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Abstract— In this paper, we aim to provide an optimal passen-
ger matching solution by recommending ridesharing groups of
passengers from GPS trajectories. Existing algorithms for rider
grouping usually rely on matching pre-selected origin-destination
coordinates. Unfortunately, the semantics in the spatial layout
(e.g., social interactions and properties of the locations) are
ignored, leading to inaccuracies in discovering the ridesharing
groups. Meanwhile, the destinations manually entered by users
impact the accuracy of matching, as these addresses are usually
not available in a road network or are not optimal for passenger
pickup. This is particularly true when a passenger travels
in a less familiar place. Given a set of passengers and the
distribution of their destination, our approach is to compute
the ridesharing matching between passengers. The raw GPS
trajectories can be characterized by a combination of time
constraints, traffic environments, and social activities. We first
developed a PrefixSpan-prediction using a partial matching
(P-PPM) destination-prediction algorithm to mine the frequent
movement patterns from the trajectory data and determine the
confidence of the movement rules. Our method uses the total
travel time as the matching objective. Our approach is superior
to the baseline methods in terms of accuracy (increased from 46%
to 80%). We have also achieved significant improvements on other
metrics, such as users’ saved travel distance. We demonstrated
that using our proposed method, a group of passengers could save
over 19% of total travel miles, which shows that the ridesharing
scheme could be effective.

Index Terms— Ridesharing group, recommendation, destina-
tion prediction, trajectory.

I. INTRODUCTION

AS AN alternative means of traveling short distances,
ridesharing can help alleviate traffic congestion [1] and

road wear and reduce air pollution, and energy consumption
[2]–[4]. As a simple yet effective form of ridesharing, “slug-
ging” allows the origin or destination of the passenger not to
be on the way of a route of a driver [5]. Slugging is a unique
form of ridesharing that has been around in the Northern
Virginia and Washington, DC area since the 1970s, shortly
after the high occupancy vehicle (HOV) lanes were opened for
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carpooling and vanpooling [6]. To use the HOV lane, a driver
might be able to pick several passengers that have routes
“covered” by his own. Passengers may be asked to meet at a
specific location (e.g., points of interest (POIs) and bus stops)
to take the ride and will be dropped at a particular place [7].

Considering multi-passenger slugging, people must share
time and space resources with others in the same car simul-
taneously [8]. A major issue in ridesharing is passenger
matching [9].Previous studies found that ridesharing only with
friends or colleagues is restricted since the ridesharing is
provided without considering a large number of potential
participants with similar interests [10]. Zhang and Zhao [11]
stated that optimal ridesharing can be achieved based on
the interests of all individuals in a system. In real-world
ridesharing, a set of passengers may be interested in pick-up
points and destinations. For instance, commuters often would
like to accompany others having the same routes [12]. Since
they may prefer to travel together [13], it is possible to select
common destinations to which passengers may agree to ride-
share [14] and divide passengers into travel groups that fit in
a car by capturing connections in the trajectory data. Khan
et al. also showed that better ridesharing arrangements are
possible and further enjoyable when riders agree to join a
ridesharing group and reach a decision [15] in ridesharing
plans, rather than going to their pre-chosen destinations by car
randomly. A positive understanding of the role of common
destinations in ridesharing is an important prerequisite for
addressing passenger matching.

A typical form of slugging, called as origin-destination
(OD)-slugging, is investigated herein. The passengers walk to
the origins of the drivers, board at the departure time, debark
at the drivers’ destinations, and then walk to their destinations
[16]. A case with one driver d , who is the owner of the car,
and three riders r1, r2 and r3 is considered. They want to go to
Bell Tower, Xi’an, where parking fares are costly and there are
many close-by locations to visit. They may not have a specific
starting attraction in mind. Fig. 1 depicts the locations of riders
and their origins. In the optimal solution, POIs p1, p2 and p3
are presented as their destinations. d can pick-up r1 and r2 at
his/her origin, q1, and drop them off at d’s destination, i.e., q2;
r1 and r2 then walk to p1 and p2, respectively. r3 goes to p3 by
another car. If r1 and r2 go to their pre-selected destinations
without first agreeing on common destinations and then
joining a group, the total travel distance for all vehicles
increases. Therefore, agreeing on destinations and grouping
a set of riders related through spatial proximity is especially
useful for producing further benefits for ridesharing [17].
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Fig. 1. Illustration showing that the total travel distance with
ridesharing for all cars is 2+0.5=2.5 and without ridesharing is
(1+1+2+1)+(0.5+1+2+0.5)=9.

In this paper, we develop a method to predict the desti-
nations accurately, detect groups in trajectories, and divide
the set of passengers into optimal groups that fit in a car.
Existing methods for optimizing ridesharing usually rely on
matching a driver and rider with a pre-selected OD and
location data [18], [19]. Unfortunately, real group relationships
may be missed. Hence, we focus on selecting groups based
on trajectory-related information (e.g., spatial dispersion [20],
temporal duration, and movement velocity) of individuals and
the semantic properties of the space. In addition, extra work
for the users to enter the full name of the destination would
significantly degrade the passenger experience [21]. Knowing
the behavioral factors that influence destination choices and
identifying the destination to which the user wants to go will
serve as a beneficial modeling tool for transit authorities [22]
to extend existing shared mobility services. Unlike existing
methods [23], [24] that attempt to suggest the nearest location,
to which passenger might not be interested in going, from
the actual destination, we take the sequences of each user’s
historical spaces as the candidate set for destination prediction.
Thus, it is highly likely that the passengers will regard the
predicted destination as an intended location [21], [24], accept
the recommendation, and be interested in sharing any rides.
Finally, an optimal group of riders whose proximity similarity
is likely a manifestation of shared relationship is detected to
minimize the total travel time. The contributions of the paper
can be summarized as follows:
• We generalize OD-slugging by allowing riders to agree

on destinations and form a group that fit in a car. The
behaviors of participants are explicitly modeled.

• We define a new group discovery problem. We solve
it by generating the semantic features of the spatial
layout, learning the possible distribution of the intended
destination, and imposing constraints on the extra walking
distance and additional waiting time, thereby reducing the
total travel time.

• Our extensive experiments demonstrated that our method
is efficient and can be deployed in real-world applications.

The rest of this paper is organized as follows. In Section II,
we briefly review the existing literature. In Section III,

we present the group recommendation system and Section IV
introduces the destination prediction system. We provide
experiments that show the effectiveness of our proposed algo-
rithms and end by discussing the limitations of the information
used in the group recommendation as well as future directions
to overcome these issues.

II. LITERATURE REVIEW

In contrast to new forms of shared-use mobility, slugging
has been in existence for over 30 years and is entirely run
informally by its passengers. Researchers have been fascinated
by this phenomenon and have conducted studies in the past.
Shaheen et al. analyzed the choice factors of slugging in San
Francisco through 16 interviews with drivers and passengers
[25]. They pointed out flexibility is an essential motivation
for sluggers, and discussed the changes of behaviors, e.g.,
the distributions of departure and waiting times as well as
the walking distance. In slugging, people must share time
and space resources with others in the same car simultane-
ously. A person then becomes more dependent on his/her
partners when ridesharing. Therefore, it is better for indi-
viduals to find a regular partner when sharing a ride [26].
Wang et al. [27] developed a social taxi-sharing system based
on space-dependent preferences to improve the single driver-
passenger match rates. Although previous researchers [28]
investigated the idea that people may feel more comfortable
when sharing rides with people who are friends, family, and
colleagues, this kind of trust conscious ridesharing is either too
restricted or too relaxed to be practical [10]. Wang et al. [29]
also discussed that limiting ridesharing to friends while reject-
ing strangers also reduces ride choices and increases the detour
cost; specifically, the spatial friendship distribution is sparse.
Instead, riders further seek stranger car-mates that have similar
preferences on travelling instead of being from the same
household or friends.

In this paper, we study group recommendation from trajec-
tories, aiming to identify groups of passengers [10] from tra-
jectory data based on additional behaviorally driven markers of
individual movement. The driver and all the passengers must
agree on the costs and schedules, including the position and
temporal elements. Furuhata et al. [30] classified the demands
of ridesharing participants based on what information was
used to form driver-passenger matches. The routing, OD-pairs,
and departure or arrival times are primary criteria for seeking
ridesharing participants. Most of the current methods are more
focused on accurately matching such information predeter-
mined by passengers. Bakkal et al. [31] proposed a novel
method for ridesharing group recommendations. The Neo4j-
based spatial-temporal tree was established using trajectory
data to extract the varying time and spatial data. Passengers
with similar travel times and locations were recommended to
join a group. Rigby et al. considered vehicle accessibility as
a ridesharing service. To improve the accuracy of pick-up,
the proposed OppRide developed the network time prism with
a road network to represent the service. A group of the pas-
sengers could subsequently be informed where they should be
boarded and dropped [32]. SaRG [10] was presented to group
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passengers according to their social connections, i.e., each
member of the ridesharing group should have acquaintance
relationships (e.g., friends or colleagues). To meet the social
comfort and trust in ridesharing, SaRG grouped the members
whose trips were similar to that of the driver and were
familiar to each other. However, there are a few different
criteria, such as pick-up areas within a passenger-specified
radius from specific addresses, predetermined meeting spots
with a reasonable time window, and travel purpose, e.g., going
home during school breaks [10]. Differences in the criteria
selected may yield sub-optimal recommendations for a group.
For example, OD-pairs and time cannot be applied well for a
group recommendation in dynamic ridesharing due to the lack
of knowledge of routing, leading to the inability to fully pick
up the riders en route.

For existing matching methods, passengers manually input
their requests and negotiate with driver(s) using additional
communication channels (e.g., voice or text) to confirm an
accurate pick-up location. It incurs extra work for the passen-
gers to enter such information. The destination prediction is
helpful to inform the passengers of the route and at which time
they should be boarded. Thus, the passenger experience would
be enhanced if the intended destination could be accurately
predicted when a passenger submitted the request. Desti-
nation prediction mainly captures passenger preferences on
movements and social interactions from trajectory data. Most
existing approaches predict the destination according to the
existing trip based on history trajectories. They typically use
a Markov model to identify the transfer probability between
two near neighbors and focus on the accuracy of provisioning
[33]. For example, T-DesP model was proposed [24] to predict
the destination by a Markov model and solved the problem of
data sparsity by using a content-based tensor-decomposition
method. Association rules were also introduced for destination
prediction to detect the many spaces visited from a passenger’s
historical trip data. Rules with respect to movement patterns
were then generated to conduct a match between the next loca-
tion and common areas [34]. Lian and Xie [35] considered the
correlation between a passenger’s points of interest and his/her
historical trip locations to discover the frequent subsequence
of trajectories for prediction.

How to identify the destination to which a passenger wants
to go is still a problem. Additional semantic information
(e.g., activity and waiting time at specific locations) that is
especially useful in capturing such preferences is ignored when
employing a raw trajectory from GPS-enabled devices. Our
work can accommodate various latent attributes embedded
within the raw trajectory data and predict a destination list
when a passenger requests the ridesharing. To achieve the
benefits of ridesharing, it is possible to force riders to agree on
destinations and to group a set of riders related through spatial-
temporal movements. This helps to improve the willingness
of the riders and the detour tolerance to share rides. For this,
Wang et al. [27] employed a social network to achieve a taxi-
sharing matching for higher travel satisfaction with persons of
different affinities. Instead, we sought a group consisting of
strangers with similar travelling preferences instead of being
from the same household or friends or matching between a

driver and single rider. Our study is most similar to work
done by Ma and Wolfson [16], who also examined passengers’
preferences in terms of travel time delays. However, we con-
strained the grouping of passengers by vehicle capacity, spatial
proximity, and temporal duration, and measured the delay of
the group by comparing those of all the members.

III. GROUP RECOMMENDATION SYSTEM

IN OD-SLUGGING

We first introduce some notations. It is assumed that there
is a driver u and passenger v, each with travel plans.

Definition 1 (OD-Slugging): An OD-slugging is defined as
a pair (u,V ) with driver u′s path, i.e., P , where V denotes a
set of passengers. The pick-up and drop-off location of v ∈ V
are along the path P , and each origin or destination of v is
not on the path.

Passengers and drivers must negotiate [36] in advance to
determine all the details of the ride, including the ride time and
the location to pick up and drop off the passengers. In general,
the negotiation describes a 3-way handshake consisting of
(1) the passenger making a request via an app, (2) the system
matching and sending options to the passenger, and (3) the
passenger receiving and accepting the arrangement. Our study
on negotiation is most similar to work done by Dogru [37],
who also examined the route matching by delivering the
requests and offers of the system. However, as opposed to our
work, the process of negotiation occurred between a single
rider and a driver, not between the ridesharing groups and a
set of drivers. Furthermore, there is no need for a passenger
to create a route by entering a destination and desired stops
in our model. The negotiation enables an automatic matching
procedure between a group of passengers and the most suitable
driver nearby.In slugging, a driver may pick-up and deliver
multiple passengers to their destinations. Therefore, it is
essential to assign a group to drivers optimally in a negoti-
ation. Fig. 2 shows the negotiation model of the system in
OD-slugging. The mobile connection and work flow between
passengers and drivers are automatically completed through an
existing ride service system, e.g., DiDi. A system receives and
analyzes the requests of passengers, such as origin, departure
time, acceptable waiting time and walking distance. The
system subsequently analyzes the request according to the real-
time supply responses of nearby drivers and other passengers’
demands. A recommendation procedure between a group of
passengers and the most suitable driver nearby is implemented
accordingly, including destination prediction and optimizing
travel time of a group. The matched driver and passengers
will receive the information, including pick-up locations and
associated departure time for the passengers and the drop-off
locations for the driver.

Detailed information about the notation used in Section III
and IV is provided in the appendix.

A. Group Recommendation Model

The ridesharing group recommendation system aims to
divide riders into groups that fit in a car and minimize their
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Fig. 2. Negotiation model in OD-slugging, including (a) passenger’s destination prediction (b) nearby passenger search, and (c) analysis of travel time of a
group.

travel time. The trajectories in a specific ridesharing group
exhibit similarities in the movement-related features.

We considered the scenario of a single driver with multiple
passengers, in which passenger-passenger pairs are discovered
based on the commonly used criteria (i.e., location, destination,
and ride time) and behaviorally-driven markers of individual
movement. Due to the worsens traffic congestion, passengers
may experience excess waiting times or even fail to obtain
a ride. Thus, we extend the grouping criterion to consider
the markers, i.e., waiting time from the presence of each
passenger to the departure of a vehicle. The vehicle will
pass by somewhere within walking distance of the passengers.
We also introduce another marker, i.e., the walking time of a
passenger between the location of origin/drop-off and pick-
up/destination, into the grouping criterion.

For a given passenger vi ∈ V (i = 1, 2, · · · , I ) and
driver u,the slugging recommendation is expressed as a matrix
Mu = (mij )I×I ,

mij =
{

1, v j is recommend to be a group with vi

0, otherwi se 1 ≤ i, j ≤ I

In this scenario, a driver picks up H passengers at most
during his trip. This implies a necessary condition for the
feasibility of a match between driver u and a ridesharing
group: only if ∀i,∑I

j=1 mij ≤ H, i �= j . Each passenger’s
requests on departure arise at their place of stay. The vehicle
is assumed to be traveling on the shortest path between a
set of locations for picking up and dropping off, where the
travel time is independent of the flow [38]. For each passenger,
whether they would accept the recommendation is based on
their interests in saving travel time.

Definition 2 (Ridesharing Group): Given a passenger-
passenger pair (vi , v j ) and their OD pairs and time win-
dows, a ridesharing group for slugging is defined as

Gu = {(vi , · · · , vH )|rank(Mu) = 1}, where the following
is assumed:

1) The distance from the group to a driver is the maximum
network distance from every group member’s OD pairs to
those of driver u, which is calculated as,

do(u, Gu)= max
vi∈Gu

do(u, vi ), d∗(u, Gu)= max
vi∈Gu

d∗(u, vi ) (1)

Equation (1) yields the distance for each pair incrementally
by Dijkstra’s algorithm over a road network.

2) Each passenger, vi , arrives at the pick-up location in
advance. The additional waiting time for traveling together is
denoted as the time difference between all the vi ’s arrivals and
u’s departure. The extra time cost associated with walking is
do(u,vi )

V , where V denotes the walking speed. tw(, ) indicates
the time difference between two points.

T W (u, Gu) = max
vi∈Gu

tw(u.t, vi .t + do(u, vi )

V
) (2)

Equation (2) allows the specification of a maximum passen-
ger waiting time at the pick-up points.

The critical problem for the ridesharing group recommen-
dation is to search similar movement patterns characterized by
passengers’ OD pairs and departure times. We define the issue
of group recommendation in OD-slugging as an optimization
for minimizing the travel times of passengers, which, given
a driver considering the route and time, returns the top k
pairs of passengers from the candidate sets that are highly
similar to each other (ranked by their similarity values of OD
pairs). Therefore, we divide the group recommendation model
into two sub-models. One model predicts each passenger’s
destination, and the other model formulates an optimization
problem to minimize the travel times of passengers. The
relations between the two models are that the destination
POIs are presented to find a set of riders whose origins and
destinations are in a small distance range. We can subsequently
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Fig. 3. Example of a single driver, ridesharing group arrangement.

group H riders by computing the group’s total travel time.
Finally, we identify the optimal group.

B. Optimization Model

In our system, multiple passengers can be recommended
to travel together; thus, all these passengers contribute to the
travel time. We set up the grouping criterion for two passengers
by their extra walking distance and additional waiting times.

If a driver would like to share a ride with some passengers,
the passengers will arrive at the pick-up location before the
driver’s departure. Thus, if two passengers v1, and v2 are
grouped as Gu , then they can cover their walking distances
(i.e. do(u, vi )(i = 1, 2)) in the time interval of T W (u, vi ). hi

indicates the constraint on walking; that is, hi = 1 means
v1 and v2 can travel together because both can arrive at
the pick-up location in advance, and it is 0 otherwise. An
OD-slugging trip includes the joint trip and the four separate
trips. Equation (3) can be used to calculate the potential travel
time of a ridesharing group of driver u. An illustration of
Eq. (3) is shown in Fig. 3.

We seek to group passengers in the system in a way that
minimizes the total travel time. v1’s and v2’s travel time on
slugging trips is T T (u, Gu), which includes the time interval
from vi ’s arrival to departure of driver u, i.e., T W (u, Gu), and
the time taken to walk towards vi ’s destination. In particular,
the travel time equals 0 if no one is recommended to share a
ride for u, i.e., hi = 0.

T T (u, Gu) = (T W (u, Gu)+ V + d∗(u, Gu)

V
)hi − 1,

hi =
⎧⎨
⎩1,

do(u, Gu)

V
≤ min

vi∈Gu
T W (u.t, vi .t),

0, otherwise
(3)

As mentioned above, there is a constraint in our model:∑I
i=1 hi ≤ H , which means that each driver can deliver at

most H passengers at a time, leading to the following group
recommendation problem, where the size of ridesharing group
is H . ⎧⎨

⎩
min
hi ,H

T T (u, Gu),

s.t .
∑I

i=1 hi ≤ H, hi ∈ {0, 1}.
(4)

In slugging, we provide optimal matches between potential
passengers for a ridesharing group by predicting destinations
of the passengers. First, we search the passengers with requests

Algorithm 1 Ridesharing Group Discovery

Input: passenger set PS, passenger v ′s request Tv =
(v.o, v.d), driver u′s offer Tu = (u.o, u.d, u.t), departure
time of a location levt ime, walking speed V , a set SC1 = ∅,
searching radius θd = do(u, Gu), time span for waiting θt =
T W (u, Gu), ‖, ‖ denotes the road network distance between
two spatial points, and destination set P∗ for all passengers
Output: Gu

1: for each v in PS do
2: finding v ′s a stay point loc which is apart from u.o less

than θd

3: t1 = ‖loc,u.o‖
V

4: if tw(u.t, t1 + loc.levt ime) ≤ θt then
5: set loc to be v.o
6: put v, v.o, t1 in SC1
7: else
8: delete v
9: end if

10: end for
11: while si ze(Gu) < H do
12: for i = 1 to si ze(SC1)− 1 do
13: P∗ ← P_PPM(vi )
14: set loc which has maximal probability in P∗ to be vi .d
15: calculate TT(u, vi )
16: put vi in Gu

17: end for
18: end while
19: find the H passengers who has minimal TT(u, Gu)
20: return Gu

near the driver’s origin in radius and time and subsequently
predict the destinations of these passengers. Finally, a rideshar-
ing group of H potential passengers with the minimum
travel time is selected. Algorithm 1 describes the detailed
procedure. A similarity search will obtains the driver-rider
pairs with geographic proximity and time constraints (lines
2-6 in Algorithm 1). It then calculates the travel time of each
pair to obtain all possible group subsets Gu for u after each
enumeration of similarity search (lines 15 and 16). We return
the recommendation Mu for each of them with key (u, Gu).
The top-k vi choices minimizing the T T consists of each
group Gu . To support the group recommendation, the function
P − P P M(vi ) in line 14 from Algorithm 2 obtains the
destination set P∗ and identifies vi ’s destination in line 15.

IV. DESTINATION PREDICTION

In this section, we describe our proposed destination-
prediction model. By analyzing many users’ trajectories,
we discovered that the same passenger tends to go to a fixed
set of location types. We supposed that the location type
is an essential factor for predicting a passenger’s intended
destination. We modeled the probability distribution of a
passenger’s destination using our proposed P-PPM algorithm,
in which the passenger’s historical departure longitude, latitude
and time are utilized.
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Algorithm 2 P-PPM Destination Prediction
Input: trajectory model Tra_Loc, minsup, set of rules and

their confidence R, set of frequent movement patterns F P ,
semantic trajectory model Tra_ST , set of the rules matching
successfully R∗
Output: destination predicted D
1: F P = Pre f i x Span(<>, 0, Tra_ST )

2: for each Q
K

in F P do
3: determine RQ K and conSK

4: put RQ K , conSK into R
5: end for
6: for ( j = h; j ; j −−) do
7: match Sj from Tra_ST with R
8: if RQ K in R includes the Sj as one of the front items

then
9: put RQ K in R∗

10: break
11: end if
12: end for
13: for each Li in T ra_Loc do
14: pi = P P M(N, T ra_Loc)
15: match Si of Li with R∗
16: p′i = ω · pi + (1− ω) · conSi

17: end for
18: take Li as the candidate destion D
19: return D

A. Model Description

1) Semantic Trajectory Model: A trajectory model that
indicates the way a passenger v traveled in the past
sequentially over a 1-d period is defined as T ra_Locv =
loc0, · · · , loci , · · · , loch, (h > 1), where loci repre-
sents a location from the trajectory database. loci =
(Li , arvt ime, levt ime), which is defined according to the lat-
itude (lat) and longitude (lon) of a location Li , the arrival
time (arvt ime) and departure time(levt ime). All m histori-
cal trajectories of passenger v are collected in T rav =
(id, Tra_Locv ), id = 1, 2, · · · , m, where id distinguishes the
trajectories.

Our previous study [39] suggested that the trajectory model
can be characterized with semantic information using a com-
bination of time constraints, traffic environments, and social
activities. We have not generated a bag of words, similar to
Wordnet [40]. However, similar to work done by Zheng et al.
[41] and Yan et al. [42], we focus on the semantic information
of a location, such as properties of the location service-visiting
behaviors, generate the semantic features, and calculate the
semantic similarity between trajectories using these features.
Unlike Liu and Wang’s work [20], which also extracted
the semantic features from the trajectories to measure the
stationary distribution of the object’s residency probability on
different semantic sites, we consider service-visiting behavior
as a manifestation of social activities. Service-visiting behavior
can tell us exactly what a passenger prefers and be recognized
by associating the trajectory histories with the major POSs
(points of service) (e.g., types of service in a mall).

TABLE I

EXAMPLE OF SEMANTIC TRAJECTORIES FROM A PASSENGER

Definition 3 (Semantic Trajectory): A semantic trajectory
is defined as a sequence of trajectories T ra_STv = Si ,
(1 ≤ i ≤ h), with a type mapping function τ : L → S, where
each S ∈ Tra_STv is one semantic type associated with Li .

For example,τ : L1 → “Science and education′′ implies
that the semantic type of the location is science and education.
Similarly, S_T rav = (id, Tra_STv ), id = 1, 2, · · · , m is
a set of historical trajectories with semantic information of
passenger v. Table I displays the semantic trajectories of a
passenger over four days.

2) Prediction Using Trajectory Dataset: We employed the
PPM model [43] [44] for predicting the intended destination.

Definition 4 (Contextual Sequence): For each Li = locn+1
in T ra_Locv , a contextual sequence, locN

n , is a sequence of
length N where locn is the destination, formalized as locN

n =
locn−(N−1), . . . , locn−1, locn .

Thus, by looking for the segments of trajectories with
the same locN

n in Tra_Locv , we can predict the probability
distribution of Li from the number of trajectories observed
based on the PPM model. We calculate the probability pi

of passenger’s next destinations based on the contextual
sequence. f (xi |locN

n ) represents the number of locN
n where

xi is the destination, S(locN
n ) denotes the total number of

locN
n of different destinations, and A(locN

n ) describes the
set of destinations whose the contextual sequences are same
with locN

n .

pi = p(Li |locN
n ) = f (Li |locN

n )

S(locN
n )

,

S(locN
n ) =

∑∣∣A(locN
n )

∣∣
i=1

f (xi |locN
n ), xi ∈ A(locN

n ), (5)

Equation(5) shows that, given an Li in L, if there are a
sequence of trajectories being the same as locN

n , the probabil-
ity pi that indicates Li would be a destination is determined
and returned by p(Li |locN

n ). Otherwise, it begins to decrease
N by 1, updates the contextual sequence to be locN−1

n for
predicting using p(esc|locN

n ). The “esc” in Eq.(6) indicates the
escape code that is provided in the PPM model to terminate the
procedure. p(esc|locN

n ) indicates the prediction probability of
the escape code of locN

n , f (esc|locN
n ) denotes the frequency

of escape code of locN
n , and f (esc|locN

n ) = |A(locN
n )|.

p(esc|locN
n ) = f (esc|locN

n )

S(locN
n )+ f (esc|locN

n )
, (6)

We then decrease f (esc|locN
n ) by 1, identify the number of

locN−1
n in T ra_Locv and search the sequence of trajectories

being the same as locN−1
n in T ra_Locv . If there is no such

sequence, we continue to decrease the frequency of the
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Fig. 4. Illustration of PPM model, where each location in T ra_Locv and its
two followers form a branch (i.e., N = 3). Each node includes the location
and associated frequency.

escape code until finding the contextual sequence locN−r
n in

the (r + 1)th round. The probability is then calculated as:

pi =
[∏N

j=k+1
p(esc|loc j

n)

]
·p(Li |lock

n), k=N−r,

p(Li |lock
n) =

f (Li |lock
n)

S(lock
n)+ f (esc|lock

n)
, (7)

If no trajectory is found while the frequency of the escape
code equals 1, we assign the pi to be 0. Thus, we can
determine the predicted destination with the maximum prob-
ability and predict the destinations of a ridesharing group
by traversing from locN

n to loc1
n in each member’s historical

trajectories.
Example: Given T ra_Locv = L1, L2, L6, L1, L3, L1, L5,

L1, L2, L6, L1, we can structure the PPM model based upon
a tree. Fig.4 illustrates that there are three length-1 contextual
sequences of L1’s, that is, 〈L3〉 , 〈L5〉 and 〈L6〉, where the
number of L6 is 2 in Tra_Locu . The probability for the
destination L3 is calculated when its length-2 contextual
sequence is 〈L6, L1〉. Since there are no contextual sequences
of L2, PP calculates the probability of escape code and obtains
the prediction probability.

p3 = f (L3|L6 L1)

S(L6 L1)+ f (esc|L6L1)
= 1

1+ 1
= 1

2
,

p2 = p(esc|L6L1)× p(L2|L1) = 1

1+ 1
× 3

4+ 3
= 3

14

3) Mining Frequent Movements: We train the PPM model to
calculate the probability of passengers’ historical destinations
based on departure longitude, latitude and departure time.
It then provides a list of the predicted destinations ranked
by the probability. To further optimize the prediction effi-
ciency, we consider the semantic information of the trajec-
tories, extract the frequent movement patterns, and analyze
the possible service-visiting behaviors at a certain location.
The association rules indicating the relations between different
frequent movement patterns are used to improve the accuracy
of prediction.

Given a trajectory T ra_STv , Qk is the sequence of K terms,
Sj , that is Qk = S1, · · · , Sj , · · · , SK . Given the number, q ,
of trajectories including Qk in S_T rav , the support rate refers

TABLE II

EXAMPLE OF FREQUENT MOVEMENT PATTERNS WHERE minsup=0.4

to the ratio of the number of trajectories including Qk to the
total number of trajectories (assumed to be m) in S_Trau ;
that is, sup(Qk) = q

m . When sup(Qk) > minsup, Qk is
considered to be a frequent movement pattern. minsup is a
predefined minimal support rate. In this paper, we employ the
PrefixSpan algorithm [45] to extract the frequent movement
patterns form S_T rau .

Example: By extracting from the semantic trajectories given
in Table I, we construct the frequent movement patterns and
associated support rate. In Table II, Q2 = S1, S2 is the
generated frequent movement pattern using the PrefixSpan
algorithm, where S1 and S2 denotes the semantic types of
“Accommodation,” and “Medical”, respectively. There are
three movement patterns including Q2 in S_Trau ; thus,
the support rate of Q2 is 0.75, based on four sequences in
total.

Definition 5 (Movement Rule): Given a frequent move-
ment pattern Qk = Sj , (1 ≤ j ≤ K ), the movement
rule RQ K is defined as

〈
S1, · · · , Sj , · · · , SK−1

〉 ⇒ 〈SK 〉,
where

〈
S1, · · · , Sj , · · · , SK−1

〉
and 〈SK 〉 are the antecedent

and consequent of RQ K , respectively.
Therefore, the confidence of the movement rule indicates

the possibility of its consequent according to its antecedent,
expressed as follows, where sup(S1, · · · , SK ) is the support
rate of given sequence (S1, · · · , SK ).

conSK = con(RQk ) = sup(S1, · · · , SK )

sup(S1, · · · , SK−1)
, (8)

Therefore, by detecting the frequent movement patterns
from a passenger’s historical semantic trajectories, it is possi-
ble to predict the semantic type of destination.

B. P-PPM Destination Prediction

We propose a P-PPM algorithm that employs the PPM
model for destination prediction, extracts the frequent move-
ment patterns to define several rules, and determines the
confidence of rule for improving the prediction accuracy.
Fig. 5 illustrates the destination prediction.

Algorithm 2 gives the process of the P-PPM algorithm.
Given the Tra_Locv , with respect to a passenger v, there is

a location locn+1 = Li , a length-N contextual sequence locN
n

of locn+1, and the semantic trajectory model T ra_ST N
n =

Sn−(N−1), · · · , Sn .
We first employ the PrefixSpan algorithm to extract the set

of frequent movement patterns, F P , satisfying the constraints
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Fig. 5. Destination prediction for a ridesharing group, where the
sequences of each passenger’s historical travel destinations are taken as the
candidate set.

on minsup in T ra_ST N
n by deleting the patterns with a

length of 1. F P = Qk(k > 1) (lines 1 in Algorithm 2).
For each pattern in F P , a set of movement rules, R, is then
identified, where R = RQ K , and the confidence of each
rule is determined. Next, we search all movement rules that
regard the items of Tra_ST N

n as their antecedent in R.
If nothing is found, T ra_ST N−1

n is used as the antecedent
of the rule; then, the search is executed repeatedly until all
the rules have been compared with the antecedent selected.
A set R∗ of the rules matching successfully is also generated
(lines 7-13). We subsequently build a destination-prediction
model to predict the probability pi of each candidate Li in
T ra_Locu . Finally, we consider the Si of each Li as the
consequence of a rule to compare all rules in R∗ and compute
the rule confidences of all candidates to obtain the confidence
set Con∗ = conSi (1 < i ≤ h). If the match does not work,
the confidence returns zero.

Through the confidence, the probability pi of each candidate
Li can be refined as follows:

p′i = max
1<i≤h

(ω · pi + (1− ω) · conSi ) (9)

ω ∈ [0, 1] is the trade-off factor for PPM-based prediction
and correction components. When ω = 1, only a PPM-based
prediction is used; when ω = 0, only the frequent movement
patterns are used.

V. EXPERIMENT

In this section, we evaluate the proposed group recommen-
dation and destination prediction model. For the destination
prediction model, we compare our proposed method with PPM
and Markov methods using the Geolife dataset [46] for Bei-
jing, China. The dataset was collected in (Microsoft Research
Asia) by 182 users over three years (from April 2007 to
August 2012). A GPS trajectory of this dataset was repre-
sented by a sequence of time-stamped points, each of which
contained the information of latitude, longitude, and altitude.
The dataset includes 17,621 trajectories with a total distance
of about 1.2 million kilometers and an entire duration of

Fig. 6. Departure time, longitude and latitude distributions Shuangyushu
Dongli and Yuyuantan Park (places in Beijing).

48,000+ hours. Furthermore, the set of points of interest
(POI) covering 60% of Beijing was also used to identify
the types of each location and define the semantic trajectory
model. To solve data sparsity problem [47] and improve the
performance of prediction, we first divided the area of the
city center into 50 × 50 cells, each with a side of 500 m,
and obtain 2,500 grid centroids. We referred to Han et al.’s
work [48] and calibrated the raw trajectories by employing
the grid centroids as the anchor points. We skimmed over
the technical part of trajectory calibration since it is not the
focus of this paper. Finally, we extracted 3891 stay points and
obtained the dataset consisting of 528 semantic trajectories
related to the above points. For the group recommendation
model, we compare our model with two other (PPM- and
Markov-based) methods using multiple evaluation criteria.

Fig. 6 shows the three-dimensional distributions of the
departure time, longitude and latitude(levt ime, lon, lat) for the
two different destinations Shuangyushu Dongli and Yuyuantan
Park of this user. We can see that the three-dimensional dis-
tributions can easily distinguish the two different destinations.

Two sets of experiments were conducted for validate
destination-predicting algorithm performance and evaluating
the effectiveness of the group recommendation. For drivers’
benefits, parameter H was set to 2 for rides with three people.
The group recommendation system affects many core metrics.
Among these metrics, we chose several important ones [49],
which are listed in Table IV.

A. Destination Prediction Experiments

1) Parameter Study: We randomly split the Geolife dataset
into training and test datasets using a ratio 7:3, i.e., 70% of the
data were used for training and the remaining 30% for testing.
It has been suggested that the best prediction performance can
be achieved when the order N of the Markov model is set
to 3 [50]. When the order was increased, more considerable
computing resources are required, leading to poor prediction
accuracy. Owing to the PPM model being developed from the
Markov model, the order of N was set to 3 for predictions
using the P-PPM model.

We study the hyper-parameters ω, which is the trade-off
term for combing PPM-based prediction and correction com-
ponents. The result is shown in Fig.7. The prediction accuracy
decreased when the value of parameter ω increased from 0.2 to
0.55. The accuracy may not vary if we further increase ω.



1328 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2021

Fig. 7. Parameter study of P-PPM when varying ω.

Based on the curves, setting ω to 0.2 was reasonable because
both objectives were combined most appropriately.

2) Performance Analysis: We compare our proposed model
with the following three baseline methods.
• Traditional Markov Model. The traditional Markov Model

obtains the transition matrix. The location that has the
largest cumulative transition probability from the others
is regarded as the predicted destination.

• PPM model. PPM identifies the destination by calculating
the number of contextual sequences from the history
trajectories.

• Sub-Trajectory Synthesis (SubSyn) [47] method. SubSyn
aims to address the data sparsity problem. It decomposes
the history trajectories into sub trajectories and combines
them into different new trajectories to improve the cov-
erage of trajectories.

We compared three algorithms in terms of prediction accu-
racy in Fig. 8. The figure shows that the PPM and P-PPM
algorithms had the highest accuracy when N was 3, while the
accuracy decreases as N increased. Thus, an increase in the
lengths of contextual sequences led to complexity in searching
the trajectories with the same lengths. Due to the data sparsity
problem, it may not find such trajectories for matching, which
resulted in a declining accuracy. This also illustrated that
early historical trajectory has little effect on the destination
prediction, as proposed in [50]. The accuracy of the P-PPM
model can reach 80%, while those of the Markov and PPM
models were only approximately 46% and 66%, respectively.
The P-PPM algorithm had evident advantages in accuracy. The
improvement results illustrated that allowing an analysis of
a passenger’s interests in the movement patterns in a spatial
layout could lead to the ability to fully predict the destination
to which the passenger wants to go.

The SubSyn(g) that is chosen for the comparison was
limited to the order-3 P-PPM model, denoted as PPM(3).
Table III illustrates the effectiveness of our model by returning
the top-k reference destination based on the sorting of their
probabilities. SubSyn(40) and SubSyn(50) indicate the method
using grids with granularity value g = 40 and 50, respectively.
This shows that when k is low, e.g., if k is 1, both hit rates
of these methods were less than 55%. As k was increased,
the hit rates also increased gradually. This also proved that
our model can achieve a higher hit rate than the others. The
bold number shows the optimal value among the results of
these algorithms.

TABLE III

HIT RATE

Fig. 8. Comparisons of prediction accuracy at different values of N .

We examine the offine learning procedure, where the pre-
diction horizons were in the range of 3 d to 1 month when
ω = 0.2(see Table V). This demonstrated that when more
trajectories were observed, the accuracies of the destination
prediction tasks increased as well. The increment rate was the
largest when horizon changes from 15 d to 1 month. Since the
data was relatively sparse in 15 d, the performance decreased.

B. Group Recommendation System Experiments

1) Experimental Setting: We selected data from 62 trajecto-
ries in the Geolife dataset from October 2008 to July 2009. The
trajectories sampled from October 2008 to April 2009 were
taken as the training dataset, and those sampled from
May 2009 to July 2009 were used as the test dataset. We first
trained a destination prediction model and investigated the
solution quality of the three algorithms. The parameter V was
set to 1.2 m/s [14], the search radius and time span for waiting
were set to 0.1 km and 15 min [25], respectively.

2) Experimental Results and Analysis: We have manually
labeled the number of people sharing a ride with all passen-
gers in the testing dataset based on the temporal duration
θt = 30min. If the result was greater than, or equal to 1,
it was considered to be positive samples (i.e., each passenger-
pair can be classified as being a group or being not a group),
while the remaining ones were negative.

We first used the reduction rate of total travel time to
measure the effectiveness of the aggregation level. Referring to
a previous report [9], we used the reduction rate of the total trip
in terms of distance to measure the effectiveness with various
settings of time span and search radius, as shown in Fig. 9.
This illustrated the changes in the reduction rate if the users
share rides. This enabled us to understand the level of temporal
and spatial aggregation that should be adopted to achieve the
most active group ride strategy. The values of the reduction
rate changed with increases in the radius and time, i.e., more
additional passengers could be incorporated into some groups
with a broader search region and time span. For example, there
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TABLE IV

PERFORMANCE INDICES

Fig. 9. Effectiveness under various settings of time span and search
radius where rides with four-passengers. Different colors represent different
reduction rate of the total trip.

was an improvement of 7% in the reduction rate when the
radius was increased from 0.3 to 0.4 km and time span was
increased from 5 to 10 min. Additional improvements in the
reduction rate were not more than 0.3% with a higher level
of aggregation. The reduction rate could be increased if we
further increased the level of aggregation. The results also
indicate that a ridesharing group can help to save over 11.5%
of total travel miles where rides with four-passengers (i.e.,
H = 4) if it was applied in the real world with a search
radius of 100 m and time span of 5 min, and the group
recommendation scheme may be sufficient.

Fig. 10(a) shows the precision of group recommendations
based on the P-PPM, Markov, and PPM models for the order
N of the prediction model. The results showed that our model
was significantly better than the other two for different values
of N . A trend was evident for the change of precision of all
of the models with respect to increments in N . When N was
set to 2, the precision reached the highest accuracy. After,

TABLE V

THE PREDICTION ACCURACY OF DIFFERENT HORIZONS

with increasing N , the prediction decreased. However, this
indicated that the precision computed by the P-PPM was on
average about 10% higher than those of the other two methods.

We next studied the recall of the algorithm based on P-PPM
with the other two algorithms in Fig. 10(b). The recall of the
P-PPM model for destination prediction was better. The higher
the recall was, the greater the number of potential ridesharing
passengers that were identified correctly was and the fewer
cases there were in which the potential ridesharing passengers
could not be detected. Additionally, too large of a value of N
could lead to a decrease in the precision and recall of the three
models, resulting in a reduction in the effect of discovering
potential passengers for ridesharing.

We also discuss how the new groups for ridesharing differed
when selecting a single origin versus trying more extended
areas of influence. Fig.11(a) illustrates the regions of influence
on the grouping (H = 2) based on two above setting. When
the regions were extended, the number of groups increased
significantly since the areas of further away passengers would
be intersected into the group. However, the areas of influence
were too short with values of 0, that is, if a single origin was
selected for grouping, the passengers might be more difficult
to group. When the region was beyond a specific limit (i.e.,
800 m in Fig.11), the value stops changing and stays steady
since no more new candidates could be detected. We also
compare the influence of region for group recommendation,
under different hyperparameter H . Similarly, there was an
increased tendency for precision, and an oscillation in a steady
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Fig. 10. Comparison of group recommendation.

value follows. The results also indicate that rides with two-
passengers may contribute the most to group recommendation.

To demonstrate the timeliness of grouping riders, which
would be critical to the performance of any mobility system,
we have demonstrated the efficiency of our method in Fig.12.
All our experiments were conducted in a desktop with eight
core i7-6700 CPU and 16G memory. The experiments with the
group recommendation could be completed in about 1 min,
demonstrating that our method may be welcome for an online
system due to its simplicity and higher prediction efficiency.

VI. DISCUSSION

A. Group Detection for Slugging

Joining a group and reducing unwanted operations on sys-
tem leads to a better arrangement for slugging. This issue is of
significance for policymakers to understand people’s opinions
about slugging and improve the experience to motivate people
to continue to use it. Moreover, grouping multiple passengers
into a vehicle results in a great reduction in the number of
vehicles, vehicle miles traveled, vehicle hours traveled, and
negative externalities associated with car travel [51], such as
emissions and congestion. Thus, with the high levels of group
recommendation adoption, slugging services would have a
noticeable impact on urban traffic conditions. Compared to
the social recommendation scenarios [52], group detection
for slugging scenario is different from several perspectives.
Different passengers make requests dynamically over time
at various locations, usually resulting in a more widely dis-
tributed departure location and time. Furthermore, different
drivers pass an area with different speeds, which increases

Fig. 11. The influence of regions for grouping.

Fig. 12. Times of recommendation versus the number of samples used.

the difficulties in determining the meeting time, and further
grouping more passengers. These observations indicate that
spatial information should be combined with other cues (such
as velocity information and individual preference) to produce a
more robust similarity measurement. The weighted combina-
tion of various measures is usually leveraged for similarity
search. However, how to tune this weight is a challenge
because it would lead to limited flexibility in processing real
data. Although the online survey on potential target users
enables us to assign the weights to different measurements.
Such a study still must to incorporate a larger number of
features into their user interfaces, at a higher cost for imple-
mentation time and code.

B. Automatically Predicting Destination

Although there is a lack of information about intended des-
tinations, we can exploit the knowledge that was been learned
from the training data in a batch learning fashion. We take
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TABLE VI

SYMBOLS

the sequences of each passenger’s historical travel destinations
as the candidate set for intended destination prediction. The
system can capture the real-time information (from the forecast
or manual destination entry) once the ridesharing-booking
app is initiated and issue an online recommendation. It enables
passengers to change their requests and matches the drivers
and potential co-passengers.

We believe the model can be further improved by utilizing
online learning techniques. Currently and in the near future,
new types of data (e.g., social media, landmarks, or sug-
gestions from other people) can be introduced to improve
an existing destination prediction system. In this scenario,
training data with new features will be added to the prediction
system, while old features are still retained [53]. Furthermore,
different passengers may have different opinions on the def-
inition of destination, and thus, a universal model might not
always be optimal for every group. Online learning in group
recommendation can be potentially more challenging than the
existing work [21], [51], as the model should be trained on the
new data arriving sequentially and transfer useful knowledge
from the universal model to personalize the recommendation
for every individual in an online learning manner.

VII. CONCLUSION

In this paper, we proposed a novel group recommendation
system for OD-slugging. The proposed method combines
additional semantic information with raw trajectory data and
constructs a prediction model based on passengers’ historical
data. As a result, an optimal group of passengers whose move-
ment similarities are a manifestation of shared relationship is
detected to minimize the total travel time. Experimental results
from the Geolife dataset show that the P-PPM model exhibited
better prediction accuracy than the other three models. More-
over, our proposed method is the best in terms of saved travel
time, which is the most important metric in slugging, and a

ridesharing group may help to save over 19% of total travel
miles if applied in the real world.

In future work, we plan to investigate the following inter-
esting problems further:

1) Other scenarios of ridesharing, for example, detour
ridesharing, must satisfy the request of the pick-up and/or
drop-off locations and the departure and arrival time of the
driver. In such scenarios, searching for riders with similar
routes will be beneficial, and we may extend our method for
the more general scenarios.

2) The trajectory data from GPS–enabled devices are widely
used in our group recommendation system. We plan to incor-
porate socially aware information further to discover the latent
relationships among group members, meeting the personalized
needs of different passengers in ridesharing.

APPENDIX

See Table VI.
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