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Utilization Management and Pricing of Parking
Facilities Under Uncertain Demand

and User Decisions
Amir Mirheli and Leila Hajibabai

Abstract— Excessive search for parking spots in congested
areas contributes to additional travel delays and negative socio-
economic impacts. While managing parking utilization to address
the agency’s objectives, it is often very beneficial to reflect the
diversity of users’ behaviors and their travel choices. This paper
develops a stochastic dynamic parking management model, under
competitive user-agency perceptions and uncertain user demand
and parking occupancy, to simultaneously minimize the total
travelers’ costs and maximize the parking agency’s revenue.
The problem is formulated into a dynamic programming model
and solved using a stochastic look-ahead technique based on the
Monte Carlo tree search algorithm to determine optimal actions
on parking price assignment and spot utilization over time. The
numerical experiments on a hypothetical and empirical case study
are conducted to show the performance of the proposed algorithm
and to draw managerial insights. The results are compared
with those of benchmark algorithms, which indicate that the
proposed methodology can determine near-optimal solutions
efficiently.

Index Terms— Parking utilization, dynamic pricing, Monte
Carlo tree search, look-ahead model, stochastic, bi-level, integer
program.

I. INTRODUCTION

RAPID development of individual modes of transportation
in modern cities has caused insufficient solutions to

urban mobility and yielded bolder congestion problems in
downtown areas. A study on 11 major cities shows that
cruising for each parking spot generates extra 4,927 vehicle-
miles-traveled annually [43]. Besides, the additional conges-
tion caused by cruising, wastes an average of 8.1 minutes
per vehicle [44] and leads to even more local circling by
10% when spending 20 minutes search for an available park-
ing spot [41]. It, thus, enforces excessive fuel consumption,
i.e., burning extra 3.87 million gallons of gasoline [5], carbon
emissions, as well as driver frustration. Therefore, parking
and congestion problems are inter-related, sharing significant
socio-economic impacts, especially, in congested urban areas.
Smart parking strategies offer considerable savings in time,
energy, and dollar amounts, which lead to improvements in
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the livability of modern societies. However, under- and over-
utilized parking areas are the immediate consequences of
inefficient parking spot management that significantly affect
the parking industry, businesses, and people (e.g., parking
users, general population) in terms of economy and health.
For example, offering unreasonably-priced (i.e., too high or
free/inexpensive) parking spots worsens parking utilization
and generates additional congestion as users attempt to cruise
to avoid expensive parking areas due to economic reasons.
Similarly, distant parking lots from businesses or shopping
centers encourages users to circle the neighboring streets
to find closer parking spots. Consequently, effective parking
management strategies shall reliably account for a number of
parking agency- and user-related factors, including parking
price, location, demand, and available supply reliably (see
Figure 1).

Recent advancements in technologies offer higher levels
of flexibility to users as well as the decision-makers to
improve parking management strategies. Such flexibilities
include (i) obtaining information about spot availability on
neighboring parking areas in advance, (ii) adjusting rates based
on the level of occupancy or stay meter times, and (iii)
accepting various payment options from credit cards to smart-
phone payments among others. Hence, decision-makers can
more effectively maximize their revenue by setting prices
for parking garages based on the incoming demand. Besides,
information on price and occupancy provides users with the
opportunity to choose available parking areas with acceptable
costs (i.e., close to their desired destination at a reasonable
price). However, achieving an optimal parking utilization,
even with real-time information is still complex. Demands
for parking areas in the network change over time, which
enforce parking agencies to acquire a dynamic pricing scheme
to maximize the parking utilization and revenue. On the other
hand, the decisions made by parking agencies (e.g., on pricing)
affect the users’ decisions regarding parking spot selections.
This user-agency decision-making scheme can be represented
by a game theoretical model, where parking agencies and users
compete until they reach an equilibrium condition.

This paper presents a dynamic parking management prob-
lem that accounts for an optimal price assignment by park-
ing location over time that aims to drive parking utilization
towards a target occupancy. The objective is to simultaneously
(i) minimize the total user costs (including driving from origins
to parking spots and walking from the parking locations to
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Fig. 1. Inter-relationships between parking utilization and travelers’ parking
choices.

their final destinations, both in terms of travel time), (ii) max-
imize the parking agency’s revenue (mainly by minimizing
the difference between the actual parking occupancy and its
target level); see Figure 1. The problem is formulated into a
bi-level optimization program with the upper-level focusing on
maximizing parking utilization and parking agency’s revenue,
while the lower-level aims to minimize total user costs. To find
an optimal solution, the bi-level optimization program is con-
verted into an equivalent single-level formulation by applying
Karush-Kuhn-Tucker (KKT) conditions and transforming user-
equilibrium (UE) constraints in the lower-level problem to
complementary equations. The dynamic user behavior and
stochastic demand are captured by formulating the problem as
a dynamic program. A Monte Carlo tree search (MCTS) based
on a stochastic look-ahead model [1], [7], [36] is implemented
to determine the optimal occupancy of parking areas and
user assignment to spots at each time period. The proposed
model and solution technique are applied to a hypothetical and
an empirical case study. Besides, the proposed methodology
is numerically compared to two benchmarks: (i) a greedy
algorithm and (ii) an exact method to solve the proposed
bi-level program. Numerical results show that the proposed
algorithm solves the problem effectively and outperforms the
benchmark methodologies.

The remainder of this paper is organized as follows.
Section II highlights the existing research on parking spot
management and relevant literature. Section III introduces
the mathematical formulation developed for dynamic park-
ing management. Section IV details the proposed approach
to solve the problem and Section V presents the numeri-
cal results. Finally, Section VI summarizes the concluding
remarks and trends for future research.

II. LITERATURE REVIEW

Advanced technologies with the support of the Internet-of-
Things enable parking agencies to obtain real-time demand
requests from parking neighborhoods. While parking agencies
compete with their peers on the market share and aim to
absorb higher number of parking users, there is a trade-off
between price adjustment to gain more revenue and user
attraction to maximize parking utilization. Users, on the other
hand, are involved in a competition to find the best available

parking spot fitting their needs, that is frustrating when the
capacity of the parking areas is limited. Such problems can be
translated into bi-level (e.g., [10], [15]) game theoretical (e.g.,
[28], [48]) optimization problems. Despite its importance,
dynamic parking management under uncertain future demand
and occupancy over time has not been thoroughly studied in
the literature. This section summarizes relevant research efforts
on model development and methodology.

Preliminary research on parking management neglects pric-
ing strategies and solely accounts for the game theoretical
methods that address the competition among users and parking
agencies. For instance, Ayala et al. [4], [5] have developed a
congestion game model for parking assignment that minimizes
the extra cruising for available parking lots. Mejri et al. [30]
have further studied a full cooperation between parking agen-
cies to optimize the parking lots’ distribution and account for a
congestion game among drivers in search for the best parking
area. Their goal is to minimize the overall network cost,
which outperforms the centralized as well as greedy heuristics.
Furthermore, Levy et al. [26] have formulated the spatial auto-
correlation of occupied on-street parking areas. They have
shown that for occupancy rate above 85%, the contiguity of
space has a significant impact on parking dynamics. This is
obtained based on the comparison of a micro simulation-based
solution, PARKAGENT,1 to that of a non-spatial analytical
solution, PARKANALYST.2

Another school of research focuses on dynamic parking
pricing strategies using game theoretical solutions. For exam-
ple, Qian and Rajagopal [39], [40] have formulated the rela-
tionship between dynamic parking pricing and information
sharing. The study results in optimal UE as well as system-
optimal (SO) parking flow patterns and pricing schemes per
lot that minimize total users’ cruising time. Their experiments
suggest a balance between the parking congestion and conve-
nience of chosen lots in terms of terminal occupancy to set
the parking prices and distribute drivers via a UE condition.
Besides, Kokolaki et al. [24] have proposed an un-coordinated
information-assisted parking search procedure under different
categories: (i) low-priced but limited-capacity public facilities
versus (ii) high-priced yet un-limited private parking spots.
They assume that drivers aim to minimize their cruising cost
under public or private parking choices following a game
theoretical method using information on prices, total parking
capacities, and demand. The results lead to SO demand assign-
ments by controlling the price of the parking facilities. Another
competition game formulation is proposed by He et al. [22]
that addresses the parking space assignment to a limited
number of vehicles under complete information on the parking
status, with the objective of minimizing total system cost. The
study results in SO pricing schemes under UE assignment of
parking spaces to vehicles. Later, Du and Gong [12] have
developed a stochastic Poisson game theoretical model to

1PARKAGENT is an agent-based model for parking in urban areas that
simulates the drivers’ parking choices on street networks ( [6]).

2PARKANALYST introduces an aggregate analytical perspective (i.e., aver-
age parking conditions for every driver) to represent the temporal dynam-
ics of cruising; see [2] for more information on PARKANALYST and
PARKAGENT.
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indicate the competitions among drivers in multiple parking
areas in a decentralized and coordinated online parking mech-
anism. However, the dynamic pricing impact on the demand
allocation is not discussed. Problems solved with game theo-
retical methods are frequently formulated by the Stackelberg
leader-follower model: the market situation is described by
a hierarchical model, where a set of stakeholders aim to
achieve their objectives under various individual optimal deci-
sions (e.g., see [45], [49]). Similarly, Mackowski et al. [27]
have developed a dynamic non-cooperative Stackelberg leader-
follower game that determines the real-time parking prices
and optimizes the parking utilization. A bi-level mathematical
program with equilibrium constraints (MPEC) is formulated
that accounts for demand variations due to the parking pric-
ing. Then, a single-level mixed-integer quadratic program
(MIQP) reformulation of the original problem is implemented
in a rolling-horizon structure. However, the rolling horizon
approach is substituted with a myopic sequential solution
technique to account for the convexity restriction of the objec-
tive function. Further, Lei and Ouyang [25] have applied the
approximate dynamic programming (ADP) approach on MIQP
formulation developed by Mackowski et al. [27] to include
the information of future parking demand and available spots
into the model. In this study, the value function is approxi-
mated using concave separable piece-wise linear functions and
updated by dual sub-gradient information in each iteration of
the algorithm. Their numerical results show that implementing
future information via ADP outperforms the myopic solution.
However, the existing stochasticities (e.g., cruising time) has
not been addressed in this research.

Dynamic parking utilization problem, on the other hand,
deals with uncertainty over time due to unknown future
demand and occupancy. Such problems are often formulated
into dynamic programming (DP) models under discrete state
and action spaces [37], [38]. However, such methods com-
monly suffer from size limitations to estimate the impact of
decisions on future outcomes. To overcome the computational
burden, possible outcomes in problems accompanying uncer-
tainty can be simulated using Monte Carlo methods [8], [46].
For example, Al-Kanj et al. [1] have applied sampled Monte
Carlo tree search (MCTS) algorithm in a stochastic look-ahead
policy to create a partial tree to handle the unknown events
in vehicle routing problem in the emergency storm response
context. It turns out that decision trees are also effective in
reinforcement learning and prioritizing the actions. Despite
all the efforts in the related areas, the problem of dynamic
parking utilization management under future uncertainties has
not been fully addressed. As such, Sections III - IV propose a
methodology to bridge the gap.

III. MODEL FORMULATION

This section introduces the optimization model based on
Mackowski et al. [27] for managing parking spots,3 in a
dynamic programming framework. The physical and temporal
elements of the problem are first introduced, as follows. Let T

3Mackowski et al. [27] have used a dynamic performance-based pricing
approach to formulate the problem.

be the number of discrete time periods in the planning horizon
and � = {0, 1, · · · , T − 1} present the times at which parking
decisions are made. ϒ denotes the set of physical parking
areas in an urban neighborhood, where each area provides a
set of available parking spots over time. Each j ∈ ϒ has a
parking capacity c j .

For each t ∈ �, j ∈ ϒ , let Ĵ t
j denote the number of parking

spots that first become available at time t . Accordingly,
Ĵ t = (Ĵ t

j ) j∈ϒ presents the spatial distribution of all newly
realized parking spots at time t . Let J t

j be the number of
parking spots already available in parking lot j at time t before
any new spot availability; similarly, J t = (J t

j ) j∈ϒ represents
the total number of parking spots that are already available
at time t . Hence, J t+ denotes the total number of available
parking spots in time period t , where J t+ = J t + Ĵ t that
includes all existing as well as newly realized parking spots.
Similarly, to monitor the available users, D̂t is defined for each
t ∈ � to present the set of users that first become available
(i.e., cruise for available parking spots) in time period t . Then,
Dt denotes the available users at time t before the new arrivals
in D̂t are included in the system. Again, Dt+ indicates the set
of available users at time t , including the new users have just
arrived, i.e., Dt+ = Dt ∪D̂t . Therefore, Dt+

j denotes the set of
users that must be served by parking spots in area j at time t ,
i.e., Dt+ = ⋃

j∈ϒ Dt+
j . Each user has to spend some time to

search for a free spot based on the occupancy of the preferred
parking lot at the beginning of time t . Therefore, L̂t

j denotes
the expected average cruising time for users going to parking
j at time t and L̂t = ⋃

j∈ϒ L̂t
j represents the set of newly

realized cruising times at time t .

New information at time t is denoted by W t = (D̂t , Ĵ t , L̂t ),
where

(W t
)T

t=0 represents the stochastic information process
with realization W t (ω) = ωt = (D̂t (ω), Ĵ t (ω), L̂t (ω)),
[similar to 14, 19]. Sample realization ω depends on the policy
selection, e.g., provide more information about the real-time
occupancy of each parking lot to users to decide the preferred
parking lot and reduces their cruising time. Therefore, we let
�π be the set of outcomes that depend on policy π used
to inform users about available parking spots. The number
of available users and average cruising duration over time t
follow random processes. The state of the system is captured
by the distribution of available users and available spots in
parking area j , i.e., S t = {Dt ,J t ,Lt

}
.

At each time period t , the parking agency makes a decision
on the price pt

j of each parking lot. The parking demand is
defined by sets of origins O and destinations �, arrival time,
and parking duration: user i from origin o ∈ O to destination
δ ∈ � may arrive at a parking neighborhood at time t ∈ � and
park for n time periods, where n ∈ {1, 2, . . . ,N }; see Figure 2.
Users going to parking j experience a driving cost μoj from
origin o to parking spot in j (i.e., travel time and average
cruising time in j ), walking cost ρ jδ from the parking location
in j to final destination δ, and parking price pt

j . We define
Ct,n

j,oδ = n pt
j + θ μoj + θ ′ρ jδ to represent the total user cost

from o ∈ O and δ ∈ � to park in lot j for n time periods at
time period t , where θ and θ ′ convert travel time to monetary
cost. Similar to Mackowski et al. [27], we let ht,n

j,oδ denote
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Fig. 2. Hypothetical illustration of user arrivals and parking spot availability
over time.

the number of users cruising for parking spot in j . Besides,
we let parameter σ t

j indicate the occupancy of parking area j ,
where κ j denote the target occupancy rate of parking area j .
The impacts of the occupancy of each parking lot on drivers
cruising time are studied in the literature ([3], [23], [26], [35]).
The average expected cruising time F t

j is a function of ψ t
j

for parking j at time t , where ψ t
j includes the number of

occupied parking spots σ t
j at the beginning of time period t

and the number of users ht,n
j,oδ choose to park in parking lot

j during time period t . User behaviors with respect to the
occupancy information (provided by the parking agency) [3]
can be represented by

F t
j (ψ

t
j ) = e j Z j (1− c−1

j (σ
t
j +

∑
n∈{1,2,...,N }∑

oδ∈O�
ht,n

j,oδ))
−1, ∀ j ∈ ϒ, t ∈ �, (1)

where e j represents the average cruising time for empty
parking lot j . Besides, Z j is a constant that represents the
reaction of drivers to the provided information, where Z j = 1
when they are completely aware of the updated occupancies.
According to (1), when the parking lot occupancy reaches to
the lot’s capacity, cruising time goes to infinity. This indicates
that there will be no chance for the new users, arriving during
the next time period, to find a parking spot, unless some
users leave the parking lot. In the UE condition, parking j
is chosen at time t for n time periods by users traveling from
o ∈ O to δ ∈ �, only when j ’s total user cost ut,n

oδ is the
minimum amongst all parking choices [40], mathematically
defined as ht,n

j,oδ > 0 if Ct,n
j,oδ = ut,n

oδ or 0 if Ct,n
j,oδ > ut,n

oδ ,
for all j ∈ ϒ, o ∈ O, δ ∈ �, n ∈ {1, 2, . . . ,N }, t ∈ �.
Furthermore, �i denotes the time window for user i ∈ D+t
to find a parking spot in j . In case a user i is not served
(i.e., cannot find a parking spot) within �i , it is assumed
lost in that time period but backlogged for the future periods.

A dummy lot ζ is considered with enough capacity to tolerate
all additional demand lost from the system. Dt is relatively
small since it represents the set of cruising users left unserved
from a previous time period. Hence, when the time window
is tight (e.g., special cases), it can be eliminated from the
state definition. The user-specific demand follows a H(ut,n

oδ )

form that is an inverse demand function of the ut,n
oδ of such

demand type. Thus,
∑

j∈ϒ∪{ζ } h
t,n
j,oδ = H(ut,n

oδ ), ∀ j ∈ ϒ,
o ∈ O, δ ∈ �, t ∈ �, n ∈ {1, 2, . . . ,N }. Then, similar to
Mackowski et al. [27], the number of arrivals and departures
are respectively calculated by qt,n

j = ∑
oδ∈O� ht,n

j,oδ and

gt
j =

∑t−1
m=max(1,t−N ) qm,t−m

j . To capture the equilibrium
condition for the parking users, a binary decision variable
xt

i = {xt
i j , ∀ j ∈ ϒ ∪ {ζ }} ∈ {0, 1}|ϒ∪{ζ }| is defined, where

xt
i j = 1 if user i selects a parking spot at area j at time

t or xt
i j = 0 otherwise. We let |λt,n

oδ | = H(ut,n
oδ ) present

the set of users travel from o ∈ O to δ ∈ � for parking
duration n at time period t . The mathematical optimization
model including parking agency’s decisions and users’ parking
equilibrium choice can be formulated into a bi-level problem,
as follows,

f t (pt
j (ω), ht,n

j,oδ(ω), ut,n
oδ (ω))

= β
∑
j∈ϒ

∣∣∣(κ j c j − σ t
j )−

∑
n∈{1,2,...,N }

∑
oδ∈O�

ht,n
j,oδ(ω)

∣∣∣
− α

∑
n∈{1,2,...,N }

∑
oδ∈O�

∑
j∈ϒ

n pt
j (ω) ht,n

j,oδ(ω), (2a)

while the feasible region for a given ω at t is subject to

l j ≤ pt
j (ω) ≤ u j , ∀ j ∈ ϒ, t ∈ �, (2b)

and

ht,n
j,oδ(ω) ∈ argmin

xt
i j∈{0,1}|ϒ∪ζ |

∑
i∈λt,n

oδ

∑
j∈ϒ∪{ζ }

Ct,n
j,oδ xt

i j (2c)

xt
i j (ω) ∈ {0, 1}, ∀ j ∈ ϒ ∪ {ζ }, i ∈ λt,n

oδ , t ∈ �, (2d)∑
j∈ϒ∪{ζ }

xt
i j (ω) = 1, ∀i ∈ λt,n

oδ , (2e)

ht,n
j,oδ(ω) =

∑
i∈λt,n

oδ

xt
i j (ω), ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�,

n ∈ {1, 2, . . . ,N }, t ∈ �, (2f)∑
oδ∈O�,n∈{1,2,...,N }

ht,n
j,oδ(ω) ≤ c j − σ t

j ,

∀ j ∈ ϒ ∪ {ζ }, t ∈ �, (2g)

where H(ut,n
oδ ) = a′t,noδ − b ut,n

oδ , and a′t,noδ denotes the linear
demand curve’s intercept for each user with oδ ∈ O� to park
at time t for n ∈ {1, 2, . . . ,N } time steps.

The upper-level objective function (2a) defines the parking
agency’s revenue as well as the difference between the tar-
get occupancy and actual parking utilization, with respective
weights of α and β. Constraints (2b) define a minimum l j and
a maximum u j for the parking price at a spot in area j . The
lower level problem (2c) captures the drivers’ behaviors to
find the parking spots at minimum costs. Constraints (2d) and
(2e) denote that each user can park in only one parking spot.
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Constraints (2f) present the relationship between the parking
demand and user decisions. Finally, constraints (2g) ensure
that the number of users parking in lot j is less than the
number of available spots.

To further capture the dynamics of the system over time,
let Dt

e(h
t,n
j,oδ) denote the set of “expired" users that are either

served or never served by the end of their time window �i .
Hence, the dynamics of the users and parking areas are defined
as

Dt+1 = Dt+ \Dt
e, ∀t ∈ �, and (3a)

J t+1
j (ω) = c j − σ t

j (ω)− qt
j (ω)+ gt

j (ω), ∀ j ∈ ϒ ∪ {ζ },
t ∈ �, (3b)

where (3b) counts the number of available parking spaces in
area j at time t + 1 and can be translated into the occupancy
of parking area j at time t + 1, as

σ t+1
j (ω) = σ t

j (ω)+ qt
j (ω)− gt

j (ω), ∀ j ∈ ϒ ∪ {ζ }, t ∈ �.
(4)

In addition, the price changes between consecutive time peri-
ods is defined within an upper bound ε′ and a lower bound ε,
as follows.

−ε′ ≤ pt
j (ω)− pt−1

j (ω) ≤ ε, ∀ j ∈ ϒ, t ∈ �. (5)

The objective is to minimize the expected costs (i.e., the dif-
ference between the target occupancy rate and actual parking
utilization minus the agency’s revenue4) of the system over
the planning horizon, given an initial state S0, as follows:

minimize
(p0

j , h0,n
j,oδ, u0,n

oδ )

f 0(p0
j , h0,n

j,oδ, u0,n
oδ )

+E

{ ∑
t∈�\{0}

minimize
(pt

j , ht,n
j,oδ , ut,n

oδ )
f t (pt

j , ht,n
j,oδ, ut,n

oδ )
}
. (6)

IV. SOLUTION TECHNIQUE

A. Single-Level Conversion

Problem formulated in (2a)-(2g) is a bi-level optimiza-
tion problem with non-linear terms. We first reformulate it
into an equivalent single-level model using KKT conditions.
The UE conditions in the lower-level problem (2c)-(2g) are
transformed into complementary equations by implementing
minimum total user cost ut,n

oδ and νt
j as dual variables of

constraints (2g) [see 16, 27]. For notation simplicity, we focus
on one generic sample realization and omit ω everywhere
beginning from this section. Therefore, our problem becomes

ft (pt
j , ht,n

j,oδ, ut,n
oδ )

= β
∑
j∈ϒ

∣∣∣(κ j c j − σ t
j )−

∑
n∈{1,2,...,N }

∑
oδ∈O�

ht,n
j,oδ

∣∣∣
− α

∑
n∈{1,2,...,N }

∑
oδ∈O�

∑
j∈ϒ

n pt
j ht,n

j,oδ, (7a)

l j ≤ pt
j ≤ u j , ∀ j ∈ ϒ, t ∈ �, (7b)

4The terms of the objective function are converted into costs using respective
coefficient β per time.

and

0 ≤ ht,n
j,oδ ⊥ Ct,n

j,oδ + νt
j − ut,n

oδ ≥ 0, ∀ j ∈ ϒ ∪ {ζ },
oδ ∈ O�, n ∈ {1, 2, . . . ,N }, t ∈ �, (7c)

0 ≤ νt
j ⊥ (c j − σ t

j )−
∑

oδ∈O�,n∈{1,2,...,N }
ht,n

j,oδ ≥ 0,

∀ j ∈ ϒ ∪ {ζ }, t ∈ �, (7d)

where constraints (7c) are equivalent to

ht,n
j,oδ ≤ γ t,n

j,oδ(c j − σ t
j ), ∀ j ∈ϒ ∪ {ζ }, oδ∈O�,

n ∈ {1, 2, . . . ,N }, t ∈ �, (8a)

Ct,n
j,oδ + νt

j − ut,n
o,δ ≤ M(1− γ t,n

j,oδ), ∀ j ∈ ϒ ∪ {ζ },
oδ ∈ O�, n ∈ {1, 2, . . . ,N },
t ∈ �, (8b)

Ct,n
j,oδ + νt

j − ut,n
o,δ ≥ 0, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�,

n ∈ {1, 2, . . . ,N }, t ∈ �, (8c)

γ t,n
j,oδ ∈ {0, 1}, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�,

n ∈ {1, 2, . . . ,N }, t ∈ �. (8d)

Similarly, constraints (7d) can be reformulated as

νt
j ≤ Mηt

j , ∀ j ∈ ϒ ∪ {ζ }, t ∈ �, (9a)

(c j − σ t
j )−

∑
oδ∈O�,n∈{1,2,...,N }

ht,n
j,oδ ≤ M(1− ηt

j ),

∀ j ∈ ϒ ∪ {ζ }, t ∈ �, (9b)

(c j − σ t
j )−

∑
oδ∈O�, n∈{1,2,...,N }

ht,n
j,oδ ≥ 0,

∀ j ∈ ϒ ∪ {ζ }, t ∈ �, (9c)

ηt
j ∈ {0, 1}, ∀ j ∈ ϒ ∪ {ζ }, t ∈ �, (9d)

where ht,n
j,oδ and pt

j are defined as integer decision variables
and M is a sufficiently large constant value. The objective
function (7a) includes a bi-linear term which makes the
problem non-convex. We apply the M-method to linearize
that term. The value of M has a significant impact on the
dimension of the problem, which makes it difficult to solve
using commercial solvers, e.g., [11]. To reformulate the objec-
tive function, we re-introduce pt

j and ht,n
j,oδ as integer decision

variables using bt
j,k ∈ {0, 1}, as follows.

pt
j =

∑
k∈K

2k bt
j,k, ∀ j ∈ ϒ, t ∈ �, (10)

where K = ⌊
log2 u

⌋ : u = max(u j ), ∀ j ∈ ϒ . Similarly,
we substitute the integer variable ht,n

j,oδ by binary variables
b′t,nj,oδ ∈ {0, 1} as

ht,n
j,oδ =

∑
k′∈K ′

2k′ b′t,nj,oδ, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�,

n ∈ {1, 2, . . . ,N }, t ∈ �, (11)

where K ′ = ⌊
log2 h

⌋ : h = max(ht,n
j,oδ), ∀ j ∈ ϒ ∪ {ζ },

oδ ∈ O�, n ∈ {1, 2, . . . ,N }, t ∈ �. We then define a
continuous auxiliary variable zt,n

j,oδ,k,k′ to represent the multi-
plication of the defined binary variables. Finally, we substitute
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the second term of objective function (7a) by∑
n∈{1,2,...,N }

∑
oδ∈O�

∑
j∈ϒ

n pt
j ht,n

j,oδ

=
∑

n∈{1,2,...,N }

∑
oδ∈O�

∑
j∈ϒ

∑
k∈K

∑
k′∈K ′

2k′2k zt,n
j,oδ,k,k′ , (12)

where

zt,n
j,oδ,k,k′ ≤ bt

j,k, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�, t ∈ �,
k ∈ K , k ′ ∈ K ′, n ∈ {1, 2, . . . ,N }, (13a)

zt,n
j,oδ,k,k′ ≤ b′tj,k, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�, t ∈ �,

k ∈ K , k ′ ∈ K ′, n ∈ {1, 2, . . . ,N }, (13b)

zt,n
j,oδ,k,k′ ≥ bt

j,k + b′tj,k − 1, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�,
t ∈ �, k ∈ K , k ′ ∈ K ′, n ∈ {1, 2, . . . ,N },

(13c)

zt,n
j,oδ,k,k′ ≥ 0, ∀ j ∈ ϒ ∪ {ζ }, oδ ∈ O�, t ∈ �, k ∈ K ,

k ′ ∈ K ′, n ∈ {1, 2, . . . ,N }. (13d)

B. Dynamic Programming Procedure

This section applies a dynamic programming technique
to represent the decisions made by the parking agency
and users over time. Similar to Al-Kanj et al. [1] and
Mirheli et al. [31], a stochastic look-ahead approach based on
MCTS is used to solve problem (7a)-(7b), (8a)-(8d), (9a)-(9d),
(10)-(12), and (13a)-(13d) considering current states and newly
available information in each time t . To do so, we first
rewrite the objective function (6) into equivalent Bellman’s
equation using the converted single-level formulation, i.e.,
V t (S t ) = E{minimize ft (pt , ht , ut , γ t , ηt , νt , bt , b′t , zt )+
V t+1(S t+1)|S t }.

DP-driven methodologies may provide solutions to the
problem by gathering accurate information on state variables
and actions at each time period t . However, the combination
of available parking spots, number of users cruising for vacant
parking spots, average cruising time spent at each parking lot,
over all times t ∈ � in all parking lots j ∈ J ∪ {ζ } makes
the problem computationally intractable. To overcome the
curses of dimensionality, approximation methods and adaptive
techniques are used in the literature, e.g., [1], [13], [21],
[29], [32] that provide initial estimations and improve them
through iterative techniques. In this paper, the number of users
cruising in parking system at each time t follows a linear
inverse demand function of minimum parking cost. We apply a
function to compute the average cruising time in each parking
lot j ∈ ϒ ∪ {ζ } that partially reduces the state space and
simplifies the look-ahead model. We then estimate the value
function by Ṽ t+1(Dt+1, J t+1), which is only a function of
available parking spots and users. For notation simplicity,
we let at represent all actions (i.e., decision variables) in each
time t ∈ �. Our optimization model at each parking lot j in
time t can be presented as

A∗t
(S t ) = argmin

at∈At (S t )

{ f t (Dt ,J t , at )+ Ṽ t+1(Dt+1,J t+1)}
(14a)

subject to (7b), (8a)-(8d), (9a)-(9d), (10)-(12), and (13a)-(13d),
where A∗t

denotes the near-optimal actions from the set of
feasible actions At .

Tree search algorithms are shown to be effective in approx-
imating the value function in each t . However, exploration in
each branch of the tree created by a feasible action as well as
the inclusion of exogenous information at each time t , make
the tree to grow exponentially. Therefore, the MCTS algo-
rithm [1] is applied in the look-ahead policy to (i) efficiently
provide the estimation of the value function and (ii) effectively
introduce uncertainties to the problem. In each iteration of the
MCTS algorithm, the following steps are repeated [9], [34]:
selection, expansion, simulation, and back-propagation. In the
selection step, the best action is selected based on the proposed
actions and their updated values from previous iterations until
we reach an expandable state. In each leaf node, one or more
states are added to the tree. Then, in the simulation step,
the value of the added state is calculated and finally, the back-
propagation step updates the value functions of predecessor
states based on the estimated value of recently added states.
Our MCTS algorithm framework includes a (i) tree pol-
icy, (ii) value function estimation, and (iii) back-propagation
steps.

In this paper, the exogenous information on unexpected
average cruising time is acquired at the beginning of t ∈ �,
where the stochastic information is added to the tree to handle
the uncertainties. In the look-ahead model, all variables are
indexed with t, t ′ to identify the time iteration t in the main
model and t ′ = t, . . . , t + H − 1 in the look-ahead model,
where H represents a limited time horizon as a threshold
for tree expansion (i.e., inner tree iterations). Then, the value
function estimation is divided into pre-decision Ṽ t,t ′(S̃ t,t ′)
and post-decision Ṽ t,t ′

a (S̃ t,t ′
a ) value functions that include

the effects of adding exogenous information, where S̃ t =
{Dt , J t }. Besides, at state S̃ t,t ′ , we let Ãt, t ′(S̃ t,t ′) denote the
set of decisions, where the explored decisions are defined by
Ãt, t ′

e (S̃ t,t ′) that have been explored in the tree at time t ′ and
its complement set Ãt, t ′

u (S̃ t,t ′) presents the set of unexplored
decisions. For the possible outcomes, we let �̃t, t ′+1(S̃ t,t ′

a )
present all possible random events that can take place at
time t ′ + 1, where �̃t, t ′+1

e (S̃ t,t ′
a ) and �̃t, t ′+1

u (S̃ t,t ′
a ) represent

the explored and unexplored possible outcomes, respectively.
In the tree policy step, optimal decisions of the two-stage look-
ahead policy ãt, t ′, convert the pre-decision states S t,t ′ to post-
decision states S t,t ′

a . Once the parking prices and choices of
users are set for the time t ′, a sample of possible outcomes
ω̃ ∈ �̃t, t ′+1(S̃ t,t ′

a ) will be generated and fed into (1) to
compute the average cruising time of available users for each
parking lot, which was unknown prior to time t .

Our algorithm framework follows a stochastic MCTS with
the computational budget of N iterations: given a current state
S t , we create a state S̃ t, t ′ as a root node of the tree, generate
the MCTS algorithm, and build a look-ahead model at each
time t to estimate the value functions Ṽ t+1 and return the vec-
tor of near-optimal actions A∗t

in time period t . In each level
of the tree, there is a trade-off between exploiting the high-
reward states and exploring the states ignored more during
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the search, until we reach the threshold of sufficient possible
actions dthr . Therefore, in the selection step, we follow
upper confidence-bounding for trees (UCT)5 [1], [9] to make

decisions as ã∗t, t ′ = argmax̃
at,t ′∈Ãt,t ′

e (S̃ t,t ′ )

(
−( f̃ t (S̃ t,t ′, ãt,t ′)+

Ṽ t,t ′
a (S̃ t,t ′

a ))+ ι
√

lnN (S̃ t,t ′ )
N (S̃ t,t ′ , ãt,t ′ )

)
, where ι is a tunable parameter

to balance exploration and exploitation, N (S̃ t, t ′) represents
the number of visiting states S̃ t, t ′ , and N (S̃ t, t ′, ãt, t ′) iden-
tifies the number of times a decision ãt, t ′ is taken from
state S̃ t, t ′ during the tree search process. Once decisions
ãt, t ′ are made, the parking state will be S̃ t, t ′

a , where we add
a sample realization of exogenous information to reach the
next pre-decision state S̃ t, t ′ = ST ,a(S̃ t, t ′

a , W̃ t, t ′+1). ST ,a

represents the transition function between the evolution of each
two consecutive state variables [36]. In the simulation step,
we develop a simulation/optimization approach to provide an
initial estimate of the newly added node to the tree. In this step,
we first generate a sample path ω̃ ∈ �̃t, t ′(S̃ t, t ′) to determine
the level of information provided for the users at time t . Then,
we modify the demand for the next time t based on the updated
information on the parking costs and cruising times. Finally,
we reformulate using the log arc elasticity coefficient χ [47]
to efficiently solve the problem.

min
σ,p,q,h,g≥0

{
β

t ′′=t ′+H∑
t ′′=t ′

∑
j∈ϒ

(κ j c j − σ t
j )

− α
t ′′=t ′+H∑

t ′′=t ′

∑
n∈{1,2,...,N }

∑
oδ∈O�

∑
j∈ϒ

npt ′′
j ht ′′,n

j,oδ

}
(15a)

subject to

− ε′ ≤ pt ′′
j (ω)− pt ′′−1

j (ω) ≤ ε, ∀ j ∈ ϒ,
t ′′ ∈ {t ′, . . . , t ′ + H }, (15b)

l j ≤ pt ′′
j ≤ u j , ∀ j ∈ ϒ, t ′′ ∈ {t ′, . . . , t ′ + H }, (15c)

σ t ′′
j = σ t ′′−1

j − gt ′′
j +

∑
n∈{1,2,...,N }

qt ′′,n
j , ∀ j ∈ ϒ ∪ {ζ },

t ′′ ∈ {t ′, . . . , t ′ + H }, (15d)

qt ′′,n
j =

∑
oδ∈O�

ht ′′,n
j,oδ, ∀ j ∈ ϒ ∪ {ζ },

n ∈ {1, 2, . . . ,N }, t ′′ ∈ {t ′, . . . , t ′ + H }, (15e)

gt ′′
j =

t ′′−1∑
m=max(1,t ′′−N )

qm,t ′′−m
j , ∀ j ∈ ϒ ∪ {ζ },

t ′′ ∈ {t ′, . . . , t ′ + H }, (15f)

ht ′′,n
j,oδ ≤

(χ − 1)pt ′′−1
j ht ′′−1,n

j,oδ − (χ + 1)pt ′′
j ht ′′−1,n

j,oδ

(χ − 1) pt ′′
j − (χ + 1) pt ′′−1

j

,

∀ j ∈ ϒ ∪ {ζ }, o ∈ O, δ ∈ �, n ∈ {1, 2, . . . ,N },
t ′′ ∈ {t ′, . . . , t ′ + H }, (15g)

σ t ′′
j ≤ c j , ∀ j ∈ ϒ ∪ {ζ }, t ′′ ∈ {t ′, . . . , t ′ + H }, (15h)

where constraints 15g capture the effect of dynamic prices on
travel demand. The general algorithm framework is presented

5UCT is widely used in computer science literature and established for
solving maximization problems [9]

in Appendix A. In the MCTS algorithm, the tree policy
step explores feasible actions to add to the set of explored
actions until the threshold is reached. The value function
estimation step provides an initial approximation to newly
added nodes and finally, the back-propagation step updates the
value function estimations for the predecessor nodes. Once
the tree search terminates, the near-optimal actions will be
selected, which correspond to the best value from the root
node. Algorithm 1 is adopted from Al-Kanj et al. [1], where
the tree search termination criteria are modified and minimum
total user costs are updated.

V. NUMERICAL EXPERIMENTS

The proposed solution algorithm in Section IV is coded
in JAVA and run on a desktop computer with quad-core
3.6 GHz CPU and 16 GB of memory. A Poisson distribution is
applied to generate the initial demand pattern for five different
time periods during a business day, defined by SFCTA [42],
i.e., early AM, AM peak, mid-day, PM peak, and evening
time-of-day.

A. Hypothetical Dataset

To evaluate the effectiveness of the proposed method-
ology, we first apply our problem formulated in (7b)-(7c)
and (8)-(14a) and the MCTS solution framework to a hypo-
thetical parking network under various capacities. The dataset
contains 10 parking lots distributed between users’ origin O
and destination � sets. Driving time μoj from an origin o to a
parking spot j and walking time ρ j,δ from a parking location j
to a final destination δ are assumed in a way so as to provide an
equilibrium condition based on parking prices. In other words,
total parking cost (i.e., combination of the aforementioned
travel times and parking cost) provides a cooperative game
environment for users to compete on available parking spots in
an equilibrium condition, where each user aims to minimize its
own total cost. Table I summarizes the capacity of each park-
ing lot, driving time from origins to parking lots, and walking
time between parking lots and destinations. Trips to and from
dummy lot ζ with parking price of $0 get high enough values
to be chosen only when all parking lots are full. Two travel
origin regions have been selected and it is assumed that 70%
of demand enters the parking neighborhood from origin 1 and
the rest from origin 2. Users are assumed to park for four
different parking durations: 15 min, 30 min, 45 min, and 1 hr .
The average vehicle arrivals over different time periods in a
day is assumed to be 200, 520, 240, 480, and 200 for early
AM, AM peak, mid-day, PM peak, and evening time-of-day
for a medium demand level. Accordingly, the low and high
demand levels are assumed to be half and twice the medium
demand, respectively. A penalty value of β = 10 is considered
to avoid parking lots with $0 price in the solutions to minimize
the number of lost users. Besides network-related parameters,
values selected for model parameters follow. To balance the
objective function terms, the value of α is set to 0.25. Note that
a set of sensitivity analyses has been conducted to show the
impact of α and β on the objective value (see Section V-A2).
Furthermore, the time horizon threshold within the inner tree
iteration is set to H = 8. Finally, at most four actions
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TABLE I

PARKING SYSTEM PARAMETERS

Fig. 3. Trends of low, medium and high demand for the hypothetical dataset
for (a) price, and (b) occupancy.

are considered in each search level to expand the tree
(within the tree policy) that impose the price variations from
$2.0 – $5.0 with $1.0 increments. We assume that the mini-
mum and maximum price of parking lots are $0.2 and $20.0,
respectively.

1) Results: Figure 3 presents the average price and occu-
pancy of parking lots within a day starting from 8 AM to 5 PM
for low, medium, and high demand cases in the hypothetical
dataset.

Parking prices are changing with respect to users arrival
demand and occupancy of parking lots within the defined
range. At the beginning of the study horizon, the prices are
close to the minimum value where the parking lots are not
fully occupied and then they increase as users from previous
time steps as well as new incoming users occupy the available
spots. The average occupancy over time follows the relative
demand and remains less than the defined target occupancy by
applying the dynamic price and cruising time information.

As indicated in Figure 3, the proposed dynamic pricing
policy increases the average parking prices in high demand
cases. It can be observed that the average and standard

Fig. 4. (a) Number of lost users and (b) parking revenue for the low demand
in the hypothetical dataset.

deviation of parking price is increased by 17.1% and 82.5% in
the high demand case compared to the medium demand. The
standard deviation captures the reaction of parking agencies
to the number of users who search for available parking spots
over time. The number of cruising users (including un-served
and new users) increases when no available parking spot is
realized, which significantly affects the average parking price
in several time steps. On the other hand, in low demand
cases, by decreasing the number of cruising users, the parking
prices elevate at some time periods. In such cases, the ratio
of available spots to user cruising (i.e., seeking for parking)
is higher, which leads to lower values of dual multipliers
in constraints (2g). Therefore, average parking prices can
increase to maximize the parking agency’s revenue, while
the values of ut,n

oδ are kept as low as possible, according to
constraint (7c), to minimize the number of lost users.

Figure 4 presents the trade-off between parking agency
revenue and the number of users who are not served by a
parking spot at time t . The number of users varies due to price
variations over time. While agencies may set high parking
prices to increase their revenue, according to the figure, users
are not willing to park at high prices and sometimes prefer
to leave the parking system rather than paying extra dol-
lars for available spots. Through our proposed methodology,
the optimal price can provide a balance between the parking
agency’s revenue and users’ costs and minimize the number of
lost users. Uncertain relationship between parking price and
demand, prevent using point elasticity for available functions.
Therefore, we applied the arc elasticity coefficient, i.e., set to
b = −0.3, to control the impact of minimum parking price
on users who decide to use the parking system [47]. In other
words, arc elasticity captures the recent impacts of changing
the parking price on demand in the computations of the next
time period. The CPU time for the low, medium, and high
demand scenarios are 420 sec, 2, 054 sec, and 16, 537 sec,
respectively.
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Fig. 5. Objective values with respect to parking utilization and agency
revenue: (a) α and (b) β.

2) Sensitivity Analyses: To evaluate the impact of parking
utilization and parking agency revenue on the objective value
(captured by (7a)), a set of sensitivity analyses is conducted on
various parameter values, i.e., α and β, as shown in Figure 5.
When the value of α increases, so does the objective function
term on parking revenue, which imposes a negative impact on
absorbing users as it increases the total cost (see Figure 5 (a)).
According to Figure 5 (b), when the value of β increases, the
impact of utilization improvement will be increased. Note that,
according to Figure 5 (a) and (b), the choice of coefficient
β is very significant as maximizing the utilization has a
higher impact on the agency’s pricing decisions compared to
minimizing the total cost.

B. Benchmark

The proposed algorithm provides an accurate estimation of
parking utilization and pricing in each time period and handles
the computation complexity over the entire planning hori-
zon. To evaluate the performance of the proposed algorithm,
two benchmarks: (i) a greedy algorithm, and (ii) an exact
method to solve the bi-level program, are introduced. The first
benchmark consists of a rolling-horizon heuristic algorithm
that solves the problem with known information at each t .
In other words, our model (7b)-(7c) and (8)-(14a) is solved
for t = 0, 1, . . . , T − 1, without a look-ahead policy at each
iteration of the algorithm. Thus, the uncertainties involved in
the problem, e.g., cruising time, are not considered at any
time t . Table II specifically presents the parking agency’s
revenue and the number of lost users on average obtained
from the proposed approach versus the greedy algorithm. This
experiment illustrates that the proposed algorithm outperforms

TABLE II

COMPARISON WITH THE BENCHMARK SOLUTION
OBTAINED BY THE GREEDY APPROACH

the greedy approach by an average improvement of 40.83%
in the parking agency’s revenue at the cost of losing 9.13%
more users on average over the entire planning horizon.

The second benchmark is an alternative solution technique
to solve the bi-level problem (2a)-(2g) to exact optimality
over the entire planning horizon (see [33]). This approach
theoretically evaluates the quality of our algorithm proposed
in Section IV. The benchmark method generates theoretical
lower- and upper-bounds to the proposed problem. To find
the lower-bound, a global optimization problem is solved that
includes the upper-level objective function (2a), constraints of
both upper-level and lower-level problems (2b), (2d)-(2g), and
parametric upper-bound of the optimal solution to the lower-
level problem. The parametric upper-bound can be improved
by adding new constraints to the global optimization problem
through the following steps. First, the lower-level problem
(2c)-(2g) is solved to global optimality given the value of
upper-level decision variables pt

j . Then, admissible values of
the lower-level decisions xt

i j , given the optimal objective value
of lower-level problem (2d)-(2g), developed in the first step,
are found. Finally, a subset within the bounds of pt

j is obtained
that satisfy the constraints of the lower-level problem. To find
the upper-bound, similar global optimization problem is solved
under constraints of the lower-level problem (2d)-(2g), given
the value of upper-level decision variables pt

j found in the
lower-bound procedure.

Due to the computational burden, a small hypothetical
dataset is used to compute the upper- and lower-bounds in the
exact benchmark approach. The dataset contains two parking
lots with two origins and one destination. The parking duration
can be either 15 min or 30 min with a planning horizon
of four time steps. The dataset includes an average demand
of 11 users, where the capacity of parking lots is limited
to 30 and 20 spots. The remaining parameters are the same
as the hypothetical dataset introduced in Section V-A. The
proposed algorithm in Sections III - IV is also applied to this
case study for a comparison to the benchmark. Figure 6 shows
the convergence of upper- and lower-bound with a gap of 2.5%
for the bi-level optimization program, while the objective
value obtained from the proposed methodology is 105.8, i.e.,
within the tight gap. The CPU time for the exact benchmark
approach and the proposed algorithm is 132.4 hr and 0.8 sec,
respectively, which indicates the computational efficiency of
the proposed algorithm.

C. Real-World Dataset

The proposed formulation and solution technique are
applied to a real-world case study in Pullman, Washington.
The network includes 11 parking lots on Washington State
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Fig. 6. Convergence of upper bound and lower bound for the solution of
bi-level optimization model.

Fig. 7. Pullman, WA campus.

TABLE III

PARKING SYSTEM PARAMETERS IN PULLMAN, WA CAMPUS DATASET

University campus as shown in Figure 7. Users include faculty,
staff, students, and visitors who tend to park for more than one
time step. Therefore, the parking durations of 15 min, 45 min,
1.5 hr , and 3 hr are considered to contain several parking
options. The main library of the campus is considered as a
destination where users enter the campus from two origins in
the north and south point of the campus. Demand is assumed
to be twice as high compared to the theoretical dataset for
the medium demand level and α = 0.25. The low and high
demand levels are assumed to be 0.5 and 1.5 times of the
medium demand level, respectively. Table III presents the
capacity and travel time from each two points on the Pullman
campus to the parking lots with minimum price of $0.2 and
maximum price of $20.0.

Similar to the hypothetical dataset scenario, Figure 8
presents the average price and occupancy of parking lots
within a day starting from 8 AM to 5 PM for medium demand

Fig. 8. The relationship between price and occupancy for medium demand
case in the real-world dataset.

case in the real-world dataset. Similar trends can be observed
in the real-world case study, e.g., higher prices when the
demand increases. However, as the users are able to park
in the lots up to 3 hours, the results slightly differ from the
hypothetical case study in terms of the occupancy and price
variations over time. For example, the average parking price
decreases by 46.3% while the average occupancy increases
from 25.8% to 44.1% in the medium demand cases compared
to the hypothetical dataset for all time steps. These trends
are observed due to the accumulated revenue obtained by
longer parking durations. Besides, the slight difference of
standard deviations, realized in the average parking price (e.g.,
6.1%), reports a similar trend in cruising time due to the
additional demand and available parking spots at the same
time. Unlike the hypothetical dataset, the average occupancy
does not decrease by approaching the end of the day as users
have parked for more time steps, i.e., longer durations. The
CPU time for the low, medium, and high demand scenarios
are 1, 298 sec, 11, 501 sec, and 22, 710 sec, respectively.

VI. CONCLUSIONS

This paper studies a parking utilization and pricing scheme
that aims to maximize the parking agency’s revenue and
minimize total travelers’ costs simultaneously. Parking prices
are assigned over time, while drivers choose their preferred
spots considering parking prices, travel time for each trip,
and cruising time needed to find a spot in each parking lot,
given the information on the current occupancy. The problem
is formulated into a mixed-integer bi-level problem, where
the agency determines parking prices in the upper level while
drivers’ decisions are captured in the lower level. The bi-level
problem is converted into an equivalent single-level dynamic
programming model and solved using a stochastic look-ahead
technique based on Monte Carlo tree search algorithm to
determine the near-optimal actions (i.e., parking price and
spot utilization over time). The proposed algorithm is applied
to two datasets including a (i) hypothetical and (ii) real-
world case study in Washington State University campus and
compared with two benchmark solutions. The computational
results show that the proposed algorithm is able to solve the
problem effectively and outperforms the benchmark greedy
solution by an average benefit of 40.83% (for parking agency
revenue) at the cost of 9.13% increase in losing parking users
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over the planning horizon. Besides, the solution to the pro-
posed algorithm falls within a tight theoretical gap (found from
the exact solution technique to the bi-level problem), which
indicates its capability in determining the near-optimal solution
very efficiently (i.e., with a CPU time of 0.8 sec compared to
132.4 hr of the exact algorithm on a small dataset). Future
research can be conducted in a few directions. It is very
interesting to include a multi-agency competition to absorb
users to respective parking lots under highly variable demand

Algorithm 1 The Proposed Algorithm

procedure MCTS(S t )
Create root node S̃ t,t with state S t

set the iteration number n = 0 and t ← t ′
while n < N

Tree policy
while t ′ < t + H

if |Ãt,t ′
e (S̃ t,t ′)| < dthr

choose ã∗t,t ′
by solving the converted single-level

problem

S̃ t,t ′
a = ST (S t,t ′, ã∗t,t ′

)

Ãt,t ′
e (S̃ t,t ′)← Ãt,t ′

e (S̃ t,t ′) ∪ {̃a∗t,t ′ }
Ãt,t ′

u (S̃ t,t ′)← Ãt,t ′
u (S̃ t,t ′) − {̃a∗t,t ′ }

else
ã∗t, t ′ = argmax̃

at, t ′ ∈Ãt, t ′
e (S̃ t, t ′ )

(
−( f̃ t (S̃ t, t ′, ãt, t ′)+

Ṽ t, t ′
a (S̃ t, t ′

a ))+ ι
√

lnN (S̃ t, t ′ )
N (S̃ t, t ′ , ãt, t ′ )

)
S̃ t,t ′

a = ST (S t,t ′, ã∗t,t ′
)

end if
Add exogenous information of average cruising time
based on updated occupancies
S̃ t,t ′+1
(̃at,t ′ , W̃ t,t ′+1)

= ST , a(S̃ t,t ′
a , W̃ t,t ′+1)

Update the minimum parking cost (ut ′,n
o,δ )

t ′ ← t ′ + 1
end while
Value function estimation

choose a sample path ω̃ ∈ �̃t,t ′(S̃ t,t ′)
Update the demand for next time step based on (ut ′,n

o,δ )
Solve the optimization model (15) to find the value of
added node
Back-propagation

while S̃ t,t ′ �= ∅
N(S̃ t,t ′ )← N(S̃ t,t ′)+ 1
S̃ t,t∗

a ← predecessor of S̃ t,t ′

N(S̃ t,t∗
a , ãt,t∗)← N(S̃ t,t∗

a , ãt,t∗)+ 1
�← f̃ t (S̃ t,t∗, ãt,t∗)+ Ṽ t,t∗

a (S̃ t,t∗
a )

Ṽ t,t∗(S̃ t,t∗)← Ṽ t,t∗(S̃ t,t∗)+ �− Ṽ t,t∗(S̃ t,t∗)

N(S̃ t,t∗ )
t ′ ← t∗

end while
end while
return a∗t = argminãt, t∈Ãt, t

e (S̃ t, t ) f̃ t (S̃ t, t , ãt, t) +
Ṽ t, t

a (S̃ t, t
a )

end procedure

regions. Strategic facility location, similar to Hajibabai and
Ouyang [18], [20], and capacity design is another interesting
future research direction for this study. Furthermore, it is very
interesting to study the integration of network route planning,
e.g., [17], and parking facility management for service trucks.
Besides, it is worthwhile to analyze the impact of real-time
traffic data on network link travel times to draw more realistic
insights on parking utilization management.

APPENDIX A

See Algorithm 1.
APPENDIX B

TABLE IV

DEFINITIONS OF SETS, DECISION VARIABLES,
STATE VARIABLES, AND PARAMETERS
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