMALISED POWER

PER HOURS PER WEEK

The location of maximum/minimum rate of power appli-
cation moves to an earlier location (Load 1: 71.7 ± 7.6◦,
Load 7: 46.7 ± 5.7◦) across the pedal cycle as the load
increases. As presented in Fig. 8 for less experienced cyclists
the occurrence of the maximum rate of power application is
earlier than for experienced cyclist (i.e. 45 ± 0.5◦ for Non-
cycle compared with 55 ± 0.5◦ for Competition at 252W
loads). However, it is noted that for Load 1 Commuters
show the earliest rate of power application and for Loads
3 and 4 they have the same values as the Non-Cycle group
(i.e. 55 ± 0.5◦, 50 ± 0.5◦ respectively).

3) Analysis by Hours Cycled per Week: As the number
of hours per week increases the change in NP with load
decreases (see Fig. 9). For cyclists used to cycling more than
11 hours per week (i.e. Group 5) there is hardly any increase
in normalised power due to the load (140.3 ± 40 W, see
Table VI for the linear fit coefficients). From a total of 10
Competition cyclists, 3 are within Group 5, 3 are within
Group 4 (i.e. between 7 and 11 hours per week) and 4 are
within Group 3 (i.e. between 3 and 7 hours per week). The
behaviour represented on Fig. 9 suggests that the volume of
hours ridden has the most significant influence on performance
when compared with the riders backgrounds since Competition
cyclists have similar characteristics observed with cyclists with
Commuting background (i.e. 1.81% difference in intercepts, <
10◦ difference in slope in trendlines for the two groups) when
they ride similar amount of hours per week. Fig. 9 also shows

Fig. 9. Normalised power for hours per week. The rate of normalised power
to load decreases with the increase of hours cycled per week.

Fig. 10. Normalised power per fitness level. There is no clear difference for
normalised power due to fitness level.

that the higher the hours cycled per week the lower is the slope
of the linear fit for NP (i.e. linear-fit slope for group 1 is 40◦,
for group 5 is 1.05◦). On the other hand, the mean cadence
increases with the hours cycled per week (i.e. for group 4 the
mean cadence was 84 ± 5 rpm whereas for group 5 the mean
cadence was 91 ± 3 rpm).

4) Analysis by Perceived Fitness Level Fitness: level may
not be a good discriminator of differences in performance as
it is a subjective and self-assessed measure [70]. For example,
some (n = 4) Competition participants classed themselves
as having a perceived fitness level of 4. In fact, the results
indicate that there is no significant difference for NP due
to fitness level (less than 11◦ difference in linear-fit slope
and less than 67W in intercept; see Fig. 10 and Table VII).
Furthermore, since fitness level is not a direct indicator of
cycling experience, the hours cycled per week represents the



STILO et al.: PERSONALISED CONTROLLER STRATEGIES FOR NEXT GENERATION INTELLIGENT ADAPTIVE e-bikes 7821

TABLE VII

LINEAR FIT COEFFICIENTS FOR NORMALISED POWER PER FITNESS LEVEL

Fig. 11. Torque per cycling background.

best discriminator of improved performance from the results
observed in this research.

D. Influence on Controller Operation

There are three main characteristics that can be observed
in the test results, which are considered vital inputs for the
controller operation i.e.: (i) the variation of rate of power appli-
cation across the pedal cycle (see Fig. 3), (ii) the sinusoidal
type behaviour of the mean power (see Fig. 6) and (iii) its
associated torque (see Fig. 11).

As shown in Fig. 11 the torque applied during the pedal
stroke varies sinusoidally with the angular position. This
implies that the mechanical work (obtained by integrating
torque with respect to angle of the crank arm [71], in
Fig. 11 indicated as Area Under the Curve, AUC) obtained
from the sinusoid will always be lower than the mechanical
work for a constant torque value with magnitude larger or
equal than the mean torque across the whole pedal cycle.
It is hence more effective to guarantee that the net torque (i.e.
the torque resulting from the contribution of both the cyclist
and the e-bike’s motor) is constant throughout the pedal cycle
rather than to focus the controller on increasing its peak value.
Implementing this kind of varying motor torque contribution is
complicated by the fact that the magnitude of the contribution
has to change depending on the angular position during the
pedal cycle. For example, for the results shown in Fig. 11 if a
constant torque of magnitude equal to the maximum torque is
guaranteed by the controller, the increase in mechanical work

Fig. 12. Normalised Power Fit per Sex.

input to the e-bike system would be 64%, 85% and 41% for
the commuting, competition and non-cycle groups respectively.

IV. PROPOSED CONTROLLER STRATEGIES

A. Fixed Percentage

The fixed percentage strategy is similar to the current fixed
gain strategies [24]–[28] but differs significantly on how the
percentage values are selected.

The controller strategy outlined in this paper uses the
desired level of RPE and the desired level of assistance, both
set by the user, based upon the results shown in Fig. 12.
Under this strategy if the controller is set to have 5 levels
of assistance, the percentages can be fixed as 20% for level
1 up to 100% for level 5 with 20% increments for the levels
in between. If a female cyclist wished to keep an RPE level
of 3 that would require a net NP input of 200W. Hence if
she chooses an assistance level of 3 then she would only
have to input 80W as the motor would contribute with the
remaining 120W.

This approach differs from current controllers in that its
contribution is based on the normalised power required to
keep a set RPE level rather than adding a fixed gain factor to
the average torque contribution delivered by the cyclist. If the
cyclist inputs the complete 200 W required for an RPE level
of 3 an assistance of level 3 would still contribute an extra
120 W accelerating the bicycle.

It is important to note that, for a successful implementation
of this strategy, it is crucial to obtain an accurate model of RPE
and determine how these trends are influenced not only by
factors as sex, but also by experience (hours cycled per week).
Further work should focus on studying how fatigue relates to
physiological factors but also how can RPE be derived from
quantitative measures.

B. Torque Filling

Torque filling control strategies are based on the mechanical
work concept discussed in section III-D. Instead of focusing
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Fig. 13. Torque Filling strategy as it compares with the current strategy
represented in Torque (Nm) vs Angle (◦) plots. In the top figure, the current
strategy (Fixed Gain) as it operates at a typical setting (120%) tends to
accentuate humans’ natural unbalances; it the bottom figure, the proposed
(Torque Filling) strategy delivers a smooth torque profile whilst achieving
identical mechanical work.

on increasing the torque value, the controller is focused on
ensuring that the torque is constant across the whole pedal
cycle.

Determining, in real time, the appropriate value for the
torque to be contributed by the motor requires more complex
feedforward control algorithms which would have to take
into account the fact that the required action would occur
when the location across the pedal cycle has already changed
[50]. Additional controller logic is also required to prevent
unwanted input from the motor if the cyclist wishes to
coast without pedalling or if the cyclist is slowing down.
Without such logic the controller would interpret the input
as of 0 W thus contributing with a large but unwanted
input to the system torque. Either a cadence threshold or a
mechanical input trigger could be used to accommodate this
functionality.

This technique differs from the current commercial solutions
by the fact that the fixed gain strategy will result in enhancing

Fig. 14. Performance analysis of current strategy (Fixed Gain, 120%)
against Torque Filling, the resulting torque profile shows smoothness without
accentuating human natural imbalances. This is achieved without alerting the
mechanical work of the motor resulting in a performance factor of 1.

the torque fluctuations that a human naturally produce around
the crank arm for the very nature of the cycling activity.
Additionally, torque filling will try to compensate for human
inefficiencies by providing maximum torque at the locations
where the human output is reduced, resulting in a smooth
power delivery throughout the entire crank revolution.

C. Real-Time Power Mapping

Two different power mapping approaches can be based on
fitting linear relationships between the normalised power and
the variables measured during the testing protocol (e.g. torque,
cadence, heart rate).

Fig. 12 shows that the linear relationships can be derived
between the NP and the RPE level which changes depending
on whether if the cyclists are either male or female. Using
these relationships, the controller can determine how much
power the motor needs to contribute based on the measured
power input by the cyclists. For example, for a male cyclist
desiring an RPE level of 3 a net normalised power 230W
is required. Therefore, if the cyclist inputs 100W the motor
must contribute 130W. If the rider increased its input to
200 W the motor contribution would be reduced to 30 W. The
linear relationship can be extended to include the different
classifications used within the experimental trials discussed
in this paper (i.e. Sex, cycling experience, Hours cycled per
week, Perceived fitness). Because the motor contribution varies
according to the user input there is no need to measure the
changes caused by variations in the environmental conditions
(e.g. wind resistance, incline) as they would be indirectly
accommodated via the increase in the cyclist’s power input.

This type of power mapping can also be used to set a
maximum power limit which the cyclist can sustain for a
particular RPE level. For example, if the maximum normalised
power for an RPE level of 3 is 230W but the required
power to move at a desired speed under current environmental
conditions (e.g. wind resistance, incline) is above 230 W then
the controller needs to ensure that the motor can contribute
the difference. Using the controller in this way would require
environmental changes to be monitored but would guarantee
a constant RPE level for the duration of the ride.
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V. CONCLUSIONS AND FUTURE WORK

The current state-of-the-art electric bicycles are hybrid light-
weight vehicles that attempt to assist humans in generating
mechanical power with the aid of a brushless DC (BLDC)
motor. The large majority of electric bicycles available of
the marked in Europe and North America seem to have
adopted a common approach to control the level of assistance
provided by the motor throughout a ride i.e. a fixed gain
strategy requires the rider to select between three to five
levels of assistance, the motor then measures the torque
generated by cyclist and provides a torque proportional to
that input in accord with the selected gain. However, there
is no attention to physiological factors of the rider (i.e.
sex, experience, RPE) and the current assistance tends to
accentuate the natural inabilities of cyclists to deliver a smooth
torque across the pedal stroke, resulting in fluctuations and
inefficiencies.

In this paper, an incremental sub-maximal ramp test has
been detailed to study pedalling characteristics and how they
relate to physiological factors of participants. Thirty volunteers
took part in this study, the data analysis enabled the identifica-
tion of factors that provided statistical differences with respect
to common performance factors such as mechanical power
and normalised power. Sex, cycling experience and cycling
background were the most valid discriminants.

Using the findings of this study three novel controller
strategies have been proposed. They show how improved
awareness of the human conditions and capabilities can result
in a better accommodating symbiosis between human and
machine to deliver a new generation e-bike.

Fixed percentage is a simple improvement of the current
state-of-the-art fixed gain strategy, as it offers the inclusion of
physiological factors such rate of perceived exertion (RPE),
it is easy to implement and does not require extra computation.
Torque Filling offers options for a smoother power delivery
with the possibility to compensate human imbalances and
efficiencies, it requires torque sensors already present in most
commercial electric bicycles and a controller to compute the
new torque profile at each pedal revolution. Finally, Real-
Time Power mapping offers a more comprehensive inclusion
of physiological factors in the controller strategy by mapping
factors such as cycling experience, technical preparation and
perceived level of fitness however, it requires a more com-
prehensive study of the riders’ capability, possibly including
a continuous adaptation approach; this requires a complex
system including the backend support of cloud computing to
store users’ profiles.

Further analysis is necessary to assess the complex rela-
tionship between cyclist and bicycle with particular attention
to factors such as technique and fatigue. Further factors
can be analysed such as Functional Threshold Power (FTP),
Intensity Factor (IF) and Training Stress Score (TSS). The
RPE could benefit of the use of a more commonly adopted
scale such as the one proposed by Borg. Moreover, a physical
implementation of the strategies proposed needs to be vali-
dated against the expected outcome. Some of the strategies
proposed require convoluted controllers and their hardware
implementation could be challenging for an embedded system.

Finally, the sample size for this study resulted to be not
equally representative of both sexes. Further iterations of
these research should include a larger sample size, possibly
including an equal number of male and female participants.
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