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Clustering Smart Card Data for Urban
Mobility Analysis

Mohamed K. El Mahrsi, Etienne Côme, Latifa Oukhellou, and Michel Verleysen

Abstract—Smart card data gathered by automated fare col-
lection (AFC) systems are valuable resources for studying urban
mobility. In this paper, we propose two approaches to cluster
smart card data, which can be used to extract mobility patterns in
a public transportation system. Two complementary standpoints
are considered: a station-oriented operational point of view and a
passenger-focused one. The first approach clusters stations based
on when their activity occurs, i.e., how trips made at the stations
are distributed over time. The second approach makes it possible
to identify groups of passengers that have similar boarding times
aggregated into weekly profiles. By applying our approaches to a
real data set issued from the metropolitan area of Rennes, France,
we illustrate how they can help reveal valuable insights about
urban mobility, such as the presence of different station key roles,
including residential stations used mostly in the mornings and
work stations used only in the evening and almost exclusively
during weekdays, as well as different passenger behaviors ranging
from the sporadic and diffuse usage to typical commute practices.
By cross comparing passenger clusters with fare types, we also
highlight how certain usages are more specific to particular types
of passengers.

Index Terms—Smart cards, public transport, machine learning,
unsupervised learning, clustering methods, generative models.

I. INTRODUCTION

NOWADAYS, various digital traces are collected through
different sources such as GPS trajectories, ticketing data

of public transportation systems, mobile phone traces, etc.
[1]–[3]. The availability of such traces led to the emergence
of a new field of research named urban computing, which can
be defined as the process of acquiring, integrating, and analyz-
ing voluminous amounts of data coming from heterogeneous
sources in urban spaces (sensors, vehicles, pedestrians, etc.) in
order to help solve problems from which big cities suffer on a
daily basis, such as air pollution and traffic jams [4]. Within this
general context, data collected by Automated Fare Collection
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(AFC) systems in public transit networks of large cities are
a valuable resource that can be harnessed to achieve a better
understanding of human mobility and evaluate the performance
of transportation systems.

AFC systems are currently widely adopted all around the
globe to manage payments in public transit networks. Existing
implementations include the Navigo pass in Paris, France, the
Oyster card in London, UK, the Octopus card in Hong Kong,
the Trajeta Bip! card in Santiago, Chile, and many others. At
the center of AFC systems are contactless smart cards contain-
ing embedded microchips capable of storing and even process-
ing data that passengers use when interacting with the system.
Two types of transactions are collected through smart cards:
(i) monetary transactions occurring when a cardholder adds
credit or renews his travel pass and (ii) journey transactions
made when passengers enter stations, board buses, etc. While
the original purpose of AFC systems is to automate and manage
the various billing operations involved in the fare collection
process, the collected data (especially the journey transac-
tions) present an unprecedented opportunity to extract valuable
knowledge, which can be used for performance evaluation,
transit planning, etc.

Compared to more traditional transport data sources (e.g.,
surveys and travel diaries), smart card data are:

• More extensive since all the transactions made by card-
holders are registered in the system (in contrast with those
reported by a small sample of passengers in the case of
surveys).

• More accurate since the transactions are often timestamped
and geotagged with their exact time and location.

• Traceable at an (anonymized) individual level since each
transaction is paired with the card it was made with, mak-
ing it possible to conduct longitudinal studies on traveler
behavior over extended periods of time.

However, using smart card data to analyze human mobility
raises challenges due to their:

• Big volume: depending on the size of the network, hun-
dreds of thousands to tens of millions of transactions are
registered per day.

• Incompleteness: while origin information is available for
most AFC systems (passengers being required to validate
their cards when boarding or entering in stations), trip
destination information (particularly for trips involving
multiple stages) are often missing. Evidently, data about
trip purposes are also unavailable. These information play
a key role not only in understanding travel behavior
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(which is believed to be activity-driven) but also in es-
timating travel demand distributions.

• Lack of socioeconomic data: due to the anonymization
process aimed to protect passenger privacy, socioeco-
nomic indicators (age, gender, revenue, etc.) are omitted,
despite their usefulness in conducting detailed travel be-
havior analyses.

Novel mobility data mining methodologies based upon engi-
neering and computer sciences are therefore needed in order to
explore smart card data while taking into account the aforemen-
tioned aspects.

In this paper, we demonstrate how smart card data can be
used to understand a public transportation system based both
on how its stations are used and how passengers behave from a
temporal standpoint. Identifying key station roles and passenger
patterns can help transport operators better know the demand
of their customers and propose targeted incentives, services,
and tools accordingly. From a city perspective, this may also
help redesign and improve existing transportation policies. The
contributions of this work are the following:

• We identify key roles played by stations in the public
transportation network by partitioning them into different
clusters having a similar usage, thus highlighting the rela-
tionships between time of day, location and usage. To this
effect, we construct count series describing each station’s
usage and apply a model-based count series clustering to
partition the stations according to their usage.

• We study the extraction of passenger travel patterns from
smart card data. To this effect, we construct temporal pas-
senger profiles based on boarding information and apply
a generative model-based clustering approach to discover
groups of passengers who behave similarly with respect
to their boarding times. The resulting clusters portray
different travel behaviors that turn to be related to distinct
trip purposes and can therefore be valuable in achieving a
better characterization of travel demand.

• We study how passenger travel habits relate to socioeco-
nomic characteristics. To this end, we cross the passenger
clustering results with the fare types of their smart cards.

• We apply our approaches on a real smart card dataset
covering four weeks of journey transactions registered in
the metropolitan area of the city of Rennes (France).

Since the presented approaches use generative models, the
various parameters estimated from the data can be used for sim-
ulation and transportation planning purposes by, for example,
generating scaled synthetic data that take into account future
growth of the population in order to study their repercussions
on travel conditions, quality of service, etc. or that can be fed to
demand forecasting models (such as the four stage model).

The rest of this paper is organized as follows. Related work
is discussed in Section II. The real smart card dataset used for
the study is presented in Section III along with a description
of how we enrich it by inferring missing information as well
as a preliminary analysis based on descriptive statistics. Our
approach to clustering stations based on their count statistics
and its main findings are detailed in Section IV. We detail

our approach to clustering passengers based on their temporal
profiles and present its results in Section V. Finally, we con-
clude the paper in Section VI with general remarks and future
research directions.

II. RELATED WORK

The availability of smart card data motivated a consider-
able amount of research that tackles different questions such
as studying travel behavior, trip chains reconstruction and
transfer detection, inference of destinations and OD (Origin/
Destination) matrices, cluster analysis, etc. Apart from the
differences in the finalities and the proposed approaches of all
these works, they also consider heterogeneous public transport
networks. Particularly, some studies focus on a single mode
of transportation (e.g., buses only) whereas others consider
multimodal transport networks that offer the possibility to travel
using different modes (bus, subway, ferry, etc.). Additionally, in
some cases the passengers are required to both tap in (when en-
tering stations or boarding buses) and tap out (when exiting sta-
tions and alighting buses) which makes the information about
the destination of each trip available for the study, whereas
in other cases only tap ins are registered which results in the
unavailability of destination information. In some cases, even
origin information are missing.

In order to provide a complete picture of the context of our
work, we start by briefly discussing travel demand forecasting
in Section II-A. Early work on smart card data is presented
in Section II-B. Preprocessing and enrichment techniques are
presented in Section II-C. A brief tour of work studying smart
card data through their descriptive statistics is presented in
Section II-D. Propositions involving advanced knowledge ex-
traction techniques are discussed in Section II-E. A positioning
of our approaches with respect to these propositions is pre-
sented in the same section.

For extensive literature reviews on urban computing in gen-
eral and on smart card technologies and their implications in
public transportation (from the strategic, planning, and opera-
tional standpoints) in particular, we refer the reader to [4] and
[5], respectively.

A. Travel Demand Forecasting

Demand modeling for personal travel has long been dom-
inated by the trip-based four step models (4SM) approach
[6] in which trip frequencies are first determined for a given
set of trip purposes (e.g., home-based work, home-based non-
work trips, etc.) based on trip production and zonal attraction
models (that reflects characteristics such as land use, household
demographics, and socio-economic indicators). These trip fre-
quencies are then used to generate various trip tables (during
trip distribution and subsequent steps) based on the underlying
transport network’s attributes (inter-zonal travel durations, etc.).
Alternatively, activity-based models [7] constitute a second
family of approaches that embrase the philosophy that travel
decisions are activity-driven and form a complete agenda out
of which they cannot be analyzed (i.e. the analysis cannot be
conducted on an individual trip basis). Both types of models
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rely essentially on survey data (household travel and activity-
based surveys, travel diaries, etc.) for calibration. With the ad-
vent AFC systems, smart card data can be used to complement
surveys and help provide better and more reliable data for these
models to work with.

B. Early Work on Smart Card Data

Bagchi and White [8], [9] were among the first researchers to
substantiate the potential of smart card data for transit planning.
The authors apply rules-based processing to bus transactions in
order to infer turnover rates, trip rates, and detect trip chains
from the collected data. They also emphasize that since some
information are not captured by smart card data (e.g., journey
purpose, satisfaction with respect to the transport service, etc.),
the latter cannot entirely supersede existing data collection ap-
proaches (mainly direct surveys) but rather complement them.
Utsunomiya et al. [10] investigate the factors influencing the ac-
cess distance (i.e., distance from the home address of a passen-
ger to the station where he makes his first boarding of the day)
and study usage regularity and consistency using bus and rail
transactions. They also stress on how the presence of errors and
missing information influence the quality of the data and sug-
gest that the readability of the latter can be further improved by
enriching them with socioeconomic information, destinations,
trip purposes, etc.

C. Data Preprocessing and Enrichment

The inference of alighting locations when they are not di-
rectly captured in smart card transactions was discussed in
[11]–[14]. Most of the proposed approaches rely on fairly sim-
ilar assumptions. The distance to the next boarding is the main
criteria for the assignment: the passengers are assumed to have
rational behavior and alight at the station or bus stop (along
the current line) that is closest and within reasonable walking
distance to their next boarding location. The alighting location
of the last trip of the day is estimated using either the first
boarding of the same day or the one from the next day.

A trip chain (or linked trip) regroups two or more transactions
that are part of a same “logical” journey (e.g., a passenger going
from home to work). Reconstructing these chains requires iden-
tifying transfers. At the most basic level, this is conducted using
a fixed time threshold [8], [9], [11], [15], [16]: validations that
occur within a given timeframe (e.g., 30 minutes) are simply
considered to belong to a same journey. Seaborn et al. [17] use
separate thresholds to account for the nature of the transfer and
whether alightings are available or not. A similar approach is
also adopted in [18]. An alternative method that does not rely
on time thresholds is reported in [19]. Instead, the authors use
operations information to associate each boarding transaction to
a bus run and a stop. Alighting locations are estimated with the
assumption that the alighting for a given boarding is the closest
bus stop (along the run) to the location where the next boarding
occurs. If both stops are within reasonable walking distance
and the boarded bus routes are not the same, then a transfer is
detected and both transactions are considered as part of a same
trip chain.

Once both origin and alighting locations are known and
trip chains are reconstructed, the data can be used to estimate
OD matrices [11], [13], [20], assign anchor points (frequently
visited locations) [21], etc. Recent studies [14], [22], [23] con-
cluded that threshold-based transfer and destination inference
approaches are well robust in different settings. In particular,
they have shown that the underlying assumptions are well
grounded, that varying the involved thresholds within an inter-
val of reasonable values (e.g., increasing the allowable transfer
time from 15 min to 90 min in [22]) has minimal effect on the
produced results, and that such approaches tend to be accurate
(a 79% success rate in inferring destinations using a 400 m
reasonable walking distance threshold is reported in [23]).

Another equally important enrichment is the inference of trip
purposes (which play a key role in characterizing travel behav-
ior and consequently providing novel and well-adapted trans-
portation services). Several approaches were proposed to this
end using a pre-defined set of rules (based on travel time, fare
type, activity location and duration, etc.) [24], Naïve Bayes
classifiers [25], Continuous Hidden Markov Models [26], etc.

D. Studying Smart Card Data Through Descriptive Statistics

Smart card data were used to study different facets of mobil-
ity in public transportation. Morency et al. [27] analyze the vari-
ability of travel behaviors based on activity rates, the number of
boardings per day and the number of different boarding stations
observed through bus trip data. Fuse et al. [28] use bus smart
card data to determine travel time and bus loads that can in
turn be used for congestion spot analysis and the improvement
of bus stops planning. Lathia et al. [29] conduct a comparison
between smart card data and the results of an online survey in
order to characterize the differences between the perceived and
the actual behavior of passengers and their reaction to travel
incentives. Various aspects are inspected such as trips per day
frequency and regularity, atypicality of travel modality and
origin and destination stations, as well as cash-fare purchasing
habits. Tran [30] analyses the behavioral difference between
travel card holder and pay as you go passengers based on jour-
ney duration and travel extent. The author also proposes a clas-
sification of passengers based on the average number of trips
on each route and the number of unique journeys they made.
Lathia et al. [31] study community well-being as captured by
smart card data: stations are mapped, based on geographic prox-
imity, to communities and IMD (Index of Multiple Deprivation)
scores obtained from national census results; trip data are
used to compute a station-by-station flow matrix representing
locations visited by different communities. Different indices are
then inspected to analyze the correlation between the IMD and
the passengers’ flow.

E. Advanced Knowledge Extraction From Smart Card Data

In order to extract further knowledge involving group be-
havior, frequent patterns, etc. more advanced data analysis
techniques (e.g. clustering and classification) need to be used.
Trépanier et al. [32] study the loyalty of public transport
users by applying a hazard model to smart card data. In [18],
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DBSCAN [33] is applied to individual trip chains in order to
retrieve each passenger’s recurrent travel patterns. Additionally,
k-means++ is used to cluster passengers based on regularity.
The latter relies on four descriptive features of the passengers
(number of travel days, number of similar first boarding times,
number of similar route sequences, and number of similar stop
sequences). In a similar fashion, Kieu et al. [16] use k-means
(based on the number of trip chains) to separate infrequent from
frequent passengers and apply DBSCAN to the latter group in
order to further divide it based on boarding and alighting time
and location regularity. DBSCAN is also used in [34] in order to
segment passengers (based on their habitual travel times and the
origins and destinations of their trips) into four distinct groups.
In [27], clustering is used to study individual travel regularity:
the trips of a given passenger are aggregated into a daily profile
indicating for each time bin (a given hour) if at least one
boarding was registered. k-means is applied in order to identify
clusters of similar days with respect to boarding times. A
similar analysis of weekly travel behavior is conducted in [35]:
bus trips are aggregated into weekly profiles that include the
5 weekday (thus excluding the weekend) activity of a passenger.
Hierarchical Agglomerative Clustering (HAC) and k-means are
applied to the transactions in order to study group behavior.
Lathia et al. [36] apply hierarchical agglomerative clustering
on passenger weekday profiles (trip counts over five time bins
within the day) in order to uncover different travel behaviors
(e.g., typical commutes, evening-only travel, etc.) and moti-
vate the need for using smart card data to build user-tailored
transport information services. The authors also contribute a
number of predictive models aimed to take advantage of a
passenger’s travel history to provide personalized travel time
estimates. Ceapa et al. [37] use smart card data to study station
congestion patterns. Individual trips are transformed into per-
station data where each observation contains the difference
between entries and exits for a given station over 2-minutes
intervals. Dynamic Time Warping (DTW) and hierarchical
clustering are used to regroup stations based on their usage.
The authors also contribute three classification techniques to
predict station crowdedness. Recently, Poussevin et al. [38]
used NMF (Nonnegative Matrix Factorization) to discover a
dictionary of behavioral atoms to describe passengers based
on their subway journey transactions. The distribution of these
atoms over the stations is then used to conduct multi-scale
clustering and retrieve groups of stations with similar behavior.
Goulet-Langlois [39] study patterns in longitudinal representa-
tions of travel activity (spanning over 4 weeks). Each passenger
is described through a sequence of activities (inferred from his
smart card data) spanning 1 h each. The sequences are then
projected into a low-dimensionality space using PCA (Principal
Component Analysis) and clustered using k-means in order
to discover working day clusters, homebound clusters, etc.
Associations between these patterns and demographic attributes
(age, income, occupation, etc.) are also studied.

Other advanced mining techniques that do not fall under
the clustering umbrella include work on modeling the spatial
distribution of passengers using preferential selection of visited
locations based on their popularity [40], reconstruction of indi-
vidual mobility history using collaborative space alignment and

filtering with Conditional Random Fields (CRF) [41], using the
flow-comap technique to visualize passenger flow patterns [42],
predicting bus riderships and studying their influential factors
[43], etc.

The two main contributions of this paper, which concern
station clustering and passenger profile clustering, differ from
existing literature on smart card data clustering on the following
aspects:

• Adoption of a generative, model-based approach: most
approaches proposed in the literature rely on classic
clustering algorithms such as k-means, DBSCAN, etc.
for which an appropriate distance measure (such as the
Euclidian distance) need to be specified explicitly (the
choice of said distance measure requires, generally, sig-
nificant domain expertise). In contrast, our approach tries
to maximize the likelihood of a statistical model describ-
ing the distribution of the data. Model-based approaches
are considered to be more interpretable than similarity-
based approaches [44]. Additionally, the use of generative
models makes it possible to use the parameters of the
estimated models for simulation purposes (e.g. generate
trip data under different conditions and use them in con-
junction with for travel demand models for forecasting
purposes).

• Choice of representation: in the case of passenger cluster-
ing, existing approaches tend to adopt coarse represen-
tations in which weekdays are neglected, all weekdays
are flattened into a single daily profile, etc. Our approach
to clustering passengers with respect to their temporal
behavior is based on temporal profiles that describe pas-
sengers using a finer granularity than the ones used in
previous studies, which enables a more detailed analysis
of the passengers’ behaviors and detecting subtle changes
between weekdays as we will show in Section V-C.

III. CASE STUDY DATA SET

In this section, we present the smart card dataset that we use
for our study, discuss how we enrich it by inferring alighting
locations and detecting transfers, and study some basic aspects
of mobility through descriptive statistics of the data.

A. Data Set

We conduct our study on smart card data collected through
the automated fare collection system of the Service des
Transports en commun de l’Agglomération Rennaise (STAR).
STAR operates over 70 regular bus lines (excluding school bus
and complementary services) and 1 subway line serving the
metropolitan area of Rennes, France. The operator established
its automated fare collection system on March 1st, 2006 and
offers the possibility to travel on its network using a KorriGo
smart card.

The original dataset spans over a one-month period
(April 2014) and contains a total of 5404096 journey transac-
tions out of which 4325839 (80% of the data) were made by
134979 smart cards, whereas the remaining ones were made
using traditional paper tickets. Each transaction contains an
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anonymized passenger id (only for transactions made using
smart cards), the timestamp when the transaction occurred (date
and time rounded to the minute), the name and identifier of the
subway station or bus stop where the transaction took place, the
name and identifier of the boarded bus or subway line, as well as
information about the fare type. Additionally, in the case of bus
transactions the travel direction (inbound or outbound) is also
indicated. The AFC system requires passengers to validate their
smart cards only upon entering a subway station or boarding a
bus. As a consequence, alighting locations are not collected. In
order to protect the privacy of cardholders, no personal infor-
mation regarding the passengers were made available to us.

B. Data Enrichment Methodology

In order to be able to conduct the passenger cluster analysis
that we present in Section V, we first need to reconstruct trip
chains from the transactions with smart cards. In fact, if raw
transactions are used to characterize travel behavior, passengers
engaging in multi-stage trips (i.e., trips involving transfers)
can be perceived as more active than passengers with mainly
single-stage trips. This might in turn introduce bias during the
clustering process.

We reconstruct trip chains by using a two-step approach
similarly to previous work [11]–[14]. The first step consists in
inferring the alighting location of each transaction based on
two assumptions: (i) closest-stop assumption: for a given trans-
action, the passenger presumably alights at the stop or station
closest to where his next transaction takes place, and (ii) daily-
symmetry assumption: for the last transaction of the day the
passenger alights at the stop or station closest to the location
where his very first transaction of the day took place. For each
transaction, the distances from all the stations on the current
route to the boarding location of the subsequent transaction are
inspected and the closest station is retained as the candidate des-
tination of the current transaction. If the candidate destination
and the next boarding location are within a reasonable walking
distance (fixed to 500 m for this study) then the candidate
destination is assigned as the alighting location of the current
transaction. Otherwise, the inference fails and no destination
is assigned. The same process is applied to the last transaction
of the day with the exception of using the boarding location
from the first transaction of the day instead of the subsequent
transaction. Additionally, an estimate arrival (alighting) time is
assigned to each transaction for which an alighting location was
estimated.

Determining whether transactions are transfers or not is done
in the second step. Here again, each passenger’s transactions are
inspected sequentially. In order for a transaction to be marked
as a transfer, the following conditions must be met: (i) the
alighting location of the previous transaction was successfully
inferred and (ii) the connection between both transactions (i.e.,
the elapsed time between the estimate arrival time in the previ-
ous transaction and the boarding time of the current transaction)
occurs within a time threshold of 30 min. Otherwise, the
transaction is marked as a first boarding in order to indicate the
start of a new trip chain. Additionally, transfers along the same
route are prohibited: if two consecutive transactions are made

Fig. 1. Densities of the estimated transfer times for each type of transfer (bus
to bus, metro to bus, and bus to metro).

on the same route, the second is automatically marked as a first
boarding even if both the aforementioned conditions are met.

Due to the absence of ground-truth information about trip
destinations and transfer behavior in the dataset, the effective-
ness of the applied data enrichment approach and its influence
on the posterior analyses we conduct on the data (mainly the
passenger clustering) cannot be evaluated directly and empiri-
cally. Nevertheless, as mentioned earlier in Section II-C, recent
studies where such information is available [14], [22], [23] have
demonstrated the robustness of such approaches. In our case,
the assumed reasonable walking distance threshold (500 m)
and time threshold (30 min) were fixed upon discussion with
experts from the STAR public transportation operator and are in
agreement with threshold values usually used in the literature.
Fig. 1 illustrates the density distributions of our estimates of
transfer times for each of the three possible transfer types in
the STAR network. Most transfer times occur quite before the
30 min threshold (95% of transfers occur within 25 min) with
transfers to metro occurring in a shorter span (90% occur within
10 min) compared to transfers to bus. In light of these results,
which are coherent with those reported in the literature, we are
confident in the chosen threshold values and we expect that
changing them slightly would only have a marginal impact on
the clustering results.

C. Preliminary Analysis of the Enriched Data

The enrichment approach detailed in the previous section
was able to estimate the alighting locations for 75.11% of
the transactions. The trip chain reconstruction step marked
81.56% of the transactions as first boardings which translates
in 3528316 trip chains that we refer to as journeys hereafter.
At this stage, we can already conduct a preliminary analysis on
the enriched data to study basic aspects of the mobility of smart
card passengers. Fig. 2 shows the hourly distribution of jour-
neys made during the week from April, 7 to April, 13. Week-
days are characterized by three peaks occurring in the morning
(7–8 am), midday (12–1 pm), and in the evening (4–6 pm).
The midday peak is more important on Wednesday than other
weekdays. This is mainly due to the fact that in France, course
hours do not generally go past 12 pm in middle and high
schools. During the weekend, the number of journeys is, as
expected, lower than during weekdays. The three-peaks char-
acterizing the latter disappear in favor of a steady increase in
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Fig. 2. Hourly distribution of journeys during the week from April 7 to 13.

Fig. 3. Distribution of active travel days during which each smart card was
used for the period from April 1 to 30. (Red Line) Ten-day mark at which the
first infliction occurs and public transportation reliance starts to increase.

demand that starts slightly later (9–10 am), peaks in the evening
(5–7 pm), then decreases until the end of the service. This
aggregate view of the system depicts an average passenger as
someone who travels regularly during the peak hours of all
weekdays while relying less on public transportation during the
weekends. In Section V, we will show how passenger clustering
can help retrieve richer and more varied patterns.

The distribution of active travel days during the period of
the study is depicted in Fig. 3. An active travel day is simply a
day during which a given smart card was used to make at least
one journey. A considerable number of cardholders travel using
public transportation occasionally with around 25% of them
having less than 5 active days. The number of passengers using
their smart cards starts by decreasing before hitting an inflection
point at around 10 active travel days, up from which we observe
that passengers become more reliant on public transportation.
This trend is again inverted once we hit the barrier of 19 active
travel days where the number of smart cards starts decreasing
as the number of active days increases.

The enriched data can also be used to study other aspects
such as travel times, the nature and frequency of transfers, etc.
However, since these are not particularly relevant to the main
work exposed in this paper, we refrain from presenting them.

IV. EXPLORING SMART CARD DATA THROUGH

STATION CLUSTERING

A first portrait of the public transportation network can be
drawn by analyzing how the different stations and bus stops
are used through time. This can be done by clustering stations

Fig. 4. Distribution of the variability of the number of transactions observed in
stations for time bins ranging from 1 min to 12 h. When the bin size is increased,
the variability is reduced, which suggests that mobility patterns become more
apparent and relevant.

based on the number of validations they receive from passen-
gers in order to reveal groups of stations with similar usage
profiles, which is discussed in the present section.

A. Station Clustering Approach

The clustering approach we use is an adaptation of the BSS
(Bicycle Sharing System) station clustering approach reported
in [45]. Therefore, we only give a brief overview of its main
steps and refer the interested reader to the corresponding paper.
First, we clean the data from erroneous transactions attributed
to unknown locations (due to positioning errors, etc.). This
leaves us with 5 294 672 transactions (i.e., 98% of the original
dataset) made across 686 stations and bus stops. For each
station, the raw data are transformed into transaction counts per
one-hour bins over each day in the dataset. A given station’s
description for a given day d ∈ {1, . . . , D} (denoted sd) is
expressed as follows:

sd = (sd1, sd2, . . . , sdh, . . . , sdH)

with D the number of available days (30 in our case) in the
dataset, h ∈ {1, 2, . . . , H} the hour of the day, and sdh the
number of transactions (both using tickets and smart cards)
registered during hour h on day d. In order to decide the size
of the time bins, we conducted a study of the variability of
the number of validations observed in each station, similarly
to the methodology described in [46]. We vary the size of the
time bin from 1 min to 12 hours. Each time, we construct
for each station a distinct temporal profile for each of the
four weeks of the study, corresponding to transaction counts per
daytype and time bin observed for that week. The correlation
between the four profiles is then used in order to assess their
variability (the mathematical details can be retrieved from [46]).
The distributions of variabilities for each of the time bins we
considered are illustrated in Fig. 4. As expected, the variability
decreases as the size of the time bin is increased (indicating,
as suggested in [46], that the mobility patterns become more
predictable and apparent). A significant decrease is observed
when increasing the size from 1 min (original granularity of
the data) to 1 hour, up from which the decrease becomes less
pronounced. Consequently, we consider one-hour time bins for
our study.
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Using a Poisson mixture, we build a model based on the
station usage counts. The model relies on two sets of variables,
Zs which corresponds to indicator latent variables defining the
memberships of stations to one of K clusters, and Wd which
contains observed variables attached to days and encoding
the differences between weekdays and weekends (which have
considerably different usage profiles). The model is expressed
as follows:

Zs ∼ M(1, π)

sd1 ⊥⊥ sd2 ⊥⊥ · · · ⊥⊥ sdH | (ZskWdl = 1)

sdt |(ZskWdl = 1) ∼ P(αsλklt).

In this simple model, we express station cluster mem-
berships using a multinomial distribution of parameter π =
(π1, π2, . . . , πK) (that specifies cluster proportions) which is a
classic way in statistics of representing that the result of a trial
(here the cluster of a given station) belongs to exactly one of K
categories (clusters).

Given a station’s cluster and the type of the day, we suppose
that transaction counts occurring at different time bins are
conditionally independent. This is a simplification that is wildly
assumed in the literature and that we adopt in order to facilitate
the estimation of the model and keep it easy to interpret. In
reality, riderships do correlate across hours of the same day.

We also assume that transaction counts follow a Poisson
distribution of parameter αsλklt. αs is a scaling factor that
captures the station s’s global activity which makes it possible
to regroup stations with similar activity silhouettes even if the
total volume of their transactions varies. The parameters λklt

capture the temporal variations of transactions and vary depend-
ing on the station cluster and day type. Here again, the choice of
Poisson distributions at this second level is made in order
to keep the model parsimonious (i.e. it does not contain an
excessive number of parameters) and consequently easily in-
terpretable, since our aim in this work is to cluster the stations
for exploratory purposes, rather than model their behavior with
extreme finesse. Alternative statistical distributions such as
negative binomials can be tested (in this particular case, this
leads to doubling the number of parameters for the second layer
of the model and complicates their estimation considerably).

The model’s parameters are estimated using a custom EM
(Expectation Maximization) algorithm which is fully detailed
along with additional constraints imposed on the model’s pa-
rameters in [45]. Estimating the model, however, requires fixing
the number of clusters K beforehand. To select an appropriate
number of clusters, penalized likelihood criteria such as the
Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are widely used and asymptotically consistent
but they are also known to be less efficient in practical situations
than on simulated cases. To overcome this drawback in real
situations, Birge et al. [47] have recently proposed a data-driven
technique, called the “slope heuristic,” to calibrate the penalty
involving penalized criteria. The slope heuristic was first pro-
posed in the context of Gaussian homoscedastic least squares
regression and was since used in different situations, including
model-based clustering. Birge et al. [47] proved the existence of

Fig. 5. Evolution of the log likelihood as a function of the number of station
clusters K = 2, . . . , 25. (Red Line) Linear model fitted to the linear part of the
curve. (Blue Vertical Line) Suitable number of clusters K = 14.

a minimal penalty and that considering a penalty equal to twice
this minimal penalty allows to approximate the oracle model in
terms of risk. The minimal penalty is estimated in practice by
the slope of the linear part of the objective function with regard
to the model’s complexity. A detailed overview and advices for
implementation are given in [48]. We set K by first running
the EM algorithm while varying K from 2 to 25, then using
the slope heuristic to pick an appropriate value and retrieve the
model that best fits our data. Using this approach we retrieve
14 station clusters as indicated in Fig. 5.

B. Results

The retrieved clusters can be studied based on their temporal
activity profiles (given by the λ parameters of the model).
Under this angle, the clusters can be broken in two main
categories:

• Stations with mostly “balanced” usage during the day
with several peaks occurring during rush hours. Most
station clusters fall under this category.

• Stations with unbalanced usage, in which the number of
transactions during one half of the day drastically differs
from the other half (e.g. stations heavily used in the
morning but not in the evening).

In what follows, we discuss some of the most interesting
station clusters that we retrieved from the data. Fig. 6 shows
the activity profiles of three station clusters that are intensively
used during the morning period (7–8 am) of weekdays. Com-
paratively to the clusters 1 and 14 [see Fig. 6(a) and (c)] which
continue to register activity afterwards, cluster 9 [cf. Fig. 6(b)]
is the least used during the other periods of the day. Weekend
activity in this cluster is also lower than the other two. A map of
the stations belonging to the three clusters is shown in Fig. 7 and
shows that they are mainly located in residential areas of the
metropolitan area of Rennes. This suggests that the three clus-
ters regroup “housing” stations that are mainly used by passen-
gers to commute to their work. The stations in clusters 1 and 9
are exclusively located in the outskirts of the city, especially in
remote towns, whereas cluster 14 regroups stations both in and
out of the city.

The opposite behavior occurs in the station cluster shown in
Fig. 8. The cluster’s profile [cf. Fig. 8(a)] indicates an activity
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Fig. 6. Activity profiles of three station clusters characterized by an important peak in the morning during weekdays and comparatively low activity in the second
part of the day. (Solid Blue Line) Weekday activity. (Red Dashed Line) Weekend activity. The scales of the activity axis are set independently for each cluster in
order to make their respective temporal profiles more apparent. (a) Cluster 1: 52 stations (7.58%). (b) Cluster 9: 106 stations (15.45%). (c) Cluster 14: 115 stations
(16.76%).

Fig. 7. Map of the stations belonging to clusters 1 (circles), 9 (triangles), and
14 (squares). (Gray Cross) Stations that do not belong to either of the three
clusters. The background represents the metropolitan area of Rennes (with
the city itself indicated by the red contour), water and riverbanks (light blue),
and green areas (light green). (Orange Overlay) Density of the inhabitants in
the area.

that is centered around the afternoon with a first peak occurring
at 12 pm and a second more intense rush during the evening
peak (4–6 pm). The cluster is also characterized by a very low
activity during the weekend. This suggests that the involved
stations are “work” stations located in industrial areas and
activity zones of the city to which passengers travel in the
morning to work then use in the evening to commute back
home. This claim is confirmed in Fig. 8(b) which shows that
most of the cluster’s members are indeed located in such places.

The activity profiles of the remaining clusters are shown in
Fig. 9. Multiple clusters show an activity that involves two or
three peaks centered around rush hours, which is the case for
cluster 3 [see Fig. 9(b)], cluster 5 [see Fig. 9(d)], cluster 13 [see
Fig. 9(j)], etc. Among those, cluster 5 is particularly interesting
since its stations are very active throughout the whole day (i.e.,
even outside of peak hours) during weekdays. Most stations in
this cluster (cf. Fig. 10) are located in the city of Rennes itself
which confirms the polycentric operation of the metropolitan
area in which the center plays a key role as the backbone
of the transportation system. Some clusters, such as cluster 2
[see Fig. 9(a)] and cluster 4 [see Fig. 9(c)], present important
activities during the weekend which suggests that they might be
located in leisure and recreational spots in the city. In contrast,
cluster 10 (much like cluster 11 shown earlier) shows little
activity during the weekend.

In some cases, the retrieved clusters can have quite similar
activities. This is, for instance, the case of clusters 1 and 14
(see Fig. 6) or clusters 3, 7, and 8 (see Fig. 9). This is due to the
choice of the number of clusters: when this number is increased,
the approach starts detecting very subtle differences (e.g., the
presence of late night time activity in clusters 3 and 7 during the
weekend, contrary to cluster 8), whereas decreasing it results in
fewer but more coarse clusters.

Extracting station roles and behavior using smart card data
as shown in this section is an important step in the direction
of characterizing the demand in the city’s public transportation
system and can be helpful for transport authorities in order to
decide on future planing and restructuring of the network. In
the following section, we complement this view of the system
by studying public transportation usage from the passengers’
perspective and extracting the latter’s frequent travel patterns.

V. CLUSTERING PASSENGERS BASED ON

TEMPORAL BEHAVIOR

In this section, we present our approach to discovering
groups of passengers who exhibit similar behaviors from a
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Fig. 8. (a) Activity profiles during weekdays and the weekend. (b) Map of station cluster 11. (Purple Overlay) Activity zones (industrial areas, offices, etc.).
(Dots) Stations in the cluster (each dot’s area is proportional to its station s’s scaling factor αs). The cluster contains 58 stations (8.45% of all the stations). (Gray
Cross) Locations of stations that are not included in the cluster.

purely temporal standpoint (i.e., passengers taking public trans-
portation at the same times without accounting for the boarding
locations). Intuitively, the discovery of these groups can help
identify frequent patterns in the way passengers use public tran-
sit and characterize the demand accordingly. Since we are inter-
ested in studying travel behavior over time, ticket transactions
cannot be used since they lack the information about the passen-
gers who made them. Consequently, we limit our scope to the
3 528 316 journeys made using smart cards only and retrieved
by applying the enrichment approach presented in Section III-B.

A. Passenger Filtering and Temporal Profiles Construction

In order to discover meaningful clusters of passengers, the
latter must be observed for a sufficient amount of time: occa-
sional passengers with an insufficient number of active travel
days are not very informative when looking for travel patterns.
To address this issue, we filter passengers based on active travel
days: based on the first inflection point noticed in Fig. 3, we
consider passengers with ten or more active travel days during
the one-month period of the study as frequent travelers and
retain them for our cluster analysis: 3 096 146 trips (87.75%
of the total number of trips with smart cards) made by 76478
passengers (56.65% of the total number of passengers) are re-
tained whereas only 12.25% of the trips is discarded. Our early
experiments have shown that including the unretained passen-
gers degraded the clustering quality which is to be expected due
to the fact that these passengers were not observed sufficiently
in order to be able to extract any relevant patterns from their
scarce trips.

For each passenger, we build an aggregate “weekly profile”
view describing the distribution of all his journeys over each
hour (0 through 23) of each day of the week (Monday through

Sunday). Therefore, each passenger is an observation over
168 variables: the first variable is the number of trips he took
on Monday 0 to 1 am, the second is the number of his trips on
Monday 1 to 2 am, and so on. We denote one such profile by u.

B. Clustering Approach

The clustering step of the approach relies on estimating a
mixture of unigrams model [49] from the retained passen-
gers’ temporal profiles. This approach is often used to cluster
documents in the context of information retrieval. Under this
perspective, each of the M passengers retained for clustering
can be regarded as a “document” containing a collection of N
“words.” Each word, in our case, is a combination of a day and
an hour (e.g. Friday 10 am). Therefore, the used vocabulary’s
size D = 7 × 24 = 168. Consequently, the temporal profile of
the ith passenger, denoted ui, is the vector of word counts (or
frequencies):

ui = (ui1, ui2, . . . , uiD).

First, the membership of a passenger to one of K clusters is
determined using a multinomial distribution:

z ∼ M(1, π).

z = (z1, z2, . . . , zK)T ∈ {0, 1}K is the component indicator
vector and π = (π1, π2, . . . , πK) is the vector of cluster propor-
tions. The N words (pairs of day and hour) of the passenger’s
profile u are then drawn from the conditional multinomial
distribution relative to z, according to the following formula:

u |(zk = 1) ∼ M(N, βk)
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Fig. 9. Activity profiles of the remaining station clusters. The activity axis’s scale is set independently for each cluster in order to make its profile more apparent.
(a) Cluster 2 (2.19%). (b) Cluster 3 (2.04%). (c) Cluster 4 (2.48%). (d) Cluster 5 (9.77%). (e) Cluster 6 (10.45%). (f) Cluster 7 (2.48%). (g) Cluster 8 (8.02%).
(h) Cluster 10 (5.68%). (i) Cluster 12 (0.73%). (j) Cluster 13 (7.73%).

with βk = (βk1, βk2, . . . , βkd) the kth cluster’s profile (word
proportions) and N the total number of the journeys made by
the passenger. The parameters π and β are estimated from the
data using a classical Expectation-Maximization (EM) algo-
rithm. This maximizes the likelihood of the profiles which is
derived from their distribution given by:

p(ui)=

K∑
k=1

πk

Γ
(∑D

d=1 uid + 1
)

∏D
d=1 Γ(uid + 1)

D∏
d=1

βuid

kd ∝
K∑

k=1

πk

D∏
d=1

βuid

kd .

During the E phase, the probability of belonging to each
cluster is calculated for each passenger:

p(zk = 1|ui) ∝
∏D

d=1 β
uid

kd πk∑K
k′=1

∏D
d=1 β

uid

k′dπk′
.

During the M phase of the algorithm, the model’s parame-
ters are updated using the results from the E phase. Cluster
proportions are updated as follows

πk =
1
M

M∑
i=1

p(zk = 1|ui)

whereas word proportions are updated using the formula

βkd =

∑M
i=1 p(zk = 1|ui)uid∑D

d′=1

∑M
i=1 p(zk = 1|ui)uid′

.

The number of passenger clusters K is set in the same
fashion described in Section IV-A: we run an EM algorithm
to estimate the mixture of unigrams models while varying K
from 2 to 25 and select the most appropriate value of K using
the slope heuristic.
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Fig. 10. Map of station cluster 5. (Dots) Stations in the cluster (each dot’s
area is proportional to its station s’s scaling factor αs). The vast majority of
stations of the cluster are located in the city center itself, which explains why an
important activity is observed all day long. (Gray Cross) Locations of stations
that are not included in the cluster.

C. Results

We now proceed to discussing the results of applying
our clustering approach to the one-month dataset. Based
on the slope heuristic, 13 passenger clusters are discovered
(cf. Fig. 11). We study these clusters based on how their journey
time (i.e., day and hour of the first boardings of their journeys)
probabilities are distributed as well as on their fare type propor-
tions. Originally, the public transport operator has an extensive
grid with more than 90 fare types based mostly on pricing and
operational considerations. We aggregate these fare types into
seven categories: (i) Young subscribers (passengers aged 26 or
less), (ii) Regular subscribers (passengers having a smart card
with regular pricing and mainly aged 27 to 64), (iii) Elderly
subscribers (aged 65 or more), (iv) Free travel (granted to citi-
zens based on social considerations such as unemployment and
income), (v) Short duration pass (unlimited travel during a short
period ranging from one day to one week), (vi) Pay as you go
(passengers paying per journey), and (vii) KR agents (the public
transportation operator’s agents).

Fig. 12 regroups passenger clusters in which no particular
routine patterns are detected. Instead, the clusters are rather
characterized by a diffuse usage of public transportation that
appears at different times of the day. For example, in cluster 3
[cf. Fig. 12(c)] the diffuse usage appears mostly during the
evening period, whereas in cluster 4 [cf. Fig. 12(d)] it starts
in the morning and spans until the end of the evening. Except
from cluster 1, the other three clusters are majorly composed
of free travel passengers. In fact, the free travel ratios in the
diffuse usage clusters shown in Fig. 12 are the highest among
all clusters and add up to 65% of the total number of free
travel passengers. This suggests that passengers benefiting from
free travel (mainly due to unemployment or their unstable
financial situation) do not have tight daily schedules around
which their trips revolve, hence the absence of clear temporal

Fig. 11. Evolution of the log likelihood as a function of the number of
passenger clusters K = 2, . . . , 25. (Red Line) Linear model fitted to the linear
part of the curve. (Blue Vertical Line) Suitable number of clusters K = 13.

travel patterns. Additionally, elderly passengers also seem to
fall under the category of diffuse usage since the four clusters
regroup 90% of this fare type cardholders (with 51% in cluster 4
and 35% in cluster 3). In total, 41.45% of cardholders are
considered to have a diffuse usage of public transportation.

Typical home-work commute behavior is clearly visible in
the clusters shown in Fig. 13 with a first peak in the morning
and a second, more diffuse peak appearing during the afternoon
for weekdays. Subtle differences exist between the two clus-
ters. For instance, both peaks are slightly shifted in cluster 6
[cf. Fig. 13(b)] compared to those in cluster 5 [cf. Fig. 13(a)].
Additionally, the commuting pattern appears also on Saturday
in the case of cluster 6, contrary to cluster 5. Both clusters are
mainly composed of regular subscribers and contain almost 8%
of the passenger population.

Similar commute patterns are also apparent in the clusters in
Fig. 14 with the exception that the second peak on Wednesdays
is shifted and occurs midday (around 12 pm) rather than in
the evening. As mentioned earlier in Section III-C, this behavior
is mostly related to students (especially in middle and high
school) since course hours on Wednesdays end midday in
France. Expectedly, three out of the four clusters (clusters 7,
8, and 9) are mainly composed of young subscribers. Excep-
tionally, cluster 10 [cf. Fig. 14(d)] mostly contains regular
subscribers (adults). This suggests that these passengers are
accompanying parents that align to their children’s schedule.
Notice that retrieving the clusters shown in Fig. 14 and separat-
ing them from those in Fig. 13 would be hard to achieve using
clustering approaches that aggregate weekdays into a single
daily profile since the subtle change in behavior on Wednesdays
would be engulfed by the standard behavior occurring in the
other weekdays. This is one of the reasons why we opt for a
weekly temporal profile to describe passengers instead.

Besides from the two morning and evening peaks, a third
peak appears in the two clusters shown in Fig. 15 (almost
17% of the passengers) which suggests that passengers in these
groups also rely regularly on public transportation during their
lunch breaks. Finally, the last cluster (see Fig. 16) contains
“early-bird” passengers for which a single peak occurs very
early in the morning (6 am) and usage in the afternoon is dif-
fuse. We observe that for all passenger clusters in which travel
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Fig. 12. Passenger clusters with diffuse public transportation usage appearing in various times during both weekdays and weekend. The heatmap on the left shows
how journey time probabilities are distributed across the week, whereas the cluster’s composition with respect to fare types is shown on the right. Color coding
of the journey time probabilities is set locally for each cluster in order to make patterns more apparent. (a) Cluster 1: 11572 passengers (15.13%). (b) Cluster 2:
4924 passengers (6.44%). (c) Cluster 3: 6606 passengers (8.64%). (d) Cluster 4: 8600 passengers (11.25%).

patterns exist, the morning behavior is more regular and consis-
tent than in the evening. This can be explained by the fact that
in these clusters that mostly contain active adults and students,
passengers have strict obligations with respect to the starting
hours of their work or classes, whereas their leaving times are
more flexible.

VI. CONCLUSIONS AND FUTURE WORK

Smart card data present a unique opportunity to study pas-
senger travel behavior in public transportation systems. In this

paper, we started by applying a model-based clustering ap-
proach to transaction count statistics of stations. The retrieved
clusters make it possible to distinguish between the different
usage types of the stations. While usage is balanced during the
day for many stations, the activity in others centers only on
specific parts of the day. Housing stations located in remote res-
idential parts of the city are mainly used in the morning during
weekdays by passengers who commute to work, whereas the
majority of the activity in work stations located in activity zones
takes place in the evening when they are used by passengers to
commute back home.
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Fig. 13. Passenger clusters exhibiting typical commute behavior with the first peak occurring in the morning and the second one in the evening. (a) Cluster 5:
3479 passengers (4.55%). (b) Cluster 6: 2585 passengers (3.38%).

We also introduced an approach to clustering passengers
based on their temporal habits. By estimating a mixture of un-
igrams model from journeys captured through smart card data,
we retrieve weekly profiles (or temporal clusters) depicting dif-
ferent public transportation demands. Inspecting these profiles
shows that other behaviors exist outside from the classically
presumed home-work commute pattern. Some passengers use
public transportation sporadically in a diffuse fashion, whereas
the routines of other passengers revolve around a single time of
the day (e.g., the morning period). Even in the presence of com-
mute behavior, some differences exist between passengers. For
instance, commute behavior of young subscribers (mainly stu-
dents) differs from that of regular subscribers (mainly working
adults). Additionally, commute routines also appear at various
slightly-shifted times of the day for different passenger groups
exhibiting such patterns.

We believe that knowledge extracted through station and
passenger clustering can be very useful for public transporta-
tion planning as they can help both operators and authorities
adapt the existing offer and propose adapted tools and services
tailored to their customers’ needs. For example, based on the
extracted stations’ roles, the operator can decide to increase
the number of busses and subways serving housing stations in
the morning and those serving work stations in the evening
(which are the main peak hours of these station types). The
passenger temporal patterns can help avoid the pitfall of naively
believing that all passengers are commuters and can be used to
scale the offer appropriately to adapt the most to the various
demands and expectations of the different customer groups.

As such, the two approaches we introduced in this work
constitute a first step towards developing decision support tools
destined towards the different stakeholders involved in defining
the city’s public transportation offer and strategy (transport

authorities, transport operators, local and regional authorities,
etc.). The two approaches we designed to offer a two-layered
“passenger-network” view of the transportation system and are
to be considered as complementary. They can be applied to
smart card data individually or conjointly in no specific order
(e.g., start with passenger clustering then conduct station clus-
tering or vice versa). One of our future research directions is the
inclusion of socio-economical variables describing the passen-
gers (age, income, sex, etc.) and the territory (e.g., employment
indicators, presence of touristic attractions, etc.) in order to be
able to link both the passenger and network layers.

Further work can be conducted based on the work presented
herein. In the station clustering approach we used, the only dis-
tinction made between days is based on them being weekdays
or weekend days. This can be extended in order to account for
special days (e.g., holidays) or even to consider each day of the
week (Monday, Tuesday, etc.) separately.

When considering passenger travel patterns, we chose to
cluster the passengers based solely on the boarding time of the
journeys they made. In order to do so, we had to reconstruct trip
chains using a threshold-based destination and transfer infer-
ence approach. While we remain confident about the threshold
values we used, it would be wise to further investigate how
the produced trip chains compare to reality (e.g., by comparing
them to household survey results). It would be interesting to
include the spatial dimension (i.e., boarding locations, inferred
alighting locations) either during the clustering process or dur-
ing the interpretation step (e.g., to identify the stations that are
impacted by a given type of demand).

The number of clusters discovered using our approach can
be overwhelming to analyze. This issue can be addressed by
trying to regroup similar clusters and aggregating them into
a hierarchy that is more suitable for multi-level exploration
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Fig. 14. Passenger clusters exhibiting commute behavior with a shifted second peak on Wednesdays. (a) Cluster 7: 3195 passengers (4.18%). (b) Cluster 8:
9587 passengers (12.54%). (c) Cluster 9: 6237 passengers (8.16%). (d) Cluster 10: 4018 passengers (5.25%).

(i.e. start with a small number of coarse clusters to quickly
understand the macro structure of passenger behavior, then
expand interesting clusters to reveal more refined patterns).

Another limitation of the presented models is that they make
the assumption that behavior (making trips for passengers,
trip counts for stations) is independent between different time
bins of the same day. It would be interesting to address this
shortcoming either, for example, by considering extensions that
integrate additional parameters that capture these correlations
(which will result in more complex models) or by using func-
tional approaches in which the data are treated as functions (in
the case of station clustering).

Also, we focused only on smart card data involving trips
made by bus and subway. It would be interesting to study how
these modes compare to and complement other transportation
modes such as Bike Sharing Systems (BSS), etc.

Finally, one important aspect of travel behavior characteri-
zation that we didn’t tackle in this work is that of identifying
trip purposes. It is clear that some of the passenger clusters
we discover pertain to particular trip purposes (e.g., school
trip, home-work commutes, etc.) and can potentially be used
to this end (e.g., by cross-comparing the clusters with the
territorial characteristics of the locations they visit). Recently, a
set of approaches ranging from identification of home and work
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Fig. 15. Passenger clusters with three usage peaks occurring in the morning, midday, and evening, during weekdays. (a) Cluster 11: 4437 passengers (5.8%).
(b) Cluster 12: 8486 passengers (11.1%).

Fig. 16. Passenger cluster 13 regroups 2752 (3.6% of the total passengers) that exhibit a single peak occurring very early in the morning (6 am) and diffuse usage
during the evening.

locations [50] to a more elaborate range of activities [25], [26]
were proposed in the literature. In future work, we intend to
extend our approach in order to include these aspects.
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