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Abstract—Driver sleepiness is a contributing factor in many
road fatalities. A long-standing goal in driver state research
has therefore been to develop a robust sleepiness detection
system. It has been suggested that various heart rate variabil-
ity (HRV) metrics can be used for driver sleepiness classification.
However, since heart rate is modulated not only by sleepiness
but also by several other time-varying intra-individual factors
such as posture, distress, boredom and relaxation, it is relevant
to highlight not only the possibilities but also the difficulties
involved in HRV-based driver sleepiness classification. This paper
investigates the reliability of HRV as a standalone feature for
driver sleepiness detection in a realistic setting. Data from three
real-road driving studies were used, including 86 drivers in both
alert and sleep-deprived conditions. Subjective ratings based
on the Karolinska sleepiness scale (KSS) were used as ground
truth when training four binary classifiers (k-nearest neighbours,
support vector machine, AdaBoost, and random forest). The best
performance was achieved with the random forest classifier with
an accuracy of 85%. However, the accuracy dropped to 64 %
for three-class classification and to 44% for subject-independent,
leave-one-participant-out classification. The worst results were
obtained in the severely sleepy class. The results show that
in realistic driving conditions, subject-independent sleepiness
classification based on HRYV is poor. The conclusion is that more
work is needed to control for the many confounding factors that
also influence HRV before it can be used as input to a driver
sleepiness detection system.

Index Terms— Driver sleepiness, detection, classification, heart
rate variability.

I. INTRODUCTION

RIVER sleepiness is a contributing factor to
approximately 20% of all road fatalities [1], [2].
Driver sleepiness detection systems may reduce these
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numbers by convincing sleepy drivers to pull over for
a rest or nap. Such systems are typically based on
(i) vehicle-based information such as lane keeping
performance, (ii) behavioural information such as yawning
and eye movements, and/or (iii) driver physiological data such
as electrocardiography (ECG), electroencephalography (EEG),
or electrooculography (EOG) [3]-[5].

Today’s and tomorrow’s advanced driver assistance and
automated driving systems are changing the playing field for
sleepiness detection. When longitudinal and lateral positioning
is secured by the vehicle, vehicle-based data can no longer be
used for sleepiness detection. Similarly, camera-based systems
may not see the driver’s face due to obstructed camera views
or because the driver is out of position, both of which are
more likely during assisted or automated driving. At the same
time, physiological data are becoming more available thanks
to wearable [6], [7] or remote sensors that can be embedded in
the steering wheel, seat belt, and seat [8], [9]. This has revived
heart rate and heart rate variability (HRV)-based concepts, and
it is logical to use the relationship between cardiac function
and sleepiness when designing sleepiness detection systems.

The heart rate is regulated by the sympathetic (acti-
vation) and parasympathetic (rest) branches of the auto-
nomic (involuntary) nervous system. Sympathetic activation
leads to increased heart rate, more forceful heart contrac-
tions, dilated airways, higher respiration rate and increased
muscle strength. Parasympathetic activation causes reduced
heart rate, decreased blood pressure, and stimulates digestion
and waste disposal. Heart rate, and thus HRV, reflects the
balance between sympathetic and parasympathetic activity.
In general, a lowered heart rate gives more room for variability
between successive heartbeats allowing higher HRV. This is
typically seen during sleepiness when the body is winding
down to prepare for sleep. It is important to note that while
a change in alertness level will likely cause a change in HRV
(Fig. 1.), the opposite is not necessarily true, as a change
in HRV could equally be due to a change in any of the
other factors that also affect HRV. These other factors include
both inter-individual factors, such as age, gender, and medical
conditions, and intra-individual factors, some of which vary
over time [10], [11].

It has been hypothesized that parasympathetic activity
should increase with increasing levels of driver sleepiness.
High-frequency (HF) power in the HRV signal, which is
a sign of parasympathetic activity, has indeed been found
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Model of how different time-varying intra-individual factors affect the cardiovascular control system. The autonomic nervous system controls heart

rate via a complex feedback system, in which homeostasis is maintained by information received by the baroreceptors acting on changes in arterial blood
pressure. Sleepiness is but one of the many time-varying intra-individual factors that modulate heart rate and HRV.

to increase with increasing levels of sleepiness [12], [13].
However, it has also been found to decrease [14] or to
display unreliable changes [15]-[17]. It has also been hypoth-
esized that a sleepy driver should have either decreased or
increased sympathetic activity, depending on whether or not
the driver is struggling to remain awake. Low-frequency
(LF) power in the HRV signal, which is often used as
an indicator of sympathetic activity, has consequently been
found to decrease [12], [14], increase [13], [16], or display
unreliable changes [15], [17], [18] with increasing levels of
driver sleepiness. These differing results would make sense if
increased LF activity was found in experiments with manual
driving (due to the struggle to remain awake) while decreased
LF activity was found in studies with conditional or full
automation (since the driver is then allowed to relax and
possibly even sleep). However, all reviewed results come from
manual driving experiments. The ambiguous hypotheses are
nevertheless very convenient as they provide an explanation
regardless of the direction of the results.

For the reasons outlined above, it is relevant to question how
appropriate it is to use HRV for driver sleepiness detection
outside a controlled experimental environment. The primary
aim of this paper is therefore to investigate whether HRV
metrics alone, measured during real-road driving, can be used
for driver sleepiness detection. Preliminary results of this study
were presented by Persson, et al. [19].

II. MATERIALS AND METHODS

Two methodological approaches have been used for the
HRYV analyses in this paper: a group-level statistical approach
and a machine learning approach. Common to both approaches
was a pre-processing stage in which the ECG signals were
filtered and divided into 5-min epochs. The HRV metrics (or
features) under investigation were then calculated for each
epoch. The first methodological approach involved an analysis
of variance (ANOVA). This was done to see whether the
dataset provided results similar to those previously reported
in the HRV literature. The second methodological approach

used a standard machine learning pipeline to investigate how
appropriate it is to design a sleepiness classifier based on HRV
metrics alone.

A. Sleepiness Database

The database used in this paper consists of data from three
separate driver sleepiness experiments (see [20]-[22] for a
detailed account). To the best of our knowledge, this is one
of the largest labelled real-road driver sleepiness datasets with
data from both alert and sleep-deprived conditions. Experiment
1 included 18 drivers (8 women, mean age 41 £ 9 years)
who drove for about 90 min on a motorway in real traffic.
Each driver drove two times, once in a supposedly alert state
during daytime and once in a sleep-deprived state during
night-time. Experiment 2 included 24 drivers (12 women,
mean age 35 + 10 years) who drove for about 135 min
three times on a motorway (supposedly alert during daytime,
mostly alert in the evening, and sleep deprived during night-
time). Experiment 3 included 44 drivers (21 women, mean
age 45 + 8 years) who drove for about 90 min three times
on a rural road (supposedly alert during daytime, mostly
alert in the evening, and sleep deprived during night-time).
The participants were recruited by random selection from
the Swedish register of vehicle owners. All participants were
prepared in the same way in all experiments. Before arrival,
the participants were requested to avoid alcohol for 72 h and
to abstain from nicotine and caffeine for 3 h before driving.
All participants reported that they were healthy with good to
excellent sleep quality. The Swedish government approved the
testing of sleepy drivers on real roads (N2007/5326/TR), and
each of the three experiments was approved by the Regional
Ethics Committee in Linkoping, Sweden. The experimental car
was equipped with dual command, allowing the test leader to
take control of the vehicle if necessary.

The ECG (lead II) was measured using disposable Ag/AgCl
electrodes connected to a portable digital recording system
(Vitaport 2 and 3, Temec Instruments BV, the Netherlands)
using a sampling rate of 256 Hz. The Karolinska Sleepiness
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Scale (KSS) was used to acquire self-reported sleepiness every
fifth minute. KSS has nine levels [23]: l-extremely alert,
3-alert, 5—neither alert nor sleepy, 7-sleepy, no effort to stay
awake, and 9—very sleepy, great effort to keep awake, fighting
sleep. The reported value corresponds to the average feeling
over the past 5 min.

The KSS values are used as target values when training
the classifiers. Alternative approaches used as ground truth in
driver sleepiness studies include EEG [24], [25], reaction time
tests [26], and expert ratings based on observations [12], [15].
However, reaction time tests are difficult to administer in
real-road driving and video-based expert ratings have been
found to be unreliable [27]. EEG-based measures suffer from
noise in naturalistic settings, large inter-individual variability,
and the fact that some individuals do not respond despite
being clearly sleepy [3], [28], [29]. The main drawbacks of
KSS are that the subjective feeling does not always reflect the
actual sleepiness level [30], repeated reporting can have an
alerting effect [31], and participants may interpret the levels
of KSS differently. Advantages are that KSS correlates with
lane departures, is easily applied, and has been found to be the
measure of driver sleepiness least affected by inter-individual
variations [23]. All in all, subjective ratings seem to be the
best option.

B. Pre-Processing

R-peaks were extracted from the ECG using the Pan Tomp-
kins algorithm [32] and the RR time series were extracted
as the time difference between heart beats. The corresponding
normal to normal (NN) time series were obtained by removing
outliers using the standard deviation method [33], [34]. Here
the threshold was set to 4 standard deviations. Epochs with
more than 5% outliers were discarded. In total, five complete
recordings were discarded due to poor signal quality, and the
outlier removal step removed 13 additional 5-min epochs.

C. HRV Feature Extraction

All NN signals were divided into 5-min epochs, partly
because the KSS values were reported every fifth minute, but
also because this is the recommended minimum duration for
short-term HRV analysis [35]. This resulted in 3954 epochs.

Twenty-four commonly used HRV features were extracted
according to Table I. These 24 features make up the main
feature set, which will be referred to as the HRV feature set.
Due to the large individual differences encountered in HRV
analyses [10], [11], [17], [36], a second baseline-corrected
feature set was constructed by subtracting the mean feature
values per participant corresponding to the KSS < 5 cases.
This will be called the baseline-corrected feature set. Finally,
the time difference between consecutive 5-min epochs of
the 24 original features was computed. This feature set will
be called the time-difference feature set. All 72 features
were standardized by removing the mean and dividing by the
standard deviation.

The frequency domain features were derived from an autore-
gressive power spectral density estimate using the modified
covariance method with a model order of 32. The VLF band
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was defined as 0.003—-0.04 Hz, the LF band as 0.04-0.15 Hz,
and the HF band as 0.15-0.4 Hz. Sample entropy was
derived using embedding dimension = 2 and threshold
= 0.2 x std(NN) according to. Richman and Moorman [37].
The potentials of unbalanced complex kinetics (PUCK) met-
rics were implemented according to.Igasaki, er al. [18].

D. Statistical Analysis

The HRV metrics were analysed with mixed-model
ANOVAs using two fixed factors: Daytime (day or evening
versus night-time driving) and Sleepiness (KSS < 5, KSS = 6,
KSS = 7, KSS = 8, and KSS = 9). Participant (1-86) was
included as a random factor. The key effect of interest was
how different HRV metrics relate to subjective sleepiness. The
factors Daytime and Sleepiness are dependent, but since high
KSS levels are also common during the day, both factors
were included in the analysis. The other two factors should
be considered confounding factors. The significance level was
set to 0.01, which corresponds to p < 0.0004, with Bonferroni
correction to compensate for the 24 comparisons.

E. Sleepiness Classification

An overview of the machine learning pipeline is illustrated
in Fig. 2. The feature set was split into three parts: 30%
for feature selection and parameter tuning, 50% for training,
and 20% for testing. To make sure that the results are not
just coincidental, stemming from a certain data partitioning,
this process was repeated ten times. The final test results are
mean values across these ten repetitions. This 10-fold cross
validation will be referred to as classification-repetitions.

Three classes of subjective sleepiness were defined: alert
(KSS < 5), somewhat sleepy (6 < KSS < 7), and severely
sleepy (KSS > 8). In the case of binary classification,
the somewhat sleepy class was left out to obtain a clearer
distinction between the alert and sleepy classes [38]. The
class definitions are justified by the observation that hardly
any line crossings occur at KSS < 5, whereas a markedly
increased frequency of unintentional line crossings occurs at
KSS > 8 [22].

Feature selection was carried out using sequential for-
ward floating selection (SFFS) [39]. SFFS was wrapped
with a binary decision tree classifier, 5-fold cross-validation,
20 cross-validation runs, and a trade-off between sensitivity
and specificity as optimization score. Since SFFS often results
in low-dimensional non-redundant but noise sensitive feature
sets, the SFFS procedure was run repeatedly (20 times) on
different partitions of the feature selection set. The features
selected in >20% of the repetitions were used as the final
feature set.

Four different binary classifiers were evaluated: k-nearest
neighbours (kKNN), support vector machine (SVM), AdaBoost,
and random forest. These classifiers were chosen because they
are well established and because there is a clear difference in
complexity and computational cost between them. The kNN
used 25 neighbours and a Euclidean distance function with
no distance weighting. The SVM used a Gaussian kernel,
a heuristic procedure to set an appropriate kernel scale factor,
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TABLE I
HRYV FEATURES AND THEIR PHYSIOLOGICAL INTERPRETATION

HRY feature  Description Physiological interpretation
SDNN Standard deviation of NN intervals In short-term recordings, SDNN reflects respiratory-related PNS
activity
RMSSD Root mean square of successive differences of the NN Vagal mediation causing HF variability; more sensitive to PNS
intervals activity than is SDNN
NNS50 Number of successive NN intervals that differ by more than Reflects absolute amount of HF variability
50 ms
pNNS50 Percentage of successive NN intervals that differ by more than ~ Reflects HF variability
50 ms
meanNN Mean NN interval Mean duration between heart beats
meanHR Mean heart rate Mean heart rate
NNmax-min Average difference between maximum and minimum NN Affected by the respiration rate rather than PNS activity
intervals
HRmax-min Average difference between maximum and minimum HR Affected by the respiration rate rather than PNS activity
intervals
VLF s Absolute power in the VLF band Oscillations from the heart’s intrinsic nervous system and SNS
activation during physical activity
LFaps, LFye Absolute and relative power in the LF band. LF, is the Both PNS and SNS can contribute to LF; baroreflex activity
absolute power in LF divided by the absolute power of affects LF when the respiration rate is low (<9 bpm) and reflects
LF+HF. SNS activity when respiration rate is higher than 9 bpm.
LFpeax LF frequency peak Both PNS and SNS can contribute to the LF peak.
HF s, HF 11 Absolute and relative power in the HF band. HF,; is the Reflects PNS activity and HR fluctuations related to inhalation
absolute power in HF divided by the absolute power of and exhalation when breathing is 9-24 bpm
LF+HF.
HF eax HF frequency peak Reflects PNS efferent activity
HF resppeak Relative power in the range +0.05 Hz from the HF peak Represents the power mainly arising from the respiration rate
LF/HF The ratio of LF and HF power Low values might reflect PNS dominance, while high values
might reflect SNS when LF power mainly results from SNS
activity (respiration rates above 8.5 bpm).
& Percentage of total power found in the range of 0.1 Hz to half ~ Reflects respiration stability
of the mean HR expressed in Hz
SampEn Sample entropy Estimates how regular or complex the NN time series is
slope Slope of a fitted line to the time vs. trend differences A marker of cardiac sympathetic activation
(potentials of unbalanced complex kinetics, PUCK)
SSD1 The standard deviation of data perpendicular to the PUCK An estimate of vagal activation
slope
SSD2 The standard deviation of data along the PUCK slope An estimate of vagal activation

LF:ei BLnorm
LF+HF in an alert state (KSS < 5)

HF, rel_BLnorm
LF+HF in an alert state (KSS < 5)

Relative power in the LF band, obtained by dividing LF by

Relative power in the HF band, obtained by dividing HF by

Reflects changes in SNS and possibly also vagal activity in
comparison with an alert state.

Reflects changes in vagal activity in comparison with an alert
state

[ Feature selection 30%

PR y o
20 initial
feature subsets

¥

Training 50%

Train classifier using 10-fold

Test 20%

e P
Evaluate classifier
on test data,
repeated 10 times
with different
dataset partitionings

cross validation

One final
feature
subset

Fig. 2. Flowchart of the feature selection and classification steps.

and a box constraint level = 10. The AdaBoost classifier used
decision trees as weak learners (50 voting trees) with the
maximum number of decision splits set to 20 and a learning
rate of 0.1. The AdaBoost.M1 algorithm was used as the
ensemble aggregation method. The random forest also used
decision trees as weak learners (50 voting trees) and applied
bootstrap aggregation as the ensemble-aggregation method.
A cost function was used to avoid misclassifications of the

Accuracy
Sensitivity
Specificity
F1 score

severely sleepy class, since the dataset was unbalanced (54%
alert, 32% somewhat sleepy, and 14% severely sleepy). The
number of neighbours, box constraint level, and number of
trees, respectively, were selected by evaluating classification
performance over a range of parameter values. Except for these
parameters, the default settings in the MATLAB Statistics and
Machine Learning Toolbox version 11.1 (The Mathworks Inc.,
Natick, MA, USA) were used.
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Fig. 3. Marginalized means (circles) and 95% confidence intervals (lines)
for each HRV feature (x-axis). The five values per feature represent, from top
to bottom, KSS < 5, KSS = 6, KSS = 7, KSS = 8, and KSS = 9. The axes
were removed from the figure to emphasize trends in the HRV metrics with
increasing levels of sleepiness.

The best performing binary classifier was also evaluated
in a three-class classification setting. This was done using
both 10-fold cross-validation as outlined above and leave-one-
participant-out (LOO) cross-validation. The LOO evaluation
was added to investigate subject-independent performance.

All classification results are derived based on three different
feature sets: (i) the HRV feature set, (ii) the HRV feature set
combined with the baseline-corrected feature set, and (iii) all
three feature sets combined. This was done to investigate the
importance of a personalised feature set and to investigate the
added value of taking time history into account [17].

III. RESULTS

The ANOVA results are summarized in Table II and Fig. 3.
Almost all HRV metrics varied with the level of driver
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TABLE II

ANOVA RESULTS (F-VALUES) FOR EACH HRV FEATURE USING KSS
(DEGREES OF FREEDOM = 4) AND DAYTIME (DEGREES OF
FREEDOM = 2) AS FIXED FACTORS AND PARTICIPANT
(DEGREES OF FREEDOM = 85) AS A RANDOM FACTOR.

THE ERROR TERMS HAVE 3863 DEGREES OF
FREEDOM. SIGNIFICANT DIFFERENCES,

AFTER BONFERRONI CORRECTION,

ARE INDICATED BY

Day/night KSS Participant

SDNN 5.7 38.6* 118.4%*
RMSSD 54 25.2% 274.1*
NN50 8.8% 10.0* 220.2%
pNNS50 10.7* 11.6* 221.2%
meanNN 60.0* 48.9*% 495.3*
meanHR 61.5% 52.3% 416.8%*
NNmax-min 1.7 40.2%* 103.9*
HRmax-min 13.1* 23.0* 98.7*
VLF 15 2.2 2.7 8.6%
LF s 0.8 15.0% 26.7*
LF. 38.2% 22.4% 115.1*
LFncak 03 48 186*
HF s 5.7 4.7 105.9*
HF,q 38.2% 22.4% 115.1*
HF peak 43 5.8% 22.1%
HF esppeak 38.3* 15.0% 52.1%
LF/HF 9.7* 7.4* 40.8*
& 57.9*% 32.4% 61.1%
SampEn 24 0.6 16.3*
slope 13.9% 3.9 101.6*
SSD1 22 66.5% 200.9*
SSD2 17.5% 93.0* 90.4*
LFrel blnorm 0.2 30.4* 7.3*
HF el binorm 11.4* 17.3* 25.5%

sleepiness, except for the absolute power in VLF, the LF
peak, the absolute power in HF, sample entropy, and the slope
from the PUCK analysis. By and large, the results support the
hypothesis that sleepiness is associated with lowered heart rate,
more HRV, increased LF power (i.e. increased sympathetic
activity — fighting to stay awake), and increased LF power (i.e.
increased vagal activity). Note that the relative power in HF is
changing in the “wrong” direction, which is a consequence of
the comparatively stronger influence of LF when normalizing
with LF+HFE. Also note that the baseline-normalized relative
power in HF does not show this reversed behaviour. The
random factor participant was significant for all HRV metrics,
suggesting large inter-individual differences.

Many of these features represent similar information (Fig. 3)
and it is likely that many features are redundant. It is
therefore warranted to use feature selection to reduce the
complexity of the developed classifier. The SFFS iterations
show that both the number and selection of features varied
substantially from iteration to iteration (Fig. 4). Five fea-
tures were selected in all iterations: RMSSD, NN50, pNN50,
and mean NN and SSD1 from the PUCK analysis. When
adding the baseline-corrected feature set, many of these fea-
tures were replaced by their baseline-corrected counterparts
(e.g. RMSSD, mean NN, absolute power in LF, and SSD1
and SSD2 from the PUCK analysis). Interestingly, adding the
time-difference feature set changed the result only marginally.

The best overall binary classification performance was
achieved with the random forest classifier, but both kNN
and AdaBoost had higher sensitivity (Table III). The mean



PERSSON et al.: HRV FOR CLASSIFICATION OF ALERT VERSUS SLEEP DEPRIVED DRIVERS

TABLE III

3321

TEST ACCURACY, SENSITIVITY, SPECIFICITY, AND F1 SCORES FOR BINARY CLASSIFICATION USING KNN, SVM, ADABOOST, AND RANDOM FOREST

Test HRY feature set,
mean + SD (range)

HRYV + baseline
corrected

HRV+ baseline corrected

+ time difference

Accuracy kNN 67.2+3.5(59.6-71.1)
SVM 79.0 £2.4 (72.6-81.5)
AdaBoost 75.1£1.9 (71.0-77.6)
Random Forest 80.9 + 1.8 (76.5-82.8)

775+ 1.6 (75.3-80.1)
83.4+2.0 (80.2-86.9)
82.4+ 1.4 (80.4-84.4)
85.4+2.1 (81.9-88.7)

77.9+3.8 (71.9-85.0)
79.9+4.5 (71.1-84.9)
82.1+2.3 (78.6-85.4)
84.3+2.3 (81.2-87.8)

Sensitivity kNN 69.6 +7.8 (59.3-79.6)
SVM 43.0£10.5 (26.5-55.7)
AdaBoost 61.6 £4.7 (56.4-72.5)
Random Forest 53.5+4.8 (45.9-60.8)

724+ 6.2 (59.8-82.9)
5024 12.6 (19.8-61.5)
70.4 % 5.0 (60.6-76.1)
66.9 5.4 (55.9-73.4)

743 % 6.7 (62.3-82.6)
48.3 £ 11.9 (29.6-69.4)
69.8 + 4.5 (59.4-74.6)
65.9 + 7.6 (50.0-78.3)

Specificity kNN 66.6+5.8 (54.4-732)
SVM 88.6 £ 5.3 (77.6-96.1)

79.0+ 2.4 (73.3-82.2)
92.3+3.9 (86.3-98.4)
85.7+ 1.7 (82.9-88.8)
90.4 4 1.4 (88.5-93.4)

789+ 5.6 (70.5-88.2)
88.4 % 5.7 (75.6-95.6)
85.4+2.8 (81.2-89.4)
89.3 2.2 (86.5-92.9)

AdaBoost 78.7+2.8 (75.0-82.8)
Random Forest 88.2 £ 1.5 (85.4-90.9)
F1 kNN 47.0 £2.0 (44.5-50.0)

SVM 45.6 £4.7 (37.6-53.0)
AdaBoost 50.8 2.5 (45.7-54.7)
Random Forest 53.9+ 3.1 (46.9-57.3)

57.6 3.4 (53.9-63.7)
55.3+8.9 (31.4-63.3)
62.84+3.2(59.5-68.2)
65.9 + 4.8 (59.4-75.5)

59.1+5.1 (51.6-69.3)
50.4+ 9.8 (33.8-63.4)
62.4+4.3(57.5-69.1)
64.1 % 6.5 (51.5-72.6)

TABLE IV
TEST AND LEAVE-ONE-PARTICIPANT OUT (LOQO) ACCURACY, SENSITIVITY, SPECIFICITY, AND F1 SCORES FOR THE RANDOM FOREST CLASSIFIER

Test HRY feature set

HRYV + baseline corrected HRV+ baseline corrected +

Mean = Std (range)

time difference

Mean of classes

Accuracy

Sensitivity

Specificity

Fl1

Per class

Sensitivity “severe sleepiness”
Sensitivity “alert”

Sensitivity “somewhat sleepy”
Specificity “severe sleepiness”
Specificity “alert”

Specificity “somewhat sleepy”
F1 “severe sleepiness”

F1 “alert”

F1 “somewhat sleepy”

57.9 4 1.4 (55.8-59.9)
49.7 + 1.1 (47.5-51.1)
75.5+0.7 (74.1-76.5)
49.0 + 1.2 (46.8-51.3)

39.7+2.6 (36.9-44.1)
78.5+2.4 (73.5-81.7)
31.0+2.4 (27.2-36.6)
87.8 + 1.5 (86.2-90.8)
54.7+2.8 (48.9-57.8)
84.1+ 1.9 (79.6-85.9)
37.4+2.5(34.3-42.3)
723+ 1.7 (69.3-74.9)
37.5+ 1.8 (34.4-41.2)

64.2+ 1.5 (61.1-66.0)
57.9+2.0 (53.8-60.5)
79.3 + 1.0 (77.5-80.4)
56.9+ 1.9 (53.7-59.7)

53.7+4.3 (43.3-58.1)
83.3+ 1.3 (81.9-86.3)
36.6+2.2 (31.8-39.7)
89.2 + 1.5 (86.3-91.6)
61.9+3.0 (56.3-65.2)
86.8 % 1.1 (85.7-89.4)
493 £3.5 (43.5-54.6)
77.1+ 1.5 (73.8-78.8)
44.4+2.3 (39.5-47.4)

62.2+2.1(58.7-65.1)
55.5+3.1 (50.1-60.8)
78.4 % 1.3 (75.8-80.8)
542+3.1(49.1-58.7)

50.6 + 7.4 (39.6-62.5)
82.7+2.3 (78.9-85.2)
332+ 4.6 (26.4-40.6)
87.5+2.1 (85.1-92.2)
61.143.4 (54.5-68.3)
86.8 = 1.4 (84.9-89.6)
45.0 +5.5 (35.4-52.8)
76.4+ 1.6 (73.7-79.2)
41.1£5.1 (33.2-47.9)

LOO

Mean of classes

Accuracy

Sensitivity

Specificity

F1

Per class

Sensitivity “severe sleepiness”
Sensitivity “alert”

Sensitivity “somewhat sleepy”
Specificity “severe sleepiness”
Specificity “alert”

Specificity “somewhat sleepy”
F1 “severe sleepiness”

F1 “alert”

F1 “somewhat sleepy”

43.0 0.8 (42.1-44.3)
33.5+ 0.6 (32.6-34.6)
66.6 0.4 (66.2-67.3)
32,94 0.6 (32.1-34.0)

16.9 + 1.8 (13.9-19.2)
63.3 % 1.7 (60.9-66.3)
20.3+0.7 (19.6-21.3)
83.7+ 1.0 (82.6-85.8)
36.1+ 1.2 (34.5-38.2)
80.1 = 1.0 (78.7-82.0)
15.7+ 1.4 (13.6-17.3)
58.0+ 1.0 (56.7-59.7)
24.9 + 0.8 (24.1-26.2)

44,5 +0.9 (42.8-45.9)
33.5+0.8 (32.7-34.8)
66.9 % 0.4 (66.2-67.6)
32.7+0.8 (31.8-34.1)

13.2 4 1.6 (10.2-15.7)
67.6 % 1.0 (65.0-68.8)
19.7+ 1.2 (17.3-21.7)
86.8 0.9 (85.3-88.2)
34.340.7 (33.4-35.3)
79.7+ 0.5 (79.1-80.9)
13.7+ 1.6 (11.0-15.4)
60.3+0.7 (58.7-61.3)
24.2+ 1.3 (21.4-26.2)

44.1 +0.9 (42.8-45.6)
33.3+0.7 (32.4-34.8)
66.9 0.4 (66.4-67.6)
32.7+0.8 (31.6-34.2)

13.0 £ 1.2 (10.6-14.6)
66.4+ 1.3 (64.1-67.8)
20.5+ 1.7 (18.0-22.5)
86.0 % 1.3 (83.8-87.3)
34.8+0.6 (33.5-35.8)
79.8 + 1.2 (78.0-81.7)
13.3+12(11.0-15.2)
59.7+0.9 (58.3-60.7)
25.0 + 1.7 (22.6-27.3)

accuracy of the random forest classifier was 81% when the
HRV feature set was used as input. This increased to 85%
when including the baseline-corrected features. Adding time
history did not improve the results.

Performance dropped by about 20 percentage points for
multi-class classification (Table IV). Despite the cost function,
only a small share of the severely sleepy drivers was identified
as sleepy. To some extent (an additional 5 percentage points),
this was remedied by adding the baseline-corrected features.
Compared with the multi-class cross-validation results, the
LOO results dropped by another 15-20 percentage points
(Table 1V). This suggests that personalized algorithms, not

just personalized features, are needed in a driver sleepiness
monitoring system based on HRV.

IV. DISCUSSION

The suitability of using HRV metrics for driver sleepi-
ness classification has been evaluated. Significant effects of
sleepiness were found on most HRV metrics and the binary
classification results reached an accuracy of 85.4%. However,
the accuracy dropped by about 20 percentage points for
three-class classification, and by almost another 20 percentage
points for subject-independent LOO classification. Sensitivity
was low in general, with the worst results in the severely
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Fig. 4.

sleepy class. Apparently, the group-level results obtained with
inferential statistics do not translate well to the classification
situation in which a decision must be made based on a specific
time epoch from a specific individual.

Driver fatigue is defined as a suboptimal psychophysiolog-
ical condition caused by exertion [40]. Sleep-related fatigue,
i.e. sleepiness or drowsiness, is defined as a “a physiological
drive to fall asleep” [41] caused by sleep loss, circadian rhythm
and time since awakening. Certain characteristics of driving,
like task demand and driving environment, can produce task
related fatigue in the absence of any sleep-related cause.
Task-related fatigue can then also be subdivided as fatigue
due to overload and underload, respectively [42]. Long-term
fatigue that isn’t relived by sleep, such as chronic fatigue
syndrome, and muscle fatigue, such as after sports, are out
of scope of this paper. A summary of previous research on
driver sleepiness/fatigue and HRV is presented in Table V.
Note that differences in experimental design, state inducement,
and validation approaches make it difficult to compare results
across studies. The studies in Table V should thus only
be compared on a higher level. Here it can be seen that
Patel, et al. [43] reached an accuracy of 90% (sensitivity not
reported) with a neural network classifier. Li and Chung [44]
obtained an accuracy of 95% (sensitivity = 95%) with wavelet
analysis and an SVM classifier. Fujiwara, et al. [45] used
multivariate statistical process control and managed to pre-
dict 12 out of 13 sleep onsets. Abe, er al. [36] managed
to predict 7 out of 8 sleepiness-related accidents. Finally,

The number of times that each HRV feature was selected in the SFFS iterations.

Vicente, et al. [17] achieved a positive predictive value of
96% (sensitivity = 59%) with a linear discriminant analysis
classifier. Our achieved accuracy is lower than those reported
in these other studies. However, our lower sensitivity scores
are in line with Vicente, et al. [17]. One reason for the dis-
crepancies could be the reduced level of experimental control
in our real-road data as compared with the driving simulator
data used in most other studies [12], [18], [36], [43]-[45].
If sleepiness is the only factor manipulated in the experiment
while other influencing factors are kept as constant as possible,
then a discovered change in HRV is likely due to the altered
alertness level. In a real-road setting, the experimental control
is weakened, and the association between HRV and sleepiness
is weakened. Another reason for the discrepancies could be
that the number of participants in the other studies was
sometimes as low as 4-12 drivers [15], [18], [43], [44].
A small dataset may be justified in a within-subject design
experiment, but it does not allow for proper validation of the
sophisticated machine learning methods that are often used.
A third reason for the discrepancies could be that different
ground truths for sleepiness/fatigue have been used in different
studies.

The conclusions drawn in the studies outlined in Table V
are that HRV-based sleepiness detection “may add significant
improvements to existing car safety systems” [17], “can be
used as a fatigue countermeasure” [43], and could “contribute
to prevent[ing] accidents caused by drowsy driving” [36], [45].
We draw a different conclusion, namely that it will be difficult
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TABLE V
OVERVIEW OF EXPERIMENTAL DESIGN AND RESULTS IN THE DRIVER SLEEPINESS/FATIGUE HRV LITERATURE

Study ~N Sim/ State Ground Features Analysis/  Result Conclusion

real inducement truth classifier
road

[12] 11 Sim Monotonous Video-based  LF, HF, LF/HF  Paired #- Significant differences ~ “The study shows very
driving without observer test between conditions encouraging results that can be
sleep deprivation  ratings used to prevent drowsiness

related accidents”.

[15] 10 Road Monotonous Video-based 11 features Paired #- Significant differences “Results suggest that a
driving without observer test in 8 of 11 HRV metrics  drowsiness alarm based on HRV
sleep deprivation  ratings indexes is feasible but cannot

rely on only one index”.

[18] 8 Sim Monotonous Subjective LF, HF, LE/HF ANOVA Significant statistical “PUCK analysis of heart rate
driving without self-ratings +PUCK differences in almost variability may be useful for
sleep deprivation all subjects assessing drowsiness while

driving”.

[34] 76 Road  Sleep deprivation  Subjective 12 personalized ~ ANOVA Significant differences ~ “HRYV analysis shows promise

self-ratings features between conditions in for driver sleepiness detection”.
all HRV metrics

[17] 30 Sim Sleep deprivation ~ Video-based 96 features Stepwise Leave one [participant] ~ “Incorporating drowsiness

and or monotonous observer linear out: positive predictive  assessment based on HRV signal
road  driving without ratings discrimin  value = 0.96, may add significant
sleep deprivation ant sensitivity = 0.59, improvements to existing car
analysis specificity = 0.98 safety systems”.

[36] 27 Sim Monotonous Video-based  LF, HF, LF/HF,  Multivari  Predicted 7 of 8 cases “The possibility of realizing an
driving without observer SDNN, ate of drowsiness before HRV-based drowsy driving
sleep deprivation  ratings RMSSD, statistical ~ driving accidents accident prediction system was

meanNN, process occurred demonstrated through the driving
NNS50, total control simulator experiments”.
power

[45] 34  Sim Monotonous Sleep onset LF, HF, LF/HF,  Multivari  Predicted 12 of 13 “The proposed HRV-based
driving without based on SDNN, ate sleep onsets, with a drowsy driving detection
sleep deprivation ~ EEG RMSSD, statistical ~ false positive rate of algorithm is more promising than

meanNN, process 1.7 times per hour. other conventional methods with
NNS50, total control respect to accuracy as well as
power practical use”.

[44] 4 Sim Alert versus Percentage Entropy, SVM Leave one “Results indicate that a better
drowsy state; eye closure variance, [observation] out: real-time driver drowsiness
unclear how they kurtosis, accuracy = 0.95, detection system can be
were induced multiscale sensitivity = 0.95, developed by using wavelet-

component specificity = 0.95. based features”.

[43] 12 Sim Monotonous Video-based  Spectral image Feed- Hold out accuracy = “This HRV-based fatigue
driving with observer (30 x 30) forward 0.90. detection technique can be used
slight sleep ratings neural as a fatigue countermeasure”.
deprivation network

to use HRV for sleepiness detection in a production vehicle.
As mentioned in the introduction (see Fig. 1), there are many
time-varying intra-individual factors that can cause a change
in HRV. Stating that a particular change in HRV is due to
sleepiness alone and not to any of these other factors is
difficult, especially since other mental states such as boredom
and relaxation give rise to very similar changes in the HRV
metrics.

There is considerable individual variability in HRV and
changes in HRV are different in every person [46]. To circum-
vent this issue, the use of personalised algorithms [36], [45]
or individually normalized features [17] has been suggested.
In this study, the latter approach was used when creat-
ing the baseline-corrected feature set, something that led
to a S5-percentage-point increase in classification accuracy.
While personalised algorithms or features may account for
inter-individual variability due to age, gender, and other fac-
tors, this solution will not be able to account for time-varying

intra-individual variability that arises due to distress, anger,
boredom, relaxation, etc. [10], [11]. Thus, although some stud-
ies have shown promising results for drowsiness and sleepiness
detection based on personalised HRV-based algorithms, it is
unlikely to be possible to develop a sleepiness detection system
based solely on HRV. Multimodal systems that use HRV as
one of several inputs have therefore been suggested [47], [48].
However, when doing so, it has been found that HRV does not
contribute much when used in combination with EOG, EEG,
or vehicle measures [47], [49].

There are some inherent issues with HRV that need to be
accounted for even when personalised algorithms are used.
One challenge is that diseases such as diabetes mellitus
markedly reduce HRV to a stable but very low magnitude [50],
which in turn makes it very difficult or even impossible to
detect changes over time. The same is true for high age [51],
when abnormal HRV patterns have been observed that could
mask changes due to sleepiness observed with advancing
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age [52]. HRV is also severely affected by arrhythmia, and
extrasystolic beats must be detected and accounted for since
they increase the magnitude of the beat-to-beat variation in
heart rate. Spurious extrasystolic beats can be detected and
the time window when they occur can be excluded from the
HRYV analysis [17]. However, sleepiness cannot be evaluated in
subjects with very frequent extrasystolic beats based on HRV,
since the extrasystolic beats mask the underlying autonomic
modulation of heart rate. This means that a proportion of the
population will never be able to use an HRV-based sleepiness
detector. A limitation of the dataset used in this study is
that we have limited knowledge of the health status of the
participants. Via the background questionnaire, the participants
reported that they were of good health, did not have chest
pain/tachycardia/respiratory problems, and had good to excel-
lent sleep quality. However, we do not know whether they
have treated heart conditions or diabetes mellitus that do not
affect their general health.

V. CONCLUSION

Partial or conditional automation will transform the role
of the driver from active driving to passive monitoring. This
will lead to increased levels of fatigue due to boredom and
under-stimulation [53], and consequently an increased preva-
lence of driver sleepiness and fatigue. Finding robust driver
monitoring solutions is therefore increasingly important.

Generalising an HRV-based sleepiness detector is a major
challenge, as HRV data vary both between individuals and
over time within individuals, depending on both internal and
external factors. A successful classifier should thus make use
of driver profiles that evolve over time [37]. Future research
on HRV-based driver sleepiness characterization should focus
on complementing personalised algorithms with functionalities
able to account and control for the many confounding factors
known to affect HRV.
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