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Detection and Recognition of Traffic Planar Objects
Using Colorized Laser Scan and Perspective

Distortion Rectification
Zhidong Deng, Member, IEEE, and Lipu Zhou

Abstract— Reliable detection and recognition of planar objects
including traffic sign, street sign, and road surface in dynamic
cluttered natural scenes are a big challenge for self-driving cars.
In this paper, we propose a comprehensive method for planar
object detection and recognition. First, the data association
of LIDAR and camera is set up to acquire colorized laser
scans, which simultaneously contain both color and geometrical
information. Second, we combine three color spaces of RGB,
HSV, and CIE L∗a∗b∗ with laser reflectivity as an aggregation-
based feature vector. Third, the 3-D geometrical characteristics
of planar objects that contain planarity, size, and aspect ratio
are exploited to further reduce false alarm. Fourth, in order to
increase robustness to any viewpoint variation, we present a new
virtual camera-based rectification method to synthesize fronto-
parallel views of refined object descriptors in 3-D space. Finally,
experimental results achieved under a variety of challenging con-
ditions show that integration of color space aggregation and laser
reflectivity is superior to individuals. Specifically, the proposed
perspective distortion rectification method remarkably eliminates
false recognition error by 45.5%. Overall, the detection rate of
our comprehensive method has up to 95.87% and the recognition
rate even reaches 95.07% for traffic signs ranging within 100 m,
with about 33.25 ms average running time per frame.

Index Terms— Autonomous vehicle, colorized laser scan, color
space aggregation, perspective distortion rectification, planar
object detection and recognition.

I. INTRODUCTION

PLANAR objects like traffic sign, street sign, and road
surface are designed to inform or guide human drivers

and pedestrians of road status, traffic rules, and geographical
information. Reliable detection and recognition of such planar
objects are crucial for self-driving car to safely navigate in real
urban environments. Currently, self-driving car is equipped
with a diversity of sensors to perceive surroundings and vehicle
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itself. Camera and LIDAR are considered as two popular
sensing devices. Camera is able to seize appearance of planar
objects like color, texture, and shape. Substantial camera-
based algorithms have been proposed to detect and recognize
planar objects. A lot of problems, however, are still open
and challenging in pattern recognition, due to vulnerability
and incompleteness of camera data. Typically, camera data
are quite sensitive to changes in outdoor illumination, color
temperature, and viewpoint. But 3D geometric information
may be lost, and hard to be quickly and reliably recovered from
images acquired by commonly-used perspective camera [1].
Actually, utilization of 3D a prior knowledge of planar objects
will facilitate elimination of false detection error. Fortunately,
LIDAR, as one of major active visions, can provide such geo-
metric information. But it cannot capture visual information
about planar objects. Hence data association of measurements
from both sensors gives promising direction for detection and
recognition of planar objects in dynamic natural scenes. To the
best of our knowledge, however, few related work has been
reported so far.

This paper proposes a reliable detection and recognition
method for planar objects through combination of colorized
laser scan, color space aggregation (CSA), which consists
of RGB, HSV, and CIE L∗a∗b∗ color spaces, and per-
spective distortion rectification. First, colorized laser scans
are acquired through data association of both LIDAR and
camera. Second, planar objects including traffic sign, street
sign, and road surface are detected directly in 3D natural
scenes on the basis of aggregation-based feature vector,
which concatenates CSA and laser reflectivity (LR) from
colorized laser scans. In order to lower the false alarm,
a prior knowledge of 3D planar geometry is further utilized.
Third, for each of object descriptors or bounding boxes,
we correct possible perspective deformation to produce their
fronto-parallel views with fixed size. Recognition is then
performed on such rectified fronto-parallel views using linear
SVM with HOG features [2]. Finally, the experimental results
achieved under a variety of challenging conditions demonstrate
that our comprehensive method outperforms state-of-the-art
results.

The main contributions of this paper include:
1) A framework to detect planar objects in dynamic clut-

tered traffic scenes by data association of LIDAR and
camera. Laser points are virtually projected onto image
plane to seek for corresponding colors, which are
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associated to generate colorized laser scans. We then use
color, LR, 3D planar geometry of colorized laser scans
to jointly estimate refined object descriptors in 3D space.
CSA is presented to entirely express different planar
object colors and incorporates with LR as aggregation-
based feature vector. We further exploit a prior knowl-
edge about geometric characteristics of planar objects to
reduce false alarm rate.

2) A new virtual camera-based rectification method for per-
spective distortion of planar object images. Perspective
distortion rectification is critical to significantly improve
recognition performance using naïve classifiers [3], [4].
In the proposed rectification method, we introduce a
virtual camera to synthesize fronto-parallel views of
object descriptors in 3D space, which does not require
reliable shape classification and feature association
like [3], [4].

Different from our published preliminary results
in [5] and [6], this paper proposes a novel generic detection
method for planar objects instead of traffic signs alone on the
basis of colorized laser scans. Specifically, aggregation-based
feature extraction is accompanied by incorporation ofa prior
knowledge of 3D planar geometry and especially, a virtual
camera-based distortion rectification is presented. The paper
is organized as follows: In Section II, the related work is
reviewed. Section III proposes a planar object detection
method. On the basis of perspective distortion rectification,
a reliable planar object recognition method is presented
in Section IV. Section V illustrates the experimental results
yielded using our comprehensive method. Finally, Section VI
concludes the paper with a brief summary.

II. RELATED WORK

A. Planar Object Detection

Normally, positions of traffic sign posts are constrained.
Some algorithms use this to produce ROI for planar objects
in 2D image plane. In [7], typical positions of traffic signs
were modeled in 3D space through three segments of hollow
cylinders. ROI of traffic signs was generated by projecting
3D points into image plane. For real time application, ROI
for 15 driving situations was computed in advance and stored
as look up tables. In [8], the fuzzy set was employed to
obtain adaptive rectangular ROI, whose position and size were
determined by current speed and steering wheel angle of
vehicle. These methods can significantly reduce search space
for traffic sign. However, the ROIs obtained from both algo-
rithms are rough. They are unable to eliminate the background,
such as sky and ground, where there are not planar objects.
Additionally, the ROI yielded in [8] ignores the margin of
image. This may miss some nearby traffic signs. In this paper,
we use LIDAR data to get much tighter and more accurate
ROI or bounding box in 3D space.

Color and shape are two distinguished features of planar
objects and have been extensively studied [3], [9]–[12]. A large
amount of researchers jointly employ them in detection phase
of planar objects for color image. Basically, color feature
is used to find ROI and shape feature is then extracted to

screen and categorize candidates. For instance, in [9], hue and
saturation components of HSI color space were exploited to
detect red, blue, and yellow colors, and achromatic decom-
position was used to search for white color. Heuristic rules
over size and aspect ratio were used to eliminate false alarm.
Sequentially, distance to borders (DtBs) as input features were
fed to SVM to classify shape of candidate regions. In addition,
there also has the previous work that either color or shape is
utilized in a sole or major manner. Shape-based algorithms
analyze the edge of image obtained from some derivative
operators, such as Canny operator [13]. They take advantage of
the fact that traffic signs are circle or regular polygons which
can be detected by Hough-based algorithms, such as the radial
symmetry detector [14], and its derivatives [15], [16].

Appearance like color and shape is another important
cue for traffic sign detection. In [8], two adaboost classi-
fiers [17] were trained to detect prohibitory and warning
signs in the region determined by color and driving status.
In [18], traffic sign was detected by embedding dissociated
dipoles feature in a cascade classifier trained by the evolution
version of adaboost algorithm. Histogram of oriented gradi-
ents (HOG) [2] is a powerful descriptor for object detection
and recognition. In traffic sign detection, HOG has been
widely used and frequently achieved excellent performance.
For instance, Creusen et al. [19] made further improvement
of HOG-based detection algorithm by introducing a color
transformation. Overett and Petersson [20] presented HOG
variants and compared their performance in planar object
detection.

Although all those algorithms are highly competitive for
traffic sign detection and recognition, the comparison of them
seems difficult. Actually, it is no clear which one outperforms
others. This is because most of the algorithms are trained
and tested on their own dataset. In recent years, such situ-
ations have been improved. Mogelmose et al. [21] analyzed
performance of existing detection algorithms and then rec-
ommended some public traffic sign databases. Specifically,
the competition on German Traffic Sign Detection Bench-
mark (GTSDB) [22] strongly promotes comparative studies
of different algorithms. For GTSDB, some algorithms reported
excellent results. But their running time is not suitable for real
time application. Liang et al. [23] detected traffic signs by
using the HOG feature combined with the color histogram to
refine the ROIs provided by the color and shape information.
The running time of the method is about 0.4-1.0 second.
Mathias et al. [24] adopted integral channel features clas-
sifier (ChnFtrs) [25] to detect traffic signs. To deal with
perspective distortion, the detector was applied in 50 scales
and 5 ratios of the image. The speed of the detector is about
0.35 Hz with the help of GPU. Wang et al. [26] employed the
HOG feature and the coarse-to-fine sliding window scheme,
which processing time reached up to several seconds.

As mentioned above, LIDAR also provides important geo-
metric information about planar objects. But there are few
previously published approaches on this problem. Considering
that planar objects used in traffic scenes, e.g., traffic sign, street
sign, and road surface, are usually painted with highly retro-
reflective materials, strong LR measurements can be yielded.
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This characteristic is adopted by [27]–[29] so as to detect
planar objects. LR, however, is not only associated with
materials that laser beam contacts, but also affected by object
poses.

B. Planar Object Recognition

Some images captured by camera for planar objects, includ-
ing traffic sign, street sign, and road surface, are subject to
serious perspective distortion. In general, such planar object
images need to be first rectified in the recognition phase,
in order to significantly improve recognition accuracy.

First, the perspective distortion of traffic sign is inevitable,
even if being perfectly perpendicular to a roadway. Actually,
maneuver of self-driving cars may cause captured traffic
sign images to suffer from significant perspective distortion.
Consequently, the recovery of the fronto-parallel view of
distorted traffic sign images is important for its reliable recog-
nition, and has been studied by many researchers [4], [18],
[30], [31]. Owing to the fact that there are specific shapes
in traffic sign, the crux of these algorithms is to recognize
the shape of ROI and then establish point correspondences
between the reference shape and the distorted one. In [4],
the shape is classified by analyzing the FFT of ROI contour.
Soheilian et al. [30] described a RANSAC-based algorithm to
recognize the shape of ROI. Baró et al. [18] used different
cascade classifiers that are trained by an evolutionary version
of adaboost, in order to detect traffic signs with different
shapes. In [31], the shape information is obtained by SVM
classifier with HOG feature [2]. Apparently, the algorithms
are all dependent on identification of traffic sign shapes and
reference points, which may get worse in complex scenarios.
This is because either shape recognition or feature point
detection is not robust against large perspective distortion and
occlusion. Once traffic sign shapes are misclassified or control
points are occluded or misestimated, these algorithms will
yield false results. On the other hand, the homography is gen-
erally approximated by the affine transformation for triangular
sign [4], [18], [30], [31] and circular sign [30], because the
number of point correspondences is not adequate to evaluate
the homography in the cases.

Second, text contained in street sign has valuable seman-
tic information to explain scenes. Similarly, perspective
recovery before text recognition is also one of the main
challenges [32]–[34]. In traffic scenes, text along roadside
captured by onboard camera is generally subject to serious
perspective distortion, which leads to reduction of performance
in optical character recognition (OCR) [35]. Clark and Mirme-
hdi [36] presented an algorithm to remove perspective dis-
tortion for the text image by estimating the horizontal and
vertical vanishing points. Such an algorithm requires the text
to have multiple lines, rather than single line case indicated
in street sign. In addition, the computational load of this
algorithm is too heavy to be suitable to real-time applications.
Cambra and Murillo [37] focused on rectifying text that is
enclosed by a rectangular box. But it is not applicable to
other shapes. Merino-Gracia et al. [35] proposed a perspective
correction algorithm based on the geometry of characters

themselves instead of the layout or border of text. As stated
in [35], the accuracy of the algorithm relies on image quality,
and false text segmentation or low resolution may result in bad
performance.

Third, lane markings in road surface are important for self-
driving cars and advanced driver assistant system. Due to
constrained data acquisition conditions, there always exists
perspective distortion in a road surface image. As a result,
the construction of a bird’s-eye view of road surface image
is a crucial step for substantial approaches on lane markings
detection and tracking [38]–[41]. In the literatures, the adop-
tion of static rectifying homography, which is often calculated
off-line, is essentially based on assumption that the relative
pose between camera and road surface is kept unchanged in a
period of autonomous driving of self-driving cars. Bertozzi
and Broggi [38] presented an inverse perspective mapping
approach to achieve a bird’s-eye view of a road region in
front of vehicle. In [39] and [40], the rectifying homography
is estimated by four reference points. Since static homography
is exploited in those approaches, their performance degrades
as vehicle jolts or upcoming roadway is uphill or downhill.
For this problem, Yao et al. [41] proposed an algorithm that
attempts to dynamically evaluate camera pitch angle through
combination of LIDAR and camera data. But the accuracy of
homography estimation of such the algorithm heavily relies
on to what degree the road surface parallels the x-y plane of
LIDAR, since the z-component of laser points on a roadway
is ignored.

Basically, those algorithms depend on classification of pla-
nar object shapes and estimation of control points or curve
parameters. This is main drawback of such algorithms. In fact,
it probably generates false results in complicated scenarios,
once planar object shapes are misclassified or control points
are occluded or misestimated.

Substantial approaches have been devoted to improve per-
formance of planar object recognitions. In [9], SVM with
Gaussian kernel was trained for traffic sign recognition.
The approach proposed by Greenhalgh and Mirmehdi [42]
employed linear SVM and HOG feature. Carrasco et al. [43]
compared template matching and neural networks with dif-
ferent image preprocessing techniques. Their experimental
results showed that cascade neural networks using the P-Tile
preprocessing gave the best performance. In addition, a couple
of excellent classifiers, e.g., the k-d tree, the random forest, and
the linear SVM, and a few of sophisticated features, i.e., HOG
and DT, were comparatively studied by Zaklouta and Stanci-
ulescu [44]. They reported that the random forest with the
HOG feature could have the best performance. Sermanet and
LeCun [45] presented an algorithm based on multi-scale con-
volutional neural networks. In the study by Ciresan et al. [46],
multi-column deep neural network was trained for traf-
fic sign classification. The recognition rate of [45]–[47]
achieved 99.46%, 98.31%, and 99.65% in German traffic sign
recognition benchmark (GTSRB) [48], respectively. Lately,
Haloi [49] proposed a new classification approach for traf-
fic sign using deep inception based convolutional networks
and further achieved state-of-the-art performance of 99.81%
on GTSRB dataset. But the computational load for deep
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Fig. 1. The data association of LIDAR and camera. (a) Original image. (b) Search space for planar objects. (c) Projection from laser scans in the search
space to image pixels. (d) Colorized laser scans achieved.

convolutional neural networks is likely beyond capabilities
of mainstream host, which has to be practically realized on
high-power GPUs.

III. PLANAR OBJECT DETECTION USING INCORPORATION

OF AGGREGATION-BASED FEATURE VECTOR INTO

A PRIOR KNOWLEDGE OF 3D GEOMETRY

A. Colorized Laser Scan

Let us consider LIDAR and camera pair that is rigidly
fixed. In order to associate a laser point with its corresponding
image pixel, extrinsic parameters of both LIDAR and camera,
together with intrinsic parameters of camera itself, must be
precomputed as a prerequisite. In general, extrinsic parameters
can be obtained through [50]. According to [51], it is easy to
estimate camera intrinsic parameters.

In 3D space, relative position of planar objects provides
useful knowledge to narrow down search space for planar
object detection. But it is intractable in 2D image plane due
to the fact that geometric relationship between objects is lost.
In this paper, a much tighter bounding box for planar objects
is presented. Thanks to geometrical information acquired from
LIDAR, search space for planar objects can be roughly deter-
mined in the range of surroundings along roadside. Owing
to search spaces being greatly decreased, more sophisticated
algorithms can be adopted here.

1) In general, relative positions of planar objects like traffic/
street signs are physically constrained by roadway.
Precise road model can be built using both high-
definition 3D grid maps and on-line camera-based lane
markings detection. Considering that a paved road is
usually of straight line or smoothly curved, the search
space for planar objects can be roughly restrained in
a driving cuboid aligned along roadway boundaries like

that in Fig. 1(b). Hence we can explore and locate planar
objects only in such a cuboid. Corresponding ROIs in
image plane is found by means of transformation matrix
from laser scans to image pixels, as shown in Fig. 1(c).

2) Owing to the fact that data association between laser
scans and image pixels is completed, the laser scans
falling into the camera field of view can gain colors.
In the meantime, the corresponding pixels are also able
to yield depths. This results in generation of colorized
laser scans, as shown in Fig. 1(d). In contrast to the
previous work of detecting planar objects in 2D image
plane, the planar object detection in our method is
all done in 3D space based on colorized laser scans
that contain both color and geometrical information.
Apparently, it is much easier to deal with since 3D
geometric model is invariant in terms of rigid-body
transformation.

B. Aggregation-Based Feature Vector

Planar objects are often designed to have specific colors so
as to distinguish them from the surroundings. For color detec-
tion, there are many approaches, such as [3] and [9]–[12],
to empirically set threshold over color space. In fact, either
outdoor lighting conditions or color temperatures are not
controllable. Illumination, weather conditions (e.g., fog), and
sign aging or shade all have impact on captured colors.
In addition, similar colors from cluttered background are not
easily discriminable and may result in high false alarm rates.

On the other hand, planar objects like traffic and
street signs are broadly painted with highly retro-reflective
materials. Fortunately, laser reflectivity (LR) acquired from
LIDAR perfectly characterizes such property [27]. The planar
surface attribute and specific materials make their LR values
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Fig. 2. Segmentation of the laser points obtained using linear SVM with
aggregation-based feature vector (CSA+LR). The red points represent the laser
points on traffic signs.

very different from surrounding objects (e.g., trees and
pedestrians) [6]. But LR is dependent on both materials and
object poses. If orientation of planar objects has large angle
deviation from laser direction, LR of planar objects becomes
low and even loses discriminability [6].

The effectiveness of LR is straightforward. But it is hard
to describe color features in a sense. This is because there
are several color spaces and colors painting on planar objects
often contain red, green, yellow, blue, white, and black.
Roughly, the previous work separately classified the colors
in individual color space. It probably leads to the use of many
thresholds or multiple classifiers. Consequently, we attempt to
treat them uniformly. This is different from that proposed by
Tsai et al. [3], where two colors of red and green instead of six
colors in our study are handled as one class. Actually, focusing
them to be one class and classifying them in individual color
space will result in bad performance. If single color space is
well suited to expressing single or a few colors, several color
spaces can then be integrated to classify all the colors. For this
reason, we present a color space aggregation (CSA), consisting
of RGB, HSV, and CIE L∗a∗b∗ color spaces, to detect colors.
Such three color spaces were also used for object recognition
in [52]. Correspondingly, the aggregation-based feature vector
for each laser point has 10 elements, i.e., 3×3 CSA compo-
nents and one LR. Furthermore, linear SVMs are trained to
classify/detect colorized laser scans. An example of segmen-
tation of colorized laser scans is illustrated in Fig. 2. The red
points indicate laser points on traffic sign. It is readily observed
that the detection results produce some false alarms. But it is
much better than that given in [6].

C. 3D Geometric Characteristics of Planar Objects

In order to further eliminate false detection error, we pro-
ceed to exploit a prior knowledge about 3D geometric char-
acteristics of planar objects, including planarity, physical size,
and aspect ratio of objects in 3D space. Assume that N
colorized laser points are classified as belonging to planar
objects. Let us denote such point set as S. Before further
analysis, we make segmentation of S according to Euclidean
distance between laser points. Suppose S is divided into M
partitions, i.e.,

S =
M⋃

i=1

Si =
M⋃

i=1

{
pi j

}
j=1,··· ,Ni

, (1)

Fig. 3. The planar surface fitting and the bounding box of red points in Fig. 2.

where Si is the i -th partition of S, which contains Ni laser
points pi j .

We should check to what degree Si can be approximated
by a plane. One of straightforward methods is to fit plane for
each Si . In this case, the residual of the fitting is checked
to determine whether Si is on a plane. But Si may have
points from other objects such as leaves shading planar objects.
Planar objects themselves may also be partially damaged.
Fitting plane using entire Si may result in eliminating correct
regions. In fact, those points with large noise have impact
on accuracy of plane parameters, even if all points in Si

are exactly from a planar object. Accurate plane parameters
are essential for subsequent region verification and planar
object rectification. Based on the above-mentioned reasons,
we should reduce non-planar part of Si and have removal of
laser points that are corrupted by noise. It implies that we
need to robustly estimate optimal planar part Pi of Si . The
RANSAC algorithm [53] is better suited to such problem.
After Pi is obtained, the ratio between the sizes of Pi and
Si is a fair indicator to evaluate planarity of Si . Partitions Si

are discarded if the ratio is less than a threshold rp(rp = 0.6 in
our experiment). The planar surface fitting of red laser points
in Fig. 2 is shown in Fig. 3.

3D physical size and aspect ratio of planar objects are
additional two cues to decrease false alarm rates, which is
extensively used in the previous work such as [9], [10], [21],
and [42]. Stallkamp et al. [54] analyzed size of planar object
images in GTSRB. In such benchmark, size of planar object
images varies from 15 × 15 to 222 × 193 pixels. Meanwhile,
aspect ratio of planar object images depends on pose of planar
objects relative to camera, which may lead to big aspect ratio
changes. Physical size of planar objects in 3D space, however,
is much more restrained. Detecting them directly in 3D space
is more reasonable. Although colorized laser points become
sparse as planar objects being far away LIDAR, 3D geometric
characteristics such as size and aspect ratio of planar object
are still roughly maintained.

After the foregoing steps, non-planar laser point sets are
eliminated. For the remaining regions, those points in optimal
planar set Pi are orthogonally projected into estimated planar
surface �i . Let Qi denote corresponding projection of Pi .
We then calculate a bounding box Bi of Qi , as indicated by
blue in Fig. 3. The size and aspect ratio of Bi are analyzed to
further reduce false alarms. Assume the width and height of
Bi are expressed by wi and hi , respectively. In our experiment,
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we kept record of Bi , where max(wi , hi ) is delimited between
0.12m and 1.2m, and max(wi , hi )/ min(wi , hi ) is not greater
than 3.2 (or 4.0), if Si is falling into the LIDAR’s field of
view.

IV. RELIABLE PLANAR OBJECT RECOGNITION USING

PERSPECTIVE DISTORTION RECTIFICATION

A. Virtual Camera-Based Rectification

Some of planar object images captured are subject to
serious projection distortion, as shown in Fig. 1(a). In this
paper, we propose a novel rectification algorithm based on
data association of LIDAR and camera. The basic idea of
the proposed algorithm is to set a virtual camera Cv so as
to synthesize desired fronto-parallel view of planar object
images. For the purpose of this, virtual camera Cv is placed
to look orthogonally at planar objects. Suppose that centroid
of all laser points projected onto planar object � is denoted
as P̄

l
, planar surface � in LIDAR coordinate system as

π l = [
(n l)T , d l

]T
, and translation and orientation of Cv

relative to LIDAR L as t l
v and R l

v , respectively. We put such
virtual camera at k meter in front of planar objects, along the
line segment that passes centroid of planar objects P̄

l
and is

oriented as the same as planar normal n l , which implies that
z-axis of Cv is onto direction −n l .

If the y axis ry of Cv is determined, t l
v and R l

v can then be
given by

t l
v = P̄

l + k n l , R l
v =

[
1r l

v ,
2r l

v ,
3r l

v

]
, (2.a)

where

1r l
v = ry × (−n l

)

||ry × (−n l
) ||2 , 2r l

v = −n l ×1 r l
v

|| − n l ×1 r l
v ||2

, 3r l
v = −n l .

(2.b)

Meanwhile, if the x axis rx of Cv is evaluated, we have

1r l
v =

2r l
v × (−n l

)

||2r l
v × (−n l

) ||2 , 2r l
v = −n l × rx

|| − n l × rx ||2 ,3 r l
v = −n l .

(2.c)

Let us represent the planar surface � in the Cv coordinate
system as πv = [

(nv )T , dv
]T

. The relationship between π v

and π l can be described by

π v = Tπ l , T =
[ (

R l
v

)T
0(

t l
v

)T
1

]
. (3)

Assume that translation and orientation of Cv relative to Cr

are expressed as tr
v and Rr

v , respectively. It has

tr
v = Rr

l t l
v + tr

l , Rr
v = Rr

l R l
v . (4)

Let P be a point on planar object. Suppose that qr and qv

indicate corresponding pixel image on Cr and Cv , respectively.
Based on [1], the relationship between qr and qv can be
expressed below,

q̃r = Hq̃v , H = K
(

Rr
v − tr

v

(
nv

)T
/dv

)
K−1, (5)

where q̃r and q̃v denote homogeneous coordinates of
qr and qv , respectively, and K represents intrinsic

Fig. 4. The desired fronto-parallel view (left) achieved by the perspective
distortion rectification.

Fig. 5. The 17 classes of traffic signs in our dataset.

parameter of Cr . According to (5), we can generate
fronto-parallel view of planar objects with fixed size,
as shown in Fig. 4.

B. Feature Selection and Classifier

HOG was at first designed for human detection [2].
At present, it becomes one of the most successful image
features in computer vision and is further applied in traffic sign
recognition [17]. This paper adopts HOG as feature vectors for
classification or recognition of rectified fronto-parallel views
of planar objects. The parameters of HOG features are selected
below: 16×16 block, each containing four 8×8 cells; 8 pixels
block spacing stride; 9 orientation bins; L2-Hys block nor-
malization. This produces 1,764 dimensional feature vectors
for a size of 64×64 sliding window. Furthermore, linear SVM
is trained. Since there exist calibration errors and bounding
box detected or object descriptor may contain multiple planar
objects, the sliding window is conducted around each object
descriptor.

V. EXPERIMENTAL RESULTS

In this section, we evaluated performance of our method
through extensive experiments. The classes of traffic signs in
our dataset are shown in Fig. 5, all of which were ranged
within 100m in the field of view of both camera and LIDAR.
Actually, the image of planar objects became tiny and illegible
as planar objects were too far away. For example, the front
view of 0.5m.×0.5m real traffic sign of being 100m away
from the camera was shrunk to the size of about 11.×11pixels
in camera image plane. Fig. 6 shows some of challenging
samples in our dataset.

A. Detection Results

In our experiments on data collection, laser point clouds
were captured by Velodyne HDL-64E S2 LIDAR installed,
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Fig. 6. Some of challenging samples included in our dataset. (a) Wide
variability in appearance. (b) Large perspective distortion and serious blur.
(c) Bad illumination condition. (d) Partial occlusion.

Fig. 7. The color distributions. (a) Positive samples. (b) Negative samples.

while corresponding images were acquired by Basler dig-
ital camera with resolution of 1292x964. In the detection
phase, we selected 48,134 positive samples related to planar
objects and 85,426 negative ones concerning other objects,
where both color and LR were kept and 50 percent of all
the positive and negative samples were randomly chosen as
training datasets. Fig. 7 gives color distributions. For each
of features except LR, linear SVM classifier was trained on
those samples. Fig. 8(a) shows the ROC curves with different
color spaces, i.e., individual RGB, HSV, L∗a∗b∗, and CSA
(RGB + HSV + L∗a∗b∗). It was obvious that CSA out-
performed other individual color space. Fig. 8(b) shows the
ROC curves of CSA, LR, CSA+LR, and different color spaces
with LR. It is easy to see that CSA+LR were superior to
the other features. In [12], Gómez-Moreno et al. compared
different image-based segmentation methods. They observed
that the best result came from thresholding normalized RGB
and Ohta color spaces. Table I lists the results of the
Gómez-Moreno’s methods, CSA, and CSA+LR. It is very clear
that CSA+LR achieved the best result, and CSA surpassed
Gómez-Moreno’s method [12].

The true positive rate of the whole dataset had about
95.87%. Table II lists the true positive rate within different
ranges. We found that our method yielded very high true
positive rate, if planar objects were ranged within 50 m.
As planar objects were far away from the self-driving car,

TABLE I

THE COMPARISON OF GÓMEZ-MORENO’S
METHOD . [12] AND OUR METHOD

TABLE II

THE TRUE POSITIVE RATE FOR DIFFERENT RANGES

the true positive rate decreased. This was because data quality
of LIDAR and camera reduced with planar objects being far
from sensors. Our algorithm achieved 33 false positives for a
total of 1,028 images. Hence the false positive rate per frame
was only about 3.21%, ranging within 100 m.

B. Rectification Results

In the following, we consider the virtual camera-based rec-
tification for perspective distortion of planar objects, including
traffic sign, street sign, and road surface, as shown in Fig. 9.

As shown in Fig. 9(a) and (b), the traffic sign and the street
sign are erected in the shoulders. But the normal of them may
not be oriented vertically to the camera image plane. Thus
we can assign the y-axis of virtual camera Cv parallel the
normal of the road surface. In our self-driving car, the z-axis of
LIDAR L is approximately perpendicular to the road surface.
Accordingly, we set ry = [0, 0, −1]T. Fig. 10 shows the
rectification results for the traffic sign and the street sign given
in Fig. 9(a) and (b), respectively. It is clear that our rectification
method correctly recovers the fronto-parallel views of the
distorted images.

Let us consider the perspective rectification for road surface.
Similarly, we can use z-coordinates of the laser points to
roughly identify the road surface. Owing to the fact that the
y-axis of L is consistent with the roll axis of our self-driving
car, we choose the y-axis of Cv to be the opposite direction
of the y-axis of L, i.e., ry = [0, −1, 0]T. Fig. 11(a) shows
the poses of Cr and Cv for the road surface given in Fig. 9(c).
Fig. 11(b) gives the fronto-parallel view. It is obvious that the
parallelism of the lane markings is perfectly recovered.

For other planar objects with irregular shape or unknown
aspect ratio, which are intractable for camera-based
approaches, our generic virtual camera-based rectification
method still achieves distinguished performance, as show
in Fig. 12.

C. Recognition Results

In the recognition phase, we collected 1,028 sample images
with 1,292.×964 and corresponding LIDAR data as well.
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Fig. 8. The ROC curves with different features. (a) The ROC curves of CSA and three individual color spaces. (b) The ROC curves of CSA, LR, CSA+LR,
and different color spaces with LR.

Fig. 9. Some samples of planar object images that are subject to serious
perspective distortion.(a) Traffic sign. (b) Street sign. (c) Road surface.

Fig. 10. The rectification results for the traffic sign and the street sign given
in Fig. 9(a) and (b), respectively.

It belonged to 17 classes (Fig. 5) and 75 percent of the samples
of each traffic sign class were randomly selected to train linear
SVM classifiers. As shown in Fig. 13, 41 traffic signs were too

Fig. 11. The rectification results for the road surface in Fig. 9(c).
(a) A schematic diagram of the road surface rectification. The virtual cam-
era Cv looks orthogonally toward the road surface so as to generate the
bird’s-eye view. (b) In the rectified road surface image, the parallelism between
the lane markings is correctly recovered.

Fig. 12. The rectification results for other planar objects with unknown
aspect ratio.

Fig. 13. Some samples of unidentified traffic signs. These traffic signs are
too illegible to recognize.

illegible to identify their classes due to severe occlusion and
very bad illumination condition. Those traffic signs were then
ignored in the recognition phase for planar objects. Since there
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Fig. 14. Some results of our method in challenging conditions.

TABLE III

THE RECOGNITION ACCURACY OF THE DETECTED

TRAFFIC SIGNS WITHIN DIFFERENT RANGES

TABLE IV

PERFORMANCE OF OUR METHOD

were some false positives in the above-mentioned detection,
we treated them as the negative class for 17 classes of planar
objects in our training dataset.

Let us consider the effect of the perspective distortion recti-
fication. With rectification, the recognition error of the detected
traffic signs was 0.898%. If no rectification, this recognition
error increased to 1.65%. As a result, our rectification method
remarkably decreased the recognition error by 45.5%. Table III
lists the recognition accuracy of the traffic signs detected
within different ranges. We observed an interesting result.
The recognition accuracy did not decrease as planar objects
were away from the self-driving car. The reason was that
we only examined the recognition accuracy of traffic signs
detected. Some traffic signs with poor image quality and low
resolution were missed in the detection phase and did not
take into account in the recognition phase. Table IV lists
performance of our method. The false positive for traffic signs
was successfully eliminated. The average running time of our
method was about 33.25 ms per frame on Intel Core i7.
Apparently, it had real-time performance. Fig. 14 shows some
results of our method in different challenging conditions.
It is readily observed from Fig. 14 that traffic signs were
correctly detected and recognized, even under bad illumination
condition, partial occlusion, and low resolution.

VI. CONCLUSION

In this paper, we propose a novel planar object detection
and recognition method based on data association of LIDAR

and camera. Planar objects are detected directly in 3D space,
instead of usual 2D image plane, through jointly employing
relative position, color, LR, and several 3D geometric char-
acteristics of planar objects. For planar object recognition,
we present a generic virtual camera-based rectification method
so as to synthesize fronto-parallel view of object descriptors
in 3D space. Our experimental results show that aggrega-
tion of CSA and LR surpasses individual color spaces. The
perspective distortion rectification substantially decreases the
false recognition error by 45.5%. For a total of 2,130 traffic
signs ranging within 100 m under challenging conditions in
dynamic cluttered natural scenes, rather than those simply
adopted from GTSRB benchmark, the detection rate of the
proposed method has up to 95.87%, and the recognition rate
even reaches 95.07%. Meanwhile, our comprehensive method
achieves real time performance. The average computing time
is about 33.25 ms per frame. This suggests that association-
based exploitation of multi-modal sensing data in the field
of object detection and recognition should be paid more
attention. Expectedly, the proposed generic method could also
be extended to other applications such as the mapping of traffic
signs like [28].
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