
1782 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 7, JULY 2017

Fine-Grained Vehicle Model Recognition Using
A Coarse-to-Fine Convolutional Neural

Network Architecture
Jie Fang, Student Member, IEEE, Yu Zhou, Member, IEEE, Yao Yu, Member, IEEE, and Sidan Du, Member, IEEE

Abstract— Fine-grained vehicle model recognition is a
challenging problem in intelligent transportation systems due to
the subtle intra-category appearance variation. In this paper,
we demonstrate that this problem can be addressed by locating
discriminative parts, where the most significant appearance
variation appears, based on the large-scale training set. We also
propose a corresponding coarse-to-fine method to achieve this,
in which these discriminative regions are detected automatically
based on feature maps extracted by convolutional neural net-
work. A mapping from feature maps to the input image is
established to locate the regions, and these regions are repeatedly
refined until there are no more qualified ones. The global and
local features are then extracted from the whole vehicle images
and the detected regions, respectively. Based upon the holistic
cues and the subordinate-level variation within these global
and local features, an one-versus-all support vector machine
classifier is applied for classification. The experimental results
show that our framework outperforms most of the state-of-the-art
approaches, achieving 98.29% accuracy over 281 vehicle makes
and models.

Index Terms— Fine-grained vehicle recognition, convolutional
neural network, one-versus-all SVM.

I. INTRODUCTION

BEYOND identifying general category, fine-grained vehi-
cle model recognition, i.e., identifying manufacture and

detailed model of a vehicle, plays a more versatile role in
ITS. For example, vehicle model attributes can be used as key
words to search target vehicle in traffic surveillance images,
even when the number plate of the vehicle is faked. Electronic
toll collection can also charge vehicles automatically through
recognizing their different models. Vehicle models can be used
to analyse and study traffic flow in order to make strategies
of traffic control. Despite the importance of fine-grained
vehicle model recognition, most traditional vehicle recognition
systems focus only on Vehicle Make Recognition(VMR) and
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recognizing general categories such as sedan, minivan, SUV,
truck and so on. Numerous methods have been proposed
in such fields, these approaches primarily take advantage of
3D Model [1]–[3] and low-level features [4]–[9], such as SIFT,
HOG and SPM to identify the vehicle makes or categories.

Different than these traditional topics, vision-based fine-
grained vehicle model recognition is a tough task due to
subtle appearance variation among subordinate-level vehicle
categories, with which the fine-grained model cannot be easily
recognized even by a human without domain knowledge. Thus,
fine-grained vehicle model recognition needs more powerful
and discriminative features to classify intra-class objects. This
imposes a great challenge in this domain, leading to few
works of fine-grained vehicle model recognition in ITS. Prokaj
and Medioni [10] took a model-based, top-down approach
to classify vehicles, which utilizes 3-D models to match the
features in the model images. Ramnath et al. [11] presented
a new approach for recognizing the vehicel types from a
single image using 3D curve alignment, which makes their
system can be able to verify a type from an arbitrary view.
Zhan et al. [12] extracted Harr-like features from the training
samples to build global appearance model for fine-grained
feature representation, and then train the data by a multi-class
SVMs classifier to distinguish the intra-class variation of cars.
In Zhang’s work [13], a highly reliable classification scheme
was proposed as a cascade ensemble classifier with reject
option to accommodate the situations, when no decision should
be made once there exists adequate ambiguity. Clady et al. [14]
presented a framework for multiclass vehicle type identifica-
tion based on oriented contour points. In this framework, three
voting algorithms and a distance error allowed to measure the
similarity between an input instance and the databases classes,
which can be combined to design a discriminant function.
In some of these approaches, the experimental databases
consist of only a few subordinate-level categories resulting in a
tight limitation of application. Moreover, most of these works
heavily rely on hand-crafted low-level features which might
not be saliently distinctive among different subordinate-level
categories that have extremely similar appearance.

Recently, some researchers realize the fact that features
extracted from a few important parts may infer more dis-
criminative information than the ones from the whole vehicle
image. Lee [15] proposed an approach which exploits tex-
ture descriptors computed from the front images of vehicles.
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Psyllos et al. [16] used a probabilistic Neural Network for
recognition using vehicle frontal view images. He et al. [17]
proposed a recognition framework of vehicle manufactures and
models, where front parts are detected to extract features for
recognition. Llorca et al. [18] provided a novel approach by
learning the geometry and the appearance of car emblems
from rear view images. Siddiqui et al. [19] proposed an
approach based on the Bag-of-Features paradigm for repre-
senting vehicles’ front/rear parts. Yang et al. [20] applied
CNN to different viewpoints of each vehicle respectively
for fine-grained vehicle model recognition. Despite of their
outperforming results in their experiments, most of these
methods highlight the important parts of vehicle by utilizing
human’s empirical sense, therefore, it may fail in generalizing
to others beyond the experimental databases. Moreover, from
the results of our research, recognition may benefits more from
some well-located detail parts than the front or rear parts,
which however are not well studied by all the aforementioned
researches.

Inspired by this finding, in this paper, we propose a coarse-
to-fine CNN for fine-grained vehicle model recognition, in
which the most discriminant parts are automatically detected
via feature maps generated by CNN. Other than the manual
design, our method can learn which parts of image are
important for identifying subordinate-level model variation.
Besides, in contrast to hand-crafted features used in previous
methods, CNN is able to learn hierarchical features from
large-scale dataset using its multi-layer feed-forward struc-
ture. Our feature learning process is coarse-to-fine, detecting
more and more subtle parts, and extracting features from
both the global and local regions respectively. Eventually, the
global features can imply holistic cues, while the local fea-
tures can describe subordinate-level variation. Based upon the
learned features, an one-versus-all SVM classifier is applied
for classification. The experimental results show that our
framework outperform most of the state-of-the-art approaches,
achieving 98.29% accuracy over 281 vehicle makes and
models. The contribution of our work are summarized as
follows:

• We propose a coarse-to-fine CNN framework for fine-
grained vehicle model recognition, which can hierar-
chically extract the discriminative features of both the
global and local regions and achieve the state-of-the-art
results.

• We propose a novel method for detecting the most dis-
criminative parts, which makes our system more flexible
and generic so that can also be used in other similar
recognition tasks to improve system performance and
reduce the cost of feature design.

The rest of this paper is organised as follows. In Section II,
we detail the architecture of our coarse-to-fine CNN.
The experimental results and analysis are demonstrated in
Section III. And finally, we conclude our work in Section IV.

II. FRAMEWORK OF PROPOSED METHOD

The framework of our fine-grained vehicle model recog-
nition is illustrated in Fig. 1. It’s a coarse-to-fine system
where part sets P1, P2, . . . , Pn are detected automatically by

parts detection, which is our critical contribution and repre-
sented more concretely in Fig. 2. Part detection is achieved
by CNN training and parts locating. In our experiments, we
propose a CNN similar to the architecture in [21], which
contains five convolution layers, three pooling layers, three
local response normalization layers and three fully connected
layers. The CNN is illustrated in Fig. 2. After training the
network, an average feature map Fi of the entire input set
is generated. This feature map is used to detect Regions
of Interest(RoI) and these RoI are acquired by our parts
locating. The results of the detecting procedure are further
regarded as the input set to obtain more subtle regions, and
such procedure will keep running until there are no more
regions to obtain. These critical parts can be learned auto-
matically with no any human’s consciousness required. This
advantage makes our system more intelligent and applicable
for other fine-grained recognition tasks. Then, both the global
and local features are combined to train an one-versus-all
linear SVM.

A. Convolutional Neural Network

CNN is an end-to-end system, in which the input is
a raw image, while the output is a prediction through
the distinctive features extracted via intermediate layers.
Compared with many traditional methods depend on hand-
engineered features or separately trained by machine learning
algorithms, CNN exhibits its powerful ability of extract-
ing features automatically and optimizing the whole system
conveniently.

1) Convolution Layers: Convolution layers are used to con-
volve previous layer’s feature maps with multiple filter masks
to extract features and feed the activation function to generate
the output feature maps, which are also the input of the next
layer. There are two important concepts, local connectivity and
parameter sharing. Local connectivity means each filter will
convolve only a local region of the input volume in order to
decrease the number of the weight parameters. It is inspired by
biological systems. The spatial extent of local connectivity is
a hyperparameter called the receptive field. Parameter sharing
means weights connecting neurons to receptive fields are the
same, namely, using the same filter to convolve the entire
feature map. One reasonable assumption is that if one feature
patch is useful for a region of an image, it will have the
same impact on another region. So parameter sharing not
only dramatically reduces the number of parameters but also
leads to translation invariance which capture statistics in local
patches, e.g., similar edges may appear at different locations.
We denote xl

i as the i th input feature map of l layer, kl
i j as

the kernel connecting j th feature map of the output layer to
i th feature map of the input layer and bl

j as an additive bias.
Hence we have that

xl
j = f

(∑
i

xl−1
i ∗ kl

i j + bl
j

)
(1)

where f is an activation function which is usually a rectified
linear function.
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Fig. 1. The framework of our fine-grained vehicle model recognition. In general, there are three procedures, A, B and C. Procedure A is to train a CNN.
Procedure B is to locate part regions utilizing feature maps generated by trained CNN. Procedure C is to train a SVM classifier. Our parts detection is
surrounded by dash line where the global image set G is fed into a CNN and generate an average feature map F1, then using our locating scheme to obtain
level 1 part set P1. The parts detection is showed more concretely in Fig. 2, and is also applied on set P1 to obtain more subtle part set P2. The detecting
will keep running until there are no part regions to obtain. Finally, we combine the features of global and local regions to classify models using SVM.

Fig. 2. The architecture of our parts detection. It primarily consists of training a CNN and locating part regions. The solid and dash line represents the A and B
procedure described in Fig. 1 respectively. Both the procedures are established on a CNN. The network contains five convolution layers, three pooling layers,
three local response normalization layers and three fully connected layers. The number in front of @ is the number of feature maps which is the output of
corresponding layer. Since the input is an RGB image, it has three feature maps. The number behind @ is the size of feature maps. In the fully connected
layers, the number represents the length of the feature vector, and the final layer is a softmax layer whose output number indicates the amount of fine-grained
categories(e.g., 281 in our experiments). The feature maps of conv5 will be used in B procedure to locate regions of interest.

2) Pooling Layers: Pooling layers spatially combine con-
volution layers’ outputs, which is related to classical spatial
pyramid matching [22]. Its function is to dramatically reduce

the spatial size of the feature maps as well as the amount of
the parameters leading to efficiently computation in the net-
work, and therefore also control overfitting. Besides reducing
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computation in the network, max pooling, a most useful
pooling method in CNN also provides a form of translation
invariance. Formally denoted as:

xl
j = down

(
xl−1

j

)
(2)

where down (·) is a kind of sub-sampling function.
3) Local Response Normalization Layers: Local response

normalization layers give better generalization. Denoting by ai

the single value of i th feature map, the response-normalized
activity bi is given by the expression

bi = ai(
k + α

∑min(N−1,i+n/2)
j=max(0,1−n/2) a2

j

)β
(3)

The constants k, n, α, and β are hyperparameters, and we use
k = 2, n = 5, α = 10−4, and β = 0.75 in our experiments.

4) Fully Connected Layers: Several fully connected layers
at the end act as nested linear classifiers. The classifier most
used in the final layer is softmax. The input of the softmax
classifier is the feature vector with fixed dimensions, which is
the output of the previous layers, and the output of softmax
are the probabilities of the categories, in which the highest
one is corresponding to the predicted category. For a binary
classification using logistic regression, the hypothesis is

P (y = 1|x; w) = 1

1 + exp
(−wT x

) (4)

where y is label, x ∈ R(D+1)×1 represents the D dimensional
feature vector, w ∈ R(D+1)×1 represents the weight vector.
Considering a classification problem where the response vari-
able y can take on any one of N values, we can generalize
the binary classification, thus

P (y = c|x; W) = exp
(
wT

i x
)

∑N
i=1 exp

(
wT

i x
) (5)

where W = [w1, w2, . . . , wN ] ∈ R(D+1)×N , each w represents
the corresponding category weight parameters.

B. Locate Part Regions

One of our innovations is that we can automatically locate
the important regions which contribute more for recognition,
i.e., more discriminative among these regions. Because the last
convolution layer extracts more discriminative and semantic
features, we use feature maps of the last convolution layer to
locate interesting parts, and this procedure is marked with dash
line in Fig. 2. There are 256 feature maps with 13 × 13 size
and we simply calculate the average value of these maps to
achieve a new feature map, i.e., each pixel value in this new
feature map is the mean of the corresponding pixel in the 256
feature maps. As demonstrated in Fig. 3, we use this process
to all training images to obtain the average feature map of
the entire training set and this procedure can be formalized as
below:

F =
∑#training

i=1
1

256

∑256
j=1 f j

i

#training
(6)

Fig. 3. The process of generating average feature map of the entire training
data. f j

i is the j th feature map of the fifth convolution layer of the i th image.
fi is the average fifth convolution layer’s feature map. F is the average feature
map of the entire training data. The heatmap is generated from F .

where f j
i represents the j th feature map of the fifth convo-

lution layer of the i th image. #training is the amount of the
training set.

A heatmap of such an average map is generated to indi-
cate which regions contribute more to the final prediction,
i.e., the regions with brighter color are considered to be more
discriminative for recognition among similar categories. The
principle for selecting these regions is to choose the tight
rectangular blocks which are obviously isolated and surround
regions with brighter color. Of course these rectangular blocks
are fairly smaller than the whole heatmap, otherwise we are
not necessary to obtain the finer parts and can absolutely use
the entire heatmap. If we get such a heatmap that has no other
regions to obtain using our principle, we will not search for the
finer parts. We use these extracted regions from the heatmap to
obtain the corresponding areas of the input image. For the sake
of this purpose, a mapping between the point in the heatmap
and the input image should be established, which is obtained
by the following formulations for the convolution and pooling
layers:

pi = si · pi+1 +
(

ki − 1

2
− mi

)
(7)

and for other layers:
pi = pi+1 (8)

where pi is the point in an input map of the i th layer, pi+1
is the point in an input map of the i + 1th layer, and this map
is also the output map of the i th layer, si is the stride step,
ki is the kernel size, mi is the padding length. Besides the
convolution and pooling layer, the input map and output map
have the same size, and the mapping scheme can be described
by Eq. 8. The detail of the Eq. 7 is visualized in Fig. 4. In this
example, mi is 1, si is 2 which represents the convolution
kernel slides two pixels between every calculation and the
kernel size is 3×3. We regard the center of the area which is
convolved by a convolution kernel as the mapping point of the
convolutional result. Thus, the point pi+1 of the i + 1th layer
has its corresponding point pi of the i th layer, the mapping
point of the point p′

i+1 is p′
i . And this mapping relation can

be described by the Eq. 7.
To obtain the region in the input image, we can map the top-

left corner and the bottom-right corner of the hot region in the
heatmap. As illustrated in Fig. 4, our mapping scheme maps a
point to the center of a field whose size is the kernel size, and
our mapping is from the fifth convolution layer to the input
image, if we only use every center point layer by layer, it will
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Fig. 4. The illustration of the mapping scheme.

Fig. 5. The illustration of the overall mapping procedure.

result in a very tight region in the input image and lose most
of other important information in the peripheral region. If we
extend this part larger, of course we get a larger region which
contains adequate information, but needs more iterations to
obtain the final finest parts of the image. To solve this problem,
we extend two points mapped into the input image K pixels
where K is about a half of the summation of each kernel size
and is set to 15 in our experiments, in other words, if the
point (x1, y1) and the point (x2, y2) are the mapping points of
the top-left corner and bottom-right corner, then the extended
points are (x1−15, y1−15) and (x2+15, y2+15). The overall
mapping procedure is illustrated in Fig. 5.

C. Coarse-to-Fine Detection

As illustrated in Fig. 1, the parts detection is composed
of CNN training and parts locating. And the results of

Fig. 6. Sample images of the surveillance-nature data. Images are affected
by large variation from lightings and haze, and some images are little slant.

part detection will be regarded as the new input images, and be
trained by the CNN again. Also we will locate the significant
parts after training, and these parts are more subtle than the
previous located parts. This procedure of detecting finer parts
will keep running until we can’t find the qualified regions
using our selecting principle from a heatmap. We will use the
final finest parts and the whole images to extract features for
recognition.

D. One-Versus-All Linear SVM

We make use of an one-versus-all linear SVM to identify the
fine-grained classes with the features extracted from the sec-
ond fully connected layer. Given the training data {xi , yi }n

i=1,
a SVM classifier is learned by minimizing the loss function

min
w,b,ξ

1

2
wT w + C

n∑
i=1

ξi

subject to yi

(
wT φ (xi) + b

)
≥ 1 − ξi ,

ξi ≥ 0. (9)

where xi ∈ Rm and yi ∈ {1,−1}. The hyperparameter C > 0
controls the penalty of the error terms. xi are mapped into a
higher dimensional space by function φ, in which SVM finds
a linear separating hyperplane with the maximal margin.

In our approach, we use the one-versus-all linear SVM, so
in the training stage, N SVM models are trained to classify N
fine-grained vehicle categories. In each of the SVM models,
the ground truth label is positive when it is the corresponding
category, other category labels are denoted as negative. In the
test stage, each SVM model takes on each test example
respectively, calculate the output probability of each category.
We regard the model which has the highest probability as the
corresponding category.
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Fig. 7. Training curve of whole vehicle images and head part of vehicle images. The blue solid line represents the training loss, and the green dash-dotted
line represents the validation loss. After 20 epochs, the green line lies above of the blue line which demonstrates our model is effective according to machine
learning theory. The red dashed line represents the accuracy. The accuracy exceeds 90% at the first evaluation due to pre-trained model.

III. EXPERIMENT

The training stage of the CNN is known to be very time-
consuming due to the parameters updating, even with the
currently developed GPU technology. In the ITS domain,
Huang et al. [23] used a PCA-based pretraining strategy to
reduce the computational cost of training procedure in the
vehicle logo recognition task. But each layer was pretrained
with an unsupervised learning algorithm, which is not conve-
nient and discriminative enough for fine-grained vehicle model
recognition. Thus in our experiments, to speed up the training
procedure, we use a pre-trained Caffe [20] model trained on
a large auxiliary dataset (ILSVRC2012 classification) using
image-level annotations only, then fine-tune the pre-trained
model using our fine-grained vehicle model dataset to adapt
to our specific task and domain, i.e., we initial our CNN
weight parameters with the parameters of the pre-trained CNN
model, then train the CNN to update the parameters using
our own dataset. There have been a lot of works [24]–[26]
using this pre-training strategy in the computer vision tasks.
And there also have been literatures which try to research
the theory behind this strategy, like [27]–[29]. As a result of
using a pre-trained Caffe model, training a CNN only needs
about 40 minutes in our experimental environment with a
GeForce GTX TITAN X GPU and an Intel(R) Core(TM)
i7-4790K CPU.

A. Dataset Description

We use the surveillance-nature data captured in the front
view in the CompCars dataset [20] to train our CNN. Fig. 6
shows some examples of such surveillance images, which are
affected by large variation from lighting and haze. The varying
conditions, such as lighting, weather and so forth, make our
fine-grained recognition more challenge but meaningful in
realistic applications. On the other hand, some images, e.g., the
final image in the middle row that is not exactly a frontal view
but a little slanted, indicate our CNN is effective to some extent

in a rotation situation. We use a total of 44481 images and
split them into a training set and a test set without overlaps.
The training set contains 281 vehicle models with a total of
31148 images and the test set also contains the same
281 vehicle models with 13333 images. In order to compute
features by CNN, we first convert the images to a fixed
256×256 pixel size, as well as the detected contributive parts
located by the feature map.

B. Training CNN

We extract deep convolutional features using an ImageNet
pre-trained CNN model. In order to adapt to our specific
domain and generate more discriminative features, we fine-
tune the pre-trained CNN model. More specifically, we use a
281-way fc3 layer(the last fully connected layer), instead of
a 1000-way fc3 classification layer, with randomly initialized
weights drawn from a Gaussian with μ = 0 and σ = 0.01.
We initialize the global learning rate to a tenth of the original
learning rate used by pre-trained model and drop it by a
factor 10 after half training epochs, and initialize learning rate
in the new fc3 layer by 10 times the global learning rate.
In each Stochastic Gradient Descent(SGD) iteration, we use
100 images to construct a mini-batch. For each 5 iterations, we
use the test set to calculate the accuracy. In the experiments,
we eventually train 50 passes through the training data. We use
the same training scheme on other parts of images. In fact, as
shown in Fig. 7, training loss converges after 10 epochs, and
because of the discriminative property of pre-trained CNN, the
accuracy exceeds 90% at the first evaluation. This accuracy is
calculated by the total number of correct predictions divided
by the amount of test data:

accuracy1 = #correct predictions

#test data
(10)

In addition, to demonstrate the effectiveness of our fine-tuned
CNN, we also list the accuracy acquired by only using pre-
trained model without fine-tuning in TABLE II.
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Fig. 8. Two example heatmaps of feature maps extracted from the whole and the head part of vehicle images, and its corresponding parts obtained via our
locating scheme. Subfigure (a) is the heatmap of the whole vehicle images, the red rectangular region is selected using our selecting principle. These selected
regions generate the corresponding parts depicted in the subfigure (c). The heatmap in the subfigure (b) is obtained using the parts in the subfigure (c) and
its corresponding parts are illustrated in the subfigure (d). We rotate the left headlights 90 degree in order to make this figure tight.

C. Locating

Fig. 8 shows some example heatmaps of the fifth con-
volution layer on the different kinds of input images.
Points (7, 1) and (11, 11) are selected from the heatmap
of the whole vehicle image using our selecting principle in
Fig. 8(a), and their corresponding parts are derived with the
mapping scheme, shown in Fig. 8(c). Then we use these parts,
all of which in the example are the head parts, to obtain
another heatmap, as shown in Fig. 8(b). Based on the selecting
principle, there are three hot regions in the heatmap, which are
framed by red rectangles. We select points (0, 0) and (12, 1)
for the left hot region, points (3, 3) and (9, 9) for the center
hot region, points (0, 11) and (12, 12) for the right hot region.
These coordinates will be applied on the test set to extract
the corresponding parts. As shown in Fig. 8(d), center hot
region is mapped into the center of head part of the vehicle,
which is around vehicle logo. We also locate left and right
headlights according to the left and right hot region. All these
parts are detected automatically, and accordant with empirical
method for recognizing fine-grained vehicle models. In our
experiments, no other finer parts are utilized because there
are no more other hot regions obtained from the heatmaps
generated by parts in Fig. 8(d), i.e., our coarse-to-fine detection
procedure finds the final finest parts in our situation.

D. Training SVM

After we get trained CNN models on the whole and finest
parts of vehicle images, we use them to extract features
of the second fully connected layer respectively. Depicted
in Fig. 2, the output of the second fully connected layer
is a 4096 dimensional feature vector, so we get such vec-
tors from the whole and parts for each image, then con-
catenate them to a fixed dimensional feature vector. These
fixed length feature vectors are utilized as the input to
train the SVM model. The popular library for SVM, i.e.,
LIBLINEAR(https://www.csie.ntu.edu.tw/~cjlin/liblinear/) is
used in our experiments. We set type of solver is 1 in
LIBLINEAR. In order to get the best hyperparameter C
in Eq. 9, we search a list of values of C using 5-fold
cross-validation to prevent the overfitting problem. The cross-
validation results of different C value are illustrated on
TABLE I. Thus we set C to 0.6, the value with the highest
accuracy, to train SVM using the entire training data.

E. Evaluation
For our experiments, we don’t use accuracy1 in Eq. 10

to evaluate our model’s performance. The reason is that
our surveillance-nature data in each category are not
distributed uniformly. The TABLE V shows the amounts of
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TABLE I

SELECT C USING 5-FOLD CROSS-VALIDATION

TABLE II

ACCURACY OF OUR EXPERIMENTS

some categories in the training set and test set. The amount of
the first category is the smallest and the last category contains
the biggest. It is obvious that we should change another metric
to evaluate our experiments. Because the accuracy1 will be
high enough as long as the total number of correct predictions
is large, it will ignore the bad performance of some categories
which have smaller number of correct predictions. Our dataset
contains 281 models with large variation on the amount of each
category, thus we must concentrate on the performance of each
category, not on the performance of the entire dataset. For this
purpose, we simply use an average accuracy to evaluate the
performance:

accuracy2 =
∑N

i
ti
ni

N
(11)

where N represents the number of categories, ti represents
the number of correct predictions on i th category and the ni

is the amount of the i th category. This metric can be regarded
as the mean of the each category’s accuracy calculated by
the Eq. 10.

F. Results and Analysis

1) Results: We illustrate the experimental results of our
approach and compare them with other fine-grained vehicle
model recognition experiments. TABLE II shows the accuracy
calculated by our formulation in which ft represents fine-tuned,
i.e., the trained model utilized the pre-trained CNN model.
We achieve 90.78% with fine-tuned CNN model for the whole
vehicle images. It’s much lower than the accuracy which is
represented in Fig. 7. This indicates our evaluation method
is reasonable to assess results on nonuniform dataset. The
second row shows much higher accuracy only using head parts
of vehicles as the training data. This result demonstrates our
coarse-to-fine detection procedure locates more discriminative
parts for recognition. The accuracy in the third row indicates
that combining the global features and features of head parts
achieves better performance. Then we detect more subtle
regions and test these regions independently, the results are
illustrated in the forth to sixth row respectively. And finally,

TABLE III

REPORTED RESULTS OF SOME STATE-OF-THE-ART METHODS

our proposed method, which utilizes both the global and
most subtle local features for recognition, achieves the best
accuracy which reaches 98.29% as shown in the last row. This
result is so remarkable that makes our method is able to be
applied on the similar realistic tasks of ITS involving fined-
grained vehicle model recognition. We also replace the fine-
tuned CNN with pre-trained CNN to compare the performance
between them, i.e., we use the pre-trained CNN to extract
the features of the second fully connected layer. The result
in the seventh row shows fine-tuned CNN can improve the
performance in a specific task. Because the similar literatures
of fine-grained vehicle model recognition used different evalu-
ation method and fewer vehicle models, it is almost impossible
to make an exactly fair comparison. Nevertheless, listing other
works’ results can give different views to analyze our work.
Other relevant works are illustrated in TABLE III. These
works’ accuracies was calculated by Eq. 10, and we also
list the accuracies of some literatures measured by Eq. 11
according to the data illustrated in these literatures. And as
for other works, we can’t find data in the paper to apply
the Eq. 11, and marked with / symbol. Psyllos et al. [16]
achieved 85% accuracy on the 11 models using a probabilistic
neural network as a classifier, and got 88.59% accuracy
assessed by Eq. 11. Petrovic and Cootes [30] achieved 93%
accuracy on the 77 models using only frontal views of vehicles
by locating, extracting and recognizing normalized structure
samples taken from a reference image patch on the front
of the vehicle. Clady et al. [14] used oriented-contour point
based voting algorithm reports a maximum performance of
93.1% on the 50 vehicle classes by using fusion of different
classifiers. Lee [15] employed a neural network trained with
texture descriptors derived from the front view images to
classify 24 types of Korean vehicles and obtains 94% recog-
nition rate. He et al. [17] obtained 92.47% accuracy on the
30 models using an ensemble of neural network classifiers.
Llorca et al. [18] achieved 94% accuracy on the 52 models
but got 92.21% accuracy calculated by our evaluation method.
Zhang [13] achieved 98.65% accuracy using his two-stage
classification scheme, but only on the 21 models, and changed
a little using Eq. 11, achieved 98.69%. Hsieh et al. [31]
achieved 99.07% accuracy but decreased to 97.96% assessed
by Eq. 11. Compared with these works, our method achieves
a state-of-the-art accuracy on the 281 models, which exhibits
promising potential for real-world application. As illustrated in
TABLE III, [13] and [31] obtained the results as competitive as
ours, for a fair comparison, we also implement their methods
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TABLE IV

COMPARISONS OF OUR METHOD WITH OTHER STATE-OF-THE-ART
METHODS ON THE COMPCARS DATASET

Fig. 9. Sample images of prediction results. Its ground truth, prediction and
decision value calculated by SVM classifier are listed below.

on the CompCars [20]. The results are illustrated in TABLE IV,
we achieved 83.78% accuracy using the method of [13] and
51.70% accuracy using [31]’s method. Except for the lower
accuracy, both the methods have some limitations in the
training stage when the dataset is large-scale. The method [13]
needs several days to extract features of the entire dataset,
and both of them cost much time on selecting parameters of
classifiers in the training stage. These results demonstrate our
proposed method is more efficient, accurate and convenient on
the large-scale dataset which contains hundreds of models like
CompCars [20].

2) Results Visualization: We illustrate some typical predic-
tion examples in Fig. 9, in which the examples in the first row
are predicted correctly and the examples in the second row
are wrong predictions. To further investigate the experimental
results, we collect our all wrong predictions and make a
statistic. 87% wrong predictions are predicted to be another
category with the same make like the middle image in the
second row of Fig. 9, and about 7% wrong predicted images
are in extremely low lighting conditions. However, even in
such a extraordinary lighting condition, our approach can also
make a prediction in the most cases like the first image in the
first row of Fig. 9.

As shown in TABLE III, our method utilizing both the
whole and finest parts of images gets the highest accuracy
than the one that just uses the whole vehicle images or parts
of images. We are also interested in the question that does

Fig. 10. Images in another dataset different from ours to test generalization
of our trained model. These images are taken by different traffic cameras.

our method improve the accuracies of categories which have
low accuracy? In fact, improving the accuracies of categories
that have weak prediction is very useful in realistic application
which makes the system more robust. Thus, we compare the
accuracies of the lowest 10 categories obtained by using the
combined features of whole images and the head parts with the
accuracies for the same categories but for features obtained by
combining the whole vehicle image and three parts. The results
are shown in TABLE VI, Citroen C4, Venucia D50, Crider,
encore, Venucia R50 improve their accuracies, especially
all test images of RIO Class are predicted correctly. These
improvements demonstrate the effectiveness of our method
that can rise the performance of the entire system. We find
the reason for the much lower accuracies of Ruiping and
Volkswagen is that the amount of them is small and about
half of these images are in dark condition, which results in
less information for recognition.

3) Generalization: We also apply our trained model on
another dataset, as shown in Fig. 10. These images are
captured in different viewpoints and distances from cameras
compared with CompCars. We test 160 images containing 9
categories. These 9 categories are Audi A7, Benz R Series,
BMW X1, BMW X6, BYD-F6, BYD-S6, Mazda 8, Mazda
CX7 and Volvo XC60. In order to test generalization of
our model, we not only select different vehicle models with
different vehicle makes but also with the same vehicle makes.
The result shows that our approach will be somehow affected
by the difference between the viewpoints of the training
images and the test images, because such a difference will
lead to wrong localization. However, the test accuracy of the
new images still reaches 90%, that indicates our trained model
has good generalization to other dataset and generates the
competitive results. The amount and accuracy of each vehicle
model are illustrated in TABLE VII.
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TABLE V

AMOUNTS OF SOME CATEGORIES IN TRAINING SET AND TEST SET

TABLE VI

IMPROVEMENT ON LOW ACCURACY CATEGORIES USING OUR PROPOSED METHOD

TABLE VII

AMOUNT AND ACCURACY OF EACH VEHICLE MODEL IN OUR SMALL DATASET

IV. CONCLUSION

We propose a coarse-to-fine framework for fine-grained
vehicle model recognition. Our method combines the global
features and significant local features, which improves the per-
formance on recognition for subordinate-level categories that
have extremely similar appearance, and achieves the state-of-
the-art results. The results show that significant regions which
are the most discriminative regions among these fine-grained
categories can improve the accuracy of recognition. And an
automatically detecting procedure can exactly obtain such
regions more effectively than the ones obtained by human’s
extraction. Such automatical procedure can also improve the
generalization of the entire system. In the future work, we
will focus on the training data with different viewpoints. It is
a quite challenge problem, such work can be utilized to solve
more complicated situations.

REFERENCES

[1] S. M. Khan, H. Cheng, D. Matthies, and H. Sawhney,
“3-D model based vehicle classification in aerial imagery,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2010,
pp. 1681–1687.

[2] W. Wu, Z. QiSen, and W. Mingjun, “A method of vehicle classification
using models and neural networks,” in Proc. IEEE VTS 53rd Veh.
Technol. Conf. (VTC Spring), vol. 4. May 2001, pp. 3022–3026.

[3] A. H. S. Lai, G. S. K. Fung, and N. H. C. Yung, “Vehicle type
classification from visual-based dimension estimation,” in Proc. IEEE
Intell. Transp. Syst., Aug. 2001, pp. 201–206.

[4] X. Ma and W. E. L. Grimson, “Edge-based rich representation for vehi-
cle classification,” in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV),
vol. 2. Oct. 2005, pp. 1185–1192.

[5] Y. Peng, Y. Yan, W. Zhu, and J. Zhao, “Vehicle classification using
sparse coding and spatial pyramid matching,” in Proc. IEEE 17th Int.
Conf. Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 259–263.

[6] M. C. Narhe and M. Nagmode, “Vehicle classification using
SIFT,” Int. J. Eng. Res. Technol., vol. 3, no. 6, Jun. 2014,
pp. 1735–1738.

[7] A. P. Psyllos, C.-N. E. Anagnostopoulos, and E. Kayafas, “Vehicle
logo recognition using a SIFT-based enhanced matching scheme,”
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp. 322–328,
Jun. 2010.

[8] D. F. Llorca, R. Arroyo, and M. A. Sotelo, “Vehicle logo recognition in
traffic images using HOG features and SVM,” in Proc. 16th Int. IEEE
Conf. Intell. Transp. Syst. (ITSC), Oct. 2013, pp. 2229–2234.

[9] H. Yang et al., “An efficient method for vehicle model identification
via logo recognition,” in Proc. 5th Int. Conf. Comput. Inf. Sci. (ICCIS),
Jun. 2013, pp. 1080–1083.

[10] J. Prokaj and G. Medioni, “3-D model based vehicle recognition,” in
Proc. Workshop Appl. Comput. Vis. (WACV), Dec. 2009, pp. 1–7.

[11] K. Ramnath, S. N. Sinha, R. Szeliski, and E. Hsiao, “Car make and
model recognition using 3D curve alignment,” in Proc. IEEE Winter
Conf. Appl. Comput. Vis. (WACV), Mar. 2014, pp. 285–292.

[12] J. Zhan, H. Zhang, and X. Luo, “Fine-grained vehicle recognition via
detection-classification-tracking in surveillance video,” in Proc. 5th Int.
Conf. Digit. Home (ICDH), Nov. 2014, pp. 14–19.

[13] B. Zhang, “Reliable classification of vehicle types based on cascade
classifier ensembles,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 1,
pp. 322–332, Mar. 2013.

[14] X. Clady, P. Negri, M. Milgram, and R. Poulenard, “Multi-class vehicle
type recognition system,” in Artificial Neural Networks in Pattern
Recognition. L. Prevost, S. Marinai, and F. Schwenker, Eds. Berlin,
Germany: Springer, 2008, pp. 228–239.

[15] H. J. Lee, “Neural network approach to identify model of vehicles,”
in Advances in Neural Networks. Berlin, Germany: Springer, 2006,
pp. 66–72.

[16] A. Psyllos, C.-N. Anagnostopoulos, and E. Kayafas, “Vehicle model
recognition from frontal view image measurements,” Comput. Standards
Interfaces, vol. 33, no. 2, pp. 142–151, Feb. 2011.

[17] H. He, Z. Shao, and J. Tan, “Recognition of car makes and models from
a single traffic-camera image,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 6, pp. 3182–3192, Dec. 2015.

[18] D. Llorca, D. Colás, I. Daza, I. Parra, and M. A. Sotelo, “Vehicle model
recognition using geometry and appearance of car emblems from rear
view images,” in Proc. IEEE 17th Int. Conf. Intell. Transp. Syst. (ITSC),
Oct. 2014, pp. 3094–3099.

[19] A. J. Siddiqui, A. Mammeri, and A. Boukerche, “Towards effi-
cient vehicle classification in intelligent transportation systems,” in
Proc. 5th ACM Symp. Develop. Anal. Intell. Veh. Netw. Appl., 2015,
pp. 19–25.

[20] L. Yang, P. Luo, C. C. Loy, and X. Tang, “A large-scale car dataset
for fine-grained categorization and verification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3973–3981.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[22] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2.
Jun. 2006, pp. 2169–2178.



1792 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 7, JULY 2017

[23] Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, “Vehicle logo
recognition system based on convolutional neural networks with a
pretraining strategy,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4,
pp. 1951–1960, Aug. 2015.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[25] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[26] F. Liu, G. Lin, and C. Shen, “CRF learning with CNN features for
image segmentation,” Pattern Recognit., vol. 48, no. 10, pp. 2983–2992,
Oct. 2015.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 3320–3328.

[28] J. Donahue et al. (Oct. 2013). “DeCAF: A deep convolutional acti-
vation feature for generic visual recognition.” [Online]. Available:
https://arxiv.org/abs/1310.1531

[29] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: An astounding baseline for recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 512–519.

[30] V. S. Petrovic and T. F. Cootes, “Analysis of features for rigid structure
vehicle type recognition,” in Proc. BMVC, 2004, pp. 1–10.

[31] J.-W. Hsieh, L.-C. Chen, and D.-Y. Chen, “Symmetrical SURF and
its applications to vehicle detection and vehicle make and model
recognition,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 6–20,
Feb. 2014.

Jie Fang (S’15) received the B.E. degree from
the School of Electronic Science and Engineering,
Nanjing University, China, in 2015, where he is cur-
rently working toward the M.E. degree. His research
interests include intelligent transportation systems,
computer vision, and machine learning and its
application.

Yu Zhou (M’10) received the M.E. degree in circuits
and systems and the Ph.D. degree in signal and infor-
mation processing from Nanjing University, China,
in 2005 and 2008, respectively. In 2012 and 2013,
he was a Visiting Scholar with University of
Kentucky, USA. He is currently an Associate
Professor with the School of Electronic Science
and Engineering, Nanjing University. His research
interests include intelligent transportation systems,
computer vision, and machine learning and its
application.

Yao Yu (M’10) received the B.E. and Ph.D. degrees
from Nanjing University, China, in 2005 and 2010,
respectively. He was a Research Assistant with the
Department of Electronic and Computer Engineer-
ing, The Hong Kong University of Science and
Technology, Hong Kong, from 2007 to 2008. He is
currently an Associate Professor with the School of
Electronic Science and Engineering, Nanjing Uni-
versity. His research interests include 3-D geometric
modeling and computer vision.

Sidan Du (M’02) received the B.S. and M.S. degrees
in electronic engineering from Xidian University,
Xian, China, in 1984 and 1987, respectively, and
the Ph.D. degree in physics from Nanjing University,
Nanjing, China, in 1997. She is currently a Professor
with the School of Electronic Science and Engi-
neering, Nanjing University. Her research interests
include in digital imaging processing and computer
vision.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


