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Driver Intervention Detection via Real-Time
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Abstract— Currently, the driver plays a crucial role in the
safety of autonomous vehicles, functioning as the fall back for
vehicle control systems. Fast and accurate detection of driver
intervention is therefore of importance. In this article a novel
driver intervention detection method for automated vehicles is
presented and tested. Non-critical transitions are considered,
excluding safety related applications. The transfer function
between the electric power steering torque and steering column
angle is estimated by perturbing the steering system with a known
disturbance. This estimated value is used to detect whether a
driver is intervening. The detection algorithm has been tested
in simulations using a four degree-of-freedom vehicle model.
The parameters of this vehicle model have been obtained via
frequency response measurements performed on a test vehicle.
Secondly, the performance of the algorithm has been tested with
on-road measurements. The results show that driver intervention
can be successfully detected within 0.4 seconds. The performance
in terms of true and false detections has been analyzed, and the
presented solution is shown to be robust to measurement noise
and road disturbances.

Index Terms— Autonomous vehicles, driver intervention,
driver take-over, intelligent vehicles, vehicle measurements.

I. INTRODUCTION

AUTOMATED vehicles can be classified from driving
automation level 0 through 5 using the SAE J3016 stan-

dard [1]. Driving automation level 0 being fully manually oper-
ated vehicle and 5 being fully automated. Driving automation
level 1 was realized in the 1990’s with the implementation of
adaptive cruise control, also known as ACC [2]. Level 3 and
above is projected to be realized in the 2020’s [3]. Driving
automation level 3 requires the longitudinal and lateral vehicle
motions to be controlled simultaneously in a specified opera-
tional design domain [1]. In vehicles up to level 3 the fallback
for the vehicle control system is the driver. Because there is
no automated fallback, the detection of driver intervention is
a necessity. The driver may try to take over the control of
the vehicle during a period of incertitude on the driver’s part.
However, for the vehicle to shift the control back to the driver,
it must be able to detect the driver intervention.

A study on state-of-the-art solutions for driver intervention
detection has revealed that additional hardware in the form
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of sensors and/or actuators is required for most solutions.
The current solutions can be categorized as 1) vision systems,
2) biometric sensors, and 3) wearables and brought-in devices
such as smartphones. An example of a vision system has been
presented in [4]; a multi-view camera system observing the
3D movements of the driver’s head and hands. This system
is able to detect whether the driver is holding the steering
wheel. The upper body motions are estimated in real-time
using the hands and head movements. Another vision system
has been presented in [5], where the authors implemented a
convolution neural network based approach. In addition to
detecting the number of hands on the steering wheel, this
system is able to detect cellphone usage. According to the
authors of [6], processing of visual data is mainly realized
with machine learning and image processing techniques. In [7]
the authors have presented a hand-tracking system using a
depth sensor, which is claimed to be the first to achieve such
a short response time in combination with the robustness and
accuracy. This system is able to detect the number of hands on
the steering wheel and make a distinction between touching
and grabbing the steering wheel, all based on the position
and shape of the hands and fingers. A driver state detection
system using biometric sensors has been presented in [8],
where combining a capacitive hand detection sensor with other
physiological sensors allows for the determination of both
touch and position of the driver’s hands. The system is wireless
and can therefore be placed in most vehicles as a retrofit.
As an alternative, electrocardiograph signals can also be used
to detect driver intervention. A driver recognition method
which uses electrocardiograph signals from the hands has been
presented in [9]. The add-on system is located on the steering
wheel and is able to automatically adapt the vehicle settings
based on the perceived driver. In [10], a wearable device
named SafeWatch, developed to detect unsafe driving behav-
ior, has been presented. From the estimated hand motions it
can be determined whether a driver is holding the steering
wheel. A similar approach has been presented in [11], where
measurements from a wearable device (e.g., smart watch,
fitness tracker) have been used. An accuracy of 99 % for the
detection of hands on the steering wheel and 80 % for hands
off has been achieved in experiments. The authors of [12] have
used a similar type of device to determine the stress level of the
driver by evaluating the steering behavior. In [13] an overview
of novel methods, ongoing research, and trends for driver state
and performance assessment has been presented. One of topics
is the combination of in-vehicle information and brought-
in sensors, such as smartphones. The authors of [6] have
also presented an overview of driver inattention monitoring
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systems, including the most recent and futuristic technologies.
A study considering a brought-in sensor is [14], which uses
the front and rear camera of a smartphone to detect driver
distraction or tiredness with machine learning and computer
vision algorithms. In [15] a driver steering torque estimator
has been used to detect human intervention torque. Driver
intervention is detected if the estimated driver torque exceeds a
certain threshold, simulation results show that intervention can
be detected within 0.15 s. However, in the experiments a min-
imum intervention duration of 0.2 s has been considered for it
to be a successful intervention, increasing the response time.

The response time of the intervention detection is an impor-
tant aspect for driver safety. Driver safety applications such
as ABS and ESC can have a response time of tenths of
milliseconds [16]. However, in this case a driver is in the loop,
who has slow dynamics compared to safety applications [17].
The human-machine interaction is a popular research topic
because of the developments in (semi-) autonomous vehicles.
One of the subtopics in this field is the time required for a
driver to take over control of the vehicle after a take-over
request, which is generally shortened to TOR. A good indica-
tor for the average take-over time can be obtained from review
articles [18], [19]. The authors of [18] have analyzed
25 different articles and found a take-over time of 2.47 s ±
1.42 s for the transition from automated to manual driving.
However, because of the considerable variance in the results,
the authors recommend to use the full range of take-over
times (1.9 s to 25.7 s) rather than the mean or median.
A meta-analysis of 129 studies has been presented in [19],
where it is also stated that the results for take-over times vary
strongly. A distribution of 520 mean take-over times reveals
that all mean values are at least 0.5 s, with most values
concentrated between 1 s and 4 s. It has to be noted that
most studies regarding take-over times consider a fixed time
budget, which refers to the timeframe a driver has to take
over control. An example of such a study is [20], where time
budgets of 2.5 s to 3.5 s have resulted in an average take-
over time of 1.14 s. The authors of [21] showed that time
budgets from 1.5 s to 2.8 s are sufficient for some drivers,
but not all drivers are able to prevent accidents, implying
the take-over time should be longer than 2.8 s to ensure
accident prevention. Several studies have analyzed the take-
over behavior in more detail [22]–[26], and the results can be
used to define a lower limit for the response time. Results
presented in [22], where a take-over time interval of 7 s
has been used, show that after a take-over request from the
vehicle the drivers need 0.70 s to 0.75 s (median) to touch
the steering wheel, while actual steering inputs are given after
1.55 s to 1.60 s (median) respectively. This implies that after
touching the steering wheel, drivers need approximately 0.85 s
to apply an input. Similarly, comparing the median values
presented in [23] gives at least 0.8 s between touching and
moving the steering wheel. The results presented in [24] are in
agreement with the aforementioned, giving in-between times
varying from 0.65 s to 1.10 s. The authors of [25], who have
considered non-critical transitions including putting away a
tablet or phone, present take-over times for (un)monitored
driving and having the eyes closed. Subtracting mean values

implies that the drivers need 1.67 s to 4.61 s from moving
the hands to taking over control. A significantly shorter time
between touching the steering wheel and initiating a steering
response has been presented in [26], where the mean value
is 0.17 s.

Recent studies [4]–[15] for driver intervention detection
show that detecting an intervention is realizable. Moreover,
the technology is already available on commercial passenger
vehicles [6], [13]. However, several drawbacks to these
solutions can be identified. The most important drawbacks
include the necessity for additional hardware, the high demand
on the CPU load for data processing, the cost, susceptibility
to environmental effects, and the need for driver inputs.
Also, the studies are often limited to emergency/hazardous
situations [20], [27], [28], vehicle initiated take-over
requests [18], [19], [29], [30], or focused on driver state
monitoring [6], [13], [31].

The goal of this article is to present and demonstrate a
safe novel driver intervention detection method which does
not suffer from the drawbacks mentioned above. This study
is a proof of concept and in this study it is assumed that the
driver would like to take over control in non-critical scenarios
such as during discomfort or distrust in the control system,
and that the hands of the driver are placed on the steering
wheel when the driver performs an intervention. Safety related
applications are out of the scope of this study. Also, the effect
of different weather conditions is not taken into account. The
basic concept is that a perturbation is applied to the steering
system and driver intervention is detected based on the steering
system response. To achieve this the steering system dynamics
have been analyzed using the electric power steering (EPS)
motor and steering column angle sensor. Driver intervention
is detected by estimating the steering system dynamics, and
from this estimate analyze whether the driver is in contact
with the steering wheel [32]–[34]. This study is a continuation
of work presented at the AVEC’18 [35]. The vehicle and
steering system are modelled such that relevant dynamics
can be simulated, and the model has been parametrized with
frequency response measurements. Based on the observed
steering system dynamics, an intervention detection algorithm
has been developed. This algorithm is designed to be robust
to disturbances and have a low computational load. Measure-
ments with a test vehicle are in agreement with the simulation
results.

This article is organized as follows. In section II the
modeling and parametrization of the relevant vehicle dynamics
is discussed. In section III the proposed driver intervention
detection method is discussed with focus on the detection
logic. In section IV the results are discussed, consisting
of simulations and experiments. A discussion is presented
in section V, including the limitations of the presented detec-
tion method and a comparison with existing solutions, fol-
lowed by the conclusions presented in section VI.

II. SYSTEM MODEL

The dynamics are described with a single-track vehicle
model, connected to a two degree-of-freedom (DOF) steering
system model. A Volkswagen Lupo 3L 2003 has been used
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Fig. 1. Schematic drawing of the modified steering system of the Volkswagen
Lupo 3L, indicating that the steering system can be controlled via a computer
(dSPACE DS1103).

Fig. 2. Steering system model with two masses, one being the effective mass
of the EPS motor, steering column, and wheel, and one being the effective
mass of the steering wheel and driver.

as a test vehicle in this study, which is a compact passenger
vehicle. The steering system of the test vehicle has been
modified such that it can be controlled via a computer as
shown in Fig. 1. For this study use has been made of the EPS
motor torque and the steering column angle sensor. The
steering system is equivalent to those in modern passenger
vehicles, making the detection algorithm applicable to a wide
range of vehicles.

A. Steering System Model

The steering system dynamics are modeled with a two
DOF mass, spring, and damper system and the driver model
presented in [36] is used. An illustration of this model is shown
in Fig. 2. All model parameters are assumed to be constant.
The steering system model, with steering column angle δsc
and steering wheel angle δsw as DOF, results in the following
equations of motion:

Imi2
s δ̈sc

= − (dt + dw) δ̇sc + dtδ̇sw − (kt + kw) δsc + ktδsw + isTm (1)

(Id + Isw) δ̈sw

= − (dd + dsw + dt) δ̇sw + dtδ̇sc − (kd + kt) δsw + ktδsc + Td

(2)

where the effective moment of inertia of the driver, steer-
ing wheel, and EPS motor is Id, Isw, and Im. The latter
also accounts for the influence of the steering column and
wheels. The stiffness of the driver, torsion bar, and wheels,
is kd, kt, and kw. Jacking torques and the self-aligning
moment are included in the effective road wheel stiffness kw.

Fig. 3. Illustration of the single-track vehicle model.

The damping for the driver, steering wheel, torsion bar, and
wheels is dd, dsw, dt, and dw respectively. The gear ratio
between the steering column and the EPS motor is is. The
model inputs are a driver torque Td and an EPS motor
torque Tm.

The steering system model has been used to simulate
the steering system dynamics for both automated driving
(no driver) and manual driving (driver included). When no
driver is present or interacting with the steering wheel, all
driver parameters are set to zero. Different drivers can be
accounted for by tuning the driver parameters [24]. The
influence of different drivers on the intervention detection is
not investigated in this study.

B. Vehicle Model

The single-track vehicle model is widely used for the
analysis of lateral vehicle dynamics. The longitudinal vehicle
velocity is considered to be constant in this model, but the
theory also holds for quasi-steady-state situations, such as a
slow braking maneuver [37]. The model is depicted in Fig. 3
and has two DOF, the lateral vehicle velocity vy, and the yaw
rate ωz. The longitudinal or forward vehicle velocity is vx,
and Iz is the moment of inertia around the z-axis. The lateral
tyre forces are Fyf

and Fyr
for the front and rear axles. The

tyre forces represent the sum of the left and right tyre on each
axle. The side slip angles are αf and αr. The distance from
the front and rear axle to the center of gravity is lf and lr. The
input of the single-track model is the wheel angle δw, which is
coupled with the steering system model via δsc = iwδw with
iw being a fixed gear ratio. The equations of motion of the
single-track vehicle model are

mv̇y = −Cαf +Cαr

vx
vy−

�
vx+ lfCαf −lrCαr

vx

�
ωz+ Cαfδsc

iw
, (3)

Izω̇z = − lfCαf −lrCαr

vx
vy− l2

f Cαf +l2
r Cαr

vx
ωz+ lfCαfδsc

iw
, (4)

where m is the vehicle mass, and Cαf and Cαr are the
cornering stiffness for the front and rear axles, and linear
tyre characteristics are considered [37]. The complete model,
consisting of the single track vehicle model and the steering
system model, is described with (1), (2), (3), and (4).

C. Model Parametrization

The model has been validated and parametrized with fre-
quency response measurements. The test vehicle is equipped
with a dSPACE DS1103 system, operating at a sampling
frequency of fs = 1 kHz. A multi-sine torque has been applied
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Fig. 4. Measured and parametrized frequency response between the EPS
torque and steering column angle for both hands on the steering wheel and
hands off the steering wheel. The measured response for hands on is ( ),
( ) is the simulation for hands on, ( ) is the measurement for hands off,
and ( ) is the simulation for hands off.

as input signal via the EPS motor with a frequency content
ranging from 0.010 Hz to 40 Hz. Measurements with and
without a driver have been performed, all with a longitudinal
velocity of vx = 0 km/h with the vehicle placed on turning
plates, which is a good representation of on-road driving [38].
Previous work shows that the influence of the longitudinal
velocity is negligible in the frequency range of interest [38],
and therefore this effect is not considered. The parametrization
has been performed by fitting the transfer function from the
EPS motor torque to the steering column angle

HTm→δsc ( jω) = L{δsc} ( jω)

L{Tm} ( jω)
(5)

on the frequency response measurements.
The measurements results are shown in Fig. 4 together with

the parametrized model response. The vehicle and steering
system parameters have been obtained using the measure-
ment with no driver. The driver parameters have then been
identified using the measurement with driver hands on the
steering wheel. In the latter case the already identified vehicle
parameters have been used. By solely adjusting the driver
parameters, the dynamics with and without driver can be sim-
ulated. The measurement results reveal a significant difference
in the steering column response for driver hands-on and driver
hands-off. Most interesting is the shift of the anti-resonance
frequency of the steering column. This effect is used in the
detection logic, which is explained in the following section.

III. INTERVENTION DETECTION METHOD

Driver intervention is detected by analyzing whether the
driver is holding the steering wheel. By analyzing the dif-
ferences in response for hands-on and hands-off the steering
wheel, a notable distinction can be identified at 7.8 Hz (Fig. 4).
For driver hands-off the steering wheel, the anti-resonance of
the steering column is located at this frequency. Because the
difference in transfer function gain

���HTm→δsc ( jω)
��� at 7.8 Hz

is substantial, it should be possible to detect this. The inter-
vention detection method presented in this article estimates the
transfer function gain at this specific frequency, which is then
used to detect driver intervention.

A. Detection Logic

In order to make an estimate of the transfer function gain��HTm→δsc ( jω)
��, both the input Tm and output δsc need to be

analyzed. A sinusoidal perturbation is applied to the steering
system, which is described with

Tdis (t) = A sin (2π fdt) , (6)

where A is a constant amplitude and fd the perturbation
frequency. Choosing the perturbation frequency as fd =
7.8 Hz has multiple advantages. First, the transfer function
gain

��HTm→δsc ( jω)
�� for hands-on the steering wheel is roughly

7 times higher than for hands-off the steering wheel. Second,
the yaw response and lateral vehicle velocity only show a lim-
ited response when the driver is not holding the steering wheel.
Last, this frequency does not interfere with the frequency
spectrum for regular driving, which is limited to frequencies
up to 0.5 Hz [17]. However, one needs to be aware that the
convergence speed of the intervention detection is related to
the perturbation frequency, higher frequencies may result in a
smaller response time, but can induce a notable yaw response.

1) Transfer Function Estimation: Now that the perturbation
signal is defined, the transfer function gain can be estimated
using the input signal u = Tm and the output signal y = δsc.
A method for estimating this gain has been discussed in [39],
which makes use of the auto- and cross-correlation and power-
and cross-spectrum. The power-spectrum is also known as the
auto-spectrum. The auto-correlation is defined as

ruu [l] = lim
N→∞

1

2N + 1

N�
i=−N

u [i ]u [i + l] , (7)

where i is the sample number, l the sample delay and N a
constant. From here onwards a discrete time notation is being
used. Similarly, the cross-correlation is defined as

ruy [l] = lim
N→∞

1

2N + 1

N�
i=−N

u [i ]y [i + l] . (8)

Using the auto- and cross-correlation, the auto- and cross-
spectrum can be computed. The power-spectrum is described
as

ρuu (ω) =
∞�

l=−∞
ruu [l] e− jωl, (9)

where ω is the frequency in rad/s and j is an imaginary
number. The power-spectrum is independent of the sample
delay l. The cross-spectrum is described as

ρuy (ω) =
∞�

l=−∞
ruy [l] e− jωl . (10)
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Fig. 5. Illustration of the required samples in order to compute the auto- and
cross-correlation and power- and cross-spectrum, where i corresponds with
the current sample.

With the above expressions the estimated transfer function gain
can be calculated as���ĤTm→δsc ( jω)

��� = ρuy (ω)

ρuu (ω)
. (11)

We now have an expression for the transfer function gain
which can be evaluated at a selected frequency. Regarding
the computational load of the detection logic this is favorable,
since the estimate only has to be computed at the perturbation
frequency, fd. However, taking a closer look at (7), (8), (9),
and (10), shows that both N and l go to infinity, mean-
ing infinite samples are needed to compute these functions.
Because the detection logic has to be implemented in a real-
time application, estimates of (7), (8), (9), and (10) need to
be obtained.

Introducing a finite value for N and considering

l ∈ � = {−L,−L + 1,−L + 2, . . . , L} (12)

with L a real finite constant, allows to make approximations
of (7), (8), (9), and (10). The estimated cross-correlation can
now be described with

r̂uy [l, i − τ ] = 1

2N + 1

i+N�
k=i−N

u [k]y [k + l] , l ∈ �. (13)

In this equation a sample delay is introduced, being τ = N+L.
Replacing y[k + l] with u[k + l] in (13) gives the expression
for the auto-correlation. From (13) it can be observed that in
order to compute r̂uy[l, i − τ ], N + l future samples must be
considered. This effect is clarified with the illustration shown
in Fig. 5. The need for future samples evidently results in
a sample delay τ for real-time implementation. Similarly to
the approximation for the cross-correlation, the cross-spectrum
can be approximated as

ρ̂uy (ω) [l, i − τ ] = r̂uy [l, i − τ ] e− jωl , l ∈ �. (14)

The approximation for power-spectrum is obtained by replac-
ing r̂uy[l, i −τ ] with r̂uu[l, i −τ ]. Using the presented approxi-
mations, the following expression is obtained for the estimated
transfer function gain:

���ĤTm→δsc ( jω) [i − τ ]
��� = ρ̂uy (ω) [i − τ ]

ρ̂uu (ω) [i − τ ]
. (15)

We can now make an estimate of
��HTm→δsc ( jω)

�� at every
sample, which can be used to detect whether the driver is in
contact with the steering wheel. The next step is to make a
translation from driver hands touching the steering wheel to
driver intervention.

2) Detecting Driver Intervention: A driver touching the
steering wheel is considered as a driver originated intervention.
Whether the driver is touching the steering wheel, defined as h,
is described with

h [i ] =
⎧⎨
⎩

1 for
���ĤTm→δsc ( jωd) [i ]

��� > K

0 for
���ĤTm→δsc ( jωd) [i ]

��� ≤ K .
(16)

The signal equals 1 when driver hands are in contact with the
steering wheel, which is true if the estimated gain exceeds a
constant threshold K . The threshold K is extracted from the
measurements in Fig. 4, and should always satisfy���ĤTm→δsc ( jωd)

���
hands-off

≤ K ≤
���ĤTm→δsc ( jωd)

���
hands-on

. (17)

Note that the estimated transfer function gain is evaluated only
at the perturbation frequency, ωd = 2π fd.

Robustness to measurement noise and disturbances has to
be realized to improve safety. Considering the last P samples,
driver detection is only detected if all P samples show a
positive detection for driver hands on the steering wheel. I.e.,

D [i ] =

⎧⎪⎪⎨
⎪⎪⎩

1 for
P−1�
m=0

h [i − m] = P

0 for
P−1�
m=0

h [i − m] < P,

(18)

where D is the detected driver intervention, which is equal to 1
for driver hands on the steering wheel. Since the last P sam-
ples are considered, implementing (18) evidently introduces a
time delay of τ = (P −1)Ts, with Ts being the sampling time.
This results in a trade-off between increased safety/robustness
and additional time delay. The additional delay only affects the
response time for the detection of hands on the steering wheel.
Transitioning from hands on the steering wheel to hands off
the steering wheel, only requires a single value of h[i ] = 0
with i ∈ {−P + 1,−P + 2, . . . , 0}.

3) Time Delays: Now that the core of the detection logic has
been presented, we can take a closer look at the time delays
introduced by approximating the correlation functions and
auto- and cross-spectrum. The time delay introduced in (13)
depends on N and L. In order to achieve a high convergence
speed, both N and L need to be chosen as small as possible.

A lower bound for N is obtained by analyzing the relevant
samples. Since we are only interested in estimating the transfer
function gain at the perturbation frequency fd, all relevant
dynamics are solely located at this frequency. The lower bound
for N can be limited to

NLB =


1

2 fdTs

�
, (19)

which ensures that at least of full period of the perturbation
signal is analyzed.

The sample delay l contains information about the phase
between u[i ] and y[i ]. The phase information from Fig. 4 is
used to define a lower bound for L, resulting in

LLB =
� � HTm→δsc ( jωd)

360 fdTs

�
, (20)
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Fig. 6. The normalized auto-correlation ( ) and cross-correlation ( )
functions for a sinusoidal input signal and delayed output signal, showing the
periodicity of the correlation functions. The input-output delay is 50 samples.

where � HTm→δsc ( jωd) is the phase delay in degrees. There
are two options for selecting the phase delay, the phase for
hands on the steering wheel and for hands off the steering
wheel. One option is to select the largest of the two, ensuring
that the relevant data is always included in the set ranging
from sample i − NLB −�LB to sample i + NLB +�LB. In this
specific study, the phase delay at fd = 7.8 Hz is the largest
for hands off the steering wheel and will be considered to
determine �LB.

4) Reducing the Computational Load: The set of samples
which is used in the estimation can be reduced, because
the phase delay of the system is known a priori via system
identification. The set � to can be reduced to a sub-set
�s ⊂ �. For a sine wave signal with constant frequency f ,
the auto-correlation shows a peak at l = [n/(2Ts f )] with
n ∈ Z≥. This effect is illustrated in Fig. 6. The location of the
peaks allows to reduce the set � for the auto-correlation to l ∈
�s,uu = {0; 0 ⊂ �}. If the output signal is simply a delayed
version of the input signal, the cross-correlation peaks at =
[n/(2Ts f )+ld] as shown in Fig. 6, where ld is the sample delay
from input to output. Because the steering controller does not
actuate frequencies above 0.5 Hz during normal operation [17],
it is assumed that the perturbation signal is the only signal
influencing the cross-correlation at this frequency, neglecting
the effect of noise and disturbances. Using the phase from
Fig. 4, the set � considered for the cross-correlation is reduced
to l ∈ �s,uy = {lhands on, lhands off; lhands on, lhands off ⊂ �}.
Here lhands on and lhands off are the phase at fd = 7.8 Hz
for driver hands on the steering wheel and driver hands off
the steering wheel. By including both lhands on and lhands off,
no distinction has to be made between the scenarios of having
driver hands (not) in contact with the steering wheel. In order
to ensure an equal number of samples is used in the com-
putation of the auto- and cross-correlation, �s,uu is increased
to �s,uu = {0, 0; 0 ⊂ �}.
B. Performance Criteria

To analyze the performance of the detection logic, several
criteria are defined. A straightforward criterion is the value of
the estimated transfer function gain. Theoretically this value
should converge to the actual frequency response. However,
the approximations made in the foregoing might influence the
extent to which this is possible.

Next is the response time or convergence speed of the
detection logic. The information on take-over times presented
in Section I is used to define an upper bound for the response
time of the intervention detection algorithm. From the articles
discussed above the minimum mean take-over time is at
least 0.50 s. The in-between time for touching and moving the

Fig. 7. Estimated transfer function gain, where the steering system response
is simulated using the parametrized model from (1), (2), (3), and (4).

Fig. 8. Applied ( ) and detected ( ) hands on the steering wheel and
hands off the steering wheel. These results are obtained by simulating the
steering system response using (1), (2), (3), and (4).

steering wheel is generally 0.65 s or longer, with the exception
of one study presenting an in-between time of 0.17 s [22]–[26].
We aim to achieve a response time of 0.65 s maximum,
tr ≤ 0.65 s, since we consider non-critical intervention
scenarios and do not consider safety related applications.

Finally, the number of false-positives and false-negatives
should be as small as possible. One should prevent a false-
positive detection, such that the control system cannot be shut
down while the driver is not interacting with the vehicle.

IV. RESULTS

The results are divided into four parts: 1) a simulation
study; 2) a verification with on-road measurements; 3) an
analysis of the response time; and 4) a true-false detection
analysis. In all simulations the effect of measurement noise and
road disturbances has been neglected. The parameters of the
intervention detection algorithm have been chosen identical for
the simulations and measurements, such that a fair comparison
can be made (N = 128, lhands on = 39, lhands off = 30,
P = 128, K = 0.025).

A. Simulation Study

A simulation study has been performed using the system
model described with (1), (2), (3), and (4). Driver interven-
tion has been simulated by switching between the identi-
fied driver parameters and no driver (Id, dd, kd = 0). The
estimated transfer function gain is shown in Fig. 7 and the
detected driver intervention in Fig. 8. The estimated values
from Fig. 7 approach the measurements from Fig. 4, and
Fig. 8 shows that all interventions are detected. The detection
logic does have a small delay as discussed in section III.A.
When switching from hands on to hands off and vice versa,
oscillations are introduced by the sudden in/exclusion of
stiffness, mass, and damping, which might result in additional
delays in the intervention detection.



778 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2021

Fig. 9. Estimated transfer function gain from on-road measurements. In this
case the vehicle was driving on a straight asphalt road with no speed bumps
and potholes.

Fig. 10. Applied ( ) and detected ( ) hands on the steering wheel and
hands off the steering wheel. The results are obtained driving on a straight
asphalt road with no speed bumps and potholes.

B. On-road Measurements

The on-road measurement have been performed on two
types of roads, asphalt and Belgian cobblestones. The asphalt
road is a high quality straight road with no speed bumps. The
cobblestone road is slightly curved, includes large potholes,
and is of lower quality compared to the asphalt road, this road
can be considered as an extreme example. During experiments
it has been discovered that the sensor resolution of the steering
column angle is a limiting factor for the detection method,
motions within the sensor resolution resulted in an inaccurate
estimation of the transfer function gain. Therefore, the distur-
bance torque amplitude has been chosen such that the sensor
resolution does not affect the detection algorithm. Whether the
driver is in contact with the steering wheel has been measured
via a pressure sensor placed on the steering wheel rim, this
signal has been used as a ground truth to calculate the response
time of the intervention detection.

1) Asphalt: The estimated transfer function gain for driving
on the asphalt road is shown in Fig. 9 and the applied
and detected driver intervention are both shown in Fig. 10.
The estimated transfer function gain has a higher variance
compared to the simulation results, caused by measurement
noise, road disturbances and driver inputs. However, there is
still a significant difference in estimated transfer function gain
for the scenario with and without a driver. The detected driver
intervention from Fig. 10 confirms that the presented detection
logic is robust to noise and disturbances from driving on a
smooth asphalt road. With the given test set-up the level of
disturbances coming from the road cannot be determined. The
response time of the detection logic is similar to what is found
via simulations, roughly 0.3 s for the detection of hands on
and hands off the steering wheel, and all interventions are
detected.

Fig. 11. Estimated transfer function gain from on-road measurements. In this
case the vehicle was driving on a cobblestone road with large potholes.

Fig. 12. Applied ( ) and detected ( ) hands on the steering wheel and
hands off the steering wheel. The results are obtained driving on a cobblestone
road with large potholes.

2) Belgian Cobblestones: The results for driving on a cob-
blestone road are shown in Fig. 11 and Fig. 12. The estimated
transfer function gain in Fig. 11 shows significant differences
compared to the results for driving on an asphalt road, illus-
trating the effect of larger road disturbances. The increase in
disturbances has been confirmed with a PSD analysis, which
shows an increased level of noise for all frequencies, reducing
the ratio between the estimated transfer function gain for
hands-on/off. The intervention detection is inconsistent with
false detections every now and then. However, the majority of
the false detections are false-negatives and there is a minimal
amount of false-positive detections, the latter is far worse in
terms of driver safety. By comparing the results from the
cobblestone road to the asphalt road, it is found that the
performance of the detection algorithm depends on the road
quality and is positively correlated with the road quality.

C. Response Time Analysis

The response time for driver intervention detection has been
analyzed by performing over 200 take-over procedures in
simulation and experiments. The experiment has been executed
with the vehicle placed on turning plates, thus having a
velocity of 0 km/h.

The results are listed in Table I, which reveal that the aver-
age response time for the detection of hands-on the steering
wheel and hands-off the steering wheel is similar for the
simulation and measurements. However, for the measurements,
the maximum response time as well as the standard deviation
is higher in comparison to the simulation results, which is
not surprising considering the simulations did not include
noise and disturbances. A response time of tr ≤ 0.65 s
is successfully achieved, making the intervention detection
suitable for the majority of the interventions [22]–[26]. With
the implementation of (18) it is expected that the response
time for the detection of hands on the steering wheel is lower
compared to hands off the steering wheel, but results show
that this is not the case. The threshold K has been chosen
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TABLE I

RESPONSE TIME OF THE DETECTION LOGIC, OBTAINED
FROM OVER 200 DRIVER INTERVENTIONS

TABLE II

CONDITIONS FOR A TP, TN, FP, AND FN WITH APPLIED HOO BEING

APPLIED HANDS-ON/OFF BY THE DRIVER AND DETECTED

HOO BEING THE OUTPUT OF THE INTERVENTION

DETECTION ALGORITHM

relatively low, resulting in an increased response time for the
detection of hands on and a decreased response time for the
detection of hands off, explaining the marginal differences in
response time.

D. True-false detection analysis

For a more extensive performance analysis the detection
behavior in terms of true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs) has
been analyzed. Because the detection algorithm has a time
delay, it is only fair to take this into account in the false-
positive analysis. An intervention detection is labeled as TP
if the driver hands are placed on the steering wheel in the
interval [t − tr, t] where tr is the assumed response time of the
detection algorithm, thus taking previous samples into account.
The classification conditions that are used in this analysis are
listed in Table II.

The performance in terms of true and false detections
is shown in Fig. 13 for an assumed response time of 0 s
and 0.385 s (matching the maximum from Table I) and
in Fig. 14 for response times ranging from 0 s to 5 s, both
figures include the asphalt and cobblestone road measure-
ments results. Fig. 13 shows that driving on an asphalt road
resulted in 7.6 % FPs and 9.8 % FNs with the assumed
response time set to 0 s. Increasing the assumed response time
to 0.385 s reduced the FPs and FNs both to 0.0 %, a result
that is confirmed with Fig. 14. Assuming a response time
of approximately 0.3 s, matching the average values from
Table I, results in 0 % FPs and FNs for the measurements
on asphalt. The results indicate that a lower road quality
negatively influences the number of FPs and FNs. Fig. 13
shows that the number of FPs for the cobblestone road is
similar to the results for the asphalt road. In terms of safety
this is a satisfying results, since a false positive means that

Fig. 13. Performance in terms of TPs, TNs, FPs, and FNs for; asphalt with
tr = 0 s ( ), asphalt with tr = 0.385 s ( ), cobblestones with tr = 0 s ( ),
and cobblestones with tr = 0.385 s ( ), all expressed as a percentage of the
total number of samples in the dataset.

Fig. 14. The FPs and FNs as a function of the response time taken into
account in the analysis with ( ) the FPs for asphalt, ( ) the FNs for
asphalt, ( ) the FPs for cobblestones, and ( ) the FNs for cobblestones.

the driver is not holding the steering wheel, but the algorithm
estimated that the steering wheel is being held. In case of
a FP, control can be shifted to the driver, who is at that
time not in contact with the steering wheel, thus creating a
very unsafe situation. The number for FNs does show a large
increase when driving on a cobblestone road compared to an
asphalt road. Fig. 14 shows that the number of FPs and FNs
converges around tr = 0.3 to 0.4 s, after which only the FNs
for cobblestone roads show a value not close to zero.

V. DISCUSSION

The results show that the presented intervention detection
method can be used to detect driver intervention with an
average response time of 0.3 s and maximum of 0.4 s, meeting
our aim of 0.65 s. However, in order to reach tr ≤ 0.17 s,
matching the lowest in-between time obtained from literature,
the response time should be decreased. The response time can
potentially be reduced by perturbing the steering system at
a higher frequency. At the same time however, not actuating
on the anti-resonance of the road wheel angle will result in a
larger yaw response. To avoid this one can change the steering
system for one with a higher anti-resonance of the road wheel
angle such that the yaw response is kept to a minimum whilst
maintaining a significant difference in transfer function gain
for hands-on/off. It is not expected that only increasing the
perturbation frequency can reduce the response time enough
the meet safety requirements. In order to further reduce the
response time, additional research is required.

Measurements results show successful detection of driver
intervention via the proposed algorithm and thus without addi-
tional hardware. However, it has to be noted that the algorithm
does not necessarily outperform existing solutions which do
require additional hardware. A pressure sensor, which has
been used as a reference for hands-on/off in this study, has
a significantly smaller response time. Other existing solutions
may also outperform the presented detection method in other
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TABLE III

PERFORMANCE OF THE PRESENTED DETECTION ALGORITHM
IN COMPARISON TO EXISTING SOLUTIONS

aspects, such as robustness for lower quality roads and external
disturbances. The presented algorithm can be used alongside
other methods to increase the performance and robustness. The
goal of this study is to present and demonstrate a novel driver
intervention detection method which does not require addi-
tional, which is successfully achieved. The presented method
solely uses in-vehicle sensors, the steering angle and steering
torque sensor, to detect driver intervention. Furthermore, the
drawbacks of existing solutions are also eliminated. No sig-
nificant increase in computational load has been found after
including the detection algorithm. The marginal effect on the
CPU load of the operation system is as expected, considering
the low complexity of the equations. It may be noted that high
CPU loads are mainly present in vision systems, which require
image processing of one or multiple image recordings. Some
existing solutions are susceptible to environmental effects such
as rapid variations in light intensity. Although this system is
not influenced by light intensity, the effect of disturbances
from the road do affect the system performance, which is
shown by the differences between driving on asphalt and
cobblestone roads. For future work it is recommended to
improve the robustness to external disturbances, such that
the performance on lower quality roads is similar to the
performance on higher quality roads. Because the presented
detection algorithm does not require additional hardware and
uses on-board sensor information which is already available,
the system can easily be implemented into the control system
of a vehicle. This algorithm does require information of the
steering system dynamics, which can be obtained via system
identification. However, for the application of mass production
vehicles, these dynamics are already known, resulting in low
costs for implementation onto new vehicles. Finally, the detec-
tion algorithm does not require any driver input to detect an
intervention.

Comparing the performance with existing solution shows
that the presented detection algorithm generally performs sim-
ilar or better in areas the systems can be compared. Table III
shows the differences in performance for a number of studies.
One has be aware that it is difficult to make a full and thus fair
comparison, since not all studies include the same performance
metrics as used in this study. Also, most studies use a lab set-
up, which evidently has less disturbances than a test vehicle
driving on a (poor) road.

Limitations of the presented detection algorithm include
the road quality, the considered intervention scenario and the

steering angle sensor resolution. In this study it is assumed
that whenever the driver performs an intervention, the steering
wheel is touched. However, this might not be true for all
interventions, since a driver can also perform an intervention
without touching the steering wheel. For this reason the
presented approach is limited to situations where a driver
does touch the steering wheel. Also, non-critical interventions
are considered, this method is not yet suitable for safety
applications. Finally, the amplitude of the disturbance torque
has a lower bound directly related to steering angle sensor res-
olution, higher resolution sensors can decrease this amplitude
and therefore also decrease the induced yaw response.

VI. CONCLUSION

Driver intervention detection via on-line transfer function
estimation is successfully realized without using additional
hardware. The algorithm for driver intervention detection
presented in this article can be implemented in nearly all
modern passenger vehicles. The method has been validated
with measurements, whose results are in agreement with the
simulation results. Via measurements it has been found that
the performance of the driver intervention detection depends
on the road quality. More specifically, the performance is
positively correlated to the road quality. The number false-
negative detections increases for lower quality roads, while
the number of false-positives seems to be unaffected by the
road quality. A response time analysis shows that using the
presented detection method, driver intervention is successfully
detected within the desired timeframe. The detection algorithm
does not suffer from the same drawbacks as existing solutions
but still has a similar or better performance. However, limiting
factors and areas of future research are identified, being the
reduction of the response time of the system, the performance
and robustness on low quality roads, the effect of the steering
column angle sensor resolution, and the considered interven-
tion scenario.
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