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Abstract— Advances in information and signal processing
technologies have a significant impact on autonomous driving
(AD), improving driving safety while minimizing the efforts
of human drivers with the help of advanced artificial intelli-
gence (AI) techniques. Recently, deep learning (DL) approaches
have solved several real-world problems of complex nature.
However, their strengths in terms of control processes for AD
have not been deeply investigated and highlighted yet. This survey
highlights the power of DL architectures in terms of reliability
and efficient real-time performance and overviews state-of-the-
art strategies for safe AD, with their major achievements and
limitations. Furthermore, it covers major embodiments of DL
along the AD pipeline including measurement, analysis, and exe-
cution, with a focus on road, lane, vehicle, pedestrian, drowsiness
detection, collision avoidance, and traffic sign detection through
sensing and vision-based DL methods. In addition, we discuss on
the performance of several reviewed methods by using different
evaluation metrics, with critics on their pros and cons. Finally,
this survey highlights the current issues of safe DL-based AD with
a prospect of recommendations for future research, rounding up
a reference material for newcomers and researchers willing to
join this vibrant area of Intelligent Transportation Systems.
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I. INTRODUCTION

RECENTLY, significant improvements have been reported
in the development of vehicular sensors for performing

different simple and complex tasks including object detec-
tion [1], localization [2], tracking [3], and activity recogni-
tion [4] for numerous applications. Such advancements have
improved the sensing and computing processes of autonomous
driving (AD) [5]. Despite this, AD demands further attention
of industry and academia due to its sensitive nature and key
role in reducing the number of accidents and saving human
lives. For instance, only in USA 6 million car accidents
happen on average every year, out of which around 3 million
people get injured and around 2 million experience permanent
injuries [6]. Besides injuries, more than 90 people die in
car accidents every day. The main reasons of these accidents
include alcoholic (40%), speeding (30%), and reckless driving
(33%). Similarly, distracted driving also results in huge num-
ber of accidents [7]. According to a report, more than 9 people
are killed each day due to distracted driving in USA [8].
Similarly, more than 1060 people are injured in crashes due to
driver distraction. These crashes can be dramatically reduced
by using driverless vehicle technology as supporting tools
to drivers or in full automation. Furthermore, the disabled
community can be greatly benefitted from this technology [9].

Due to the wide range of benefits the governments and
companies worldwide are taking interest in AD. For instance,
top twenty-five countries are evaluated in [10] for AD readi-
ness and given scores in terms of policy and legislation,
technology and innovation, and infrastructure. As depicted
in Figure 1, Singapore is leading in the policy and legislation,
Israel in technology and innovation, and Netherlands in the
infrastructure for AD. The countries like UAE with good
infrastructures are limited to advanced technologies to operate
AD in their roads.

Literature shows that autonomous vehicles have five dif-
ferent levels of automation as defined by SAE International
standard with a range 0∼5 [11]. This level-based roadmap
is visualized in Figure 2. Level 0 vehicles are those which
are under the full control of drivers [12]. Level 1 allows
performing minor tasks of acceleration or steering by car and
rest of the control is with human driver e.g., adaptive cruise
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Fig. 1. The successes achieved by top twenty-five countries so far in race
of AD in terms of policy and legislation, technology and innovation, and
infrastructure.

control [13]. Level 2 car can take some safety actions such
as emergency breaking but still driver needs to be alert while
driving. Tesla’s autopilot or Nissan’s ProPilot can be regarded
as level 2 because they can keep the car in the desired lane.
At level 3, the car can automatically drive in certain condi-
tions by monitoring the surrounding environment, but human
driver needs to be still on command for taking control if the
autonomous system fails [14]. Audi claimed that its A8 models
featuring Traffic Jam Pilot has Level 3. In case of Level 4,
the car can safely take control and proceed accordingly if its
request for human intervention is not responded [15]. Level
4 cars are not recommended to be driven in uncertain weather
conditions or unmapped areas. Lastly, level 5 vehicles cover
full automation in all conditions and modes [16].

To date, several efforts and initiatives have been triggered
by major industries to mature the AD technology. For instance,
the famous DARPA Grand Challenge of 2004 [17] for covering
a 150 miles road using a driverless car, which was failed by
all the 15 vehicles participating in the challenge. A further
improvement was made thereafter, and 5 out of 23 participants
passed the challenge in the 2005 edition of the contest.
Another event “DARPA Urban Challenge” [18] was later
initiated in 2007, in which six participants completed the
mission. Other noteworthy events include “Intelligent Vehicle
Future Challenge” [19] (2009∼2013), “Hyundai Autonomous
Challenge” [20] 2010, and “Public Road Urban Driverless-
Car Test” [21], 2013. Most recently, in 2015∼2016, Google
self-driving car and Tesla’s autopilot system [22] were intro-
duced as commercial examples. Apart from these milestones,
different famous companies are planning to announce their
autonomous vehicles of different levels in the near future. For
instance, Ford has plan to deliver a “Level 4” driverless vehicle
in 2021. Similarly, BMW is targeting “Level 4” or “Level 5”
autonomous car in 2021 [23].

Despite the aforementioned achievements, several issues
still restrict the usefulness of AD technology for numerous

environments such as the maturity of Artificial Intelli-
gence (AI) methods – particularly, those relying on Deep
Learning (DL) – for visual sensors, dependency of perfor-
mance of individual parts of AD system, and social acceptance
at large scale [24]. Among these, the first two are important
aspects and key enablers for AD system, which can signif-
icantly increase its safety and consequently result in huge
public appreciation. Indeed, safety is a key requirement of
AD, assisting drivers and minimizing the risks of potential
accidents. This requirement can be mainly ensured by seven
key tasks including road detection [25], lane detection [26],
vehicle detection [27], pedestrian detection [28], drowsiness
detection [29], collision avoidance [30], and traffic sign
detection [31] for which numerous hand-crafted and learned
representation based methods are presented. The current lit-
erature contains surveys of traditional methods on different
aspects of AD such as planning and controls [32], traffic light
recognition [33], and vehicle localization [34]. Many others
have emphasized on the paramount role of DL in the ITS
domain [35]–[38]. However, a detailed study on DL methods
for safe AD is missing, which is considered as a backbone for
AD and its safety.

This survey aims to cover this literature gap by analyzing
the most recent DL works related to the aforementioned seven
tasks for safe AD. We encapsulate the seven tasks into a
three-step pipeline of measurement, analysis, and execution,
and enlist their major achievements and key limitations. Our
work also highlights the current issues of safe AD with
several research recommendations focused on enhancing the
applicability of DL methods in realistic vehicular environment,
with safety at their primary requirement. We complement our
critical analysis of the existing literature with an excerpt of
empirical results of different DL model architectures for sev-
eral safety-related AD tasks, which shed light on the enormous
potential of these models. We end up with a discussion on
current research areas in the DL realm that remain insuffi-
ciently studied to date, despite their straightforward connection
to safety issues in this particular application field.

The remainder of this article is structured as follows:
Section 2 briefly describes the major control processes of
AD. Section 3 provides details of the recent DL approaches,
their strengths and limitations for AD systems. In Section 4,
the major challenges of safe AD are discussed, and future
directions are suggested in Section 5. In Section 6, we con-
clude the survey with some concluding remarks and an
outlook.

II. MAJOR EMBODIMENTS OF AD AND

RELATED STUDIES

This section aims to briefly describe the three-step pipeline
of measurement, analysis, and execution (MAE) and presents
several related studies associated with AD. “Measurement”
refers to data collection from the surrounding environment
via sensors, cameras, or radars and processing associated to
detecting road, lane, vehicle, pedestrian etc., [39]. To this end,
all the methods of this survey associated to these tasks will
be covered under “M”. “Analysis” phase uses more advanced
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Fig. 2. Roadmap of the AD technologies from level 0 to level 5.

algorithms for filtering, tracking, and other concrete steps for
fulfilling a certain set of optimization requirements for AD.
As a result of analysis, the “execution” part uses certain actu-
ators to trigger an alarm or revoke control of vehicle. In this
phase, automatic braking can be enabled to save the vehicle to
avoid collision, thus ensuring safety on roads for AD systems.

Studies show that MAE is the necessary pipeline to control
the automatic behavior of such vehicles and thus it is covered
in this survey. Other aspects of such systems are already
covered in detail by different surveys mentioned in Table I.
For instance, state-of-the-art associated with vision based
recognition of traffic light for AD, is covered in [33]. Similarly,
the planning and control aspect of AD for urban settings is
investigated in [16]. To the best of our knowledge, an in-depth
study of DL approaches for safe AD is missing in current
literature and is thus presented in this paper with its overview
in Figure 3.

III. CRITICAL LITERATURE ANALYSIS OF AD TASKS

In this section, the state-of-the-art DL approaches mentioned
in Table II are briefly described, considering the target seven
tasks. Despite the fact that there are many studies about
different parts of the AD system such as sensing, image
processing, and communication etc., which work collectively
for enabling it to drive itself, certain parts have achieved more
attraction due to their huge impact on the overall performance
of such vehicles. The most important parts are the seven tasks
associated to MAE, in context of which the concerned studies
are explored as follows:

A. Road Detection

This task aims at detecting round boundaries and areas
where autonomous vehicle can possibly drive. In this context
four representative works are selected. The first frame-
work [52] applies CNNs to estimate longer distance road
course for augmented reality applications. The second one

investigates cascaded end-to-end CNN (CasNet) for accurate
road detection and localization of centerline in the presence of
complex backgrounds and significant occlusions of trees and
cars as given in [53]. The other works present a Siamese fully
convolutional network based framework for accurate detection
of road boundaries using RGB images, semantic contours, and
location priors [54] and a completely end-to-end model called
as RBNet [55] for road presence as well as boundary detection
in a single network.

B. Lane Detection

Lane detection has a key role in ensuring the safety of
autonomous vehicles via lane keeping and lane departure
control systems, enabling them to be on their specified lane,
minimizing the chances of collision. In this context, four
DL recent approaches are selected as examples. In the first
approach, [56] utilized multi-sensor data and passed it through
a deep neural network for lane detection in 3D space. The sec-
ond approach investigates waveforms and CNNs for detecting
lane markings for safe AD as discussed in detail in [57]. In the
third work, an energy-friendly lane detection and classification
strategy is proposed using stereo vision and CNN for lateral
positioning of ego-car and issuing forward collision warning
for safe AD [58]. In the next work [59], a recurrent neural
network is utilized for road lane detection. Thus, it ensures
both lane detection as well as collision avoidance.

C. Vehicle Detection

In order to avoid possible accident, the autonomous vehi-
cle needs to detect and track other vehicles on the road.
For this task, it needs to estimate different aspects of sur-
rounding vehicles such as its shape, relative speed, size,
and 3-dimensional locations. In this context, some of the
state-of-the-art techniques are described as an example from
recent literature. The first one is an automatic approach for
vehicle detection and counting using convolutional regression



MUHAMMAD et al.: FOR SAFE AD: CURRENT CHALLENGES AND FUTURE DIRECTIONS 4319

TABLE I

DETAILS OF EXISTING SURVEYS RELATED TO AD AND OUR PROPOSAL. THE SURVEYS COVERED IN THIS TABLE ARE SELECTED BASED ON RELEVANCY
TO THE MAIN THEME “MAE”, PUBLICATION YEAR, REPUTATION OF THE PUBLISHER, AND ENDORSEMENT OF ASSOCIATED RESEARCH

COMMUNITY IN TERMS OF CITATIONS
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TABLE I

(Continued.) DETAILS OF EXISTING SURVEYS RELATED TO AD AND OUR PROPOSAL. THE SURVEYS COVERED IN THIS TABLE ARE SELECTED BASED

ON RELEVANCY TO THE MAIN THEME “MAE”, PUBLICATION YEAR, REPUTATION OF THE PUBLISHER, AND ENDORSEMENT OF ASSOCIATED

RESEARCH COMMUNITY IN TERMS OF CITATIONS

neural network for traffic management and safe AD with
detailed discussion in [60]. Chen et al. [61] presented a
framework for 3D object detection by utilization of deep CNN
model for object, location, and contextual boxes prediction.
Similarly, Rajaram et al. [2] presented a mathematical strategy
for object localization. They utilized Faster-RCNN along with
RefineNet and region of interest pooling for vehicle detec-
tion and localization. Another work is a vehicle detection
framework using multi-task deep CNN and voting strategy of
region-of-interest [62]. Both enable the autonomous vehicle to
detect other on-road car vehicles to initiate safety measures,
thus increasing the safety level of AD.

D. Pedestrian Detection

Vehicle-to-pedestrian accident is a common scenario and
mostly happen on roads. For autonomous vehicle, it is

necessary to differentiate other objects from humans due to
their higher importance. Thus, visual cameras are installed
on autonomous vehicle for detection, tracking, and possible
recognition of pedestrians for avoiding collision and different
other purposes. For instance, Ouyang et al. [63] presented a
joint framework of deep features extraction, handling deforma-
tion and occlusion, and classification for pedestrian detection
that helps increasing the safety of AD. Another approach
presented by Cai et al. [64] formulated complexity aware cas-
cade training for pedestrian detection. They integrated cascade
with the CNN to enable accurate pedestrian detection at a
faster speed. Similarly, Wang et al. [65] proposed a pedestrian
detection approach by investigating body part semantics and
contextual information with complex handling of occlusions,
achieving highly accurate localization results, which conse-
quently increase the safety of AD.
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Fig. 3. Distribution of DL approaches for major embodiments (measurement, analysis, execution-MAE) of the AD systems.

E. Drowsiness Detection

This task is related to drivers and especially for level 1 to
level 3 autonomous vehicles as level 4 and level 5 vehicles
are fully driverless. It is one of the key contributors for safety
applications as it can automatically take necessary action
once driver seems distracted or any drowsy state is detected.
To do so, several approaches exist in literature. For instance,
Lyu et al. [66] proposed a multi-granularity based deep frame-
work by intelligent usage of CNN and LSTM drowsiness
detection in videos. Vijayan and Sherly [67] presented three
CNN architectures including ResNet50, VGG16, and Incep-
tionV3 for drowsiness detection in first person driver videos.
These models are trained together by fusing them using a
feature fused architecture layer. A similar approach is fol-
lowed by Park et al. [68], where they integrated the results
achieved by AlexNet, VGG-FaceNet, and FlowNet by fully

connected layers for drowsiness detection. In another similar
work, Guo and Markoni [69] investigated CNN and LSTM for
drowsiness detection.

F. Collision Avoidance

It is obvious from the previous tasks that the important
objects associated with autonomous vehicles can be tracked
and detected by them, however, they are not enough to take
a decision. The important decision and action are taken by
collision avoidance system. Thus, it is a higher-level task on
which the safety of AD is heavily dependent and numer-
ous studies are conducted in this direction. For example,
Song et al. [58] can detect both lane and avoid collision by
taking necessary action. Similarly, Nguyen et al. [70] proposed
a system, which detects the obstacles, recognize them using
autoencoder, TCNN, and R-TCNN based DL architecture, and
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TABLE II

SUMMARY OF DL STRATEGIES IN TERMS OF MAE FOR THE TARGET SEVEN MISSIONS FOR SAFE AD SYSTEMS
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TABLE II

(Continued.) SUMMARY OF DL STRATEGIES IN TERMS OF MAE FOR THE TARGET SEVEN MISSIONS FOR SAFE AD SYSTEMS

finally track them to avoid the chances of collision during AD.
In another approach, Long et al. [71] proposed a novel end-
to-end collision avoidance system using deep neural network
from noisy sensory measurements.

G. Traffic Sign Detection

This task is mainly related to the control of the vehicles from
collisions at zebra crossing and road junctions, to reduce speed
at speed jumps, notify the driver before turns, and suggest

about U-turn, etc. Its function is simple, yet very important
and challenging to make decision as discussed in several
studies. For instance, Zhu et al. [72] developed an object
proposal-based framework for traffic sign detection and recog-
nition. The searching area for traffic signs is reduced through
CNN and then the detection and classification are performed
using R-CNN and EdgeBox methods. Li et al. [73] proposed
traffic light sign recognition model for on-vehicle cameras by
using prior frame information that keeps the previous frame
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detection record and aggregates channel features that analyze
the interframe information. Wang and Zhou [74] recognized
traffic light signs in dynamic images using a lightweight DL
model. A dual-channel mechanism is proposed for traffic light
detection in dark frames and a lightweight CNN model is
developed to classify them in real-time. For dark channel
saliency model is developed to extract light from different col-
ors simultaneously. Jensen et al. [75] applied real-time object
detector algorithm for traffic light signs detection using various
YOLO versions and achieved state-of-the-art results over chal-
lenging datasets. Ouyang et al. [76] used heuristic candidate
region selection module for traffic light sign identification and
developed a lightweight traffic light detection (TDL) model for
its classification. The model is evaluated on both collected and
benchmark datasets. Also, the model is tested through offline
simulation and an on-road test. The model is integrated with
Nvidia Jetson for on-road testing in normal traffic over a bus
and a car. Yuan et al. [77] developed VSSA-NET architecture
for traffic sign detection and treated it as a regression and
sequence classification task. The network architecture is based
on vertical spatial sequence attention and multi resolution
feature learning module. Also, the contextual information are
extracted through regression and classification with attention
procedure. In a similar method, Tabernek and Skočaj [42]
used mask R-CNN object detection algorithm with different
adaptation of the network to achieve the final detection.
For better performance, appearance and geometric distortion
distributions are applied as data augmentation to increase the
data. All these tasks contribute to the overall safety of AD and
thus researchers are increasingly investigating these areas.

IV. PERFORMANCE EVALUATION OF THE SAFE AD

This section has been organized for the performance com-
parison of different state-of-the-art DL models when applied to
tasks closely related to AD safety. Each task is evaluated using
multiple evaluation methods including F-measure, precision,
recall, overall accuracy, average precision (AP), area under
the curve (AUC), and runtime. However, we have discussed
only those evaluation results which are achieved via a com-
mon assessment criterion. For instance, majority of the road
detection techniques are assessed using the F-measure score.
F-measure is also known as F1-score which considers both
precision and recall, calculating a harmonic mean of both
values and captures the trade-off between them. It can be
calculated using the formula given in Eq. 1.

F1 = 2 × Precision × Recall

(Precision + Recall)
(1)

Similarly, the mainstream techniques for lane detection
utilized AP and AUC for its evaluation. AP (also known as
mean average precision (mAP)) is a performance evaluation
metric for object detectors, which computes the AP value
from precision (Eq. 2) for different recall (Eq. 3) levels. More
generally, AP is used to find area under the precision-recall
curve in the range 0 to 1.

Precision = T rue posi tive

(T rue posi tive + False posi tive)
(2)

Fig. 4. (a) The comparison of the road detection techniques including
DNN [79], s-FCN-loc [54], Up Conv [80], and RBNet [55] (b) comparison
of the lane detection techniques including SCNN [81] and DMS [56] using
AP score and RNN [82], CNN [82], and SVM [82] using AUC values.

Recall = True posi tive

(T rue posi tive + False negative)
(3)

Likewise, AUC is used for the analysis of AI models
where true positives are plotted against false positive rate
in order to know that at which threshold the trained model
performs well. Figure 4 (a) visualizes the state-of-the-art
results achieved by different DL models on KITTI’s [78]
benchmark dataset. This dataset is one of the challenging
datasets for AD tasks such as road detection, lane detection,
pedestrian detection on road, and vehicle detection. It is
divided into three sets, which are urban marked (easy), urban
multiple marked lanes (moderate), and urban unmarked (hard).
Further, it has 289 training images and 290 testing images.
For instance, RBNet [55] has achieved the current highest
F-measure score. It resorts to five convolutional layers, DCNN
for feature extraction, followed by post-processing for road
boundary detection. The model is trained for 100k epochs
with a learning rate equal to 0.01, amounting to 0.18 seconds
per processed frame. The DNN [79], s-FCN-loc [54], and
Up Conv [80] have achieved 93.43%, 93.26%, and 93.83%
F-measure score, respectively. Furthermore, the DNN [79] and
s-FCN-loc [54] utilized very deep CNN architectures, followed
by complex post-processing. As a result, they require 2 and
0.4 seconds of processing time per frame, respectively. The
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Fig. 5. Performance comparison of different pedestrian detection meth-
ods including CompACT-MSCNN [84], F-PointNet [85], MM-MRFC [86],
3DOP [87], Mono3D [61], and Faster-RCNN [88] with respect to mAP for
easy, moderate, and hard scenarios.

Up Conv [80] takes only 0.083 seconds per processed frame,
but its accuracy is lower than RBNet [55].

Figure 4 (b) shows the compassion of different state-of-
the-art methods for lane detection using AP and AUC scores.
They used the Caltech lanes dataset [83] for experiments
which contains 1225 challenging images taken in the busy
streets of Pasadena. The SCNN [81] and DMS [56] utilized
AP score for the evaluation of their techniques and achieved
59.5 and 84.7 scores, respectively. The SCNN [81] utilized
the VGG16 CNN architecture as its backend, with three
additional fully connected layers added for road detection.
They have trained this extended model with a learning rate
of 0.01 and a weight decay of 0.0001 using “poly” learning
rate policy. Their model is not efficient for real time processing
because it requires 0.115 seconds of processing time due to
the VGG16 backbone. Similarly, Li et al. [82] utilized two
convolutional layers and fully connected layers architecture
followed by multitask object detection, where the first task
detects object and the second estimates the geometry output.
They experimented RNN, CNN, and SVM after the features
extracted from fully connected layers for multitask learning,
where the RNN performed well and achieved the highest
AUC value of 0.99. We represented 0.99 as 99 in the graph
because the AUC values are between 0 and 1. However, due to
the graph representation, the scores are normalized for better
visualization.

The pedestrian detection techniques given in Figure 5 have
been evaluated using the mAP scores on KITTI’s [78] bench-
mark dataset. In state-of-the-art, three scenarios have been
chosen for pedestrian detection evaluation including easy,
moderate, and hard as defined by the benchmark datasets.
In the easy scenarios, the minimum bounding box height for
the object is 40 pixels and the objects are fully visible without
any occlusion. In the moderate level data, the minimum
bounding box height is 25 pixels and the objects are partly
occluded. In the hard scenarios, the objects are very much
occluded and difficult to see, where the minimum height of the
bounding box for the object is 25 pixels. For easy, moderate,
and hard data, the F-PointNet [85] has achieved maximum
mAP scores of 87.81, 77.25, and 74.46, respectively. They
utilized 2D and 3D CNN architectures and their fusion for
pedestrian detection. The MM-MRFC [86] utilized color,
motion, and depth features and achieved the second highest

Fig. 6. Comparison of different DL approaches for vehicle detection in
easy, moderate, and hard scenarios i.e., 3DOP [87], SubCNN [89], SDP [90],
RefineNet [2], and Faster R-CNN [88].

accuracy with per frame processing time of 0.05 seconds. The
overall performance of the state-of-the-art in easy scenarios
is around 85%, for moderate it is under 70% and 80%, and
for the hard case it is less than 65%. Therefore, this is a
very challenging issue for safe and trustworthy AD, where
the accuracy of pedestrian detection should reach the level of
human perception for easy, moderate, and hard levels.

Similar to pedestrian detection, the evaluation of vehicle
detection is also performed in easy, moderate, and hard sce-
narios of KITTI’s [78] benchmark dataset as given in Figure 6.
The evaluation of these methods for vehicle detection has
been performed using the AUC. The mainstream methods
have performed well in the easy cases, reaching a maximum
of 93.04 by 3DOP [87], for moderate and hard cases 88.64 and
79.27 maximum AUC values achieved by SubCNN [89]. The
3DOP [87] encodes object size priors, ground plane as well
as several depth informed features that reason about free
space, point cloud densities and distance to the ground. They
utilized structured SVM, which takes input-output pairs and
learns the parameters by their proposed optimization function.
SubCNN [89] exploited two very deep CNN architectures
based Fast R-CNN; 1) region proposal network and 2) object
detection network. The processing time is not discussed in
the article, but it is greatly agreed that multiple CNNs based
methods are not well suited for real-time processing due to
huge computational complexity, thus of limited importance
to AD.

Overall accuracy= Number o f correct predictions

T otal number o f predictions made
(4)

Drowsiness detection is assessed using overall accuracy
matric and the results of well-known DL methods are com-
pared in Figure 7. The overall accuracy tells us “out of
all test samples, what proportion were mapped correctly” as
given in Eq. 4. The overall accuracy is usually expressed
as a percent, with 100% accuracy being a perfect model.
Drowsiness detection is very challenging task even for human
to detect it is very difficult and the average accuracy of
human in day and night scenarios are only 80% [68]. The
FFA reached the maximum accuracy of 75.57% which is the
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Fig. 7. Comparison of the state-of-the-art DL models for drowsiness detection
i.e., AlexNet [91], VGG-FaceNet [92], LRCN [93], FlowImageNet [93],
DDD-FFA [68], and FFA [67].

highest so far achieved in drowsiness detection. Furthermore,
the AlexNet [91], VGG-FaceNet [92], LRCN [93], FlowIm-
ageNet [93], and DDD-FFA [68] achieved 65.85%, 67.85%,
61.5%, 62.99%, and 70.81%, respectively. The AlexNet [91]
and VGG-FaceNet [92] are very deep CNN architectures,
containing 60 and 138 million parameters, respectively which
is not efficient for real time task like AD. The FlowIma-
geNet [93] is originally trained for action recognition but it
is fine-tuned for drowsy states such as face and head gestures
from the input image sequence. It has five convolutional and
two fully connected layers and the final layer is changed in fine
tuning process from 101 to 4 classes. It is fast but not effec-
tive enough for trustable AD. DDD-FFA [68] and FFA [67]
features from the FC layers of three CNN models are ensem-
bled for drowsiness detection. This strategy has increased
the overall accuracy; however, the processing time has also
increased up to three times. Drowsiness is very dangerous in
driving and is a frequent reason for accidents. Therefore, its
accuracy should be considered to improve in the future work
for safe AD, jointly with other aspects in predictive modeling
that are often overlooked, such as the quantification of the
model’s output confidence, the explainability of the knowledge
captured by the model or the accountability of predictions.
Since, safe AD decisions may put human lives at risk, therefore
the need for explaining what a model observes in its input for
producing its output becomes a critical factor for the sake of
its viability with regulatory constraints.

The mainstream techniques for traffic sign detection are
evaluated using precision, recall, and intersection over union
(IOU). Precision and recall scores achieved on Swedish
traffic-sign dataset (STSD) [94] using different models are
shown in Figure 8. The STSD is very challenging dataset
that contains 19236 images of 20 traffic sign categories.
The R-CNN [72], FCN [72], Faster R-CNN [42], Mask
R-CNN [42], MR Features [77], and MR Features +
VSSA [77] achieved precision score of 91.2%, 97.7%, 95.4%,
97.5%, 98.83%, and 99.18%, respectively, and achieved recall
score of 87.2%, 92.9%, 94.6%, 96.7%, 93.96%, and 94.42%,
respectively. As this task is more about detection rather
than classification or recognition, therefore, the researchers
utilized IOU. IOU evaluates the results by comparing the
area of the detected bounding box and the area of ground
truth to be detected. The high intersection rate means good

Fig. 8. Precision and recall values of mainstream traffic sign detection models
achieved on STSD dataset [94] including R-CNN [72], FCN [72], Faster
R-CNN [42], Mask R-CNN [42], MR Features [77], and MR Features +
VSSA [77].

Fig. 9. Performance of different state-of-the-art traffic light sign detec-
tion models on VIVA [73] dataset, including Yolo2 [95], Yolo2-tiny [95],
Yolo3 [96], Yolo3-tiny [96], SSD [97], Faster RNN [88], and Detector +
RTTLD [76].

performance of the detection model and vice versa. The
performance of state-of-the-art traffic sign detection models
is given in Figure 9. These results are achieved on a very
challenging dataset known as VIVA [73], which is captured in
extremely complex scenes and contains almost all of the traffic
light signals including green, red, and their related right and
left turns with short- and long-distance images in different
day/night conditions and illuminations. Traffic sign detection
is one of the prompt applications of the AD, where both the
effectiveness of the method and its processing time are very
important for decision making to control vehicles. Therefore,
we investigated the results of faster yet effective methods for
traffic sign detection. The very famous Yolo and its variants
achieved 25%, 21%, 18%, and 16% of IOU for Yolo2 [95],
Yolo2-tiny [95], Yolo3 [96], and Yolo3-tiny [96], respectively.
The SSD [97] and Faster RNN [88] achieved 10% and 12%
IOU and the recent Rttld detector [76] achieved the highest
IOU of 44% on VIVA traffic light detection dataset [73]. From
the results, we can see that several famous detectors have less
accuracy on the given challenging dataset, needing serious
attention from researchers. Therefore, its accuracy should be
considered to improve in future works for safe AD. Further-
more, this task is related to the open environment, so the
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conditions are changing according to different places and
weather conditions, therefore model evaluation is an important
future work to be considered for traffic sign detection.

The competence and performance of the aforementioned
techniques in the capacity of seven missions, targeting safe
AD reveal many challenges. In our investigated techniques,
none of them is capable to encounter measurement, analysis,
and execution together. Even though these methods show
promising results for their targeted mission, they are computa-
tionally very expensive. Furthermore, the mainstream methods
are functional with high-specs GPUs and cloud servers, which
is not a realistic setting for real application environments as
it neglects important aspects such as energy consumption,
or prediction latency. Besides the computational complexity,
there exist several other open challenges that are discussed in
the next section.

V. CHALLENGES IN SAFE AD

Despite significant investment of both academia and indus-
try in AD technology, certain aspects of these systems are
still facing difficulties due to numerous challenges discussed
as follows:

a) Complexity of AD Systems: AD systems consist of a
series of decision-making problems where the solution
of one problem is the input to another one. Although,
significant improvement can be noted in certain parts,
but overall there is dependency of individual parts on the
performance of overall AD system [98]. For instance,
Furda and Vlacic [99] presented a multiple criteria deci-
sion making for the selection of most suitable driving
move where the decision making is divided into suc-
cessive stages. The first stage in their proposal is safety
critical. However, there are multiple decisions need to be
taken similar to human thinking. Therefore, an efficient
motion planner of AD can be compatible with only an
energy-intensive feedback controller. On the other hand,
simpler controllers may be less robust [100], needing
less energy but will need motion-planning approach of
significant detail. Thus, intelligent frameworks need to be
developed to balance such conflicting metrics and come
up with an optimal solution on the fly.

b) Dynamicity of Road Environment: It is agreeable that
current cities are becoming more dynamic due to signif-
icant digitization on roads with colored advertisements
and illumination. Researchers have presented multiple
sensors-based solutions including radar [101], vision [2],
lasers [102], and different other modality-based solu-
tions [103], however, in dynamicity of road scenarios
the level of accuracy is still very low. There is also
greater tendency of humans for keeping personal luxury
vehicles, increasing the traffic on road. These practices
make the environment of autonomous vehicles further
complex, thus increase its challenges by affecting the
detection, tracking, and recognition accuracy of different
tasks associated with AD.

c) Big Data and Real-Time Processing: To keep the
autonomous vehicle well aware of its surrounding

environment, a variety of sensing devices including sen-
sors [104], cameras [2], LIDAR [105] etc., are attached
to it, capturing data continuously, resulting in big data.
In addition, high quality data [106]–[108] (e.g., videos of
higher resolution) are collected, considering the critical
nature of AD. Thus, processing such huge amount of data
in real-time is a big challenge, considering the accuracy,
power consumption, and cost [109].

d) Intelligent Data Prioritization: As discussed, a signif-
icant amount of data of different nature is captured,
resulting in big data. Literature shows that it is infea-
sible for an autonomous vehicle to process all captured
data and thus data prioritization mechanism [110], [111]
is needed to filter only important contents for further
processing and discard unnecessary data. This prioritiza-
tion mechanism should be intelligent enough to prioritize
a variety of data captured in different environmental
scenarios [112].

e) Robustness and Adaptability: Studies [56]–[65] suggest
that it is comparatively easy to capture and process data
for autonomous vehicle in certain environment. Most of
the mainstream AI techniques for AD are trained on data
collected in certain environment and not reliable in cross
weather conditions. This issue is recently encountered by
Google team and they presented an idea of all-weather
autonomously driven vehicle. However, it becomes
inherently challenging when the environment is uncertain
with captured data affected by snow, rain [113], and
fog [114]. Thus, the system for different tasks associated
with MAE should be robust enough to adapt itself with
the surrounding environment.

f) Integration/Fusion of Sensory Data for Dynamic Deci-
sion Making: In the real-world applications, it is very
hard to achieve ideal performance and target accuracy
using a single sensor. So, there are a wide use of
the decision-making algorithms for processing fusion
data acquired from multisensory [115], [116]. Two
major types of sensors are used in autonomous vehicles
i.e., environment perception and localization. The envi-
ronment perception is used to detect surrounding objects
of the vehicle while localization tracks the location
of the vehicle. The fusion algorithms are categorized
into two groups: 1) machine learning methods (deep
neural network) and 2) multi sensor information fusion
for measuring the state i.e., Kalman filter (KF). In the
literature many sensor fusion based models are pro-
posed using various sensors and fusion algorithms. These
frameworks mainly focused on improving the accuracy
but the implementation feasibility of these methods is less
explored. The main challenges in the AD are perception,
real-time computing and communication, and learning
based controls methods. There is a huge space for effi-
cient, lightweight, and robust fusion based pipeline for
autonomous vehicle [117].

g) Fairness, Accountability, and Transparency in DL
for AD: Recent studies have stressed on the utmost
necessity of explaining decision provided by AI models
in scenarios where such decisions ultimately impact
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Fig. 10. Major challenges and possible recommendations for intelligent and safe AD.

on humans’ lives (e.g., health, law, etc.) [118], [119].
AD harnessing DL approaches is not an exception to
this requirement for model explainability, particularly
due to the black-box nature of this kind of AI models.
By virtue of eXplainable AI (XAI) techniques [120],
it is possible not only to shed light on the internals and
knowledge learned by DL models, but also to ease the
traceability and post-mortem analysis of incorrect deci-
sions (accountability) for model refinement. Likewise,
ensuring that DL models [121] for AD are not affected
by severely imbalanced or scarce training samples (i.e.,
lack of model bias) guarantees improved generalization
performance, hence a more reliable contextual awareness
of the vehicle, and a compliance with eventual regula-
tory constraints [122]. Interpreting what the model has
learned and constructing plausible counterfactuals via
XAI techniques has the potential to delimit the perfor-
mance boundaries of the model, unveil possible sources
of bias, and analyze how decisions were made in search
for possible deficiencies in the model. Without advances
in model explainability, AD functionalities harnessing the
powerful modeling capability of DL will be far from
practicality.

h) Online Learning Capabilities in AD: One of
the major challenges in the AD is dealing with
various environments with a scalable model. For
instance, a model trained for urban environment may
not be applicable in rural areas, since the traffic
rules are quite different in both scenarios. Similarly,
this condition can be applied due to newly con-
structed areas, weather condition, and climates changes
etc., [123]. This problem can be tackling with online
learning strategy (updating model with new data).
Recently, researchers have applied online learning strate-
gies in many domains such as surveillance [124],
where the deep model iteratively fine-tunes itself and

update the parameters of trained model to adopt the
changed environment. Similarly, Guaranteed Safe Online
Learning via Reachability (GSOLR) [125], Stochastic
Online Learning [126], and Online Learning via
meta-learning [127] are the recent approaches which can
be adopted to online learning in AD cars to update
different deep models using maps, weather conditions,
and visual changes accordingly.

i) Robustness Against Adversarial Attacks: Analogously
to the above, much has been lately said around the
weakness of DL models against intelligently crafted
examples that even if visually imperceptible, lead them to
incorrect decisions (e.g., misclassfication [128]). Adver-
sarial attacks pose enormous challenges in the vehicular
domain, as has been exemplified with traffic signs being
wrongly classified by vehicular cameras due to physical
adversarial modifications in the form of printable stick-
ers [129]. Although the activity around defense strategies
against adversarial attacks is vibrant at the time, definitely
there is still road ahead in regard to the compliance of
its effectiveness with design specifications and admissible
risk limits.

j) Variability of Traffic Sign Boards: The object detection
models are usually trained with fixed size resolution data.
However, most of the traffic signs appear to be very
small and when high resolution images are resized to the
required input size of the model. The large size sign board
can be easily captured in the resized image, however, this
leads to the misdetection problem of small size traffic
sign boards [42]. Furthermore, when the vehicle travels
with a very high speed i.e., 100 km/h, such high-speed
camera motion destroys the structure of small size sign
boards. This is a very challenging task to detect and
recognize all types of traffic sign boards, which can be
possibly achieved by using high resolution images as
input to the model and not the resized images.
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VI. RECOMMENDATIONS FOR FUTURE RESEARCH

In the light of challenges raised in Section 5 and literature,
a list of important areas for further research in safe AD
is presented with brief details for industry and academia.
Improvement in these directions can increase the significance
of AD systems and can contribute to their safety and reliability.

a) Energy-Friendly Convolutional Neural Networks
(CNNs): A study of several surveys shows that CNNs
have obtained state-of-the-art achievements in various
computer vision tasks associated to AD such as
tracking [2], [130], speed control [76], and obstacles
avoidance [131], [132] etc. However, their high memory
requirement and computational complexity limit their
usefulness. Thus, energy-friendly and efficient CNN
models should be designed for improving the driving
safety of AD technology.

b) Reinforcement Learning for AD: Reinforcement learn-
ing (RL) is an active research focus in various domains
of AD, such as control [133], [134] and path plan-
ning [135], [136]. Reinforcement learning techniques
have at no doubt achieved good performance levels,
evincing the capability of these techniques to learn
near-optimal policies to efficiently operate different sub-
systems of the autonomous vehicle. Nevertheless, most
research contributions reported so far in the literature
have been conducted on various simulators or restricted
trial environments due to a manifold of reasons, ranging
from established regulatory restrictions to the availabil-
ity of vehicle prototypes, or the earliness of research
outcomes. As a result, current RL models cannot fully
cope with real-world environments, which are full of
uncertainties that hinder the provision of safety guar-
antees [137]. Even though simulators allow generating
driving scenarios at a low cost, models are trained off-line
over virtual environments, but cannot be expected to
perform that effectively in real conditions, and ultimately
cannot be deployed directly. Therefore, further research is
needed towards ensuring good generalization properties
of RL models when used in simulated and real environ-
ments. To this end, several directions should be targeted
in the near future, such as increasingly higher levels
of realism attained by vehicular simulation software
(for instance, procedural generation of urban scenarios),
the latest advances in data augmentation methods (to e.g.,
imprint varying meteorological conditions on data cap-
tured on driving tests), or specific algorithmic proposals
aimed at improving the generalization of RL models to
unseen environments and/or tasks (Meta Reinforcement
Learning [138], with initial findings in the ITS domain
appearing very recently [139].

c) Sequence Learning and Generative Adversarial Net-
work for AD: Vision sensors deployed on AV capture
pedestrians performing different activities. The patterns
underlying these activities cannot be captured from a
single frame, but they rather require learning over a
sequence of consecutive frames [124]. This augmented
information substratum requires efficient techniques for

sequence learning for pedestrian activity recognition in
the AV surroundings, considering additional elements
of complexity such as partial occlusions or different
camera angles over time. To this end, data augmentation
techniques capable of imprinting these effects in the
data from which sequence learning models are built
constitute a promising path to follow. Similarly, gener-
ative adversarial networks (GAN) can be investigated to
generate accurate environments in simulation for training
self-driving car policies. GANs can learn to re-render a
scene from a different viewpoint, which could be useful
for laying new learning environments for Reinforcement
Learning methods, and ultimately producing more gen-
eralizable policies for self-driving cars.

d) Reliable and Efficient Motion Planners and Feedback
controllers: Motion planner and feedback controller are
one of the critical parts of AD systems as they have a
key role in the overall running time of the system [140].
However, they are working in an inverse way as described
in Section 4. Thus, further investigation is needed to
come up with a reliable and efficient motion planner and
feedback controller to balance the computational burden,
speed, and safety [141].

e) Universal Benchmark Datasets: Despite the available
datasets [142]–[145] for evaluating different individual
aspects of AD systems (such as KITTI benchmark [78]
and publicly accessible datasets [146]), there is a need
to make universal benchmark datasets to measure the
overall performance of AD prototypes. Such efforts will
make AD a hot topic for both academia and industries,
helping in benchmarking and arranging competitions for
the concerned research community to improve different
individual aspects as well as overall performance of AD
systems.

f) Industrialization and Personalization: Although sig-
nificant research is in progress for improving almost
every aspect of AD such as tracking [147]–[149],
velocity control [150], [151], localization and map-
ping [34], [152], path planning [153]–[156], and visual
guidance [98], [43], such systems are yet not globally
recognized and adoptable due to safety risks and lack
of large-scale industrialization. Thus, AD models should
be made mature enough to be universally trusted and
adoptable at large scales. Further, personalization (such
as preliminary explorations for cruise control [157] and
lane departure [158], [159]) can be another interesting
research direction for users to adjust their preferences in
terms of safety, speed limit, available features, and cost.
As an example, companies like Google and NVIDIA are
building powerful AI-based self-driving cars, investing
resources towards dedicated high-processing GPU and
TPU devices for AD that can efficiently run DL models
as the ones addressed in this study.

g) Edge Computing for Autonomous Vehicles: To guaran-
tee the safety and robustness of AD, AV are equipped
with various smart sensors and high-computing embed-
ded devices. Data acquired from these sensors are
processed through DL models for accurate decisions.
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In this context, one of the main challenges is to
properly balance the tradeoff between the cost of
processing devices and the competence of the compu-
tational model [160], [161]. In general, manufacturing
industries prioritize the fabrication of sensors at min-
imum costs with maximum performance [162]. This
paves an unprecedented opportunity for Edge Comput-
ing to contribute to safe AD. Edge Computing for
DL [163] requires research for online training over the
Edge because vehicular data dynamically changes over
time [164]. The traditional training process is often
performed on devices with high computational resources,
and then, once trained, they are installed on the edge.
This strategy is far from effective when adopted for
tasks associated to AD, due to the need for refreshing
the knowledge captured by the model. This is challeng-
ing research direction, requiring effective and optimized
online learning mechanisms for training DL models over
the edge [165].
Specifically, there is a growing need for mature software
frameworks capable of federating DL models learned
locally across different distant contexts, without compro-
mising protected data. This federated learning scenario
fits perfectly in safe AD, wherein models can be enriched
by sharing model information among vehicles rather
than the captured data themselves. The relative youth
of this research area deserves further attention from
the community towards extrapolating the early findings
achieved with already existing frameworks to the auto-
motive domain, placing an emphasis on crucial imple-
mentation aspects such as latency, reliability/reputation
of the federated models, and the obsolescence of the
model [166].

h) Privacy-Aware Knowledge Sharing: In safety matters,
human is the last asset to put at risk. Therefore, the com-
munity should synergistically aim at more accurate
models. Unfortunately, the huge variability of vehicu-
lar situations and environments makes it complicated
to build DL models capable of maintaining their per-
formance levels across diverse environmental scenarios.
In this context, a need emerges for feeding models with
diverse datasets that can represent as many practical
safety-critical situations as possible. However, technical
aspects aside and despite ultimately targeting an increase
of safety, this workaround becomes complex to imple-
ment in competitive markets with stakeholders reluctant
to share the data acquired from their portfolio of clients.
Bearing this in mind, the focus should be drifted onto
Federated Learning [167], a new distributed computing
paradigm with DL at their core, by which locally trained
models deployed at vehicles can share their knowledge
(embodied in their adjusted parameters delivered to a
central server), and exploit them locally towards improv-
ing their performance 175]. Interestingly, this distributed
computation is accomplished without compromising the
privacy of the data from where local models were trained.
We foresee an exciting application scenario of feder-
ated DL in vehicular perception, allowing manufacturers

to attain unprecedented levels of vehicular perception
without major concerns with respect to the privacy and
confidentiality of their datasets.

i) Internet of Everything for Increased Safety: In the
future smart cities [169], different entities associated with
roads such as vehicles, sign-boards, traffic lights, etc.,
will be connected with each other for sharing useful
information [170], [171]. Of course, they need to be
interoperable and thus, a diverse set of communication
standards need to be investigated for autonomous vehicles
so that there is no interoperability issue [172], [173]. This
will enable autonomous vehicles to get necessary infor-
mation about traffic jams, real-time best available route
suggestions, and expected collisions and can increase the
safety of AD.

j) Risk Assessment: One of the goals of AD is to reduce
road fatalities and eliminate human error on roads.
However, AVs are not completely risk-free due to the
prevalence of real-world uncertainties. Therefore, risk
assessment is crucial in order to improve the safety
of AD. A plentiful strand of literature has focused on
the various aspects of the AD including path planning,
motion planning, scene segmentation and understanding,
DL based solutions, and pedestrian’s receptivity towards
fully AVs to reduce the risk of AD in real environ-
ments. For instance, Cunneen et al. [174] studied the
ethical framings of AD technology to reduce the risk.
Further, the challenge of the AD relies in how AVs
perceive the external environment to understand different
situations that could minimize the overall risk of the
AD. A survey conducted on the road and lane detection
by Hillel et al. [175], suggests that path planning for
AVs involves two strategies: 1) bounding-box detection,
maximizing the likelihood of detecting an object inside
the box and 2) semantic segmentation by classifying each
pixel in the input frames. However, for both the scenarios,
the performance of the neural networks is dominantly
successful in AVs that could efficiently segment the lanes
to follow road up to the final destination. Moreover, there
is a high probability of risks when AVs are exposed to
drive autonomously on a completely new environment.
To minimize the risk of AD in such environments,
new large scale datasets have been proposed [176] for
benchmarking the scene understanding. For example,
SYNTHIA dataset [177] containing images for scene
understanding, and [178] algorithm for real time scene
segmentation in AVs to reduce risks in AD. Further-
more, Johnson-Roberson et al. [179] gathered more than
200,000 images of the computer game “Grand Theft
Auto V”, for the vehicle detection and speed optimization
of AVs to reduce the risk in real environments. The exper-
imental results showed that using virtual environment
images in training process significantly reduced the risk
of AVs in real-world environments.
Besides the significant achievements of DL in AVs,
a large limitation of DL-based perception systems is the
inadequate feedback of uncertainty. Cunneen et al. [180]
reviewed the challenges of AI based decision making,
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its risks, and societal benefits. Bayesian DL is the bridge
between DL and Bayesian probability that offers princi-
pled risks analysis within DL. Furthermore, the uncer-
tainty assessment of the model can be measured using
Monte Carlo dropout sampling via circulating the input
data through the network multiple times with vari-
ous dropout weights. Furthermore, as suggested by
McAllister et al. [181], using the Bayesian network to
estimate and propagate the risk assessment would enable
AVs to cope with uncertainty. Other techniques related to
risk assessment should be inspected further in the years
to come towards addressing this issue.
Another risk factor of AD is the autonomous vehicle
itself because it involves certain complex tasks where
several motors and cognitive actions are simultaneously
applied and sometimes in a quick succession. Also,
the performance of the AVs is profoundly dependent on
the varying weather, lightning condition, and road sur-
face. Moreover, the pedestrian behavior is also a critical
factor that imprints additional uncertainty to the vehicle’s
decisional environment [182]. Due to these challenges,
it is perhaps not surprising that if anything goes wrong,
the cost it does will be very high. For the reliability of
AVs in public, they must be driven for billions of miles
in complex environments and varying conditions.

VII. CONCLUSION

The recent emergence of sensing, perception, and signal
processing technologies have brought significant improvement
to the maturity of AD, thereby reducing human drivers’
efforts and contributing to the overall safety of AD. DL
strategies recently solved numerous complex problems related
to different areas in general and AD, however, their detailed
investigation on control processes for AD is not covered by
current literature. This article pointed out the key strengths of
DL methods and surveyed state-of-the-art approaches for safe
AD, covering both their major achievements and limitations.
In addition, this survey identified the major embodiments
of AD pipeline i.e., measurement, analysis, and execution
(also known as control processes) and investigated the per-
formance of DL methods for several safety-related AD tasks,
including road, lane, vehicle, pedestrian, drowsiness detection,
collision avoidance, and traffic sign detection. Lastly, this
paper highlighted the major challenges and issues faced by
AD community and suggested recommendations for future
research in further development towards safe AD.

Research on safe AD has been on the spotlight of the ITS
community for decades. DL experts are in continuous race
to reach a sufficient level of maturity in the AVs domain
to make vehicles achieve a thorough, reliable context aware-
ness through sensors endowed with this family of powerful
modeling approaches. We advocate for a new time in which
investigations should not only aim at improving the accuracy
of modern DL flavors, but also inspect aspects related to
their usability and practicability [183], such as the need for
explanations, robustness to adversarial attacks, the assessment
of epistemic uncertainty and risk characterizing such models,
or the derivation of neural architectures capable of lowering

their energy consumption. Unless these directions are actively
pursued by the research community, DL will remain relegated
to academic research and controlled trial environments, and
vehicular safety will not harness the enormous potential of
this branch of Artificial Intelligence.
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