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Network-Level Coordinated Speed Optimization
and Traffic Light Control for Connected

and Automated Vehicles
Mehrdad Tajalli , Mehrzad Mehrabipour, and Ali Hajbabaie

Abstract— This study develops a methodology for coordinated
speed optimization and traffic light control in urban street net-
works. We assume that all vehicles are connected and automated.
The signal controllers collect vehicle data through vehicle to
infrastructure communications and find optimal signal timing
parameters and vehicle speeds to maximize network throughput
while harmonizing speeds. Connected and automated vehicles
receive these dynamically assigned speeds, accept them, and
implement them. The problem is formulated as a mixed-integer
non-linear program and accounts for the trade-offs between
maximizing the network throughput and minimizing speed
variations in the network to improve the network operational
performance and at the same time smoothen the traffic flow
by harmonizing the speed and reducing the number of stops
at signalized intersections. A distributed optimization scheme
is developed to reduce the computational complexity of the
proposed program, and effective coordination ensures near-
optimality of the solutions. The case study results show that
the proposed algorithm works in real-time and provides near-
optimal solutions with a maximum optimality gap of 5.4%. The
proposed algorithm is implemented in Vissim. The results show
that coordinated signal timing and speed optimization improved
network performance in comparison with cases that either signal
timing parameters or average speed of vehicles are optimized.
The coordinated approach reduced the travel time, average delay,
average number of stops, and average delay at stops by 1.9%,
5.3%, 28.5%, and 5.4%, respectively compared to the case that
only signal timing parameters are optimized.

Index Terms— Connected and automated vehicles, distributed
coordination, signal timing optimization, speed harmonization.

I. INTRODUCTION

THE connected vehicle technology provides a great oppor-
tunity for traffic control methods not only to collect

real-time vehicle information and make online decisions, but
also to coordinate their action and make decision coopera-
tively. Traffic signals play an important role in controlling
traffic in urban street networks and have significant effects on
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network performance [1]–[5]. Signalized intersections cause
about 5-10% of the total vehicular delay on major roads [6].
Receiving online information from approaching connected and
automated vehicles (e.g. vehicles’ speed and position) helps
signal controllers to estimate vehicle arrivals more accurately
and find more efficient signal plans. In addition, exchanging
information between signal controllers yields network-wide
optimal operations.

Advisory speed systems can adjust automated vehicles
speeds and consequently their arrival time to signalized inter-
sections to reduce the number of stops and unnecessary
acceleration/deceleration. Preventing stop-and-go conditions
reduces travel delay, fuel consumption, and yields a more
efficient network performance [7]. Traffic operations can be
further improved by coordinated signal timing and speed opti-
mization. In other words, signal timing parameters and vehicle
speeds can be optimized jointly to plan the arrival of vehicles
to signalized intersections more accurately to utilize green
durations more efficiently. It should be noted that the intersec-
tion signals may not be required in a fully connected and auto-
mated environment (i.e., level 5 automation) in the absence of
other system users such as pedestrians or bicyclists. However,
signals are still required to communicate the right of way to
other system users even though all vehicles are automated.

This paper develops a mathematical program for Coordi-
nated Signal timing and Speed Optimization (CSSO) in urban-
street networks assuming that all vehicles are connected and
automated, and intersection controllers can communicate to
each other. It is assumed that connected and automated vehi-
cles receive the assigned speeds through communication with
intersection controllers and accept them. The mathematical
program is based on the Cell Transmission Model (CTM)
[8], [9] network loading concept. We develop a Distributed
Optimization and Coordination Algorithm (DOCA) to find
near-optimal solutions to the coordinated signal timing and
speed optimization problem in real-time in networks of various
sizes. To reduce the computational complexity, the proposed
methodology decomposes the network-level CSSO problem
into several intersection-level sub-problems by relaxing the
constraints that represent interrelationship between intersec-
tions. Effective coordination among sub-problems pushes their
solutions towards global optimality [10]–[15]. The coordi-
nation is achieved by exchanging information among sub-
problems, re-enforcing the re-introduced relaxed constraints
and incorporating the information in them. The complexity
of the problem is further reduced by using Model Predictive

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4161-7344
https://orcid.org/0000-0001-6757-1981


TAJALLI et al.: NETWORK-LEVEL COORDINATED SPEED OPTIMIZATION AND TRAFFIC LIGHT CONTROL 6749

Control (MPC) and solving the problem over a planning
horizon rather than the entire study period. Moreover, the
proposed objective function in this study takes into account
the trade-off between maximizing the intersection throughput
and minimizing the spatial and temporal speed variations over
the entire network. In particular, we minimize the absolute
value of speed differences between two subsequent cells and
two successive time steps to provide smoother traffic flow and
reduce the number of stops at signalized intersections [16].
However, smoothening the speed of vehicles excessively
might lead to lower network throughput, while the highest
network throughput may cause frequent changes in speeds.
Hence, a suitable balance between improving the network
performance and speed variations could be achieved through
evaluating a trade-off between the two terms of the objective
function (i.e., throughput maximization vs. speed difference
minimization). For that purpose, a Posteriori scalarization
approach [17] is used to find the Pareto optimal solutions of
CSSO problem.

In the remainder of this paper, a review of the relevant
literature is presented. Then, the problem formulation and
solution technique are detailed. The case study and the results
of applying DOCA to solve the CSSO problem will be
discussed next, and finally, concluding remarks are presented.

II. BACKGROUND

A. Speed Optimization at Signalized Networks

Speed optimization can help reduce the number of stops
and energy consumption in urban street networks. Tajalli
and Hajbabaie [16] showed that dynamic speed harmoniza-
tion based on predetermined signal timing parameters in an
oversaturated urban-street network reduced the travel time,
speed variance, and number of stops by 5.4%, 20.2%, and
16.8%, respectively. Moreover, the average speed and the
total number of completed trips were increased by 5.9%
and 4.0%, respectively. Speed optimization can also reduce
fuel consumption by mitigating the stop-and-go conditions.
He et al. [18] showed that advisory speeds calculated based on
fixed-time signal timing information successfully reduced fuel
consumption by 29%. Moreover, Kamalanathsharma et al. [19]
considered additional constraints (e.g., safe distance to the
following vehicle, maximum acceleration and deceleration of
a vehicle) and showed that fuel consumption was reduced by
up to 25% as a result of an advisory speed strategy in arterial
streets with fixed time signal parameters. Hao et al. [20]
proposed an eco-driving algorithm for an actuated signalized
intersection by providing an upper-bound and lower-bound
of the remaining actual green time to approaching vehicles.
The simulation results showed significant energy savings and
fuel consumption reductions by 12%. Applying this strategy
in the field showed a 2% energy saving [21]. Jiang et al. [22]
proposed an eco-driving system for an isolated signalized
intersection with fixed signal parameters and showed that
optimal advisory speed can reduce the fuel consumption
of connected and automated vehicles by 2.02% - 58.01%.
However, the proposed approach was tested on a simple
intersection with two approaches and its performance is not
clear for a network of multiple intersections.

B. Coordinated Signal Timing and Speed Optimization

There are many studies in the literature that proposed
methodologies for optimizing the timing of signalized
intersections in arterial street or urban street networks,
and showed significant improvement in traffic operations
[23], [24]. It has been also shown that optimizing the speed
and trajectory of vehicles in conjunction with signal control
yields a more efficient utilization of intersection capacity.
Erdmann [25] considered the speed and location of vehicles
in the vicinity of an isolated intersection and solved the
signal timing and trajectory optimization problem in two
levels with a dynamic programming procedure. Simulating
the proposed algorithm based on Green-Light-Optimal-Speed-
Advisory (GLOSA) assistance system [26] in SUMO [27]
showed that the delay was decreased between 33% and 72%
in comparison with fixed time and adaptive signal timings,
respectively. Li et al. [28] optimized signal timing parameters
and vehicle trajectories in a single intersection with two phases
assuming all vehicles were connected. The optimal signal
timing was found by enumerating the feasible timing plans.
Then, the optimal vehicle trajectories were found based on
minimum average travel delay for each timing plan. As a
result of this strategy, the average travel delay was reduced by
16.2% - 36.9% and throughput was increased by 2.7% - 20.2%
in comparison with an actuated signal timing. Jung et al. [29]
developed an Eco-Traffic Signal System (Eco-TSS) in an iso-
lated intersection by optimizing the signal timing parameters
and vehicle desired speeds and acceleration rates using a
bi-level programming approach. They used genetic algorithms
to solve the problem and found that Eco-TSS reduced fuel
consumption by 5% - 10% and travel time by up to 12%
compared to other exiting signal control methods (i.e. fixed
time signal timing, actuated signals, and eco-driving with
fixed time signals). Yang et al. [30] proposed an algorithm
to find the optimal signal timing and vehicle arrival time to
an isolated intersection based on the position of connected
and autonomous vehicles and provided the optimal trajectory
for autonomous vehicles. A bi-level program with branch and
bound algorithm was used to solve this problem. In compar-
ison with the actuated signal timing, the proposed approach
reduced the total delay and number of stops significantly when
the penetration rate of equipped vehicles was above 50%.
Xu et al. [31] optimized traffic signal timing and vehicle
trajectories cooperatively at an isolated intersection using a
bi-level problem. Receding horizon control with an enumer-
ation technique was used to solve the signal optimization
problem in the upper level. In addition, the pseudospectral
control method [32] was used to find the vehicle trajectories in
the lower level. The pseudospectral approach approximates the
state and control variables using an interpolating polynomial
function. The proposed approach was tested in Vissim and
the results showed that the proposed approach reduced fuel
consumption, travel time, and stop rate more than actuated
signal timing, and independent vehicle speed control.

Li et al. [33] considered the effect of adding signal timing
optimization to eco-driving of electric vehicles. This study
formulated a bi-objective optimization that considered delay
minimization at an intersection and the energy saving of
approaching electric vehicles. A hybrid algorithm including
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genetic algorithms and particle swarm optimization was devel-
oped to solve the problem iteratively in a central unit. The
result of the algorithm in a four-intersection arterial showed
a trade-off between delay minimization and energy saving.
For instance, changing the emphasis from only signal opti-
mization to both signal and energy optimization increased
delay by 14% and reduced energy consumption by 11% in
the over-congested conditions. Kaths [34] also used GLOSA
to optimize the signal timing parameters and vehicle speeds
cooperatively. This study formulated the signal and speed
problem in a single-level mathematical program and used
a model predictive control strategy to reduce the problem
complexity. To find a more stable signal timing, a penalty
function in the objective function was considered to push the
speed solutions toward the predicted values from the previous
horizon optimization. Simulating the algorithm in SUMO with
one intersection showed that cooperative signal and speed
optimization reduced the number of stops and waiting time by
36.3% and 56.2%, respectively in comparison with optimizing
signal timing alone. Yu et al. [35] optimized signal timing
parameters and the arrival time of connected and automated
vehicles at an isolated intersection. To reduce the complexity
of MILP problem, they only optimized the trajectory of
leading vehicles in platoons and assumed that other vehicles
follow the leader through a car-following model. This study
assumed that the platoon leader can always be controlled.
The result of this study showed that joint optimization of
signal and trajectory of automated vehicles increases inter-
section throughput by 0.55% - 19.80% for various demand
levels. However, the effect of proposed formulation was not
evaluated under over-saturated traffic condition and a network
of multiple intersections.

C. Summary of the Literature and Contribution of the Paper

The existing studies show the effectiveness of cooperative
signal timing and speed optimization in managing traffic
congestion in either an isolated intersection or at most four
intersections due to the computational complexities that were
associated with the cooperative problem. The existing algo-
rithms are complex due to their microscopic nature, where the
trajectory of each connected and automated vehicle is con-
trolled. The existing approaches are enumerative or centralized
heuristic/metaheuristic techniques that limit their scalability,
real-time application, and optimality.

This paper addresses the knowledge gap and enables
studying the effects of cooperative signal timing and speed
optimization in large transportation networks. We formu-
late the problem using macroscopic network loading con-
cept and develop a scalable solution technique that can find
near-optimal solutions in real-time. The solution technique
distributes the complex network-level signal timing and
speed optimization problem into several intersection-level
sub-problems and implements them in a model predictive
controller. As such, it significantly reduces computational
complexity and finds solutions in real-time. We have created
distributed coordination between sub-problems that pushes
their solutions towards global optimality. We implement the

proposed algorithm in Vissim and to show that cooperative
traffic signal and speed optimization can significantly improve
traffic operations (increase throughput, reduce travel time and
number of stops) compared to independent speed optimization
and independent signal timing optimization in a more realistic
simulated environment.

III. PROBLEM FORMULATION

The problem formulation utilizes the CTM network loading
concept that is introduced by Daganzo [9], [36] and used in
other traffic control studies [37]–[39]. CTM divides a network
link into homogeneous segments and discretizes the study
period to short time steps. The cell length is the distance that
a vehicle can travel with the free flow speed during a time
step. Let C , CO and CS respectively denote the sets of all
cells, source cells, and sink cells in the network. In addition,
we define C N

S and C I
S as the sets of network sink cells

and internal intersection sink cells, respectively. The sets of
predecessors P (i) and successors S (i) cells are defined for
each cell i ∈ C . Moreover, we defined T as the set of discrete
time steps. Table I summarizes the notations used in this study.

The decision variables are (a) the status of traffic signal gt
i

(one if green, zero otherwise) on intersection cell i ∈ CI at
time step t ∈ T , (b) space mean speed v t

i on cell i ∈ C at time
step t ∈ T , and (c) the number of vehicles yt

i j flowing from
cell i ∈ C to successor cell j ∈ S(i) at time step t ∈ T . The
state variable of the system is the number of vehicles xt

i in cell
i ∈ C at time step t∈T , which is equivalent to cell occupancy
assuming that each cell is one length unit long. The space
mean speed is defined as the ratio of the outgoing flow yt

i j
from a cell to its occupancyxt

i as shown in equation (1) [16].
Note that the space mean speed is equal to the free flow speed
when a cell is empty.

v t
i =

⎧⎪⎨
⎪⎩

∑
j∈�i

yt
i j

x t
i

v f x t
i > 0

v f x t
i = 0

∀i ∈ C, t ∈ T (1)

The objective function of the CSSO problem has two
terms that aim at maximizing the cumulative throughput
and minimizing speed variations. Past research has shown
the effectiveness of throughput maximization in conges-
tion management especially when the demand level is high
[40]–[42]. The cumulative throughput maximization accounts
for both network and intersection throughputs: a larger
weight (M) is assigned to the network sink cells i ∈ C N

S
to prioritize the number of completed trips, while a smaller
weight (m) is assigned to the number of vehicles exiting each
intersection through the internal sink cells i ∈ C I

S . In addition,
the difference of space mean speeds between two adjacent
cells at two consecutive time steps as well as the space mean
speed differences in one cell at two consecutive time steps
are minimized in the second term of the objective function.
This term prioritizes the smooth movement of vehicles in
the network. There is a trade-off between these two terms,
as smooth vehicle speed does not necessarily yield a higher
throughput value. Therefore, we defined γ (vehicle/mph) as a
weight factor to define the desired emphasis on each term of
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TABLE I

DEFINITION OF SETS, DECISION VARIABLES, AND PARAMETERS

the objective function and convert the units of the two terms,
see objective function (2).

Max

[∑
t∈T

∑
i∈C N

S

Mxt
i +

∑
t∈T

∑
i∈C I

S

mxt
i

− γ
∑

t∈T

∑
i∈C\{Cs}

∑
j∈{i,S(i)}

∣∣∣v t
i − v t+1

j

∣∣∣] (2)

The defined objective function is nonlinear due to the
inherent nonlinearity of the space mean speed. Tajalli and
Hajbabaie [16] showed that the speed harmonization term
in the objective function is equivalent to the difference of
occupancy and flow between two subsequent cells and two
subsequent time steps, see objective function (3). This term is
linear as such, significantly reduces problem complexity. Since
all terms of the objective function have a unit of vehicles,

we use a unit-less factor α to assign priority to each term.

Max

[
α

(∑
t∈T

∑
i∈C N

S

Mxt
i +

∑
t∈T

∑
i∈C I

S

mxt
i

)

− (1 − α)
∑

t∈T

∑
i∈C\Cs

∑
j∈{i,S(i)}

∣∣∣(xt
i −

∑
p

yt
ip

)

−
(

xt+1
j −

∑
k

yt+1
j k

)∣∣∣] (3)

Equations (4) to (6) represent the state transition of the
system. Let Dt

i denote the entry demand level on source cell
i ∈ CO at time step t ∈ T . Constraints (4) to (6) ensure the
flow conservation in source cells i ∈ CO , sink cells i ∈ CS ,
and ordinary cells i ∈ C\ {CS, CO }, respectively. The number
of vehicles in a cell in the next time step is equal to the number
of vehicles that are in that cell in the current time step, minus
those who are leaving, plus those who are entering during the
current time step.

xt+1
o = Dt

o + xt
o −

∑
j∈So

yt
oj , ∀o ∈ CO , t ∈ T (4)

xt+1
s = xt

s +
∑

i∈Ps
yt

is , ∀s ∈ CS, t ∈ T (5)

xt+1
i = xt

i +
∑

u∈Pi
yt

ui −
∑

j∈S(i)
yt

i j , ∀i ∈ C\ {CS ∪ CO },
t ∈ T (6)

The number of vehicles
∑

j∈S(i) yt
i j moving between cell

i ∈ C\Cs and all successor cells j ∈ S(i) at time step t ∈ T
must be less than or equal to the number of vehiclesxt

i that
exists in cell i ∈ C at time t ∈ T , as follows:∑

j∈S(i)
yt

i j ≤xt
i , ∀i ∈ C, t ∈ T (7)

Let us define Fi as the saturation flow rate of cell i ∈ C .
Constraints (8) and (9) limit the number of vehicles flowing
from a cell to its successor to the saturation flow rates of the
sending and receiving cells, respectively.∑

j∈S(i)
yt

i j ≤ Fi , ∀i ∈ C\CS , t ∈ T (8)∑
i∈P( j )

yt
i j ≤ Fj , ∀ j ∈ C\CO , t ∈ T (9)

Let N j denote the maximum number of vehicles that cell
j ∈ C can accommodate. Constraint (10) ensures that the
number of vehicles flowing between two cells is less than the
available capacity of the receiving cell.∑

i∈P( j )
yt

i j ≤ N j − xt
j , ∀ j ∈ C\CO , t ∈ T (10)

Constraint (11) ensures that turning percentages are equal to
the pre-defined turning proportions (r t

j ). Let CI be the set of
intersection cells from which, right turning, through, and left
turning movements are completed. The number of vehicles
traveling to each intersection cell j∈CI from cell i ∈ P ( j)
should be equal to the product of corresponding turning pro-
portion r t

j and the total number of vehicles
∑

k∈S(i) yt
ik leaving

cell i ∈ P ( j) to all immediately downstream intersection cells
at time step t ∈ T .

yt
i j = r j

∑
k∈S(i)

yt
ik, ∀ j ∈ CI , i ∈ P ( j) , t ∈ T (11)

Signal controllers at each intersection find the optimal
signal timing parameters (i.e. green time duration and phase
sequences) in cooperation with vehicles’ average speed.
Optimizing the sequence of phases yields a more efficient
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network performance. To optimize signal timing parameters,
let the binary variable gt

i take on the value of one when the
signal is green, otherwise zero. Constraint (12) adjusts the
saturation flow rate ( f t

i ) of an intersection cell based on its
signal status, and Constraint (13) ensures that the flow of
vehicles leaving intersections cells cannot exceed the adjusted
saturation flow rate ( f t

i ).

f t
i = gt

i Fi , ∀i ∈ CI , t ∈ T (12)∑
j∈S(i)

yt
i j ≤ f t

i , ∀i ∈ CI , t ∈ T (13)

Constraint (14) reduces the saturation flow rate of the
intersection when a green signal is initiated. Parameter f ′
is defined as the saturation flow rate reduction factor due to
start-up lost time. A proper joint optimization of signal timing
parameters and speeds should regulate the arrival of vehicles at
intersections such that the signal has already turned green and
the queue is cleared. Therefore, speed optimization reduces
the impacts of start-up lost time on traffic operations.∑

j∈S(i)
yt+1

i j ≤ Fi −Fi f ′ (gt+1
i −gt

i

)
∀i ∈CI , t ∈T (14)

We define CF as the set of all conflicting movements at
an intersection. Constraint (15) ensures that only one of the
two non-conflicting movements (i, j) ∈ CF receives the green
time at time step t ∈ T . It should be noted that all turning
movements are assumed to be protected.

gt
i + gt

j ≤ 1, ∀ (i, j) ∈ CF , t ∈ T (15)

Constraints (16) limits the green duration at intersection cell
i ∈ CI to a maximum green duration Gi

max . Constraint (17)
ensures a minimum green duration Gi

min for each signal.

∑t+Gi
max +1

j=t
gt

j ≤ Gi
max , ∀i ∈ CI , t < T − Gi

max (16)

∑t+Gi
min

j=t+1
gt

j ≥
(

gt+1
i −gt

i

)
Gi

min , ∀i ∈CI , t ≤T − Gi
min

(17)

We define CRT as the set of concurrent adjacent right and
through movements. Constraint (18) ensures that the adjacent
right turn and through movements have the same signal timing,
either red or green.

gt
i = gt

j , ∀ (i, j) ∈ CRT , t ∈ T (18)

The objective function (3) is nonlinear due to the presence
of the absolute value function. Therefore, a linear equiva-
lent objective function is represented in (19) and constraints
(20)-(22) are added to the problem. It should be noted that zt

i j
and ut

i j are nonnegative auxiliary variables.

f = Max

[
α

(∑
t∈T

∑
i∈C N

S

Mxt
i +

∑
t∈T

∑
i∈C I

S

mxt
i

)

− (1 − α)
∑

t∈T

∑
i∈C\Cs

∑
j∈{i,S(i)}

(
zt

i j + ut+1
i j

)]
(19)

zt
i j − ut+1

i j

=
(

xt
i −

∑
p∈S(i)

yt
ip

)
−

(
xt+1

j −
∑

k∈S( j )
yt+1

j k

)
,

∀i ∈ C\CS, j ∈ {i, S(i)}, t ∈ T (20)

Fig. 1. The intersection-level decomposition.

zt
i j ≥ 0, ∀i ∈ C\CS , j ∈ {i, S(i)} , t ∈ T (21)

ut
i j ≥ 0, ∀i ∈ C\CS , j ∈ {i, S(i)} , t ∈ T (22)

Constraints (23) and (24) ensure that the number of vehicles
in each cell and the flow of vehicles are always non-negative.

xt
i ≥ 0, ∀i ∈ C, t ∈ T (23)

yt
i j ≥ 0, ∀i ∈ C\Cs , ∀ j ∈ P (i) , t ∈ T (24)

IV. METHODOLOGY

The presented formulation has mixed-integer decision vari-
ables and will not scale well with the size of the network when
a centralized algorithm is utilized to solve it. We present a
distributed optimization and coordination algorithm that can
handle the computational complexity of the problem and find
near-optimal solutions in real-time. Fig. 1 shows a conceptual
representation of the proposed methodology. The distributed
optimization decomposes the network-level problem into sev-
eral stand-alone intersection-level sub-problems and solves
them in parallel. The decomposition is achieved by identifying
the constraints that represent interrelationships between sub-
problems and relaxing them. Distributed coordination pushes
solutions towards global optimality by exchanging informa-
tion among sub-problems that share a relaxed constraint,
and re-enforcing the relaxed constraints in sub-problems by
incorporating the information that is received from other sub-
problems in them. This method is incorporated in MPC to
account the dynamic nature of the problem and further reduce
the computational complexity.

A. Distributed Optimization

The distributed optimization decomposes the network-
level coordinated signal timing and speed optimization prob-
lem into several stand-alone intersection-level sub-problems.
Particularly, a signal controller will be responsible for finding
the optimal signal timing and the average speed of approaching
vehicles. However, this decomposition is equivalent to cutting
the links that connect intersections. In other words, the con-
straints that connect two neighboring intersection are relaxed
and each intersection is optimized as a stand-alone sub-system.

Let define V as the set of all intersection nodes in a network.
Fig. 2 shows a decomposed network containing intersections
{n, m} ∈ V . Two intersections are decomposed by breaking the
shared links between them. Intersection n ∈ V is converted to
a stand-alone sub-network by adding dummy source cells Cn

O
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Fig. 2. The modification of the sub-problems’ formulation for coordination.

and dummy sink cells Cn
S to the boundaries of the intersection.

The flow ŷn belongs to the broken links that enter intersection
n from neighboring intersections.

Let P represents the centralized CSSO problem, where
f is the objective function (19). Constraints (4), (5),
(11)-(18), (21), and (22) include decision variables that belong
to one sub-problem. On the other hand, constraints (6)-(10)
and constraint (20) represent inter-relationship between adja-
cent sub-problems (when the constraints are defined for cells
at the boundary). The decomposition is achieved by relaxing
these constraints. Therefore, sub-problem Pn contains all con-
straints according to the decision variables of the intersection
n ∈ V except the relaxed constraints.

P : max f

s.t. (4)-(5); (11)-(18); (21)-(22)

(6)-(10); (20)

The sub-problems Pn for intersection n ∈ V has fewer
number of decision variables and constraints. As a result,
each sub-network level MILP can be solved efficiently using
commercial software packages. In this study, we utilized
CPLEX (CPLEX 2009) to solve them.

B. Distributed Coordination

Intersection n ∈ V has a controller to make signal tim-
ing and assigned speed decisions. An effective coordination
scheme between sub-networks is needed to compensate for
the impact of the proposed relaxations on solution quality
and push them toward global optimality. Note that we assume
that connected vehicle technology can allow communications
between adjacent sub-networks and facilitate the coordination.
Sub-network n ∈ V needs to receive information about (a)
the outflow of the upstream intersections, (b) the available
capacity at the receiving cells at the downstream intersections,
and (c) the difference of occupancy and flow at the receiving
cells at the downstream intersections to harmonize the speed.

The difference of occupancy and flow between cells that
belong to separate intersections is not minimized. Hence, the

information about the difference of occupancy and flow(
x̂ n,t+1

j − ŷn,t+1
j k

)
at the receiving cell j ∈ Cn

S belonging to
adjacent intersections is shared with the intersection controller
n ∈ V and added to the objective function of controller n,
see (25).

(1 − α)
∑

t∈T

∑
j∈Cn

S

∑
i∈P( j )

∣∣∣(xt
i − yt

i j

)

−
(

x̂ n,t+1
j − ŷn,t+1

j k

)∣∣∣ ∀n ∈ V (25)

The outflows of the neighboring intersections are the inflows
ŷn to intersection n ∈ V . These flows are considered as
demands in dummy source cell i ∈ Cn

O at intersection n ∈ V ,
see constraint (26). The input parameter ŷn,t

i indicates the
inflow to cell i ∈ Cn

O at time t ∈ T at subnetwork n ∈ V .

xt+1
i = ŷn,t

i + xt
i −

∑
j∈S(i)

yt
i j ∀i ∈ Cn

O , t ∈ T (26)

Finally, the available capacities (N̂ j − x̂ n,t
j ) at the receiving

cells j ∈ Cn
S at the downstream intersections are considered

as inputs to intersection n ∈ V . Constraint (27) ensures that
the sending flows from the intersection n to the downstream
intersections are restricted by the available capacity.∑

i∈P( j )
yt

i j ≤ N̂ j − x̂ n,t
j ∀ j ∈ Cn

S , t ∈ T (27)

The shared data between adjacent intersections are esti-
mated in the prediction period by a CTM simulation run. The
optimal speeds and signal timing parameters that are found by
the distributed optimization are used in the CTM simulation
and the network state for near future will be predicted. The
simulation takes into account all CTM constraints throughout
the network and always provides feasible predictions. More
details are explained in Tajalli and Hajbabaie [43]. Note that
the proposed distributed algorithm is non-iterative since CTM
simulation provides feasible solutions as the coordination
layer. Hence, there is no need to iterate the information sharing
process to converge to a feasible solution.

C. Model Predictive Control

A model predictive control (MPC) approach is implemented
to increase the computational efficiency of the algorithm.
First, the state variables are predicted for near future. Then,
the required information between sub-networks is shared
through the distributed coordination. After receiving the infor-
mation, each controller solves the corresponding sub-problem
and finds the optimal signal timing and speeds for each
sub-network. This process is repeated until the study period is
finished. Note that the length of prediction horizon is selected
long enough to ensure the feasibility and stability of the system
with MPC.

D. Accounting for the Trade-Offs Between Traffic
Operations and Speed Variations

CSSO is a multi-objective program with a trade-off between
maximizing the cumulative intersection throughputs and min-
imizing speed variance. Thus, there is a set of Pareto optimal
solutions for CSSO problem. Hwang and Masud [17] classified
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the solution techniques for accounting these trade-offs into
three categories including Priori, Interactive, and Posteriori
methods. In Priori method, the optimal solution is found in a
way that satisfies the preference of decision makers. The Inter-
active method allows decision makers to search iteratively for
the most preferred solution by receiving feedbacks. However,
decision makers might not see the entire pareto. The Posterior
method finds a set of pareto optimal solutions and let decision
makers select among them. We utilized the Posteriori method
because it provides the opportunity to observe the tradeoffs
between different terms of the objective function. Based on
the weighting method in [44], we multiply the intersection
throughput maximization term by α and speed variation
minimization term by (1 − α) in objective function (3).
Therefore, an α of zero corresponds to minimizing speed vari-
ation and an α of one corresponds to intersection throughput
maximization.

E. Benchmark

The benchmark solutions are found using the Benders
decomposition technique [45]. Benders decomposition tech-
nique finds an upper and a lower bound to the objective
function of the problem through an iterative process. It is
proven that the gap will be reduced to zero (i.e., the exact
solution is found) after a finite number of iterations. Benders
technique decomposes the coordinated signal timing and speed
optimization problem to master and primal sub-problems.
The signal timing decision variables are found by the master
problem and the average speeds are optimized by the primal
problem based on the fixed values of signal timing variables.
The algorithm iterates between the two sub-problems until the
convergence criteria is met. For more details see Mohebifard
and Hajbabaie [46].

F. Implementation of the Algorithm in Vissim

The proposed algorithm is implemented in Vissim [47] to
allow a more accurate evaluation of the results in a more
realistic simulated environment. We used COM interface to
provide required communications between vehicles and signal
controllers. In general, the network in Vissim is divided into
several segments to match the cells in the CTM. Vehicle loca-
tion data is passed from Vissim to DOCA through the COM
interface as the initial state of the system. The optimization
problem is solved, and optimized signal timing and speed
variables are sent back to Vissim.

DOCA finds the average speed of a cell in CTM. This
speed is assigned to the vehicles traveling in the corresponding
segment of the network as their desired speed. Note that the
optimal speed from the CTM should be calibrated for Vissim
to ensure that both models have similar outflows in the road
segment. In other words, the CTM is a macroscopic first-order
model and does not consider the interaction between vehicles.
Therefore, vehicles take more time to achieve the speed in
Vissim than the CTM (instantaneous). As a result, we quan-
tified this difference and accounted for it when transmitting
speeds to Vissim.

Fig. 3. Springfield network.

TABLE II

CHARACTERISTICS OF SPRINGFIELD NETWORK IN CTM

V. CASE STUDY

The case study network is a portion of downtown Spring-
field, Illinois. The network has 20 intersections and a mix
of one-way and two-way streets with different number of
lanes and turning configurations at signalized intersections.
Fig. 3 shows the network, which is divided into 20 sub-
networks, each corresponding to a sub-problem. Table II
presents the general characteristics of the Springfield network
in the CTM representation and the signal timing parameters.
The total study period is 500 time steps (50 minutes), where
each time step is six seconds.

Four demand patterns were used in the case study network:
1- Symmetric undersaturated demand pattern: 500 veh/hr/ln

on all entry points,
2- Symmetric saturated demand pattern: 900 veh/hr/ln on

all entry points,
3- Symmetric oversaturated demand pattern: 1200 veh/hr/ln

on all entry points, and
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TABLE III

THE NETWORK MOBILITY PERFORMANCES FOR THREE SCENARIOS AND THREE DEMAND PATTERNS BASED ON CTM

Fig. 4. Demand profile.

4- Asymmetric demand pattern covering both under and
oversaturated conditions. Demand profiles for east-west
and north-south streets are shown in Fig. 4.

Note that demand patterns 1, 2, and 3 are considered in
the CTM to show the analytical optimality gap of DOCA.
Demand pattern 4 is used in Vissim to represent a more
realistic evaluation of the proposed algorithm in a more
realistic simulated environment.

Three scenarios are considered to evaluate the effectiveness
of CSSO in congestion management:

1- Independent speed optimization with pre-defined signals
(signals are optimized using genetic algorithm [48]),

2- Independent signal timing optimization, and
3- Coordinated signal timing and speed optimization

Under independent speed optimization, the signal timing
parameters are fixed and input to an optimization program
who only optimizes speed across different network links.
In independent signal timing optimization, the desired speed
of vehicles is not changed and only signal timing parameters
are optimized in the network.

VI. RESULTS

A. Mathematical Programs Results

Fig. 5 (a)-(c) shows DOCA’s solutions and the best upper
and lower bounds found by the Benders decomposition in
the undersaturated, saturated, and oversaturated conditions,
respectively. Since DOCA provides a feasible solution, it can

always be considered as a lower bound for a maximization
problem. Therefore, the optimality gaps are calculated from
the difference between the upper bound found by the Benders
decomposition technique and the DOCA-CSSO solution. Note
that the optimality gaps are found when the study period
was set to 200 time steps since the runtime of the Benders
decomposition technique does not allow increasing the study
period further. The optimality gaps were 4.9%, 5.4%, and 5.2%
for the undersaturated, saturated, and oversaturated demand
levels, respectively.

We used the Posteriori technique [44] to select the most
preferred weight (alpha) in the objective function (19). For this
purpose, the weights of objective function terms are changed
incrementally. Fig. 6 shows the trade-off between the travel
time and speed variations for three demand patterns based
on different alpha values with an increment of 0.05. For all
demand patterns, the travel time decreases by increasing alpha.
This is expected since a higher value of alpha prioritizes
network throughput more. The speed variance also strictly
increases by increasing the value of alpha, which indicates
that highly harmonized speeds can reduce the network perfor-
mance. We selected the value of 0.75 for alpha in this study.

Table III shows network performance measures for CSSO,
independent signal timing optimization, and independent speed
optimization for the same three demand patterns. In the under-
saturated demand conditions, CSSO significantly improved
network performance compared to speed optimization. The
travel time decreased by 26.1% and the network throughput
and average speed increased by 1.5% and 36.8%, respec-
tively. In comparison to signal timing optimization, CSSO
only improved the travel time and average speed by 2.1%
and 2.2%, respectively. Both signal timing optimization and
CSSO yield similar improvements in network throughputs in
undersaturated flow conditions when a macroscopic first-order
traffic flow model is utilized.

In the saturated demand conditions, CSSO showed sig-
nificant improvements in comparison with the two other
scenarios. The coordinated approach reduced the travel time
by 36.7% and increased the network throughput and aver-
age speed by 17.1% and 81.2%, respectively, compared to
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Fig. 5. DOCA and the benchmark solutions objective values (×105) for three demand patterns.

Fig. 6. Trade-off between travel time and speed variations.

speed optimization. CSSO reduced the travel time by 2.5%
and increased the network throughput and average speed
by 2.0% and 4.8%, respectively, compared to signal timing
optimization. These trends show that the cooperation between
signal timing and speed optimization offers great potential for
reducing traffic congestion in saturated demand conditions,
even when a first-order traffic flow model is in use.

The results of oversaturated demand conditions show trends
similar to those that were observed in the saturated demand
conditions. The coordinated approach reduced the travel time
by 29.9% and respectively increased the network throughput
and average speed by 28.6% and 82.2% compared to the speed
optimization. In comparison to the signal timing optimization,
CSSO reduced the travel time by 5.6% and increased the
network throughput and average speed by 5.0% and 10.6%,
respectively. These trends indicate that CSSO offers great
potential for congestion management in oversaturated demand
conditions.

Note that the signal timing optimization improved the
network performance significantly in comparison with the
speed optimization in all demand patterns. CSSO improved
the network performance further in more congested conditions.
The trends suggest that CSSO yields higher improvement
in traffic operations with more congested demand levels in
comparison with the signal timing optimization.

B. Vissim Results

Analyzing the effects of CSSO from a mathematical point
of view showed significant improvements in traffic operations.

In this section, we present the results that are obtained by
incorporating the proposed methodology in Vissim. Vissim
provides a more realistic representation of traffic operations
on urban-street networks and accounts for the interactions
between vehicles using car following and lane changing
models. For this purpose, the time variant demand profile
(shown in Fig. 4) is used. Table IV shows the network
performance for CSSO, signal timing optimization, and speed
optimization strategies in Vissim. The coordinated approach
respectively reduced the travel time, average delay, average
number of stops, and average delay at stops by 32.5%, 38%,
35.3% and 42.1% compared to the case that only vehi-
cles speeds are optimized. Moreover, the network throughput
and average speed were increased by 41.4% and 104.2%,
respectively.

CSSO respectively reduced the travel time, average delay,
average number of stops, and average delay at stops by 1.9%,
5.3%, 28.5%, and 5.4% compared to the case that only signal
timing parameters are optimized. In addition, CSSO increased
the network throughput and average speed by 1.7% and 3.4%,
respectively. These results are consistent with the findings
from the mathematical analysis indicating that the coordinated
approach has a positive effect on traffic.

Fig. 7 shows vehicle trajectories when only the signal timing
parameters were optimized (part a) and when both signal tim-
ing parameters and speeds were optimized (part b). Vehicles
pass through five intersections on eastbound Washington St.
with three lanes. The CSSO smoothened the movement of
vehicles and reduced the number of stops. Moreover, it is
shown that vehicles that entered the network at the same
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TABLE IV

THE NETWORK MOBILITY PERFORMANCES FOR THREE SCENARIOS AND THREE DEMAND PATTERNS BASED ON VISSIM

Fig. 7. Vehicles trajectories.

Fig. 8. Optimal signal timing parameters at intersection 19.

Fig. 9. DOCA runtimes at each intersection node.

time left the network earlier when signal and speeds are
optimized together. Furthermore, Fig. 8 shows the optimal
signal timing parameters and the green time extensions for
different movement of the intersection number 19. Note that
each signal timing time step is equal to 6 seconds.

The algorithm was solved for demand pattern 3 (the highest
demand) on a PC with a Core i9 CPU and 64 GB of
memory. Fig. 9 shows the runtime distribution for solving the

optimization problem at each intersection in the network. The
maximum runtime was 2.45 seconds. Since the implementa-
tion period is six seconds the algorithm works in real time
even with considering a conservative time for communication
between sub-problems.

VII. CONCLUSIONS

This study formulated coordinated signal timing and speed
optimization problem in urban street networks as an MILP
based on the CTM network loading concept. Since the prob-
lem is a mixed integer linear program, it does not scale
well with the size of the network and cannot be solved in
real-time. Therefore, a distributed optimization and coordi-
nation algorithm is developed to improve the scalability and
provide real-time solutions. Distributed optimization decom-
poses the network-level problem to several sub-network level
sub-problems by relaxing the constraints that represent the
interrelationship between sub-problems. The decomposition
significantly reduces computational complexity; however, may
affect solution quality adversely. To avoid this issue, an effec-
tive coordination scheme is designed that re-enforces the
re-introduced relaxed constraints by exchanging information
among adjacent sub-problems and implementing them in
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the constraints. The required information is (a) the outflow
of cells at boundaries of a computation node, (b) the available
capacity of the receiving cells, and (c) the average speed in
the receiving cells. The problem formulation was modified for
each computation node to accommodate the incorporation of
the information.

We tested the proposed algorithm in a network with twenty
intersections. Compared to the Benders decomposition algo-
rithm (benchmark), DOCA found solutions with at most 5.4%
optimality gap. Moreover, it was shown that the CSSO is more
effective when the network is congested. In comparison to the
signal timing optimization, DOCA-CSSO reduced the travel
time by 0.5%, 1.1%, and 2.7% in the undersaturated, saturated,
and oversaturated demand conditions, respectively. Results that
were obtained by implementing the proposed algorithm in
Vissim were positive too. Compared to the speed optimization,
CSSO reduced the travel time, average delay, average number
of stops, and average delay at stops by 32.5%, 38%, 35.3%,
and 42.1%, respectively. In addition, the network throughput
and average speed increased by 41.4% and 104.2%, respec-
tively. In comparison with the signal optimization, CSSO
reduced the travel time, average delay, average number of
stops, and average delay at stops by 1.9%, 5.3%, 28.5%,
and 5.4%, respectively. Moreover, the network throughput and
average speed increased by 1.7% and 3.4%, respectively.

This study assumed that all vehicles are connected and
automated and the information about their position and speeds
are available. In addition, it was assumed that all vehicles
follow the assigned speeds. Further research is needed to inves-
tigate how CSSO performs under various market penetration
rates of connected and automated vehicles or their compliance
with the assigned speed. Moreover, this study assumed that
vehicle positions are accurate, and the communications are
instantaneous. Further research on the effects of error in
vehicle positions and communication latency is needed.

REFERENCES

[1] D. Zhao, Y. Dai, and Z. Zhang, “Computational intelligence in urban
traffic signal control: A survey,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 42, no. 4, pp. 485–494, Jul. 2012.

[2] A. Mirheli, M. Tajalli, L. Hajibabai, and A. Hajbabaie, “A consensus-
based distributed trajectory control in a signal-free intersection,” Transp.
Res. Part C, Emerg. Technol., vol. 100, pp. 161–176, Mar. 2019.

[3] A. Mirheli, L. Hajibabai, and A. Hajbabaie, “Development of a signal-
head-free intersection control logic in a fully connected and autonomous
vehicle environment,” Transp. Res. Part C, Emerg. Technol., vol. 92,
pp. 412–425, Jul. 2018.

[4] G. Nilsson, P. Hosseini, G. Como, and K. Savla, “Entropy-like Lya-
punov functions for the stability analysis of adaptive traffic signal
controls,” in Proc. 54th IEEE Conf. Decis. Control (CDC), Dec. 2015,
pp. 2193–2198.

[5] R. Niroumand, M. Tajalli, A. Hajbabaie, and L. Hajibabai, “Joint
optimization of vehicle-group trajectory and signal timing: Introducing
the white phase for mixed-autonomy traffic stream,” Transp. Res. Part
C, Emerg. Technol., to be published.

[6] R. W. Denney, Jr., E. Curtis, and P. Olson, “The national traffic signal
report card,” ITE J., vol. 82, no. 6, pp. 22–26, 2012.

[7] A. J. Al-Khalili, “Urban traffic control—A general approach,” IEEE
Trans. Syst., Man, Cybern., vol. SMC–5, no. 2, pp. 260–271, Apr. 1985.

[8] C. F. Daganzo, “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Transp.
Res. Part B, Methodol., vol. 28, no. 4, pp. 269–287, Aug. 1994.

[9] C. F. Daganzo, “The cell transmission model, part II: Network traffic,”
Transp. Res. Part B, Methodol., vol. 29, no. 2, pp. 79–93, Apr. 1995.

[10] E. Camponogara and L. B. De Oliveira, “Distributed optimization for
model predictive control of linear-dynamic networks,” IEEE Trans.
Syst., Man, Cybern. A, Syst. Humans, vol. 39, no. 6, pp. 1331–1338,
Nov. 2009.

[11] E. Camponogara and H. F. Scherer, “Distributed optimization for model
predictive control of linear dynamic networks with control-input and
output constraints,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 1,
pp. 233–242, Jan. 2011.

[12] M. Mehrabipour and A. Hajbabaie, “A cell-based distributed-coordinated
approach for network-level signal timing optimization,” Comput.-Aided
Civil Infrastruct. Eng., vol. 32, no. 7, pp. 599–616, Jul. 2017.

[13] S. M. A. B. A. Islam and A. Hajbabaie, “Distributed coordinated signal
timing optimization in connected transportation networks,” Transp. Res.
Part C, Emerg. Technol., vol. 80, pp. 272–285, Jul. 2017.

[14] R. Mohebifard and A. Hajbabaie, “Distributed optimization and coor-
dination algorithms for dynamic traffic metering in urban street net-
works,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 5, pp. 1930–1941,
May 2019.

[15] G. Shen and X. Kong, “Study on road network traffic coordination
control technique with bus priority,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 39, no. 3, pp. 343–351, May 2009.

[16] M. Tajalli and A. Hajbabaie, “Dynamic speed harmonization in con-
nected urban street networks,” Comput.-Aided Civil Infrastruct. Eng.,
vol. 33, no. 6, pp. 510–523, Jun. 2018.

[17] C.-L. Hwang and A. S. M. Masud, Multiple Objective Decision
Making—Methods and Applications: A State-of-the-Art Survey, vol. 164.
Springer, 2012.

[18] X. He, H. X. Liu, and X. Liu, “Optimal vehicle speed trajectory on a
signalized arterial with consideration of queue,” Transp. Res. Part C,
Emerg. Technol., vol. 61, pp. 106–120, Dec. 2015.

[19] R. K. Kamalanathsharma, H. A. Rakha, and H. Yang, “Networkwide
impacts of vehicle ecospeed control in the vicinity of traffic signalized
intersections,” Transp. Res. Record, J. Transp. Res. Board, vol. 2503,
no. 1, pp. 91–99, Jan. 2015.

[20] P. Hao, G. Wu, K. Boriboonsomsin, and M. J. Barth, “Developing
a framework of eco-approach and departure application for actuated
signal control,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2015,
pp. 796–801.

[21] P. Hao, G. Wu, K. Boriboonsomsin, and M. J. Barth, “Eco-approach and
departure (EAD) application for actuated signals in real-world traffic,”
IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 30–40, Jan. 2019.

[22] H. Jiang, J. Hu, S. An, M. Wang, and B. B. Park, “Eco approaching at an
isolated signalized intersection under partially connected and automated
vehicles environment,” Transp. Res. Part C, Emerg. Technol., vol. 79,
pp. 290–307, Jun. 2017.

[23] W. Ma, L. Zou, K. An, N. H. Gartner, and M. Wang, “A partition-enabled
multi-mode band approach to arterial traffic signal optimization,” IEEE
Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 313–322, Jan. 2019.

[24] G. S. van de Weg, H. L. Vu, A. Hegyi, and S. P. Hoogendoorn,
“A hierarchical control framework for coordination of intersection signal
timings in all traffic regimes,” IEEE Trans. Intell. Transp. Syst., vol. 20,
no. 5, pp. 1815–1827, May 2019.

[25] J. Erdmann, “Combining adaptive junction control with simultaneous
green-light-optimal-speed-advisory,” in Proc. IEEE 5th Int. Symp. Wire-
less Veh. Commun. (WiVeC), Jun. 2013, pp. 1–5.

[26] K. Katsaros, R. Kernchen, M. Dianati, and D. Rieck, “Performance study
of a green light optimized speed advisory (GLOSA) application using
an integrated cooperative ITS simulation platform,” in Proc. 7th Int.
Wireless Commun. Mobile Comput. Conf., Jul. 2011, pp. 918–923.

[27] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility,” in Proc. 3rd Int. Conf. Adv. Syst. Simul.
(SIMUL), Barcelona, Spain, vol. 42, 2011, pp. 1–6.

[28] Z. Li, L. Elefteriadou, and S. Ranka, “Signal control optimization for
automated vehicles at isolated signalized intersections,” Transp. Res.
Part C, Emerg. Technol., vol. 49, pp. 1–18, Dec. 2014.

[29] H. Jung, S. Choi, B. B. Park, H. Lee, and S. H. Son, “Bi-level
optimization for eco-traffic signal system,” in Proc. Int. Conf. Connected
Vehicles Expo (ICCVE), Sep. 2016, pp. 29–35.

[30] K. Yang, S. I. Guler, and M. Menendez, “Isolated intersection control
for various levels of vehicle technology: Conventional, connected, and
automated vehicles,” Transp. Res. Part C, Emerg. Technol., vol. 72,
pp. 109–129, Nov. 2016.

[31] B. Xu et al., “Cooperative method of traffic signal optimization and
speed control of connected vehicles at isolated intersections,” IEEE
Trans. Intell. Transp. Syst., vol. 20, no. 4, pp. 1390–1403, Apr. 2019.



TAJALLI et al.: NETWORK-LEVEL COORDINATED SPEED OPTIMIZATION AND TRAFFIC LIGHT CONTROL 6759

[32] G. Elnagar, M. A. Kazemi, and M. Razzaghi, “The pseudospectral
legendre method for discretizing optimal control problems,” IEEE Trans.
Autom. Control, vol. 40, no. 10, pp. 1793–1796, Oct. 1995.

[33] M. Li, X. Wu, X. He, G. Yu, and Y. Wang, “An eco-driving system for
electric vehicles with signal control under V2X environment,” Transp.
Res. Part C, Emerg. Technol., vol. 93, pp. 335–350, Aug. 2018.

[34] J. Kaths, “Integrating reliable speed advisory information and adaptive
urban traffic control for connected vehicles,” in Proc. Transp. Res. Board
95th Annu. Meeting, no. 16-0142, 2016.

[35] C. Yu, Y. Feng, H. X. Liu, W. Ma, and X. Yang, “Integrated optimization
of traffic signals and vehicle trajectories at isolated urban intersections,”
Transp. Res. Part B, Methodol., vol. 112, pp. 89–112, Jun. 2018.

[36] C. F. Daganzo, “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Transp.
Res. B Methodol., vol. 28, no. 4, pp. 269–287, Aug. 1994.

[37] M. Mehrabipour, L. Hajibabai, and A. Hajbabaie, “A decomposi-
tion scheme for parallelization of system optimal dynamic traffic
assignment on urban networks with multiple origins and destinations,”
Comput.-Aided Civil Infrastruct. Eng., vol. 34, no. 10, pp. 915–931,
Oct. 2019.

[38] R. Mohebifard and A. Hajbabaie, “Optimal network-level traffic signal
control: A benders decomposition-based solution algorithm,” Transp.
Res. Part B, Methodol., vol. 121, pp. 252–274, Mar. 2019.

[39] R. Mohebifard, S. M. A. B. A. Islam, and A. Hajbabaie, “Cooperative
traffic signal and perimeter control in semi-connected urban-street net-
works,” Transp. Res. Part C, Emerg. Technol., vol. 104, pp. 408–427,
Jul. 2019.

[40] A. Hajbabaie and R. F. Benekohal, “A program for simultaneous network
signal timing optimization and traffic assignment,” IEEE Trans. Intell.
Transp. Syst., vol. 16, no. 5, pp. 2573–2586, Oct. 2015.

[41] A. Hajbabaie and R. F. Benekohal, “Traffic signal timing optimization:
Choosing the objective function,” Transp. Res. Record, J. Transp. Res.
Board, vol. 2355, no. 1, pp. 10–19, Jan. 2013.

[42] A. Hajbabaie, “Intelligent dynamic signal timing optimization program,”
Ph.D. dissertation, Univ. Illinois Urbana-Champaign, Champaign, IL,
USA, 2012.

[43] M. Tajalli and A. Hajbabaie, “Distributed optimization and coordi-
nation algorithms for dynamic speed optimization of connected and
autonomous vehicles in urban street networks,” Transp. Res. Part C,
Emerg. Technol., vol. 95, pp. 497–515, Oct. 2018.

[44] G. Mavrotas, “Effective implementation of the ε-constraint method
in multi-objective mathematical programming problems,” Appl. Math.
Comput., vol. 213, no. 2, pp. 455–465, Jul. 2009.

[45] A. M. Geoffrion, “Generalized benders decomposition,” J. Optim. The-
ory Appl., vol. 10, no. 4, pp. 237–260, Oct. 1972.

[46] R. Mohebifard and A. Hajbabaie, “Dynamic traffic metering in urban
street networks: Formulation and solution algorithm,” Transp. Res. Part
C, Emerg. Technol., vol. 93, pp. 161–178, Aug. 2018.

[47] PTV Vissim 7 User Manual, PTV Group, Karlsruhe, Germany, 2015.
[48] A. Hajbabaie, J. C. Medina, and R. F. Benekohal, “Traffic signal coor-

dination and queue management in oversaturated intersection,” USDOT
Reg. V Reg. Univ. Transp. Center, Final Rep. 047, 2011, p. 108.

Mehrdad Tajalli received the B.Sc. degree in civil
engineering from the Iran University of Science and
Technology, Tehran, Iran, in 2011, and the M.Sc.
degree in civil engineering from the Sharif Univer-
sity of Technology, Tehran, in 2014. He is currently
pursuing the Ph.D. degree with the Department of
Civil, Construction, and Environmental Engineering,
North Carolina State University. His research inter-
ests include network optimization focusing on speed
harmonization and enhancing safety in connected
urban networks.

Mehrzad Mehrabipour received the B.Sc. degree
(Hons.) from Shahid Bahonar University, Kerman,
Iran, in 2012, and the M.Sc. degree (Hons.) from
Tarbiat Modares University, Tehran, Iran, in 2014,
in industrial engineering. She is currently pursuing
the Ph.D. degree in civil, construction, and environ-
mental engineering with North Carolina State Uni-
versity. She is also working as a Graduate Research
Assistant with North Carolina State University. Her
research interests are operation research in traf-
fic congestion management, traffic assignment, and
signal timing optimization.

Ali Hajbabaie received the B.S. and M.S. degrees
from the Sharif University of Technology, Tehran,
Iran, in 2003 and 2006, respectively, and the M.S.
degree in industrial engineering and the Ph.D. degree
in civil engineering from the University of Illinois at
Urbana–Champaign, in 2011 and 2012, respectively.
He is currently an Assistant Professor with the
Civil, Construction, and Environmental Engineering
Department, North Carolina State University. His
research interests are traffic operations and control,
connected and automated vehicles, distributed opti-

mization, and traffic flow theory. He was a recipient of the Junior Outstanding
Researcher from the Department of Civil and Environmental Engineering,
Washington State University. He was also a recipient of the Best Paper Award
from Work Zone Traffic Control Committee of the Transportation Research
Board. He is also the Secretary of the Work Zone Traffic Control and the Chair
of the Asset Management Subcommittee of Traffic Signal Systems Committee
of the Transportation Research Board.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


