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Abstract—The number of advanced driver assistance sys-
tems (ADASs) and the level of automation in modern vehicles
is increasing at a rapid pace. Moreover, multiple of these ADASs
can be active at the same time and therefore may need to interact
with each other. As a consequence, the design of the supervisor
layer that is responsible for proper coordination of the control
tasks performed by the low-level ADASs controllers is becoming
more complex and safety-critical. For this reason, there is a
strong need for automated synthesis tools that lead to supervisors
that are safe by design. In this paper, we present a systematic
approach to model-based supervisor design using discrete-event
system representations. In particular, this paper shows that the
proposed method is suitable to deal with the multiple and
complex systems of interacting ADASs. To be more specific,
in contrast to current practice, which often relies on textual
specifications and exhaustive testing, the proposed method has
four main advantages: 1) it is based on mathematically specified
requirements that only allow one interpretation; 2) it prevents
blocking situations by design; 3) it guarantees correctness in
the sense that the resulting supervisor satisfies all the specified
requirements; and 4) code is generated from the obtained
supervisor which eliminates the need for manual coding. The
proposed method is demonstrated by means of a case study
on cruise control and adaptive cruise control. The resulting
supervisor is validated by simulations and experiments on a
modern passenger vehicle. Based on the results presented in
this paper, it can be concluded that the model-based supervisor
design, simulation, and implementation method is promising and
powerful for future applications in the automated vehicle systems.

Index Terms— Supervisory control, model-driven development,
control system synthesis, automotive engineering, advanced
driver assistance systems.

I. INTRODUCTION

ODAY’S modern vehicles contain many Advanced Driver
Assistance Systems (ADASs). Examples of such ADASs
are various forms of (adaptive) cruise controllers, lane-keeping
assistance systems and collision-avoidance systems. Initially,
the aim of these ADASs was to enhance driver’s comfort,
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Fig. 1. Hierarchical control for highly inter-coupled complex vehicle systems.

mostly for highway traffic. Today, ADASs are specifically
being developed to increase traffic safety and throughput,
and to reduce fuel consumption and air pollution [1]-[5].
Moreover, they should be able to perform well in a large
variety of traffic situations as the level of automation is
growing at a rapid pace. As such, the various assistance
systems present in modern vehicles have a strong interaction
and therefore, can no longer be regarded as separate systems.
According to the overview provided in [6], it is expected that
in the near future ADASs fully cooperate with the powertrain
management. As a consequence, future ADASs will become
more safety-critical and complex.

A typical control architecture for ADASSs is shown in Fig. 1,
see also [7]-[9]. Observe that actuators and sensors are directly
connected to the low-level ADASs controllers. These low-
level ADAS controllers determine the control input that is
sent to the actuators. Since ADASSs typically act in a dynamic
environment, multiple low-level controllers might be used
to determine the control input for the same actuator. For
example, in Adaptive Cruise Control (ACC), depending on the
inter-vehicle distance and the relative speed, various low-level
ADAS controllers are used to drive the throttle and brake. The
purpose of the supervisor layer is to coordinate the low-level
controllers according to the driver’s decisions and sensor data.
The driver’s decisions are communicated to the supervisor
through the Human-Machine-Interface (HMI). The goal of the
supervisor thus is to enforce safe and reliable behavior of the
overall system during operation.
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Although designing of ADAS systems has been studied
for many years, only recently formal synthesis, validation
and verification methods for ADASs have been proposed in
the literature. In [10], distributed hybrid system verification
is used to verify that a control system for cars equipped
with ACC is collision-free. In [11], an ACC scheme is
proposed that combines a model-predictive control scheme
with a formally verified safety controller. In [12], safety
specifications for ACC systems are verified via the con-
struction of control barrier functions. The work in [13]
exploits game theoretic techniques to synthesize a hybrid
controller for automated highway systems that is safe by
design. In [14], a synthesis method is proposed that relies on
linear temporal logic specifications and that results in correct-
by-construction control software for ACC. The aforementioned
works focus on the correctness of individual low-level ADAS
controllers. Despite the growing complexity of ADASs, only
a few references address the design of supervisory con-
trollers. Specifically, [13], [15], [16], proposed supervisors for
platooning maneuvers such as merging and splitting. The cor-
rectness of supervisor designs was established by debugging.

Proper design of a supervisor for a highly complex system
is in general challenging due to the large dimension of the
state space of the system [17]. For example, the platoon
maneuver supervisor proposed in [15] already involves about
500,000 states and 10,000,000 transitions. Hence, manual
derivation of a supervisor for an uncontrolled system that
leads to the desired behavior, especially when there is a
strong interaction between systems components, is difficult
and often results in supervisors that contain so-called blocking
situations during operation. Blocking occurs when the system
ends up in a state from which it cannot be driven towards
any desired state. In particular, given the safety-critical nature
of ADASs, it is essential to prevent blocking, as it might
lead to hazardous situations. Due to the complexity and the
large dimension of the state-space of interacting ADASS,
blocking situations cannot always be overseen beforehand.
In [13] and [15], the aforementioned issues were addressed
by using formal specification and verification tools for debug-
ging. However, especially for a complex system with many
coupled components, this can still be a very tedious and time-
consuming process. Hence, there is a strong need for (model-
based) automatic synthesis tools with integrated validation
and verification. For this reason, it seems more attractive to
use model-based supervisor synthesis methods as discussed
in [18]-[21], which have the following advantages:

(i) The synthesis procedure is based on mathematically

specified requirements that only allow one interpretation.
(i) It guarantees correctness in the sense that the resulting
supervisor satisfies all the specified requirements.
It excludes blocking situations by design.
Code can be generated automatically from the resulting
supervisor.
(v) It is applicable to systems with large numbers of states.
In addition, the supervisor synthesis method supports mod-
ularity of system design and requirement modeling, which
eases the addition and removal of components and require-
ments (see e.g., [22]). As such, it is an adequate method

(iii)
(iv)

for systematical construction of a supervisor for a complex
system.

Model-based design of supervisors is based on supervisory
control theory (SCT, [23]), in which system components are
modeled as discrete-event systems (DESs). A DES is a state-
based and event-driven system, in which the state evolves
according to the occurrence of events [24]. This DES is an
abstraction of the physical component, as it does not describe
its continuous behavior. The desired behavior that needs to be
enforced by the supervisor can be modeled by requirements.
From the system model and requirement model, a supervisor is
synthesized automatically, using appropriate SCT tools. This
automated synthesis step ensures that the system does not
violate the modeled requirements and is nonblocking.

SCT has been applied successfully in various domains,
including transportation systems [25], [26] and automotive
systems [27]—-[29]. In [27], a supervisor is synthesized for a
Cruise Control functionality for a heavy duty vehicle, in [28],
a supervisor for multi-lane traffic maneuvers is considered, and
in [29], a supervisor for vehicle-to-vehicle communication is
designed and simulated.

In this paper, an SCT-based method is proposed for the
design and implementation of supervisors coordinating multi-
ple interacting ADASs. The design philosophy is demonstrated
using a case study. A DES model representing the physical
system is presented and the desired behavior is modeled
by requirements. Through an automatic synthesis procedure,
the supervisor is obtained. In addition to [27], the correctness
of the models is assessed through simulation using various
test scenarios. To evaluate the actual behavior of the system
via simulation, a hybrid model is used that captures both
the discrete-event and continuous-time behavior of the sys-
tem. Furthermore, the code generated from the synthesized
supervisor is implemented in a real vehicle and experiments
are executed in open traffic, showing the effectiveness of the
proposed framework. The contribution of this paper is twofold.

« It presents a systematic approach to model-based super-

visor design and implementation for ADAS:s.

o The proposed approach is applied to a representative and

illustrative case study, showing in particular:

— Modeling of the system and requirement models;

— Validation of models using simulation-based
visualization;

— Description of the implementation set-up;

— Experimental validation of the implementation
that has been generated for a Matlab/Simulink
environment.

Additionally, all used models are made available and scripts
are provided that allow to reproduce the supervisor and the
implementation code [30].

This paper is organized as follows. Section II provides
an introduction to the supervisor design method and SCT.
Section III explains how the method is used to design a
supervisor for a system with both Cruise Control and Adaptive
Cruise Control. Section IV describes how the models are val-
idated through simulations and the generated implementation
is evaluated through experiments using a real vehicle system.
Concluding remarks are provided in Section V.
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Fig. 2. Model-based design method.

II. MODEL-BASED DESIGN APPROACH

The model-based approach to supervisor design that is
presented in this paper consists of five steps, as illustrated
in the flow diagram in Fig. 2. The goal of the method is to
obtain a supervisor that restricts the uncontrolled system to the
desired behavior in the sense that only events/decisions that
do not lead the system to undesired states are allowed to take
place. The step-by-step design method is explained below.

1) System and behavior specification: The first step is
to analyze and specify the system components and their
function. Moreover, the interaction between individual
components and the desired behavior of the complete
system are specified.

2) System and requirement modeling: Given the system
specification, both a discrete-event system and a hybrid
model are formalized. The DES is used for supervisor
synthesis and the hybrid model is used for simulation
and validation of the system behavior. For the purpose of
synthesis, the desired behavior specification is translated
into a set of formal requirements.

3) Controller synthesis: Based on the DES and the
requirement model, a supervisor is synthesized using
SCT. The resulting supervisor does not contain any
behavior that violates the requirements or results in
blocking.

4) Simulation and validation: The supervisor and the
hybrid model can be merged to form the hybrid sim-
ulation model, which is used to validate the DES
abstraction, requirements and the behavior of the system
under supervision of the resulting supervisor. If the
test cases reveal imperfections in either the component
models or the requirement models, steps 2 and 3 can be
partly repeated. Moreover, additional components and
requirements can be formulated to expand the systems
functionality. The advantage of validation through sim-
ulation is that it takes less effort in terms of (re-)design
time in comparison to implementation and experimental
testing, as shown in [31] and [32].

5) Implementation and testing: When the supervisor is
validated in simulation, it can be implemented on the
physical system and tested in real-life.

The first two steps (analysis and modeling) are manual,
steps 3 through 5 (synthesis, simulation and implementation)
are automatical. Steps 4 and 5 do require additional inputs that
are prepared manually: representative test scenarios and hard-
ware map, respectively, which is explained in Section II-B.

Section II-A gives an introduction to the SCT framework
which is used in design steps 2 and 3. A small system is
used as an example to illustrate the introduced concepts.

button_pushed

—O<___ 0
released button_release pushed
Fig. 3. Model for a button.
CC_enable
disabled CC_disable enabled

Fig. 4. Model for enabling and disabling Cruise Control.

Section II-B explains the simulation and implementation con-
cepts that are elaborated in the case study.

A. Supervisory Control Theory

Supervisory Control Theory provides a framework for
automatic supervisor synthesis based on models of both the
uncontrolled system (also called plant) and the requirements.
Most of the definitions provided here are taken from [33].

1) Specification of Uncontrolled System Behavior: In many
approaches towards supervisory control theory, especially
those involving computer-support (e.g., [20]), plant models are
represented by so-called discrete-event systems.

Definition 1 (DES): A discrete-event system (DES) is a
quintuple D = (Q, X, —>,qo, Om) where Q is a finite
set of states, T is a set of events (or alphabet), partitioned
into controllable events X. and uncontrollable events X,,
—C Q x X x Q is a transition relation, gy € Q is an
initial state, and Q,, C Q is a set of marked states.

Controllable events can be enabled or disabled by the
supervisor. Examples of controllable events are events asso-
ciated with actuating the system. Uncontrollable events are
events that cannot be enabled or disabled by a supervisor.
Examples of uncontrollable events are changes of sensor
values or buttons being pushed or released. Marked states
are states associated (by the modeler) with completion of
operations or tasks. The names of the states are useful for
referring to states in requirement models as shown later.

A DES is typically represented in a graphical way as shown
in Fig. 3. States are represented by circles and transitions
are represented by event-labeled edges between two states.
Transitions labeled by uncontrollable events are indicated by
dashed lines and those labeled by controllable events are
indicated by solid lines. The initial state is indicated by an
incoming arrow. Marked states are indicated by a double circle.

The DES shown in Fig. 3 illustrates the model of a button
consisting of two states, named released and pushed, and two
uncontrollable transitions, labeled by button_pushed and but-
ton_released. Initially, the button is released. When a system
operator pushes the button, the transition button_pushed is
executed, after which the system is in the pushed state. The
released state is chosen to be the marked state.

As another example, involving controllable events, Fig. 4
illustrates a model for the lower-level control action to
enable or disable Cruise Control.

A DES is used to describe behavior, where behavior is
considered a language, i.e., a set of sequences of events.
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Fig. 5. Synchronous product of the models for the button and enabling and
disabling CC components.

The (marked) language of a DES consists of all sequences
of events that correspond to paths from the initial state (to
a marked state of that DES, respectively). In the upcoming
definitions the notation ¢ —> ¢’ denotes (g, e, ¢') €—>, and
for a string w € ¥, 5 denotes the obvious generalization
of the single step relation to a multi-step relation, where the
events of the subsequent steps together form the string w.

Definition 2 (Behavior of a DES): The closed behavior of
aDES D is L(D) ={s € £* | qo = q,q € Q}. The marked
behavior of D is L(D) = {s € L(D) | g0 — ¢',q' € Om}.

It is impractical and inconvenient to specify the uncontrolled
behavior of relevant systems by means of a single plant
model. Usually such plant models are specified by means
of networks of DESs that interact by synchronizing on their
shared events (if any). In such cases, the complete plant is
obtained by taking the so-called synchronous product of the
DESs in the network [24].

Definition 3 (Synchronous Product): The synchronous
product of the DESs (Q1,21,— 1,919, Q1,n) and
(02, X, —>2, 420, Q2,,) is the DES (Q, %X, —,q0, Om)
where 0 = Q1 x 02, T = % Uy, —= {(q1,92) —
@i-a5) | @1 —>1 a1 a2 —>2 g5} U (g1, 02) — (4} q2) |

o / o ’ 4 ’
g —1 qi} U2 — @.g) | @2 —2 gl
q0 = (910> q20), and Qm = Q1,y X Q2.

For the two example DESs shown before, which do not
share any events, the result of taking the synchronous product
is a DES that contains all state combinations and possible
transitions. The result is depicted in Fig. 5.

2) Specification of Requirements: The second ingredient
of supervisory control synthesis is a specification of the
desired behavior of the controlled system, i.e., the plant under
supervision of the supervisory controller to be developed.

A convenient way of specifying the desired system behavior
is by posing a number of requirements that should be satisfied
by the controlled system. In this paper, the following require-
ment specifications types are used:

1) requirement DESs, and
2) event conditions.

A requirement DES is just a DES as used in modeling the
plant. It states, for the events that occur in its alphabet,
in which order they are allowed to occur.

As an example, assume that the desired behavior is that any
enabling or disabling of CC is supposed to occur in reaction

button_pushed

O-~__ O
CC_enable, CC_disable

" button_pushed

Fig. 6. Requirement model for enabling and disabling CC.

to pushing the button. The requirement model that reflects this
desired behavior is shown in Fig. 6. Note that occurrences of
plant events that are not part of the alphabet of the requirement
DES are not restricted (by the requirement).

An event condition specifies that a specific event needs
a specific state to be enabled. Event conditions are specific
instances of so-called state-based expressions [34].

Definition 4 (Event Condition): Let e be an event and let
Pred be a predicate over the states of the plant. An event
condition is a statement of the form “e needs Pred”.

For example, when the desired behavior is that CC can only
be enabled when the button is pushed, this can be modeled
using the event condition:

CC_enable needs pushed

where pushed is a reference to the state pushed of the
automaton for the enable button from Fig. 3.

One can associate a requirement model with each event
condition by computing the synchronous product of all DESs
that are referenced in the predicate part of the event condition
and removing any e-labelled transitions that start from a
state that does not satisfy the state predicate, and adding an
e-labelled loop in any state that does not have an outgoing
e-labelled transition and satisfies the state predicate.

Definition 5 (Requirement Satisfaction): A DES D satisfies
a requirement R (with alphabet Xg) if Psx,(L(D)) € L(R),
where Py, is the projection operator that removes from all
strings all events that are not in Xpg.

3) Supervisory Control Synthesis: The purpose of supervi-
sory control synthesis is to provide a supervisor, i.e., a DES
that, when composed with the plant (by means of synchro-
nous product), satisfies the requirements, and is nonblocking
and controllable. Moreover, it is required that the supervisor
restricts the behavior of the controlled system to the least
possible extent, i.e., it is minimally restrictive.

Definition 6 (Nonblocking, Controllable, Minimally
Restrictive): A DES D is nonblocking if L,,(D) = L(D),
where L = {w | 3,wv € L} denotes prefix closure of a
language L.

A language R C X* is controllable w.r.t. plant D and
uncontrollable alphabet ¥, if RX, N L(D) C R.

A DES S is called minimally restrictive (w.r.t. DES D and
language R) if L, (S) = sup C(R N L,, (D)) where C is the
set of all controllable sublanguages of its argument.

The supervisor synthesis procedure computes the mini-
mally restrictive and nonblocking supervisor, as defined above.
Algorithms for supervisory control synthesis that are proven
correct can be found in [24] and [35].

The supervisor that is synthesized for the plant and the
requirement in Fig. 5 and Fig. 6, respectively, is repre-
sented by the DES in Fig. 7. Observe that indeed the
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Fig. 8. Hybrid model of a timer.

supervisor complies with the requirement in the sense that
CC _enable or CC_disable are not allowed before the event
button_pushed of the button has occurred.

It is a well-known result, see, e.g., [24], that the worst-
case complexity of the standard synthesis algorithm is
O(n* m?|X|), where n and m are the state-space sizes of
the plant and requirements representations. To cope with this
complexity, several approaches have been proposed allowing
for synthesis of local supervisors for plant modules. Another
approach is proposed in [36], where the plant states are
represented as state tree structures and symbolic computation
implemented by the manipulation of binary decision dia-
grams (BDD) is used to synthesize the supervisor.

For the model-based design of the supervisor described
in this paper, CIF 3 (se.wtb.tue.nl) is used [20]. The
implementation of the synthesis algorithm in CIF 3 follows
the BDD-based approach of [37].

B. Simulation and Implementation

For the validation of the models through simulation,
a hybrid model is designed. This hybrid model consists of
extended finite automata (DES extended with variables). The
extended finite automata are based on the previously defined
plant models, but additionally the continuous behavior is
modeled.

An example of a hybrid model is shown in Fig. 8. It rep-
resents a model of a timer that consists of a continuous
variable ¢ representing passage of some time. The continuous
information and the discrete information of the hybrid model
are indicated with different colors. The timer can be started
using a controllable event start, at which the variable ¢ is
updated to 0. In the active state, the derivative of ¢ is 1. The
event timeout is only possible at the moment the associated
guard r > 1.5 evaluates to true.

The hybrid model together with the supervisor and a graph-
ical image compose the interactive simulation model. Using
test cases with predefined event sequences, the behavior of
the system can be validated.

After simulation and validation, the supervisor is imple-
mented. In the implementation, uncontrollable events are
implemented as input variables. An event occurrence is asso-
ciated with a value change of such a variable. Similarly,
controllable events are implemented using output variables.
A hardware map is designed that connects the supervisor to
the hardware components of the system.

Event simultaneity as it may occur in real life is captured in
the CIF models by means of interleaving, i.e., the simultaneous
events may occur in any order and all these orderings lead to
the same state. In the implementation, event simultaneity is
supported to the extent that it is possible for input variables
to change value simultaneously.

Any possible non-determinism expressed by the supervisor
model is removed in the implementation. In each cycle, it is
checked whether the events (both controllable and uncontrol-
lable) are enabled in a pre-defined order. If an event is enabled,
it is executed and the state change is computed and effectuated.
With the resulting state the remaining (lower ordered) events
are checked for enabledness. As a consequence, the event
sequence that is executed by the implementation is one of
the event sequences of the supervisor model.

Another consequence of this way of eliminating non-
determinism is that, in general, it cannot be guaranteed that
the marked states of the system are still reachable (because
the events leading to them are not selected). In cases where a
marked state has to be reached (which is also not guaranteed
by the obtained supervisor as only the potential reachability
is guaranteed) additional requirements need to be added that
force the supervisor to make the required choices.

Using the CIF 3 code-generator (se.wtb.tue.nl/tools/
codegen), an S-function file with C-code is generated, which
may then be deployed on the actual system. The resulting
S-function is implemented as part of a Matlab/Simulink model
that runs with a fixed sampling rate. Of course this has as
a consequence that the implementation may not notice value
changes of an input variable that cancel each other if they
occur within one cycle.

As an illustration of the proposed method for obtain-
ing a correct supervisory controller for systems of ADASs,
in Section III, the supervisor design for the longitudinal
control of a vehicle using ADASs CC and ACC is elaborated.
In Section IV the simulation, validation, implementation and
experimental results are presented.

III. CASE STUDY: SUPERVISOR DESIGN

This section illustrates the first steps of the supervisor design
procedure as suggested in Section II. Fig. 9 shows the design
elements that are considered throughout this, and the next,
section. The case study is related to the supervisor design for
a CC and ACC functionality for a Toyota Prius Executive.
For the sake of brevity, only a part of the supervisor design is
discussed. The complete model can be found in [30].
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A. Specification of the System and Its Desired Behavior

As mentioned in Section II, the first step of the supervisor
design process is to describe the vehicle system (components)
and its desired behavior. In general, we aim to model only
the system components that are needed to synthesize the
supervisor. For the CC/ACC vehicle system, we only specify
the set of components that are involved in the longitudinal
motion of the vehicle. The system allows the driver to switch
between three main control functionalities, namely Manual
Control, Cruise Control and Adaptive Cruise Control. Each
of these functionalities and their related system components
are discussed in this subsection.

1) Manual Control: The longitudinal control of a vehicle is
manually executed by the driver using the gas and the brake
pedals. In modern vehicles, the depth of the pedals is read by
a sensor. This sensor value is then converted into a throttle
input or braking force, that is used by the throttle actuator
to control the fuel supply of the engine. Manual control is
required to be active at the startup of the system. Furthermore,
a manual control action should always overrule the ADASs
functionalities.

2) Cruise Control: Cruise Control is used to main-
tain a desired velocity set-point using feedback control,
see, e.g., [38]. Typically, the CC generates a desired accelera-
tion command for the vehicle driveline to maintain the desired
velocity set-point. The vehicle driveline itself is assumed to be
acceleration controlled, as described, for example, in [39].

The CC is operated by the driver through the HMI. The
CC-related HMI components include an enable button and a
multi-directional lever at the steering wheel. Via the HMI,
the driver can invoke the following CC actions:

o set a new set-point velocity or resume a stored set-point
velocity (if available);

« enable and disable CC;

« increase and decrease the set-point velocity;

« cancel CC (but keep the set-point velocity).

Let us remark that CC can only be active whenever it is
enabled and a set speed is set. For safety reasons, additional
restrictions are made to meet the safety standards defined
in [40] and [41]. For example, the lower-level CC controller

tip lever time gap
button button

. Adaptive | | gas | [brake| [ velocity | :

grultsel Cruise | : :|"@dar||pedal||pedal | [encoders|

;| ~ontro Control :
:Lower level controllers — Vehicle components

Fig. 10.
system.

System components within the controller layout of the vehicle

should be deactivated when the brake is pressed, or when
the driver has overtaken the control by a throttle overrule for
longer than 3 minutes. CC activation should only be allowed
above a minimal cruise speed (30 km/h).

3) Adaptive Cruise Control: The ACC functionality is used
to maintain a constant inter-vehicle time gap (time headway)
with respect to a predecessor [42]. Therefore, ACC can
only be active when another vehicle is driving in front of
the ACC-equipped vehicle at an appropriate distance. The
presence of a predecessor vehicle is detected by a front-facing
radar, which measures the distance and the relative velocity
of this predecessor. The ACC functionality can be selected
by the driver using the mode button. ACC is only allowed to
become active when CC is enabled, the ACC mode is selected
and the radar detects another vehicle with reliable data at an
appropriate distance.

B. System and Requirement Models

In this subsection, we formalize the system description
provided in the previous subsection in terms of individ-
ual (discrete) component models and requirement models, see
Fig. 9. As mentioned in Section II, these models are key
ingredients for supervisor synthesis in step 3 of the design
procedure. Moreover, hybrid versions of these models are used
for validation purposes in step 4 of the design procedure.

1) System Components: The longitudinal vehicle control
system consists of physical (sensor and actuator) components
such as the gas pedal, brake pedal, velocity encoders and
radar. Furthermore, the HMI consists of a lever at the steering
wheel and an enabling button that is positioned at the tip of
the lever. For ACC, an additional time gap button is present.
An overview of the system components is given in Fig. 10.
This figure shows how the control structure is related to the
physical components, in correspondence with Fig. 1. With
the vehicle components, component observers are associated.
They observe the continuous state of the system and generate
discrete events under relevant conditions. These events are
communicated to the supervisor. The supervisor outputs the
control commands that are passed to the low-level controllers.
Using controller observers, also the continuous behavior of
the low-level controllers is observed and communicated to the
supervisor. The HMI layer communicates the driver’s button
push instances to the supervisor.
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Fig. 11. Model for activating and deactivating CC.
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Fig. 12. Model for the brake sensor.

Below, the low-level controllers, vehicle components, and
controller and component observers are explained. Their rela-
tions and desired behavior are explained and their models are
discussed.

2) Low-Level Controllers for ADASs: The low-level con-
trollers are the CC controller and the ACC controller. The
CC low-level controller can execute the following commands:
enabling and disabling of CC, activation and deactivation
of CC, the setting and resetting of the set-point velocity,
increasing and decreasing of the set-point velocity and erasing
the set-point velocity. Each of these control actions is modeled
separately in a small, two state DES. This improves the
adaptability of the model and increases the ease of adding
extra control actions. Some of these DESs are shown in Fig. 4
and Fig. 11. The others are modeled similarly.

ACC can become active and inactive when CC is enabled
and the driver has set the mode to CC/ACC. This activation
can be modeled similarly to CC activation (Fig. 11).

3) Component Observers: To retrieve the system state, com-
ponent observers are modeled. These component observers can
be sensors or state observers. State observers observe the states
of the vehicle components and generate events when in an
important (predefined) state or when a state change occurs.

A sensor on the brake measures whether the brake is
pressed or not. The sensor can either be on or off. The
brake sensor automaton is depicted in Fig. 12. Note that the
events that are used are uncontrollable in this case. All sensors
discussed further in this subsection are modeled similarly.

A throttle overtake happens when the requested acceleration
of the pedal exceeds the CC- or ACC-requested acceleration.

The velocity of the vehicle is measured by the velocity
encoders on the vehicle. For each relevant velocity, a separate
observer is introduced.

ACC should not be active when the CC set-point velocity is
lower than the predecessor vehicle speed. Therefore, a velocity
difference observer needs to be modeled.

The radar can be modeled with two states, on and off.
It turns on when it detects an object and turns off when there
is no object detected anymore.

The radar data is filtered to determine and increase the reli-
ability of the signal. This is modeled using a radar reliability
observer.

4) Controller Observers: Although the supervisor restricts
the CC set-point velocity actions, the set-point velocity
variable is modeled in the low-level controllers. Controller
observers are modeled that communicate important variable

bwd_on | | bwd_off
up_off | fwd_on
o /‘QO; T hedoft
dwn_off

Fig. 13.  Model of the CC lever.

changes to the supervisor. For example, since the minimum
velocity for CC to become active is 30 km/h, the set-point
velocity should not be able to get lower than 30 km/h.
A maximum set-point velocity can be modeled similarly.

5) HMI Component Models: The HMI consists of the
buttons that are used for both CC and ACC: the CC enable
button, the multi-directional steering wheel lever and the ACC
time gap button. The CC enable button and the ACC time gap
button can be modeled as shown in Fig. 3. The model for
the multi-directional steering wheel lever component is given
in Fig. 13.

The ACC HMI components are two buttons. The first button
is the mode button, which is a part of the multi-directional
CC lever. The second HMI component is a different button
positioned at the steering wheel, that can be used by the driver
to set the inter-vehicle time gap.

Observe that the presented system component models do not
share events. This modular and transparent system component
modeling approach makes it relatively easy to incorporate
additional ADASs and system components in the model.

6) CC Formal Requirements: The desired behavior of the
system can be translated into a set of formal requirements.
Formalized requirements are transparent and easily adaptable
and expandable. Therefore, it is preferred to formulate the
requirements in a short and structured way. In this paper, only
a part of the formal requirements is presented. The complete
model is available in [30].

7) Enabling CC: The requirements for enabling and dis-
abling CC are elaborated in Section II-A, and the model is
shown in Fig. 6.

8) Activating and Deactivating CC: CC is only allowed to
become active if:

1) CC is enabled and

2) the velocity is (being) set or (velocity is set and the
lever is pushed up) and

3) the brake sensor is not on and

4) the vehicle velocity is higher than 30 km/h.

CC is allowed to be deactivated if one of the following
conditions hold:

1) the Cruise Control is disabled or

2) the brake sensor is on or

3) the CC lever is pulled backward (cancel) or

4) Manual Control (gas pedal) overtakes for longer than
3 minutes or

5) the vehicle velocity is smaller than 25 km/h.
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Fig. 14. Requirement model that restricts reactivation of CC.

These requirements can be modeled using event conditions as
explained in Section II-A. For the sake of brevity, this is not
elaborated for the requirements in this section.

These requirements alone do not lead to the complete
desired behavior. When CC is active and the driver presses
the brake pedal, CC is deactivated. When the brake is released
however, the requirement for activating CC allows activation
again. This is not the desired behavior, since CC needs to
be manually reactivated. To enforce the desired behavior,
a requirement model is defined that only allows reactivation
after the lever is pushed up or down by the driver, see Fig. 14.

9) Setting the Set-Point Velocity: The set-point velocity can
be set only if:

1) the CC lever is pushed down and

2) the vehicle velocity is higher than 30 km/h and

3) CC is enabled and

4) CC is inactive or the vehicle velocity is higher than the
set-point velocity.

10) Decreasing the Set-Point Velocity: The set-point veloc-
ity can be decreased if:

1) CC is active and

2) the brake sensor is off and

3) the set-point velocity is higher than 30 km/h and

4) the CC lever is pushed up for more than 0.5 s and

5) a set-point velocity is stored and

6) CC is enabled and

7) the vehicle velocity is higher than 30 km/h.

11) Erasing the Set-Point Velocity: The set-point velocity
is only allowed to be erased when:

1) CC is disabled and

2) a set-point velocity is stored.

12) Activating and Deactivating ACC: ACC is only allowed
to become active if:

1) the mode is set to CC/ACC and

2) the radar is on and

3) the radar data is reliable and

4) CC is not (being) cancelled and

5) the brake sensor is off.
ACC is only allowed to become inactive if:

1) the mode is set to CC only or

2) the radar is off or

3) the radar data is unreliable or

4) CC is cancelled or

5) the brake sensor is on.

For ACC, a similar requirement is needed as given for CC
in Fig. 14 to enforce reactivation after releasing the brake.

Modelling requirements is a manual step. In cases where the
textual requirements are well-structured already, as is typically
the case for safety related requirements, it is our experience
that capturing these in the type of formal models used here is
relatively straightforward [27], [43].

Observe that the requirements define the allowed sequences
of events of the entire system. Therefore, when additional con-
trol functionalities are added, the requirement specifications
may have to be changed due to inter-component dependencies.
When, for example, an ADAS for lane changing is added to
the complete system functionality, the requirements for CC
and ACC might have to be changed.

Together, the requirement models and the event con-
ditions (all listed in [30]) form the requirement model.
This requirement model is used for supervisor synthesis,
as explained briefly in the following subsection.

C. Supervisor Synthesis

When the system and requirement model are formalized,
a supervisor can be synthesized that enforces the requirements
and is non-blocking, controllable, and minimally restrictive,
as explained in Section II-A.

For this case study, the synthesis procedure was applied to
a model consisting of 28 DESs representing the uncontrolled
system and 33 requirement models. All of these DES models
consist of 2 or 3 states with one exception where the model
consists of 5 states. The size of the uncontrolled state space is
3.4 x 10°. The supervisor was obtained within 1 second (on a
standard laptop). It represents a DES with a state space
of 2.0 x 10'0 states.

The next section describes validation of the obtained models
and their implementation in a real vehicle system.

IV. CASE STUDY: SIMULATION AND IMPLEMENTATION

The previous section explains the design procedure for the
supervisor. In this section, the validation through simulation
of the models designed in the case study is described. After
the validation, the supervisor implementation in a Toyota Prius
Executive is discussed. Experimental results are provided to
show the validity of the supervisor in a real-time application.

A. Model-Based Simulation

The advantage of model-based supervisor design is that
simulation is easy to perform. Using different test cases it
can be checked whether the models of the plant and the
requirements are correct. Also environmental influences, such
as the behavior and presence of a preceding car can easily be
added and reproduced to test several cases.

The visualization consists of a straight driving vehicle, see
Fig. 15, with buttons for the manual gas pedals and the HMI
to give the driver’s inputs to the supervisor.

The hybrid simulation model consists of the DES discussed
before supplemented with the continuous behavior of the sys-
tem components. Furthermore, the environment of the system,
i.e., all objects related to the vehicle system, but not used for
supervisor synthesis, needs to be modeled. This includes the
gas and brake pedals, and a predecessor vehicle.
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Fig. 16. Simulation results of various test cases.

For simulation, the gas and brake pedal values are modeled
using a single state automaton. The values can be changed
between 0 and 100 percent, see Fig. 15. The low-level con-
trollers are designed according to [44].

Using various test scenarios that cover all of the imposed
requirements we showed that the behavior of the controlled
system is compliant with its expected functionality. Fig. 16
shows the simulation results of one such test scenario.

The test scenario starts with setting the throttle pedal to
80 % and enabling CC by pushing the button. As a result,
CC becomes active. Then, the following actions are executed:

o To check the requirements for setting the velocity, the set
velocity/- button is pushed before and after the vehicle
exceeds 30 km/h. When it is pushed before, the speed is
not set, but when the velocity is higher than 30 km/h, a set
speed is stored. This can be seen in Fig. 16 at t = 20,
where the set speed becomes approximately 34 km/h.

o To check the functionality of increasing and decreasing
the set speed, the lever down button is pressed for a
few seconds. Indeed the set speed decreases. At t = 30
the lever up/+ button is pressed for a while and the set
speed increases as intended by the requirement.

o To check the requirement for activating ACC, it is enabled
by clicking the button “lever forward”. At t = 50,
the radar data becomes reliable, ACC becomes active (CC
becomes inactive) and the vehicle starts with distance
control towards its preceding vehicle (v,;,).

After the models are successfully validated, the supervisor

can be implemented in a real vehicle system. The implemen-
tation is explained in the following subsection.

B. Implementation

To actually check the performance of the supervisor in
a real traffic environment and to check the ease of the
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Fig. 17. Toyota Prius Executive test vehicle.
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Fig. 18.  Experimental results for CC. The gray parts indicate that CC is

active. The bottom figure shows the HMI input and the brake sensor value.

implementation step, the supervisor is implemented in a Toy-
ota Prius Executive (see Fig. 17). This vehicle is equipped
with a dSPACE DS 1007 running a Matlab/Simulink envi-
ronment, that is connected to the vehicle gateway through
CAN busses [45]. Given the structural approach and using
CIF 3, implementation of the supervisor is fairly simple.
The supervisor is first converted into C-code and inserted in
an S-function block in Simulink. The resulting S-function is
implemented in a Matlab/Simulink model, that also contains
the low-level controllers [45]. A hardware map is designed
that connects the supervisor to the hardware components in
the vehicle, possibly via observers. This S-function block is
connected to the inputs and outputs of the vehicle system. The
inputs and outputs are all stored as integer values 0 (false) or 1
(true). The inputs of the system are preprocessed using various
Simulink blocks. The outputs of the supervisor are connected
to the low-level ADASs that implement the same Simulink
scheme. The experimental data is logged using ControlDesk
Software.

The implemented supervisor is tested in the real vehicle
system using various experiments. Again, a full validation of
the supervisor is almost infeasible, as already discussed in
the previous subsection. In this paper, a few experiments are
discussed to show that the functioning of the controlled vehicle
system is according to the required behavior. The experimental
results are shown in Figs. 18 and 19.

Fig. 18 shows the experiments of the CC functionality. The
top figure shows the velocity profile of the vehicle and the set-
point velocity. The bottom figure shows the driver’s operation



542

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2018

= 150 -
= === Vyehicle
Z 100} . TP T T s Vset
= \“ "'—— yiay 1l
= 50 1 - -
[5} N U
; 158 ) 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
B T = Vier
5 100 + /_/_/J "‘ fouyot ‘"-“ - - ':-.Vpredecessor
=] \ - ~F.
Q 3 J
3 s : Il
1502 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
E - dradar
8 100 - \ - ddesired
=]
2 50| L)
B2 [ewmm==""""" R 73 S
= 0 l l l l l l l l l l l {o===-= l l l l l
s 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
§ set/— 1l 1 T 1 i
g rcsumc/Jr pIrm 1 o nn 1 I
2. Enable CC =
E= Mode L
= Cancel 1 1
= brake I I I I I I I I I I I I I I I I I
= 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 34

time [t]

Fig. 19. Experimental results. The dark gray parts indicate that CC is active. The light gray parts indicate that ACC is active.

commands that are communicated to the supervisor through
the HMI. Note that the tests are performed in a real traffic
environment, and therefore many experiments are executed in
parallel, whenever the traffic environment allows a specific
control action from the driver. Again, we explain the validation
of some functional requirements as defined in Section III-B.
First, the vehicle is manually brought to a velocity of 60 km/h.
The CC enable button is pushed at t = 5 to enable CC. Then,
the following situations can be identified from the actions and
behavior as shown in Fig. 18:

o When the CC lever is pushed in the “Cancel” direction
and CC is active, CC should be deactivated. This is
tested at t = 26, where CC is active (indicated by the
grey block in the top figure) and the “Cancel” button is
pushed (see bottom figure). As can be seen, indeed CC
becomes deactivated and the vehicle slows down.

o After the CC lever is pushed in the “set/-” direction, with
a speed still set (black line top figure) but with a different
vehicle velocity, CC should be re-activated but with the
new set speed. This test can be found at t = 32.

o When the brake is hit, CC should become deactivated.
This test is executed at t = 38.

o When the CC lever is pushed in the “Resume/+" direc-
tion, CC activates, with the previous set speed (t = 40).

Fig. 19 shows the experimental results of the switching

between ADASs CC and ACC. The first figure shows the vehi-
cle velocity and the set-point velocity. The second figure shows
the set-point velocity and the velocity of the preceding vehi-
cle (if present). The third figure shows the desired inter-
vehicle distance and the radar distance measurement values.
The following functional checks can be identified:

o Activation of ACC when the mode is set to ACC
and a preceding vehicle is detected by the radar, with
lower velocity than the current set speed. At t = 83,

the CC lever is pushed in the “Mode” direction. As a

result (which is not shown in the picture), ACC mode

is enabled. At t = 100, a preceding vehicle with lower

velocity is detected (see second figure). There, ACC

becomes active and CC becomes inactive. This is indi-

cated by the light grey blocks in the top two figures.
Deactivation of ACC is tested as follows:

o At time t = 160 the brake is pressed and ACC is
deactivated. After a resume however, ACC is activated
again.

o At time t = 125, the preceding vehicle reaches a velocity
higher than the set velocity. Therefore, ACC deactivates
and CC is activated to pursue the set-speed velocity.

At the time interval from t = 220 to t = 280, a remarkable
situation occurred in the test. The requirements for CC and
ACC to become active both consist of the requirement that
the velocity should be above 30 km/h. From time t = 220
to t = 240, the preceding vehicle slows down to a velocity
of 0 km/h. As shown in the figure, ACC remains active during
this period and therefore the car automatically continues
following the preceding vehicle’s velocity profile. Although
this behavior does not seem to be part of the desired behavior,
it actually is, because the requirements only block activation
of CC or ACC, not the “being active” of the functionalities.

All performed experiments show that the controlled vehicle
system behaves as specified.

The supervisor is based on the discrete-event model of the
physical system and since the implementation on the real
physical system results in the expected functionality, the used
models are a correct representation of the physical system.

V. CONCLUDING REMARKS

In this paper, a framework for systematic model-based
design and implementation of supervisors for Advanced Driver
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Assistance Systems (ADASSs) is proposed. An advantage of
this method is that it is based on formal models of both
the uncontrolled system and the requirements. The fact that
such models are unambiguous is instrumental as it allows (i)
simulation-based validation, (ii) synthesis of a supervisor that
is correct-by-construction, (iii) code generation.

A proof of concept is delivered by a realistic case study
involving manual control, CC and ACC, which is implemented
in a passenger vehicle and tested in a real traffic environment.

The proposed method supports incremental design in terms
of changing or adding component and requirement models.
Previous applications of the model-based engineering design
and implementation methods in other application domains
have shown that it supports the evolution of the developed
controller with changes in the uncontrolled system and the
requirements [31], [32]. It is expected that similar benefits
can be obtained in automotive systems engineering.

For the case study, the synthesis step takes less than
1 second. For systems of more ADASSs, the resource con-
sumption of both time and memory may grow, but there are
techniques available for decomposing large synthesis problems
into smaller ones. Based on these observations, it is fair to
conclude that the proposed method is a promising approach
to the design of supervisors for systems of ADASs.

A limitation of the proposed method is the informal relation-
ship between the models used for synthesis and for validation.
Implementation of appropriate abstraction techniques would
improve confidence in the results of validation.

Integration of model-based testing techniques would elimi-
nate the need for manual construction of test scenarios.

Finally, in case a distributed or modular supervisor is
created, there are still challenges with respect to its implemen-
tation such as synchronization of shared events or deployment
on a single processor platform.
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