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Visual Monitoring of Driver and Passenger
Control Panel Interactions

Toby Perrett, Majid Mirmehdi, Senior Member, IEEE, and Eduardo Dias

Abstract—Advances in vehicular technology have resulted in
more controls being incorporated into cabin designs. We present
a system to determine which vehicle occupant is interacting with
a control on the center console when it is activated, enabling the
full use of dual-view touchscreens and the removal of duplicate
controls. The proposed method relies on a background subtraction
algorithm incorporating information from a superpixel segmenta-
tion stage. A manifold generated via the diffusion maps process
handles the large variation in hand shapes, along with determining
which part of the hand interacts with controls for a given gesture.
We demonstrate superior results compared with other approaches
on a challenging dataset.

Index Terms—Computer vision, driver monitoring, hand-
gesture recognition, infotainment, user determination.

I. INTRODUCTION

D ETERMINING which vehicle occupant is interacting
with controls on the cabin’s center console is of growing

interest to vehicle manufacturers. Dual-view touchscreens are
beginning to be included in cabin designs, which for example
allow the driver to see a GPS display while the passenger sees
a movie. One current drawback is that the driver and passenger
are confined to interacting with their “half” of the screen. Tech-
nological advances and competition between manufacturers has
also led to a larger variety of controls being included for the
purposes of safety, comfort and entertainment. This can result
in a cluttered interface, with duplicate functionality for both the
driver and passenger (e.g., multiple temperature dials).

A number of challenges are presented when trying to design
and implement a system that monitors control interactions with
the required reliability to be included in production vehicles.
As it will be necessary to monitor occupants’ arms and hands,
such a system must be able to handle different combinations
of skin color, jewelry, and clothing (including gloves). In more
complicated cases where gesture information is needed to make
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Fig. 1. Control panel. (Left) Under normal lighting conditions with an RGB
camera. (Right) With a near-infrared camera with near-infrared illumination.

a decision, different hand shapes and sizes must be accounted
for. There will also be a high inter- and intra-person variability
in performing these interaction gestures. In cases where there is
occlusion, it will be necessary to predict how the hand shape,
and thus the area being interacted with, changes.

Weight sensors in seats [1], RGB cameras [2], or depth sen-
sors [3] could be considered to monitor control interactions. We
have chosen to use a near infra-red (NIR) camera as it has the
required fidelity, is well suited to an automotive environment
and is cost effective. These issues are addressed further in
Section II. Fig. 1 gives examples of the center console using
RGB and NIR cameras.

Other works have attempted driver hand tracking [4], [5] or
have determined if an occupant’s hand is in the vicinity of a
control panel [6], but none have attempted to establish which
occupant is interacting with specific controls. In order to do
this accurately, a method of modeling hand shapes and gestures
is needed. Accurate hand shape modeling has been achieved
with depth cameras [3], but most relevant are works that model
certain gestures in low light conditions using standard infra-red
cameras [7], [8].

We propose a system, using a single camera mounted in the
ceiling of the cabin, to determine which occupant is interacting
with which control on the center console. This would enable
the full use of the dual-view touchscreen for both driver and
passenger. Another advantage is that duplicate controls would
no longer be needed (e.g., a single temperature or air condition-
ing dial would be sufficient in luxury cars with multiple climate
control zones), resulting in a cleaner cabin design and the space
to add a choice of other controls.

We adopt a background subtraction algorithm as the first
stage in the proposed method. The foreground mask is then
cleaned up using superpixel voting and the hand contours are
extracted, using optical flow if necessary. Our main contribution
lies in the next stages, where hand outlines are modeled with
a manifold generated via the diffusion maps process. The
manifold is constructed using a difference measure that takes
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Fig. 2. Schematic overview of the proposed method, which gives a decision on which occupant is interacting with a control when it is activated.

into account both overall hand shape and the parts of the hand
which interact with different controls. This gives an accurate
location for a sample hand’s interaction, and the path through
this manifold is used to provide gesture information. When
a control is activated, each hand is scored based on these
attributes in addition to the position of the control. The hand
using the control is determined to be the one with the highest
score. Fig. 2 illustrates an overview of the proposed method.

The rest of this paper is laid out as follows. Section II
presents an account of related literature, Section III gives an
overview of data we work with, and we detail the various
stages of our methodology in Section IV. Section V outlines
our experiments and results, and we present our concluding
arguments in Section VI.

II. BACKGROUND

The majority of computer vision based monitoring systems
for use in vehicles have focussed on safety [2], [4], [9]–[19].
Examples of this include drowsiness monitoring by observing
head pose and gaze direction [9]–[11] or via the PERCLOS
measurement [12]–[15] and occupant classification for auto-
matic airbag suppression [16]–[18]. In this work however, we
will be looking at monitoring the occupants in order to improve
the vehicle’s cabin layout and the occupant experience.

As no previous works have attempted to solve this problem
per se (see Section V for an explanation on how we adapt other
methods for comparison), we start by reviewing the suitability
of sensors typically available in vehicle cabins for this task.
We then look at computer vision systems for observing a
driver’s position in a vehicle. Next, we cover previous methods
specifically designed to track a driver’s hands, moving onto
shape-change based gesture recognition methods for use in
low light conditions and ways of representing these complex
hand shapes. As the tracking procedure in the proposed method
isolates hand shapes and positions, global feature based gesture
recognition techniques are not considered here.

An alternative to a computer vision based approach might be
to monitor the weight sensors in the driver and front passenger
seats, typically used to indicate whether these seats are occu-
pied [1]. It is possible that weight sensors applied to our task
could work for simple cases where just the driver or passenger
is interacting with a control. However, more complicated cases
where both occupants are interacting with controls simulta-
neously would be problematic—there would be no way of

deciding which occupant is interacting with which control. Ad-
ditionally, as cameras could eventually replace weight sensors
for the task of occupant detection and classification [16]–[18],
using a camera for this task could make it more suitable for
inclusion in cabin designs of the future.

Zhao et al. [2] classified the driver’s posture into one of four
categories (hands on the steering wheel, changing gear, eating,
and on the phone) and relied on head and hand detection and
relative positions. The aim of this work was to enhance driver
assistance systems, whereby the driver could be prompted to
pay attention to the road when eating, or warned that using a
mobile phone is prohibited and dangerous. Tran and Trivedi
[19] used two cameras to fit a simplified torso model using the
locations of the driver’s head and hands, again with the aim of
providing more information to a driver assistance system. The
hand detection parts in these methods, along with many others
[20], [21], rely on color information as the first stage in the
detection process. One obvious failure case is when the subject
is wearing gloves. Some skin colors can also be more difficult
to detect, but the greatest limitation which makes these methods
unsuitable for our use is that they struggle, or else completely
fail, during night time operation. Similarly, depth based meth-
ods for hand tracking using time of flight cameras, such as that
by Oikonomidis et al. [3], which looked at interlocking hands
with a frontal view in an indoor environment, are not practical
in a vehicle due to the direct sunlight they may encounter.

Perhaps the most relevant and robust work is that by
McAllister et al. [5], which looked at tracking a driver’s hands,
using a greyscale camera, in the vicinity of the steering wheel.
A background subtraction method was used, followed by a
simple circle fitting, which can give a rough approximation
to the hands’ positions, but this lacks the fidelity required for
our task. Crespo et al. [4] used background subtraction with
prioritizing of certain locations, such as around the steering
wheel and on the gear stick, for the same task. They used a NIR
camera with NIR illumination to ensure successful night time
operation, but again this tracking alone is not accurate enough
for our problem.

Cheng et al. [6] investigated monitoring controls by taking
histogram-of-orientated-gradients over an image patch con-
taining the control panel, with the aim of alleviating driver
distraction. However, they did not attempt to determine which
occupant was interacting with which control, only giving an
indication whether the occupants’ hands were in the vicinity
of the control panel.
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Fig. 3. Some examples from our hand shape training set, which consists of 900
images.

In addition to a hand tracking stage, we will also need a
way to model which part of the hand interacts with controls.
This is because just taking the closest hand from the hand
tracking stage provides insufficient accuracy when two hands
are interacting with controls close together. Manifolds provide
a way to represent nonlinear data in a reduced space, and are
thus ideal candidates for modeling human hand attributes. Key
works on gesture recognition in low light conditions are those
of Lee and his co-workers [7], [8] which looked at recognizing
grasping gestures. An infra red camera was used, and thus they
operated on the hand outline. Manifolds were pre-specified,
one for each gesture, and the path of a testing sample through
one of these manifolds represents the gesture being performed.
Choi et al. [22] used a manifold generated by the kernel isomap
method to classify strokes as gestures, but only looked at paths
through space, not how the hand shape changes. Etyngier et al.
[23] showed how a single manifold generated by the diffusion
maps process [24], [25] can be used to organize and model a
set of shapes with a large degree of variation, and applied this
approach as part of a level set segmentation framework.

III. DATASET

Only a simple set of hand shape training images is needed to
construct the hand shape manifold in our method (detailed in
Section IV-C). We perform this using 900 hand images taken
from one subject only with a webcam from a similar angle to
the main experiments (see Fig. 3).

To evaluate the proposed method, two datasets are intro-
duced. First, for training and testing, control interactions with
the dashboard of a Range Rover Sport were filmed (see Fig. 4).
To verify that the proposed method can be used in other
vehicles and with different control panels, a second dataset was
collected just for testing. This consists of footage from two ad-
ditional Sports Utility Vehicles (SUVs) and a Saloon car with a
lower ceiling height and more vertically mounted control panel

Fig. 4. Camera setup examples. (a) Cabin layout. The camera is mounted on
the center line of the vehicle; thus, its view is not obscured by the front seats.
(b) Day, no NIR filter or illumination. (c) Day, NIR illumination and filter.
(d) Night, NIR illumination and filter.

Fig. 5. Examples of other cabin layouts used to verify that the proposed method
works in different vehicles. (a) SUV 1. (b) SUV 2. (c) Saloon, normal camera
position—mounted between seats. (d) Saloon, camera mounted near the rear-
view mirror. See Section V for a discussion of how this affects the performance
of the proposed method.

(see Fig. 5). In both cases the camera was mounted at ceiling
height, just back from and in between the two front seat head-
rests. Fig. 4(a) gives a profile view of the camera position within
the cabin. This camera position was chosen because it allows
the camera to capture the hands before they start using controls
towards the edge of the control panel, which provides more
information to the method in Section IV-E (increasing gesture
classification accuracy), and ensures that the occupants’ hands
enter the frame from their respective sides. A further benefit is
that the camera can be incorporated into an area not commonly
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taken up by a sunroof. A consumer grade monochrome camera
with a 60◦ field of view lens, a NIR pass filter and NIR
illumination was used to capture footage in daytime and night
time, and the same camera was used without these additions
for daytime examples (see Fig. 4). Using NIR illumination
and filtering provides a number of benefits in an automotive
environment. The illumination allows for a shorter exposure
time as more light is available to the camera, which reduces
the amount of motion blur, and during night time operation it
allows the scene to be lit without creating a possible distraction
for the driver. There is also more consistency between night and
day time footage as a significant proportion of the scene lighting
is under control. We had 10 adult volunteers and one child with
a wide range of skin tones, jewelery and clothing.

As controls can be approached from any angle, we do
not need motion information to be included in our gesture
model. As such, we are only interested in how the hand shape
changes independent of its position, and this makes our method
unsuitable for comparison with standard gesture recognition
datasets, such as [26], [27]. In these works, the best perfor-
mance is obtained by taking global features over the whole
image—clearly not a suitable approach for the task addressed
here. Additionally, we found that hand shape change over time
was a much more reliable indicator of the gestures our test
subjects performed than positional trajectories. If we were to
incorporate hand trajectories, we would need a much larger
quantity of training gestures (which could also reduce accuracy
compared to the more consistent hand shape change informa-
tion). These would be necessary to handle the larger variation
between different test subjects, as well as in multiple runs by the
same subject. Reference trajectories from every control to every
other control would be needed, further increasing the volume of
training data required. Another potential issue is that the system
would be less portable, as additional training trajectories would
be needed for every control that is added or moved.

IV. PROPOSED METHOD

We proceed by first using background subtraction and a
superpixel-based method to obtain a cleaned foreground mask,
as explained in Section IV-A. Next, in Section IV-B, hand
contours are extracted from the foreground mask. Then in
Section IV-C, training hand shapes are used to generate a
manifold that takes into account both overall hand shape and the
parts of the hand which interact with controls. The procedure
for embedding new hands into this manifold is in Section IV-D
and a method for obtaining gesture information from mani-
fold embeddings is then given in Section IV-E. Finally, the
interaction confidence score, used to determine which hand is
interacting with a specific control, is presented in Section IV-F.
Fig. 2 gives an overview of the entire process.

A. Background Subtraction and Superpixel Cleaning

In the first stage of the proposed approach, we use the Pixel-
based Adaptive Segmenter [28] for background subtraction. It
was chosen as it allows small foreground objects (in our case
these are likely to be noise) to decay into the background model

Fig. 6. Background subtraction process. We do not use a median filter, instead
using SLIC superpixel voting to obtain a better foreground mask. (a) Original
image. (b) Foreground mask. (c) Median filter applied to the foreground
mask. (d) SLIC superpixel segmentation. (e) Superpixel voting applied to the
foreground mask. (f) Result.

quickly whilst larger objects persist. It consists of a background
model derived from previous frames, and dynamically updates
per pixel decision thresholds and learning rates. This results in
a foreground mask—see Fig. 6(b) for an example.

The foreground mask generated by the background subtrac-
tion process next needs to be cleaned up to remove noise.
One possible approach would be to apply a median filter to
the foreground regions [an example is given in Fig. 6(c)].
However, a disadvantage of this is that edge information is not
necessarily preserved. A more recent approach by Schick et al.
[29] introduced the idea of probabilistic superpixels.

Before background subtraction, the image is over-segmented
using the Simple Linear Iterative Clustering (SLIC) algorithm
[30] (we use the gSLIC implementation [31]). See Fig. 6(d) for
an example. This is essentially a k-means clustering of pixels
in the combined image and intensity space. We apply a high
intensity weighting in order to capture more edge information.
In [29], each superpixel is assigned a probability of being in the
foreground based on the number of pixels in the foreground
mask. A Markov Random Field then minimizes an energy
functional consisting of this probability and the color similarity
to neighboring superpixels. In our case, because we are just
looking for large foreground regions and have no guarantee
of intensity similarity between neighboring superpixels (e.g.,
due to a textured background and clothing patterns), it proves
sufficient to just take those superpixels with a foreground
probability above a certain threshold. This has an additional
benefit of reducing the frame processing time.

After the image is segmented into n superpixels, each pixel
p is assigned to the superpixel Pi containing it. Given a fore-
ground mask F , its cleaned form F̂ is then

F̂ =
⋃
i∈Q

Pi where Q =

⎧⎨
⎩i :

∑
p∈Pi

F (p)

‖Pi‖
> λ

⎫⎬
⎭ . (1)

Here λ = 0.5 is a threshold determined empirically. As our ap-
plication features large foreground objects with clearly defined
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TABLE I
GESTURE CLASSIFICATION SUCCESS RATES WITH A RANDOM
FOREST CLASSIFIER WHEN USING DIFFERENT FOREGROUND

MASK CLEANING PROCESSES

edges, slight variation in this value has no adverse effects.
Eq. (1) selects superpixels to make up the new foreground mask
F̂ if they satisfy the criteria of containing a minimum density
of pixels in the original foreground mask.

Table I compares the successful gesture classification rates,
using the method in Section IV-E with a Random Forest clas-
sifier applied to 5 previous frames. Results are given for the
superpixel-based method presented here, along with a median
filter and an erosion and dilation approach. Fig. 6 shows an ex-
ample of the superpixel-based method in operation. It is worth
noting that a background subtraction method may fail if the
hand is the same color and texture as the background—further
explanation and examples are given in Section V.

B. Hand Contour Extraction

When there is no occlusion, e.g., starting when a hand first
enters the frame at location e, contours can be extracted from
the cleaned foreground mask. Given the set of pixels in an arm
contour, A, the hand location and size can be taken as the circle
C(c, r) with center c and radius r satisfying

argmax
c,r

(
αr2 + dE(e, c)

) ∣∣∣∣rmin < r < rmax

and C(c, r) ⊂ A
. (2)

In (2), α is a weighting constant, dE is the Euclidean distance
and rmin and rmax are the predefined minimum and maximum
radii, chosen to be just below the smallest and above the largest
expected palm sizes. This avoids accidentally selecting a finger
or shoulder as a hand center. The hand contour is taken as
the outline of A enclosed within a bounding box around C,
resized relative to r and orientated with respect to the arm
angle. Fig. 7 shows examples in two arm contours. This is
similar to the method in [5], which attempts to maximize the
hand circle radius and fit of a straight line to the arm, whereas
Eq. (2) attempts to maximize the hand circle radius and distance
to arm entry point. However, neither the proposed method for
hand localization nor the method in [5] provide the accuracy
we require when two hands are part of the same contour. In
the event of such occlusions, an enhanced approach is needed,
so optical flow is used to infer the movement of the occluded
hand. First, sparse Lucas–Kanade optical flow [32] is calculated
for each superpixel. This information is used to assign each
superpixel to the contour it was in before the occlusion. If the
hand is visible, its outline is extracted, resized and rotated as
above. If not (i.e. when two separate arm contours overlap),
then r is assumed constant and the positional change in c
is computed from the flow within the contour containing it.
The hand shape change is predicted using the embedding path
described in Section IV-E.

Fig. 7. Hand localization. Circles C(c, r), bounding boxes (blue) and entry
points e in two arm contours [purple—denoted A in (2)].

Fig. 8. Hand interaction locations. (a) Hand with one interaction location.
(b) Hand with two interaction locations.

C. Manifold Generation

Each hand shape can have one [see Fig. 8(a)] or more [see
Fig. 8(b)] interacting areas, depending on the available control
types. Before any hand contours are used, they are resized by
finding the largest circle in their outline as in Eq. (2), and
scaling appropriately. As right and left hands are symmetrical,
we can generate one manifold with just left handed shapes
(those of the driver in a right hand drive vehicle), and vertically
flip any right hand (belonging to the passenger) prior to its
embedding.

We choose to proceed with a shape manifold based method,
rather than a global feature based approach such as [26],
because the shape of the hand is linked to the area with
which it interacts. With a properly constructed manifold, we
are able to organize hand outlines such that those nearby will
be both close in shape and have similar interacting locations.
The works by Lee and his co-workers [7], [8] demonstrate
how a well chosen manifold is able to represent a specific
gesture. Cylindrical manifolds are used to represent grasping
gestures, although other gestures, such as pointing, are not
investigated. A disadvantage to requiring a separate manifold
for each gesture type is that they need to be specified in
advance, and this can be difficult if the underlying hand shape
change is not as obvious as a grasp/ungrasp. Also, in our case,
people can perform the same gesture in different ways, which
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would require either constructing many manifolds per gesture
or a complicated embedding operation.

Here, we construct a single manifold to represent all hand
shapes no matter which control types they interact with (e.g.,
pressing a button or turning a dial), and rely on a classifier to
determine which gesture the path through the manifold repre-
sents. Note how we do not use a separate manifold for children
(although we still include child test subjects in Section V).
Given a suitable embedding scheme, knowledge of the occu-
pants’ ages does not add any useful information when deter-
mining which part of the hand is interacting with a control or
the gesture being performed. Including this extra manifold in
our pipeline would introduce the problem of deciding which
side of the adult/child cutoff a hand is, particularly in borderline
cases. It would also increase the amount of training data needed
in both the manifold construction and shape change stages, in
addition to the issues raised above.

We use the manifold learning method of [23] to create the
hand shape manifold from our training hand set via the diffu-
sion maps process. Briefly, this relies on a measure of difference
between training shapes, which are arranged such that when
this difference is low, shapes are close in the manifold, and
vice versa. The manifold construction technique in [23] has
not previously been applied to the task of modeling hands
or gestures, and we introduce a difference measure designed
to organize hand shape embeddings with respect to how they
interact with controls.

In [23], the difference measure between two contours U
and V is taken as the Sobolev W 1,2 norm, dW , between their
signed distance functions, DU and DV (which can be quickly
computed from the original contours using the Fast Marching
method [33]). This is given by [23] as

dW (U, V )2 = ‖DU −DV ‖2 + ‖∇DU −∇DV ‖2. (3)

We wish to also take into account the distance between the
hands’ interaction locations, so the difference measure dI is
introduced as

dI(U, V ) =

ω∑
t=1

⎧⎪⎨
⎪⎩
dEt

(U, V )
if both interaction

types t are annotated

Θt otherwise

(4)

where dEt
is the Euclidean distance between interaction lo-

cations of type t, Θt is the maximum distance between hand
interaction locations of type t, and ω is the number of interac-
tion types. We then combine dW and dI to give dWI , which is
the difference measure used to construct the manifold

dWI(U, V ) = dW (U, V ) + βdI(U, V ) (5)

where β is a weighting constant. Eq. (3) essentially places
similarly shaped contours close to each other on the manifold.
If the manifold is generated with just Eq. (3), then embedding
methods that rely on combining information from multiple
training samples can result in the interaction location being
calculated as outside of the hand contour. Eq. (4) is introduced
to ensure contours with similar interaction locations have close
embeddings, and thus alleviates this concern.

Fig. 9. Training sample embeddings in manifolds generated by the diffusion
maps process with the difference measure dWI . (a) Two-dimensional manifold.
(b) Three-dimensional manifold.

Now we have a difference measure, the manifold is con-
structed using Eq. (5). Given the training set Ω containing
μ samples, we construct the difference matrix M using a
Gaussian kernel equipped with dWI with σ being approximated
by the median difference between all μ samples in T

Mij = exp

[
−d2WI(Ωi,Ωj)

2σ2

]
. (6)

As a way of denoising the manifold, only the largest μ/10
entries in each row of M are retained. This is then made
symmetrical by adding M to its transpose, then normalized via
the Beltrami normalization process. We call this normalized
difference matrix M̄ . Eigen decomposition is then performed
on M̄ , with ν-dimensional manifold being taken as the ν
eigenvectors corresponding to the ν largest eigenvalues.

Fig. 9 shows example 2D and 3D manifolds generated
by this process. In our experiments, we found that using a
manifold with a dimension higher than 3 provided negligible
improvements.

D. Sample Embedding

Previous approaches to embedding a sample into a shape
manifold (outlined in [23]) have either been a nearest-neighbor
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Fig. 10. Some sample paths through a 3-D manifold. The top row of images correspond to a clockwise dial turn. The middle row corresponds to a button press
with the index finger, and the bottom row shows how finer details such as a thumb extending can be determined.

embedding, which can lack accuracy, or via the Nyström exten-
sions method. This requires calculating the difference between
the sample to be embedded and all the training samples, and
is thus unsuitable for a real time application. We require a
method that is more robust to noise than the nearest-neighbor
embedding, yet still able to run in real time, and so we use a
k-nearest neighbor embedding.

Along with an ν-dimensional training set embedding, we
also store the possible hand interaction locations for each
sample in the training set. Now, given a sample S, we find
the ν + 1 nearest neighbors of the sample in the training set,
KS , and the reciprocals of their distances from S, denotedRKS

via the difference measure used to create the manifold [dWI in
Eq. (5)]. We also find the embeddings of the training samples
KS , denoted ΦKS

, and their interaction locations for each
control type t, denoted Ψt

KS
. The sample embedding ΦS and

sample interaction location Ψt
S of S are then

ΦS = R̂KS
· ΦKS

and Ψt
S = R̂KS

·Ψt
KS

(7)

where R̂KS
is the normalized form of RKS

. To enable this
process to run in real time with a large training shape set, a
vantage-point (or metric) tree [34] is constructed during the
initialization stage using dWI and the training samples. This
then provides a fast k-nearest neighbor search when queried.

E. Path Classification

At a given moment, it is necessary to determine which action
is being performed. We would like to use the path through the
manifold to make this decision. To build our path classifier,
we first gather some example gestures, for example pressing
a button with the index finger or turning a dial clockwise.

Given a sample gesture g that consists of f frames, the
manifold embedding gi for each frame i is calculated. As
gestures can occur at different rates, we use the training gestures
to generate many training samples of different lengths with
which to compare testing samples. In each generated sample,
some embeddings are randomly left out to allow for noisy hand
shape data being fed into the manifold, for example by a bad

hand location, dropped frame or failed segmentation. The set of
generated samples G from gesture g is defined as

Gg = {P (k, j, b)|l1 ≤ j ≤ l2, 0 ≤ k ≤ f − j} (8)

where l1 and l2 are the minimum and maximum sample lengths
respectively in frames to be classified. P (k, j, b) denotes the
path from gk to gk+j , with each coordinate having probability
b of being removed and replaced by a Hermite interpolation
of its neighbors. This step prevents the classifier over-relying
on a single coordinate. In our case, we found b = 0.2 to be
appropriate. In the event of an occlusion, the change in hand
shape—and hence its interaction location—can be estimated by
finding the nearest neighbor (with the gesture type as indicated
by the classifier) in the generated set to the testing sample. The
sample that this nearest neighbor was generated from can then
be used, stretched as necessary. Fig. 10 gives three example
hand shape change embedding paths.

We evaluate the classification success rates of nearest-
neighbor, radial basis function support vector machine (SVM),
decision tree, and random forest classifiers, as well as a
comparison against dynamic time warping (DTW) on the non-
generated example gestures. Fig. 11(a) shows these classifica-
tions on whole single interactions, from the time the hand enters
the frame until the control is pressed. Fig. 12 shows two video
examples. The embedding path is subsampled, and the number
of sample points varied. Here, the nearest-neighbor is the best
choice as it performs well at both low and high sample rates.

Fig. 11(b) shows the results of just classifying the previous
few frames at a random interruption before the control is
activated to simulate an occlusion. This interruption is restricted
to occurring between the halfway point in the sequence and
when the control is used. As can be seen in Fig. 12, the earlier
this interruption is made the more difficult it is to make a correct
classification. When looking at a small number of previous
frames (less than 10 frames at 60 fps, i.e. 0.17 s), the random
forest classifier performs best, but it is reliably outperformed
by the nearest-neighbor and SVM classifiers when looking
further back (greater than 10 frames). In both cases, 5-fold
cross validation was performed 100 times on a verification set
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Fig. 11. Comparison of classifiers on the whole interaction and a set number
of previous frames. Footage was taken at 60 frames/s. (a) The whole interaction
(hand entering the frame until control activation) is classified, with a variable
number of sampling points. (b) The interaction is classified at a random
interruption after the hand has entered the frame. The number of previous
frames used before the interruption is varied.

containing 25 button presses, dial turn right, and dial turn left
interactions from one subject.

F. Interaction Confidence Score

Now, when a control is used, each hand can be scored based
on how well the gesture agrees with the control type and the
distance between the hand’s interacting point and the control.
Given a control activation at location x, this score is defined as

Interaction score = τγ︸︷︷︸
a

(
k

f − j

)δ

︸ ︷︷ ︸
b

1
dE(x, l)︸ ︷︷ ︸

c

. (9)

In (9), τ is the classifier confidence score that the current gesture
being performed is used to interact with the type of control
being activated. The Euclidean distance is given by dE , and
l is the interaction location of current hand shape with the
queried control type from Eq. (7). The weighting constants

Fig. 12. Frames taken from two of the video sequences used to generate
Fig. 11(b) with the hand shapes enlarged for clarity. The top row is part of a
button press with the index finger, and the bottom row is part of a clockwise dial
turn. The gesture classification is made at a random point during the sequence.

γ and δ are learned via a grid search from a validation set. For
this search, the validation set is split randomly in half, with
the condition enforced that all control types must appear in
each half. The first half is taken for training and the second
half for testing, with the mean taken over five runs. Whichever
hand obtains the highest interaction score is determined as
the hand interacting with the control at location x. Part a of
Eq. (9) is the weighting of the gesture contribution, and pri-
oritizes a hand which is performing a gesture likely to be
interacting the control type being used. Part b corresponds
to how far through the gesture path the current hand shape
embedding is (or the embedding of a predicted hand shape
change in the event of an occlusion). As all hand shape change
training samples end with a control interaction, this prioritizes
a hand that is more likely to be currently using a control. Part c
prioritizes a hand with its interaction location close to the
current control being activated. The form of Eq. (9) was initially
chosen as it provides a simple way of combining the interaction
location and hand shape change information, where only two
weighting parameters need to be found. It is less susceptible
to overfitting with a small validation set and outperformed an
SVM applied to the same problem.

V. EXPERIMENTS

To construct the hand shape manifold, 900 images from one
subject are used, as introduced in Section III with examples
shown in Fig. 3. Due to the diffusion maps process, more could
be added with little effort to include additional poses as re-
quired. For the gesture and interaction training and verification
sets, 25 interactions with each control type (button, dial and
touchscreen) from the same participant are used. For the valida-
tion set required by Eq. (9), 50 complex interactions are used.
The main testing dataset consists of 1544 control interactions
by 10 adults and one child with a wide variety of skin tones,
clothing and jewelery. Table II gives the number of times items
of clothing and jewelery occur in the test set. Of these, 596 are
daytime and 603 night time with NIR illumination and filtering,
and 345 are daytime at normal greyscale. Our data is captured
at 60 fps, so when testing at 30 fps one out of every two frames
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TABLE II
NUMBER OF TIMES ITEMS OF CLOTHING AND JEWELERY APPEAR ON A

HAND INTERACTING WITH A CONTROL IN THE TEST SET

TABLE III
SUCCESSFUL DECISION PERCENTAGE ON OUR DATASET AT 30

FRAMES/S. C.H. DENOTES THAT THE METHOD JUST USES THE CLOSEST

HAND WHEN MAKING THE DECISION. DAY + NIR REFERS TO THE

DAYTIME FOOTAGE WITH NIR ILLUMINATION AND FILTERING, NIGHT +
NIR REFERS TO THE NIGHTTIME FOOTAGE WITH NIR ILLUMINATION

AND FILTERING, AND DAY − NIR REFERS TO DAYTIME FOOTAGE WITH

NO ILLUMINATION OR FILTERING. THE NUMBER OF INTERACTIONS

FOR EACH CAMERA SETUP IS IN BRACKETS

is ignored and three out of every four ignored when testing at
15 fps.

We compare the effectiveness of the proposed method with
and without knowledge of hand interaction locations. When
making a decision without this information, we choose the
hand that is closest to the control when it is activated (marked
as C.H. for Closest Hand in the results table). We also use
this same criteria applied to McAllister’s driver hand tracking
method [5]. Table III shows these results, clearly indicating
the substantial improvement obtained by including interaction
location information over the naive closest hand approach. This
improvement is consistent across the day time footage with
infra-red illumination (98.5% compared to 79.3%), night time
footage with infra-red illumination (96.8% compared to 88.9%)
and the unilluminated day time footage (95.0% compared to
87.8%). On average, across all test footage, the driver or pas-
senger is chosen correctly 85.0% of the time when just looking
for the closest hand, and this increases to 97.1% when including
the interaction location and gesture confidence in the decision
making process.

Table III also highlights improvements in the hand segmen-
tation and locating components of the proposed method over
[5]. For example, when just taking the closest hand to make a
decision, improved results are observed across all footage types.
[5] makes the correct decision for 65.6% of the interactions in
the test set, whereas the proposed method scores 85.0%.

There are two main reasons for this improvement. The first is
better hand segmentation due to the use of a more advanced
background subtraction method and the preserving of edge
information. The second is how the two approaches handle
occlusions. Using the motion of the visible part of the arm
to adjust the position of an occluded hand results in a more
accurate hand location than the distance transform approach
applied to the foreground mask in [5].

Table IV details the effectiveness of the proposed method at
different frame rates. Across all test sequences, the proposed
method makes the correct decision 95.9% of the time on footage

TABLE IV
SUCCESSFUL DECISION PERCENTAGE OF THE PROPOSED METHOD

AT DIFFERENT FRAME RATES

Fig. 13. Proposed method working on examples from our dataset. In each
case, the right image is captured a few frames after the left. (a) Occlusions.
(b) Collisions. (c) Foreign objects. (d) Pointing at other cues.

provided at 15 fps, and this rises to 97.1% at 30 fps and 97.7%
at 60 fps. Increasing the frame rate results in a higher successful
decision score as the gesture classifier performs better with
more hand shape samples, as illustrated in Fig. 11.

Fig. 13 demonstrates the proposed method handling complex
situations such as hand crossing and occlusion [see Fig. 13(a)],
the driver and passenger contesting over a control with contact
occurring [see Fig. 13(b)], objects being passed around [see Fig.
13(c)] and distracting hands [see Fig. 13(d)].1

1See the supplementary material for video examples.



330 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2017

TABLE V
SUCCESSFUL DECISION PERCENTAGE IN DIFFERENT CABINS, AS

INTRODUCED IN FIG. 5. FOR THE SALOON CAR IN THIS EXPERIMENT,
THE NORMAL CAMERA POSITION WAS CHOSEN [SEE FIG. 5(C)]

Fig. 14. Top row shows nighttime NIR footage with gloves, and the bottom row
shows the corresponding foreground masks. Note how the black glove does not
show up clearly in the foreground mask when it is over an area of the same
color and texture.

Table V shows the results when using the above methods
in the additional vehicle cabins introduced in Fig. 5. A sim-
ilar trend is observed to the main test footage—the proposed
method achieves average 93.3% with the interaction confidence
score and 89.2% without. The closest hand implementation of
[5] scores an average rate of 79.5%. We also trialled a more
forward camera mount in the Saloon [see Fig. 5(d)], but results
were not as good since the above methods scored 87.4%, 78.8%
and 82.3% on 198 test interactions. This can be attributed to
a number of factors, including the hand shape manifold and
gesture training relying on hand shapes taken from a different
viewpoint. Also, the hand appears in the frame later (which
provides less gesture information) and with less, if any, of
the arm visible (which can cause a less accurate optical flow
calculation).

In general, if the hand tracking succeeds, the correct decision
is made. However, a failure in the hand segmentation stage
can result in an incorrect decision. An example is given in
Fig. 14, where a texture-less glove, the same color as the
background, is not clear in the foreground mask. This is an
inherent disadvantage to using a background subtraction based
method. Nevertheless, as in [4] and [5], we found background
subtraction to be the preferred choice for hand segmentation.
Edge based methods that use training shape examples [35]
struggle to reliably segment the large variety of possible hand
configurations, particularly against a backdrop of a control
panel with well defined edges. Additionally, segmentation tech-
niques that rely on skin color (used in [2], [19], [20]) are clearly

not suitable for use with the greyscale images provided by NIR
cameras.

There are two basic approaches to background subtraction.
The first is to have a static model, learned from example
images with different lighting conditions, and new frames are
compared against this model. This approach functions well
when there is a sudden large change in the scene lighting
(when entering or leaving a tunnel, for example), but cannot
handle an evolving background. This makes it unsuitable for
an automotive environment, as the background will change
throughout the life of the vehicle, degrading the performance
of the static model over time. The second approach (used here)
is to have a constantly evolving model of the background. In
the event of a sudden change in lighting, the background model
will take a few frames to be updated, resulting in a foreground
mask containing errors for this period. This approach is still
preferable for our use case, due to the background changing
throughout the life of the vehicle. This constantly evolving ap-
proach can still handle small or slower changes to illumination,
and the performance under these conditions can be improved by
maintaining more control over the scene lighting. One example
of how this can be achieved is with more powerful illumination,
which makes any natural change less significant.

Assuming a reasonable hand segmentation, if just one hand
is in view then the decision is trivial and a naive closest hand
method is sufficient—no knowledge of interaction location or
the hand shape change is necessary. Similarly, this information
is not needed if both hands are in view and not close. The
interaction location becomes important when the hands get very
close (if it is not possible to accurately segment one hand from
the other) and when contact is made. The hand shape change
information is required when significant occlusion occurs.

VI. CONCLUSION

We presented a method that determines the interaction of
the driver and the passenger with the controls on the centers
panel of a car—the first attempt in the literature to distinguish
between individual controls. This will enable the driver and
passenger to interact with both sides of a full view touchscreen,
and allow manufacturers to remove duplicate controls.

The proposed method uses a background subtraction algo-
rithm, followed by a novel use of a shape manifold to determine
which part of the hand is interacting with a control, as well
as providing gesture information. An evaluation was performed
on a challenging dataset, and inclusion of information obtained
from this manifold provided improved results over a closest
hand approach.

We suggest a number of possibilities for future work. One is
to investigate if the proposed method is capable of recognizing
a wider variety of gestures that incorporate motion as well as
hand shape change (e.g. swipe to open the sunroof). Another
possibility is to focus on safety. For example, a distracted driver
might interact with a control in a different manner to an alert
driver, and it would be interesting to see whether the hand shape
change considered in this paper can be a reliable indicator for
this. Such an indicator can be a trigger to prompt a distracted
driver to refocus on the road.
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