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Visualization of Driving Behavior Based on Hidden
Feature Extraction by Using Deep Learning
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Abstract— In this paper, we propose a visualization method
for driving behavior that helps people to recognize distinc-
tive driving behavior patterns in continuous driving behavior
data. Driving behavior can be measured using various types
of sensors connected to a control area network. The measured
multi-dimensional time series data are called driving behavior
data. In many cases, each dimension of the time series data
is not independent of each other in a statistical sense. For
example, accelerator opening rate and longitudinal acceleration
are mutually dependent. We hypothesize that only a small
number of hidden features that are essential for driving behavior
are generating the multivariate driving behavior data. Thus,
extracting essential hidden features from measured redundant
driving behavior data is a problem to be solved to develop an
effective visualization method for driving behavior. In this paper,
we propose using deep sparse autoencoder (DSAE) to extract
hidden features for visualization of driving behavior. Based on
the DSAE, we propose a visualization method called a driving
color map by mapping the extracted 3-D hidden feature to the red
green blue (RGB) color space. A driving color map is produced
by placing the colors in the corresponding positions on the map.
The subjective experiment shows that feature extraction method
based on the DSAE is effective for visualization. In addition,
its performance is also evaluated numerically by using pattern
recognition method. We also provide examples of applications
that use driving color maps in practical problems. In summary,
it is shown the driving color map based on DSAE facilitates
better visualization of driving behavior.

Index Terms— Data visualization, deep learning, driving
behavior analysis, feature extraction.

I. INTRODUCTION

V ISUALIZATION of driving behavior can help drivers to
review and understand their driving behavior. Effective

review of driving behavior can contribute to improving their
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driving behavior and promoting safe driving. Besides, efficient
visualization of driving behavior enables users, e.g., driving
school teachers, security officers at transportation companies,
and accident investigators, to monitor and investigate driving
behavior of cars intuitively.

Visualization of driving behavior could be useful when a
person needs to review his/her driving behavior because a user
who wants to review their driving behaviors cannot intuitively
understand their behavior by watching driving behavior data,
i.e., raw time series data. In contrast, reviewing recorded video
takes a long time and is not so efficient to find interest-
ing moments in his/her trip. The effective visualization of
driving behavior can help drivers to understand their good
and bad driving habits. Meanwhile, to ensure safe driving,
providing information about previous driving behaviors after
driving to users, such as driving school teachers, security
officers at transportation companies, and accident investigators
is also important. For example, a driving school teacher could
understand the driving behavior of students intuitively by
visualizing the students’ driving behavior. In addition, security
officers at a transportation company could monitor the driving
behavior of a taxi or bus driver remotely by visualization, and
thus, they may inform a driver promptly when a dangerous
driving behavior is visualized. Moreover, we expect that the
visualization of driving behavior would be useful for accident
investigations. The visualization of driving behavior can allow
investigators to determine whether unusual driving behavior
had led to an accident. Thus, an effective visualization method
of driving behavior will be useful for developing various sup-
port systems for monitoring, reviewing and analyzing driving
behavior, and driving assistance systems.

Many advanced driving assistance systems (ADASs) have
been focusing on assisting a driving behavior directly, i.e.,
vehicle assistance control [1]–[3]. They even participate in
controlling the vehicle directly when the car confronts a
danger [4], [5]. Driving environment detection [6], driving
behavior recognition [7], prediction [8], selective darkening
of the windshield [9] and determining utterance timing of
driving agents [10] are also examples of ADASs. Although
the visualization of driving behavior has been gathering less
attention in the fields of intelligent vehicles than ADASs, the
visualization of driving behavior is an extremely important
issue. In this study, we propose a method that can visualize
driving behavior effectively. It is shown that the method
can help people to recognize distinct patterns in driving
behavior.
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Driving behavior can be measured and recorded by var-
ious types of sensor via a control area network (CAN),
e.g., the accelerator opening rate, brake master-cylinder pres-
sure, and steering angle. We regard driving behavior data as
multi-dimensional time-series data that is formed by assem-
bling various types of sensor information. Each type of sensor
information comprises a dimension of the driving behavior
data. Here, the important property of the driving behavior data
is that each time series data observed by each sensor is not
independent of each other. In [11], we assumed that there are
a small number of essential hidden features that characterize
driving behavior, and each concrete measured sensor informa-
tion can be regarded as time series data that is generated by
performing a nonlinear transformation to the essential hidden
features. For illustrative purpose, let us assume that there
are three essential hidden features here, and they relate to
“acceleration”, “changes in the directions” and “velocity of the
vehicle”, respectively. For example, the observed sensor infor-
mation “longitudinal acceleration” is considered to be gener-
ated by hidden features related to acceleration and changes
in the directions via nonlinear transformation [12]. Note that
changes in the direction cause the friction between the tire
and the ground and decreases longitudinal acceleration when
a driver turns the steering to go right or left. Moreover, some of
the observed sensor information share the same hidden feature.
For example, engine speed, speed meter and speed of wheels
are generated by hidden feature associated with the velocity of
the vehicle. One type of sensor information can be generated
by fusing several hidden features. For example, the yaw rate
is generated by fusing the hidden features associated with the
velocity of the vehicle and changes in the driving direction.

The important problem for visualization is how to extract
the essential features from observed driving behavior data,
which contain redundant information and nonlinear relation-
ship between different sensor information. To address this
problem, we require a method that automatically extracts the
essential hidden features and filters out any redundant sensor
information. The method should extract the necessary and
sufficient features from high-dimensional driving behavior data
automatically.

In this study, we propose a driving behavior visualization
method based on a feature extraction method using a deep
sparse autoencoder (DSAE). We call the visualization method
a driving color map. We reported a brief description of this
method and preliminary results in [13]. In this paper, we
describe a complete description and sufficient experimental
evaluation of our method and demonstrate the validity of our
proposed method based on several experiments. We show that
the visualization obtained by our proposed method performs
better than other methods. It is shown that the proposed
method can represent some complex driving behaviors more
clearly than other baseline methods in particular. We also
present some examples of applications of the driving color
map, e.g., we detected some interesting patterns in observed
driving behavior by using driving color maps. The method
also successfully estimated the hidden features and visualized
the driving behavior on a public road using DSAE trained
by using driving behavior data measured on factory circuit.

This suggests that our proposed visualization method has high
generalization performance and can be used for practical use.

II. BACKGROUND

In this section, we describe a short survey about visualiza-
tion methods in the field of intelligent vehicles and feature
extraction methods for multivariate time series data.

A. Visualization in Intelligent Vehicles and Intelligent
Transportation Systems

Visualization of driving behavior is crucially important to
improve driving skill and to investigate hazardous driving
behavior. However, there have been few studies of the visual-
ization of driving behavior data. For example, to reduce road
traffic accidents, Hilton et al. presented a visualization method
called SafeRoadMaps for communicating safety information
to users [14], which visualizes the crash density at different
locations based on a color heat map. Treiber et al. proposed
an adaptive smoothing method with a visualization method,
which visualizes the spatiotemporal dynamics of traffic pat-
terns by using colors [15]. Huang et al. [16] proposed a
visualization method for studying urban network centralities.
The goals of the studies differ from ours.

Kilicarslan and Zheng [17] proposed a method to visualize
a sequence of driving scenes by using driving videos. They
manually designed a method for mapping driving videos onto
a temporal profile image. This method can express driving
behavior indirectly based on changes in the surrounding envi-
ronment. However, it is difficult for users to infer actual driving
behaviors from the compressed visual image.

Takeda et al. [18] proposed self-coaching system using
on recorded driving data an Gaussian mixture model-based
driver-behavior models. They developed a web-based driving
feedback system. Their goal is similar to ours. However, they
focused on risky driving behaviors and did not provide a
visualization method of driving behavior itself.

In our study, we use driving behavior data which represents
driving behaviors directly. The driving behavior data is so
high-dimensional that it is difficult to visualize intuitively.
Therefore, we use an unsupervised feature extraction method
to extract low-dimensional hidden features from the high-
dimensional time-series data automatically without any human
intervention.

B. Feature Extraction and Deep Learning

Many unsupervised feature extraction methods can extract
low-dimensional hidden features, i.e., latent time series data,
automatically from high-dimensional time series data. Prin-
cipal components analysis (PCA) is widely used for feature
extraction [19]. PCA can find the principal components that
correspond to an axis having the largest variance. However,
PCA basically can produce good results when the input data
follow a Gaussian distribution and essential hidden features
are orthogonal to each other in the vector space. Independent
component analysis (ICA) [20] can effectively extract the inde-
pendent hidden features from multivariate signals. The method



LIU et al.: VISUALIZATION OF DRIVING BEHAVIOR BASED ON HIDDEN FEATURE EXTRACTION BY USING DEEP LEARNING 2479

Fig. 1. The proposed method includes two processing steps: hidden feature extraction by using the deep sparse autoencoder and visualization of driving
behavior in the driving color map.

assumes that the observed signals are generated via linear
transformations from source signals. PCA and ICA might not
be able to extract the hidden features from driving behavior
data by linear transformations because vehicle dynamics and
human driving behavior involve nonlinear properties.

Schölkopf et al. [21] proposed the kernel PCA (KPCA)
method. KPCA is a feature extraction method that considers
non-linear transformation. It uses a nonlinear kernel function
that involves a nonlinear transformation to map the data onto
a high-dimensional space. After the non-linear transformation,
KPCA employs PCA to find the principal axis of the high-
dimensional space. However, the computational cost of the
KPCA is high when there is a large volume of driving behavior
data because the kernel method must compute a Gram matrix
in R

N×N , where N is the quantity of data.
In recent years, feature extraction methods that employ deep

learning approaches have attracted much attention. Deep learn-
ing methods employ neural networks having a deep structure,
i.e., having over three or more layers. Some deep learning
methods, such as a restricted Boltzmann machine (RBM [22]),
autoencoder [23], and convolutional autoencoder [24], employ
pre-training before fine tuning. Pre-training comprises unsu-
pervised learning for feature extraction. Bengio indicated
that an autoencoder is similar to an RBM because both
have a double-layered completely undirected graph structure,
although an autoencoder can be trained more easily than an
RBM [25]. In the fine tuning, the neural network having a
deep structure is trained throughout all of the layers.

Few studies have used deep learning methods for driving
behavior analysis. Diaz et al. [26] successfully used a deep
learning method based on an autoencoder to model driving
behaviors to estimate the energy consumption by electric vehi-
cles. Tagawa [27] proposed structured denoising autoencoder
for fault detection and applied it to driving behavior data. Our
previous study showed that DSAE could be used to extract
essential hidden features from driving behavior data [11].
That suggests DSAE could be used as an information filter
to decrease the redundancy of driving behavior. Therefore, in
this paper, we use a DSAE to extract the hidden features for
visualizing driving behavior.

III. PROPOSED METHOD

In this section, we describe our proposed method in detail.
Our proposed method is illustrated in Fig. 1, which comprises
two steps: hidden feature extraction and visualization. In the
first step, the method extracts three-dimensional features from
driving behavior data. It firstly uses the normalization and
windowing process to pre-process the driving behavior data,
which is shown in the left part of Fig. 1. The method employ
a DSAE with five encoding layers1 to extract the three-
dimensional hidden features from driving behavior data. Note
that the detail of DSAE’s structure using in the experiment is
written in IV-A. We assume that the shallower layer can extract
low level features which can represent more specific driving
behaviors; the deeper layer can extract higher level features
which can represent more abstract driving behavior by fusing
various low level features. We expect that the hidden features
of different driving behaviors are represented distinctively in
the feature space. The second step is the visualization which is
shown on the right part of Fig. 1. After the method calculates
colors by mapping the extracted three-dimensional hidden
features into the RGB color space, we place these colors
in their corresponding positions on the map to generate the
driving color map. The goal of the method proposed in this
study is to provide an intuitive color map to make different
driving behaviors represented by different colors.

A. Feature Extraction by Using DSAE

The DSAE is comprised of many sparse autoen-
coders (SAEs). Parameters (weight matrices and bias vectors)
of each SAE is optimized layer by layer in the pre-training
stage. The SAE can be viewed as a three-hierarchical directed
graph, i.e., two-hierarchical undirected graph, with a visible
layer, hidden layer, and reconstruction layer. It is designed to

1We recommend to use DSAE having more than three layers for an
encoder network. Based on the driving behavior data which were used in the
experiment, we designed a DSAE which contains 11 layers. The dimensions of
each layer are 90→45→22→11→3→11→22→45→90. Therefore, DSAE
extracts the hidden features via a five encoding layers with the dimensions
of 90→45→22→11→3. The number of layers and nodes can be changed.
However, the network should be deep.
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ensure that the hidden layer has the property of sparseness.
Each SAE encodes input data into data on its hidden layer
and then decodes the data so as to reconstruct the input
data. An SAE is optimized to minimize the error between the
input data and reconstructed data by using a back-propagation
(BP) method. After this reconstruction error converges to a
sufficiently small value, pre-training for the SAE is stopped.
Each SAE outputs its hidden layer’s data, i.e., hidden features,
to the visible layer in the next SAE as input data. During the
fine-tuning stage, the optimized parameters are initialized to
train all of the layers of the DSAE. The DSAE can determine
the hidden features by extracting them via the deep structure
comprising tandem SAEs.

In this study, we define driving behavior data set as
Y ∈ R

DY×NY , where DY is the dimensionality of data; and
NY is the amount of data, i.e., the total number of time steps
of Y. Observation yt at each time step t is defined as

yt = (yt,1, yt,2, . . . , yt,DY )T ∈ R
DY . (1)

Before the data are given to the DSAE, normalization
and windowing operation are performed. We assume that
the range of observed driving behavior data in the data set
Y is (−∞,∞), and we use a hyperbolic tangent function
tanh(·)2 as an activation function in each SAE. The range
of tanh(·) is (−1, 1), so we should normalize the driving
behavior data from (−∞,∞) to (−1, 1). We use the maximum
and minimum values of each dimension to normalize the
values in each dimension of the observed data into (−1, 1)
independently because the unit of each sensor information is
different. The normalized data xt for the t-step are

xt = (xt,1, xt,2, . . . , xt,DX )T ∈ R
DY ,

xt,d = 2
( yt,d − yd min

yd max − yd min

)
− 1, (2)

where yd max = max(y1,d, · · · , yNY ,d ) is the maximum value
and yd min = min(y1,d , · · · , yNY ,d) is the minimum value
of the d-th dimension of data set Y. In order to extract
contextual features and mitigate the ill effects of noises, we
use the windowing operation. The windowed data vt have
DV = w × DY dimensions, which are generated by

vt = (xT
t−w+1, xT

t−w+2, . . . , xT
t )T ∈ R

DV (t ≥ w). (3)

When vt moves by one step on the time axis, we can obtain a
windowed data set, i.e., V ∈ R

DV×NV , where NV = NY−w+1
is the quantity of data (time steps) in matrix V.

Next, matrix V is input into the DSAE as the first input data
for the SAE. In addition, vt is treated as the visible layer’s
vector v(1)

t for the first SAE. In the l-th SAE of the DSAE,
we use the encoder function in Eq. (4) to encode a vector for
the hidden layer based on the visible layer’s vector v(l)

t ,

h(l)
t = tanh(W(l)

en v(l)
t + b(l)

en ) ∈ R
D(l)

H , (4)

where D(l)
H is the dimensionality of the hidden layer’s vector

in the l-th SAE, W(l)
en ∈ R

D(l)
H ×D(l)

V is a weight matrix, and

2tanh(#) = (exp# − exp−#)/(exp# + exp−#). If # is a vector, then the input
of the tanh function is each of its element.

b(l)
en ∈ R

D(l)
H is the bias vector of the encoder. To reconstruct

the data in the reconstruction layer, we use Eq. (5) to decode
the data in the hidden layer:

r(l)
t = tanh(W(l)

deh(l)
t + b(l)

de) ∈ R
D(l)

V . (5)

In Eq. (5), W(l)
de ∈ R

D(l)
V ×D(l)

H and b(l)
de ∈ R

D(l)
V are the

weight matrix and bias vector of the decoder, respectively. To
represent the visual layer’s data by using the hidden layer’s
data, it is assumed that r(l)

t = v(l)
t in the encoding-decoding

processing. For the data set V, the error in reconstruction
between r(l)

t and v(l)
t is calculated as the objective function

Eq. (6).

O(V(l)) = 1

2NV

NV∑
t=1

||r(l)
t − v(l)

t ||22 +
α

2
(||W(l)

en ||22 + ||W(l)
de ||22)

+ β

D(l)
H∑

i=1

KL(ω||h̄(l)
i ). (6)

The average value of the squared error between all of
the input data and the reconstructed data is presented by

1
2NV

∑NV
t=1 ||r(l)

t −v(l)
t ||22. To prevent over-fitting in SAE, when

the elements of W(l)
en and W(l)

de become very large, we limit
the elements of W(l)

en and W(l)
de with the L2 norm as a penalty

term in the objective function of Eq. (6), where α can control
the strength of the penalty term. We also require that the data
in the hidden layer are sparse because we want to obtain more
obvious features. In general, the L1 norm is used as the sparse
item, but it cannot be differentiated in 0. Therefore, we use∑D(l)

H
i=1 KL(ω||h̄(l)

i ) to calculate the sparse item in Eq. (6). The
β term can control the strength of the sparse item, which is the
Kullback-Leibler divergence between two Bernoulli random
variables with mean ω and h̄(l)

i [23]. If we minimize the sparse
item, h̄(l)

i will be close to ω. The sparse item is

KL(ω||h̄(l)
i ) = ω log

ω

h̄(l)
i

+ (1− ω) log
1− ω

1− h̄(l)
i

, (7)

where ω is the sparsity target of the hidden layer, which needs
to be specified. h̄(l)

i is the average value of the i -th dimension

of the average vector h̄
(l) ∈ R

D(l)
H , which comprises h̄(l)

i :

h̄
(l)
i =

1

2

(
1+ 1

NV

NV∑
t=1

h(l)
t,i

)
, (8)

where h(l)
t,i is the i -th element of h(l)

t . In Eq. (7), the log

function is inside; therefore, the range of ω/h̄(l)
i must be in

(0,+∞). However, the range of the activation function tanh(·)
is (−1, 1), so we cannot calculate log(ω/h̄(l)

i ). To address
this problem, we scale h̄(l)

i from (−1, 1) to (0, 1). There is
another advantage of using this sparse term in our method
because when the sparsity set is at 0 in the tanh space, this
can make the average value of each data’s dimension in the
hidden layer remain at the center of the feature space. Thus,
in our visualization method–driving color map, the generated
colors do not tend to appear biased, e.g., reddish, bluish, or
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TABLE I

THE OBSERVED SENSOR INFORMATION

others. We introduce the specific visualization methods in the
next subsection.

Finally, we use the BP method [28] to minimize the objec-
tive function and train the SAE. The BP method requires the
partial differentiation of the weight matrices W(l)

en , W(l)
de and

biases b(l)
en , b(l)

de for the objective function Eq. (6). The partial
differential equations for the decoder are

∂O(l)

∂W(l)
de

= 1

Nv

Nv∑
t=1

h(l)
t γ T

t + αW(l)
de , (9)

∂O(l)

∂b(l)
de

= 1

Nv

Nv∑
t=1

γ t , (10)

where the vector γ t ∈ R
D(l)

V is

γt=diag
(
(r (l)

t,1)
2−1, (r (l)

t,2)
2−1, · · · , (r (l)

t,D(l)
v

)2−1
)
(v(l)

t −r(l)
t ).

The partial differential equations for the encoder are

∂O(l)

∂W(l)
en

= 1

Nv

Nv∑
t=1

v(l)
t ξT

t + αW(l)
en , (11)

∂O(l)

∂b(l)
en

= 1

Nv

Nv∑
t=1

ξ t , (12)

where the vector ξ t ∈ R
D(l)

H is

ξ t = diag
(
1− (h(l)

t,1)
2, 1− (h(l)

t,2)
2, · · · , 1− (h(l)

t,D(l)
H

)2)

×(Wde
(l)γ t )+ βε,

and the i -th element of the vector ε ∈ R
D(l)

H is

εi = 1− ω

1− h̄(l)
i

− ω

h̄(l)
i

.

The equations for the biases b(l)
en , b(l)

de and weight matrices
W(l)

en , W(l)
de are updated using Eqs. (13), (14), (15), and (16):

W+(l)
en ← W(l)

en − λen
∂O(V(l))

∂W(l)
en

, (13)

b+(l)
en ← b(l)

en − λen
∂O(V(l))

∂b(l)
en

, (14)

W+(l)
de ← W(l)

de − λde
∂O(V(l))

∂W(l)
de

, (15)

b+(l)
de ← b(l)

de − λde
∂O(V(l))

∂b(l)
de

, (16)

where λen and λde are the learning rates of encoder and
decoder, which can control the intensity of each update. Setting
the learning rate is difficult, but an appropriate learning rate

can make the SAE converge faster. In this paper, we use a
line search to find a optimal value of the learning rate after
calculating the differential when O(V(l)) is the minimum in
the direction of the differential. This method can automatically
search the appropriate learning rate for each update.

During line search, we define the searching distance θ . The
learning rate λ∗ (∗ ∈ {en, de}) and searching distance θ are
initialized as small positive numbers. Thus, the appropriate
learning rate becomes λ+∗ = λ∗ + θ . θ is updated by line
search:

θ+ =
{
−0.5θ

(
O+(V(l)) > O(V(l))

)
θ

(
O+(V(l)) ≤ O(V(l))

) , (17)

where (·)+ is the value that has been updated. We set the stop
condition of line search as the point when the change in the
error |O+(V(l)) − O(V(l))| is less than a certain threshold.
We also use the same criterion to stop the updating of the
weight matrices and biases in the error equation (6). Therefore,
we can obtain an optimized l-th SAE. To create a DSAE, we
use the feature matrix H(l) = (

h(l)
1 , . . . , h(l)

NV

) ∈ R
D(l)

H ×NV of

the l-th SAE as the visible layer V(l+1) ∈ R
D(l)

H ×NV for the
next (l + 1)-th SAE (V(l+1) = H(l)). In summary, the t-th
time step data vt is mapped to extract the features h( f inal)

t
by stacking many SAEs, e.g., the 1st SAE: vt 	→ h(1)

t 	→
r(1)

t , the 2nd SAE: h(1)
t 	→ h(2)

t 	→ r(2)
t , · · · , the final SAE:

h( f inal−1)
t 	→ h( f inal)

t 	→ r( f inal)
t .

After pre-training phase, we stack many SAE into a DSAE,
which is a deep neural network with an encoder-decoder
structure. This fine-tuning stage maps the t-th time step data
vt to reconstruct itself by encoding process: vt 	→ h(1)

t 	→
h(2)

t 	→ · · · 	→ h( f inal−1)
t 	→ h( f inal)

t , and decoding process:
h( f inal)

t 	→ r( f inal)
t 	→ · · · 	→ r(2)

t 	→ r(1)
t . The h( f inal)

t is the
extracted hidden feature of vt , which is used for visualization.
We also utilize the BP method to train the DSAE during fine
tuning.

B. Driving Behavior Visualization by the Driving Color Map

In the second step, we visualize the driving behavior by
using the extracted hidden three-dimensional features. The
visualization method is called the driving color map, which
comprises a colored trajectory shown on a road map that
represents the extracted features. In this section, we assumed
that nine types of sensor information are obtained via a CAN
as shown in Table I although the proposed method can be
applied other to set of sensor data. It was suggested that
the three-dimensional hidden features are almost sufficient
to represent driving behaviors in [11]. In addition, the RGB
color space is a three-dimensional space. Based on the two
facts, we extract the three-dimensional hidden features to
visualize driving behavior in this study. We obtain the colors in
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Fig. 2. Deep Car Watcher by which users can review the driving videos
(A), and the extracted three-dimensional hidden features in the feature space
(B, C, D, and E) and time space (F), which can also review the driving color
map (G) simultaneously.

the RGB color space corresponding to the three-dimensional
hidden features by a simple scaling method. When the range
of the RGB color space is [0, 1]3, we normalize the three-
dimensional hidden features into [0, 1]3. In summary, we map
the three-dimensional hidden features to the RGB space by

rgbt,d =
h( f inal)

t,d − h( f inal)
mind

h( f inal)
maxd − h( f inal)

mind

, (18)

where rgbt,d is a d-th element of a three-dimensional vector in
the RGB space that represents the driving behavior at the t-th
time step. h( f inal)

t,d is the d-th element of the extracted three-
dimensional hidden feature’s vector at the t-th time step. The
terms h( f inal)

mind
and h( f inal)

maxd are the minimum and maximum
values of the d-th dimension in H( f inal), respectively. Finally,
we obtain a driving color map by placing the colors in the
corresponding positions on the map.

To monitor the visualization results, we develop a program
called Deep Car Watcher3 (Fig. 2), which can simultaneously
review the driving videos, extracted hidden features, driving
color map, and time-series. A point indicates the current
vehicle location on the driving color map.

IV. VISUALIZATION EXPERIMENTS

A. Experimental Conditions

In this experiment, we verified that hidden features extracted
using DSAE were better than those employed by other meth-
ods for visualizing driving behavior. We employed PCA,
FastICA [29], KPCA with the RBF kernel and SAE as com-
parative methods to extract three-dimensional features from
driving behavior data and generate driving color maps.

To obtain the driving behavior data, we asked a participant
to drive an experimental vehicle through two courses at a
company’s factory. The participant drove each course five
times. During the experiment, the factory was in normal
operation. Therefore, the car encountered different situations
on the courses, such as pedestrians, other moving vehicles,
and parked vehicles. The Circuits 1–5 correspond to the first

3For illustrative purpose, a video of Deep Car Wather is uploaded and
available at : https://www.youtube.com/watch?v=54JWzoFn13E

course and Circuits 6–10 correspond to the second course. We
observed 12958 frames of driving behavior data in total at a
frame rate of 10 fps. Each data frame could include the nine
sensor information captured via the CAN (see Table I).

As a working hypothesis, we assume that there are three
essential hidden features, and they roughly correspond to
“vehicle acceleration”, “vehicle velocity” and “changes in
the driving direction”. We considered that the accelerator
opening rate, brake master-cylinder pressure and longitudinal
acceleration were mainly related to the acceleration of the
vehicle; the speed of wheels, speed meter, and engine speed
were mostly related to the velocity of the vehicle; the steering
angle could represent a change in the driving direction; and the
longitudinal acceleration and yaw rate included information
about acceleration of the vehicle and changes in the driving
direction. Thus, we prepared a simple three-dimensional fea-
ture called VV’S, i.e., the speed of wheels, the differential
of the speed of wheels on time, and steering angle, which
are expected to relate to the three essential hidden features
assumed above. Then we generated driving color maps by
using VV’S in addition to the above-mentioned comparative
methods.

We used the VV’S and the three-dimensional hidden fea-
tures extracted using PCA, FastICA, KPCA, SAE and DSAE
to generate the driving color maps for comparison. These
driving color maps were compared with maps obtained using
the hidden features extracted by the DSAE. Except for the
VV’S, each feature extraction method employed the window-
ing process with a time window size w = 10, i.e., one
second. Then the nine-dimensional driving behavior data yt

becomes to the ninety-dimensional windowed data vt . We
employed PCA, FastICA, KPCA, and SAE to extract three-
dimensional hidden features from the windowed data. When
DSAE was used to extract three-dimensional hidden features
from the windowed data, the dimensions of each encoding
layer were set to be 90, 45, 22, 11, and 3. The number of
nodes of each layer was set to be a half of that of its previous
layer approximately. We set the hyper-parameter 
 of the
RBF kernel k(x, x ′) = exp(−
‖x − x ′‖2) to 0.1 for KPCA
by our experience of many experiments before. In addition,
the parameters α and β of the SAEs and DSAEs were set
empirically to α = 0.03, β = 0.7, but without using a specific
parameter tuning method. To generate a driving color map
with various colors, we considered that the average value of
the hidden features should be located in the center of the RGB
color space. Therefore, ω was set to 0.5 because the center of
each axis of the RGB color space is 0.5.

B. Visualization Results

In this section, the direct observation of the visualiza-
tion results is reported, first before we conduct quantitative
evaluation in the following sections. The driving color maps
generated by each method for Circuits 1 and 6 are shown
as examples in Fig. 3. This figure shows that the colors in
the driving color maps produced using the VV’S contained a
significant amount of noise, and the colors were not as rich
as those generated using the other methods. Thus, the driving
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Fig. 3. The driving color maps for Circuits 1 and 6 are shown as examples, which were generated based on the VV’S and the three-dimensional hidden
features extracted using PCA, FastICA, KPCA, SAE, and DSAE. (a) Circuit 1 obtained using VV’S. (b) Circuit 6 obtained using VV’S. (c) Circuit 1 obtained
using PCA. (d) Circuit 6 obtained using PCA. (e) Circuit 1 obtained using FastICA. (f) Circuit 6 obtained using FastICA. (g) Circuit 1 obtained using KPCA.
(h) Circuit 6 obtained using KPCA. (i) Circuit 1 obtained using SAE. (j) Circuit 6 obtained using SAE. (k) Circuit 1 obtained using DSAE. (l) Circuit 6
obtained using DSAE.

color maps generated using the extracted hidden features with
windowing processing could smooth the noise and represent
driving behaviors better than the observed data (VV’S).

We detected several simple and complex driving behaviors
in the driving videos. The most obviously found driving
behaviors were typical and simple driving behaviors, such
as high speed forward, stopping the vehicle, accelerating
forward, right rear reversing, and left rear reversing. We also
found complex driving behaviors which involved several sim-
ple driving behaviors occurred simultaneously. For example,
simple driving behaviors such as turning right and accelerating
could be combined to yield complex driving behavior of
“turning right while accelerating”. Similarly, turning left and
accelerating could be combined to yield “turning left while
accelerating”.

We observed and compared the driving color maps gen-
erated by each method to find their representative colors

corresponding to each driving behavior. The representative
color for each driving behavior is shown in Table II. Note
that the representative colors were picked up manually and
subjectively, and Table II is shown for illustrative purpose.
The objective and quantitative evaluation is performed in the
following sections.

It was observed that the proposed visualization method
using DSAE generated distinctly different colors for
different driving behaviors: high speed forward ( ), stopping
vehicle ( ), accelerate forward ( ), right rear reversing ( ),
left rear reversing ( ), turning right with constant
speed ( ), turning left with constant speed ( ), turning right
while accelerating ( ), and turning left while accelerating ( ).

In contrast, it was found that other methods generated sim-
ilar colors for different driving behaviors. The similar colors
for different driving behaviors are underlined in Table II. The
similar colors obtained by each method are indicated by the
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TABLE II

REPRESENTATIVE COLORS OF SIMPLE AND COMPLEX DRIVING BEHAVIORS OBTAINED USING THE VV’S AND THE
FEATURES EXTRACTED BY PCA, FASTICA, KPCA, SAE, AND DSAE

TABLE III

F-MEASURE OF SEPARABILITY IN COLOR SPACE OBTAINED BY USING LINEAR SVM FOR SIMPLE AND COMPLEX DRIVING BEHAVIORS

same type of underline ( � or ). For example, several
driving behaviors corresponded to similar colors by using the
VV’S, where the driving behaviors related to turning right
were represented in green, such as right rear reversing ( ),
turning right with constant speed ( ) and turning right while
accelerating ( ). Driving behaviors related to turning left were
shown by sky blue, e.g., turning left with constant speed ( ).
and turning left while accelerating ( ). This showed that the
identification of driving behaviors was not highly successful
by using the VV’S and it was difficult to visualize complex
driving behaviors. Using PCA, turning right with constant
speed ( ) and right rear reversing ( ) were both represented
by blue, while accelerating forward ( ) and turning left
while accelerating ( ) were shown in green. Using FastICA,
light purple represented stopping vehicle ( ) and right rear
reversing ( ). Driving behaviors such as stopping vehicle ( ),
turning right with constant speed ( ) and turning left with
constant speed ( ) were shown by a similar color by using
KPCA. As well as the colors generated by KPCA of accel-
erating forward ( ) and turning right while accelerating ( )
were also alike. When using SAE, the corresponding colors
for right rear reversing ( ) and left rear reversing ( ) were
difficult to distinguish. By contrast, using DSAE, different
colors corresponded to distinct driving behaviors.

These results qualitatively suggest that the driving color
maps obtained using DSAE made it easier for users to dis-
tinguish each driving behavior using the driving color maps
than other methods.

C. Numerical Evaluation of Visual Separability in Driving
Color Maps

We assessed whether different driving behaviors can be
distinguished in each color space. We assumed that if the
corresponding color of each driving behavior was linearly
separable in the color space, then it could also be readily
distinguished by a human. Thus, we used a binary support
vector machine (SVM) with a linear kernel4 to evaluate the
separability of the visualized driving behaviors.

We used the F-measure to evaluate the generalization perfor-
mance of the generated colors based on leave-one-out cross-
validation. In particular, we selected the driving behavior data
from one circuit as the test set and the driving behavior data
from the remaining nine circuits as the training set. We used
the training set to train the feature extraction model and for
extracting three-dimensional hidden features. Next, we used
the hidden features extracted from the training set to train an
SVM with a linear kernel for recognizing a specific driving
behavior listed in Table III. We then inputted the test set into
the trained feature extraction model to estimate the hidden
features. The estimated hidden features were inputted into the
trained SVM to estimate whether the estimated hidden features
belonged to the specified driving behavior. We selected the
driving behavior data from another circuit as the test set
and repeated the training and estimation processes described
above. Thus, we performed ten trials for each driving behavior

4We used kernlab on R 3.2.3 32bit as a library for SVM implementation.
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shown in Table III for one feature extraction method. The seg-
ments and truth labels corresponding to each driving behavior
shown in Table III was prepared in advance.

We counted the true positive (TP), false positive (FP), and
false negative (FN) rates in the ten trials, and we calculated
the F-measure as follows:

F-measure = 2× Recall× Precision

Recall + Precision
, (19)

where Precision = TP/(TP+FP) and Recall = TP/(TP+FN).
We selected several simple driving behaviors and complex

driving behaviors, as shown in Table III. The F-measures
obtained by the linear SVM for simple and complex driving
behaviors by using DSAE and comparative methods are listed
in Table III. We mark the highest F-measure by underline and
bold font for each driving behavior. Meanwhile, the second
peace of F-measure is marked by underline only.

First, we focus on simple driving behaviors. Even though
the VV’S obtained good performance for some of the simple
driving behaviors, it obtained worse results than other methods
for complex driving behaviors. Thus, the VV’S can represent
simple driving behaviors to some extent, but they are not
suitable for complex driving behaviors. DSAE had the highest
F-measure for stopping vehicle, and the second highest
F-measures for turning right, and left rear reversing. The
highest average F-measure was obtained by DSAE. PCA had
the highest F-measures for turning right and turning left.
FastICA could represent the right rear reversing and left rear
reversing driving behaviors well, and it also obtained the
second highest average F-measure. The results obtained using
KPCA were better for accelerating forward, but it obtained
the worst performance in average. When we used SAE,
the F-measure was highest for high speed forward, and the
F-measures for the other driving behaviors were intermediate.

Next, we focused on the complex driving behaviors.
Our results clearly demonstrated that DSAE obtained better
F-measures for all of the complex driving behaviors than
others. Thus, it was shown that the driving color maps using
DSAE could represent complex driving behaviors more clearly
than the other methods.

The results of this experiment and our qualitative observa-
tion shown in the previous subsection were consistent. In the
next section, we performed a subjective evaluation experiment
to determine whether the driving color map based on the
DSAE helps users to review and understand driving behavior
intuitively or not.

D. Subjective Evaluation of the Driving Color Map

To clarify whether our proposed method allowed users to
identify different driving behaviors easily or not, we con-
ducted a subjective evaluation experiment. We asked nineteen
participants to complete a questionnaire in order to evalu-
ate the driving color maps obtained using DSAE and other
methods. All, except two of these participants, had a driver’s
license. To perform subjective evaluations, we developed a
modified version of Deep Car Watcher, as shown in Fig. 4,
where A∼E indicate the names of our proposed visualization
method and four other methods used for comparative purposes.

Fig. 4. The modified version of Deep Car Watcher for subjective evaluation,
which shows driving videos and the driving color maps obtained using
PCA (A), FastICA (B), KPCA (C), SAE (D), and DSAE (E). This software
does not show the name of the methods, but instead it indicates them as A∼E
to label the driving color maps.

In this subjective evaluation, we provided participants with the
modified version of Deep Car Watcher (Fig. 4).

We considered that each participant had a different way of
distinction of driving behaviors. For example, some people
may consider that accelerating from a standstill and accel-
erating from a constant speed cruise are different driving
behaviors, whereas others consider them as the same. The
experiment consisted of two parts. First, we asked the par-
ticipants to identify driving behavior patterns that they could
recognized by observing driving videos. The driving behaviors
recognized by the participants were used in the next part
of the evaluation task. Second, we focused on the quality
of the visualization methods, and determined if each method
help participants to distinguish the driving behavior patterns.
We asked the participants to compare driving behavior patterns
and colors on the driving color maps and to compare the
five driving color maps. We asked them to rank the driving
color maps according to the criterion of “the same color
represents the same driving behavior”. It took about one hour
for each participant to complete the questionnaire. Half of the
time was spent searching for driving behaviors in the driving
videos. All of the participants identified the simple driving
behaviors, but only eight participants could identify the simple
and complex driving behaviors considered in the previous
experiments (see Table III). A Few participants found specific
driving behaviors such as “coasting deceleration after turning
right.” This suggested that different people have different
understanding about distinctive driving behavior.

The results of the ranking are shown as histograms in Fig. 5.
The vertical axis represents the order, and the horizontal axis
represents the number of participants who selected a specific
order. Figure 5 shows that the counts for the driving color map
produced using DSAE ranked first compared with the others.
The thick solid line in the histogram indicates the median
value of the rankings. The driving color maps obtained using
the SAE and DSAE had the highest median values.

We compared the ranking results by using statistical tests.
Given that the ranking results followed an ordinal scale, we
employed the Wilcoxon rank-sum test [30], which is a non-
parametric statistical test. We set the null hypothesis H0
of Wilcoxon rank-sum test as participants gave the same
ranking to the driving color maps produced using two different
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Fig. 5. Rankings for the driving color maps obtained using PCA, FastICA,
KPCA, SAE, and DSAE given by nineteen subjects. The thick solid line
shows the median value of the rankings.

Fig. 6. Rankings for the driving color maps obtained using PCA, FastICA,
KPCA, SAE, and DSAE given by eleven subjects who only identified
the simple driving behaviors in driving videos. There were no significant
differences among all the methods according to the Wilcoxon rank-sum test.
The thick solid line shows the median value of the rankings.

methods. The confidence level was set to 95% in this test.
Figure 5 shows that the p-value was less than 0.05 according
to the ranking results for the driving color maps obtained using
DSAE and PCA while the p-value was less than 0.001 for the
comparison between DSAE and KPCA. Thus, we rejected H0
for the driving color maps according to the comparisons of
DSAE and PCA, and DSAE and KPCA, which showed that
participants gave significantly different rankings. However, we
were unable to reject H0 based on the comparisons of the other
pairs of methods.

We found that eight participants recognized some complex
driving behaviors, which showed that more than half of the
participants evaluated the visual results based only on the
simple driving behaviors, so these participants gave negative
evaluations for the visualized complex driving behaviors.
To address this issue, we divided the participant ranking results
into two groups: the ranking results given by the eleven
participants who only recognized simple driving behaviors
and those given by the eight participants who recognized
both simple and complex driving behaviors. Figure 6 shows
the experimental results for the eleven participants who only
recognized simple driving behaviors. There were no significant
differences among the results according to the Wilcoxon rank-
sum test. Next, Fig. 7 shows the experimental results for the
eight participants who recognized both the simple and complex
driving behaviors. They demonstrate that the driving color
maps obtained using SAE had the highest median ranking
value, followed by DSAE. It should be noted that the driving
color maps obtained using DSAE were always ranked in the
first and second places according to the results. We also

Fig. 7. Rankings for the driving color maps obtained using PCA, FastICA,
KPCA, SAE, and DSAE given by eight subjects who identified the simple
and complex driving behaviors in driving videos. The thick solid line shows
the median value of the rankings.

used the Wilcoxon rank-sum test to verify these results. The
p-values for the comparisons of the rankings for the driving
color maps obtained using DSAE and PCA, and DSAE and
KPCA were less than 0.001. In addition, the p-values for
the comparisons of the rankings for the driving color maps
obtained using DSAE and ICA, SAE and PCA, and SAE and
KPCA were less than 0.05. Thus, pairs of driving color maps
received significantly different rankings from the participants.
We can reject H0 for the comparisons given above, but not for
DSAE and SAE. In summary, the driving color maps obtained
using SAE and DSAE received higher rankings from the eight
participants who recognized both simple and complex driving
behaviors. It was clearly shown that the driving color maps
using DSAE had a high capacity for the visual representation
of both simple and complex driving behaviors.

Thus, we verified that our proposed method, driving color
maps using DSAE, performed well at representing different
driving behaviors with different colors. It helped participants
to distinguish driving behaviors from visualization results.

V. APPLICATIONS OF DRIVING COLOR MAPS USING

DSAE

After verifying the effectiveness of visualization of driving
color maps using DSAE, we focused on the practical applica-
tions of the proposed method.

A. Detection of Interesting Patterns in Driving Behaviors

To determine interesting patterns in driving behaviors, we
compared the driving color maps obtained using DSAE based
on multiple circuits of the same course. One of the interesting
patterns was “pedestrian on a pedestrian crossing in front of
the experimental vehicle,” as shown in Fig. 8. In this figure, the
red circles denote the pattern with pedestrians on a pedestrian
crossing or with a car in front. In contrast, the blue boxes
denote the pattern without pedestrians on the crossing. When
a pedestrian was on the pedestrian crossing, a dark gray-blue
color appeared suddenly on the driving color map. By contrast,
the color changed in a smooth manner without a pedestrian.
In the driving video of circuit 1, another car was in front of
our experimental vehicle and people were on the pedestrian
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Fig. 8. Samples of visualization results: the top two parts of the figure show
that a pedestrian was on a pedestrian crossing or a car was in front, and the
lower part of the figure shows situations where there are no pedestrians on
the crossing. These results show the visualization results were clearly affected
by the difference of driving behaviors caused by different situations.

crossing in front of the car. This suggests that the driving color
map helps users to notice actual changes in driving behaviors
on the circuit. This will enable users to identify interesting
and precarious driving behaviors easily, particularly when they
monitor driving behaviors and investigate traffic accidents.

B. Visualization of Driving Behaviors on a Public Road

The driving behavior data obtained on the course inside
the company’s factory were used in the experiments described
above. To verify if our proposed visualization method is suit-
able under driving conditions on a public road, and to verify
its generalization performance, we asked another participant to
drive the experimental vehicle around Hidaka Park in Nagoya,
Japan. We obtained driving behavior data for 2064 steps,
which included the nine types of sensor information that we
used previously. We input the new data into our method, which
was trained using the data described in previous subsections.
The driving color map obtained for public road around Hidaka
Park is shown in Fig. 9.

We used Deep Car Watcher to identify driving behaviors in
the driving videos and to assign their corresponding colors. We
compared the corresponding colors generated from the data for
the factory road and the data for the public road, and these
colors are shown in Table IV. There was slight difference for
turning left with constant speed between the colors in the two
data sets, but the rest were similar. This difference occurred
because most of the corners on the factory road were right

Fig. 9. Visualization result of the driving behavior on the public road around
Hidaka Park by using the trained DSAE.

TABLE IV

REPRESENTATIVE COLORS OF DRIVING BEHAVIORS OBTAINED FOR THE
FACTORY ROAD AND THE PUBLIC ROAD

angles, whereas some of the corners on the public road did
not require a great turn of the steering wheel. We found that
the maximum steering angle was 620 [deg] and the minimum
steering angle was −624 [deg] for the factory data after
examining the raw data. For the public road data, the maximum
steering angle was 486 [deg] and the minimum steering angle
was −297 [deg]. This explains why the colors generated from
the factory data and public road data were slightly different.
In general, it was suggested that our proposed visualization
method is effective for a public road, and its performance
was highly robust and applicable to data obtained in a new
environment.

VI. CONCLUSION

In this study, we proposed a visualization method for driving
behaviors called the driving color map based on the hidden
features extracted using DSAE which is type of unsupervised
deep learning methods. We employed DSAE to extract the
three-dimensional hidden features from driving behavior data.
The method obtained the corresponding colors by projecting
the extracted three-dimensional hidden features to the RGB
color space. Diving color map was obtained by placing these
colors in the corresponding positions on the map.

Based on numerical evaluations and subjective experiments,
we demonstrated that the proposed visualization method,
driving color map using DSAE, allows people to distin-
guish different driving behaviors more easily than the other
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comparative methods. Finally, we presented some examples of
the practical application of the proposed method and verified
its suitability for use on public roads.

Future challenges are as follows. The DSAE is an unsuper-
vised feature extraction model. Therefore, there are rotational
degrees of freedom between the feature spaces. This suggests
that the visualization result can yield different visualization
results on rotation in the color space even if it uses the
same data. To clarify how to deal with the arbitrariness, i.e.,
the degree of freedom, appropriately is one of our future
challenges. To develop practical support systems using the
proposed visualization method is also our future challenge.
In this paper, we did not evaluate our method from the
viewpoint of a self-coaching system though one of the pur-
poses of the visualization is to help users to review their
driving behavior and improve them. Takeda et al. [18] devel-
oped a self-coaching system using driving behavior data and
a GMM-based driver behavior models. They showed their
system’s potential benefit through an experiment. Developing a
self-coaching system using our proposed method and showing
its benefit are also our future challenge.

Exploring the possible application of DSAE-based feature
extraction for intelligent vehicle is another future challenge.
We suggest that our proposed method can be used to provide
information about previous driving behavior. For example, a
teacher at a driving school could share a driving color map
with a student after they have completed a driving lesson. If the
teacher finds some colors that correspond to dangerous driving
behaviors, they could give the student suitable guidance while
showing it. As Another example, when an accident investigator
need to search for clues in a large amount of raw data, he could
use the driving color map to quickly and easily understand
the driving behaviors to determine the cause of the accident.
Our method does not tell whether driving behaviors are safe
or dangerous, but it can still help users to look through and
investigate driving behaviors.

In this paper, it is shown that DSAE has an excellent capa-
bility to extract hidden features from driving behavior data.
Making use of the DSAE-based feature extraction method for
various purposes is also our future challenge. We expect that
the extracted hidden features can be used in various ways
effectively, such as driving behavior segmentation, inference of
driving intention, and to learn driving strategies from drivers.
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