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A Sensitivity-Analysis-Based Approach for the
Calibration of Traffic Simulation Models

Biagio Ciuffo and Carlos Lima Azevedo

Abstract—In this paper, a multistep sensitivity analysis (SA)
approach for model calibration is proposed and applied to a
complex traffic simulation model with more than 100 parameters.
Throughout this paper, it is argued that the application of SA
is crucial for true comprehension and the correct use of traffic
simulation models, but it is also acknowledged that the main
obstacle toward an extensive use of the most sophisticated tech-
niques is the high number of model runs usually required. For this
reason, we have tested the possibility of performing a multistep SA,
where, at each step, model parameters are grouped on the basis
of possible common features, and a final SA on the parameters
pertaining to the most influential groups is then performed. The
proposed methodology was applied to an urban motorway case
study simulated using MITSIMLab, a complex microscopic traffic
simulator. The method allowed the analysis of the role played by all
parameters and by the model stochasticity itself, with 80% fewer
model evaluations than the standard variance-based approach.
Ten model parameters accounted for a big share in the output
variance for the specific case study. A Kriging metamodel was
then estimated and integrated with the multistep SA results for
a global calibration framework in the presence of uncertainty.
Results confirm the great potential of this approach and open up
to a novel view for the calibration of a traffic simulation model.

Index Terms—Calibration, global sensitivity analysis (SA),
traffic simulation, uncertainty management.

I. INTRODUCTION

CALIBRATION and validation procedures are increasingly
ascending transportation modelers’ and practitioners’ top

priorities, as the use of such tools is quickly spreading and
its models progressively improved. Furthermore, the access
to both new and advanced modeling techniques and detailed
traffic and behavioral data is increasing the level of detail of
improved traffic simulation models [1], [2]. Furthermore, traffic
simulators are increasingly being applied in many different
traffic situations, and consistency with the available data needs
to be assured. These challenges have been linked to the need
of a consistent understanding of the simulators performance,
along with the appropriate calibration and validation procedures
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to monitor its uncertainty. Sensitivity analysis (SA) is the tool
used with this aim [3].

The one-at-a-time (OAT) approach remains the most adopted
method when dealing with microscopic simulation models.
OAT measures are based on the estimation of partial derivatives
and assess how uncertainty in one factor affects the model
output, keeping the other factors fixed to a nominal value. The
main drawback of this approach is that interactions among
factors cannot be detected, since they require the inputs to be
simultaneously changed [3]. In addition, this approach pertains
to a family of SA techniques usually referred to as local SA,
which are used to derive information on the behavior of the
model around a certain point rather than for exploring its input
space. However, its simplicity and parsimony makes it the
preferred choice for practitioners. The OAT approach has been
applied with microscopic simulation model by [4] and [5] in
order to rank model parameters in terms of their effects on the
model outputs and to select the parameters to be calibrated,
respectively. In [6], the same approach is followed in order to
get insight on the meaning of the values of parameters resulting
from the calibration of car-following models.

A more advanced method also found in the literature is the
analysis of variance (ANOVA). For details on experimental
design techniques and ANOVA, one may refer to technical
books such as [7]. ANOVA has been used in [8] and [9] to
draw inference about the first-order effect of a set of traffic
microsimulation model parameters. Interaction effects were not
captured since a two-level full factorial design was adopted in
both studies. A three-level factorial design was used in both [10]
and [11], but the second-order interaction effects could be only
evaluated in [11], as a fractional design was adopted in [10].
Another study that used ANOVA to undertake a model SA was
carried out by [12]. In this study, five levels per parameter were
taken into account, and a Latin hypercube sampling algorithm
was used to define the experimental design. However, also
in this case, the interaction effect of the parameters was not
evaluated.

Alternatively, a more efficient SA method based on variance
decomposition may be also found in the literature. In traffic
modeling, the variance decomposition approach has recently
been used by [13] for the SA of car-following models.

All the aforementioned work refer to applications with either
one or two behavioral models with few parameters or consid-
ering just a subset of them. In particular, when dealing with
complex traffic simulation models, it is a common practice
to make a prior selection of the parameters to be involved in
the analysis. The selection is based on a priori knowledge of
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the model, on advice, or on common sense by developers [3],
[13]. This is a fairly dangerous practice, as many interactions
among groups of parameters may remain hidden even to the
most expert model users. The problem is that complex traffic
simulation models involve dozens of parameters, and a full
SA would require too many model evaluations. Although the
importance of the accurate identification of this subset of pa-
rameters was identified in the past [14], only a few number
of recent studies focus on the systematization of such pro-
cedures [13]. Global methods may provide far more insight
for nonlinear models, but they can require large numbers of
model evaluations. In addition, the interpretation of such global
sensitivity tests can be difficult due to the high number of
parameters involved and the potential complexity of the causal
relationships.

To overcome these issues, we propose a multistep SA ap-
proach. In this framework, the process of identifying sensitive
parameters is broken down into separate SA with increasing
detail as the most sensitive parameters are being identified.
This process is based on grouping the parameters and applying
SA techniques at each step and applying a final SA on the
individual parameters belonging to the subset of the most
influential groups. The SA technique used in this case study is
the variance-based approach based on Sobol’s decomposition
of variance [15]. The general proposed framework is described
in detail in the next section, and the mathematical details of
the variance-based formulation are presented in Section III.
The method was tested in the SA of a simulated urban mo-
torway using the microscopic traffic simulator MITSIMLab
[16] (described in Section IV), and the results are presented
in Section V. The multistep SA framework was then extended
to the global calibration of MITSIMLab using a Kriging-based
approach (see Section VI). Finally, the main conclusions from
this work are presented in Section VII.

II. MULTISTEP GLOBAL SA

To overcome the mentioned limitations of generic SA ap-
proaches, a multistep approach for complex traffic simulation
models SA is proposed.

In the first step, parameters are grouped with respect to the
submodels they are part of (e.g., same submodel, same physical
interpretation, etc.), and an SA is carried out considering the
different groups rather than the different parameters. Then, the
most influential groups on the model outputs are identified, and
a new SA on all the parameters of these groups is carried out.
If from the first analysis still too many parameters result, a new
grouping and an additional group SA may be carried out. After
a further reduction of the parameters set, a final SA can identify
the subset of final model inputs to be estimated with particular
care (see Fig. 1). The proposed approach applies to any type
of traffic simulation model and, in general, to any modeling
framework composed of different independent submodels in-
teracting among each other. It is thought for models in which
the total number of parameters makes the direct application of
the selected SA technique unfeasible. It is worth pointing out
that the increased design efficiency of the group SA method
comes at the cost of information about the interaction between

Fig. 1. General framework for the multistep global SA.

parameters belonging to the same group. In fact, only the full
variance-based SA will account for this effect. If one suspects
the presence of such interaction within groups identified as
nonsensitive, it is, however, possible to test it with full SA
for the specific submodel at the burden of a higher number of
simulations.

As shown in Fig. 1, the SA step is based on the computation
of first- and total-order sensitivity indices with a variance-
based approach [3]. This approach requires the evaluation
of the model N × (k + 2) times, where k is the number of
model parameters, and N is the dimension of the Monte Carlo
experiment [3].

The methodology is composed of the following steps.

1) Group model parameters on the basis of their similarities.
2) Create a map between a number in the range [0, 1] and a

combination of the parameters within the same group.
3) Apply variance-based SA to the groups to distinguish

those accounting for the highest share of model variance.
4) Consider only the parameters in the influential groups.

a) If the number is sufficiently small, apply variance-
based techniques to the new set of parameters.

b) If the number is still too high, go back to step 1,
applying steps 1–4 to the new parameter subset.

5) Define the final set of parameters to be included in the
subsequent analyses.

A key step in the methodology is represented by step 2. The
map between a number in the range [0, 1] and a combination
of parameters determines the quality of the sensitivity indices.
In general, it is necessary to have a sufficient exploration of
the parameters space. For a specific mapping, the value to
be assigned to each parameter is extracted from a predefined
distribution.

III. VARIANCE-BASED METHODS ON THE SOBOL

DECOMPOSITION OF VARIANCE

The original formulation of the decomposition of variance
is due to Sobol [15], who provided the analytical derivation
and the Monte-Carlo-based implementation of the concept. The
latest setting for its practical implementation, instead, is due to
[3]. Given a model in the form Y = f(Z1, Z2, . . . , Zk), two
factors are said to interact when their effect on Y cannot be
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expressed as a sum of their single effects. Interactions represent
important features of traffic models and are more difficult to
detect than first-order effects. For example, by using regression
analysis tools, it is fairly easy to estimate first-order indices, but
not interactions. With Y being a scalar, a variance-based first-
order effect for a generic factor Zi can be written as

VZi
[EZ∼i

(Y |Zi)] (1)

where Zi is the ith factor, and Z∼i is the matrix of all factors
but Zi. Furthermore, it is known that the unconditional variance
can be decomposed into main effect and residual, i.e.,

V [Y ] = EZi
(VZ∼i

[Y |Zi]) + VZi
[EZ∼i

(Y |Zi)] . (2)

Equation (2) shows that for Zi to be an important factor, we
need EZi

(VZ∼i
[Y |Zi]) to be small, that it is to say that the

closer VZi
(EZ∼i

[Y |Zi]) to the unconditional variance V [Y ],
the higher the influence of Zi. Thus, we may define our first-
order sensitivity index of Zi with respect to γ as

Si =
VZi

[EZ∼i
(Y |Zi)]

V [Y ]
. (3)

Sensitivity indices as in (3) can be calculated per each factor
and per each factor combination. This, however, would need a
huge amount of model evaluations. In order to reduce the efforts
required, a synthetic indicator to be coupled with the first-order
sensitivity index is the total effects index, which is defined as
follows [1]:

STi
= 1 − VZ∼i

[EZi
(Y |Z∼i)]

V [Y ]
=

EZ∼i
(VZi

[Y |Z∼i])

V [Y ]
. (4)

Total effects index of the input factor i provides the sum
of the higher and first-order effects (interactions) of factor Zi.
When the total index is STi

= 0, the ith factor can be fixed
without affecting the outputs’ variance. If STi

∼ 0, the approxi-
mation made depends on the value of STi

. It is worth noting that
while

∑k
i=1 Si ≤ 1,

∑k
i=1 STi

≥ 1, both being equal to 1 only
for additive models. Since the analytical feasibility of traffic
flow models limits the use of the formulas for the calculation
of the variances in (2), the application of this method can be
effectively performed in a Monte Carlo setting.

The approach adopted in this paper has been specified in [3]
and [13] to avoid brute-force computation of the multidimen-
sional integrals of the Monte Carlo experiment for the space
of the input factors and can be summarized in the following
points:

1) Generate a (N, 2k) matrix of random numbers (k is the
number of inputs) and define two matrices of data (A and

B), each containing half of the sample, using sequences
of quasi-random numbers [15]. N is called a base sample.

A =

⎡
⎢⎢⎢⎣
Z

(1)
1 Z

(1)
2 · · · Z

(1)
k

Z
(2)
1 Z

(2)
2 · · · Z

(2)
k

· · · · · · · · ·
...

Z
(N)
1 Z

(N)
2 · · · Z

(N)
k

⎤
⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎣
Z

(1)
k+1 Z

(1)
k+2 · · · Z

(1)
2k

Z
(2)
k+1 Z

(2)
k+2 · · · Z

(2)
2k

· · · · · · · · ·
...

Z
(N)
k+1 Z

(N)
k+2 · · · Z

(N)
2k

⎤
⎥⎥⎥⎥⎦ .

2) Define a matrix Ci formed by all columns of A, except
the ith column, which is taken from B (with i varying
from 1 to k), i.e.,

Ci =

⎡
⎢⎢⎢⎢⎣
Z

(1)
1 Z

(1)
2 · · · Z

(1)
k+i · · · Z

(1)
k

Z
(2)
1 Z

(2)
2 · · · Z

(2)
k+i · · · Z

(2)
k

· · · · · · · · · · · · · · ·
...

Z
(N)
1 Z

(N)
2 · · · Z

(N)
k+i · · · Z

(N)
k

⎤
⎥⎥⎥⎥⎦

for i = 1, . . . , k.

3) The model is evaluated for all the [N × (k + 2)] combi-
nations of input variables as given by matrices A, B, and
C to produce the (N × 1) vectors of outputs yA = f(A),
yB = f(B), and yci = f(Ci), for i = 1, . . . , k. These
vectors are sufficient for the evaluation of all the first-
order Si and total effects STi

indices. Because there are
k factors, the cost of this approach is N +N runs of the
model for matrices A and B plus k times N to estimate
k times the output vector corresponding to matrix Ci.
Hence, the total cost is N × (k + 2), much lower than the
N2 runs of the brute-force method. Since N is usually
not lower than 1000, the number of evaluation required
by this efficient approach is not, in any case, negligible,
particularly for complex and expensive models. For this
reason, in the common practice, the approach presented
here can be considered relevant.

The sensitivity indices presented in (3) and (4) can be evalu-
ated using the following formulations [3], [17]:

Si =

1
N

∑N
j=1 y

(j)
B

(
y
(j)
Ci

− y
(j)
A

)
(

1
2N

∑N
j=1

(
y
(j)
A+B

)2

−
(

1
2N

∑N
j=1 y

(j)
A+B

)2
) (5)

STi =

1
2N

∑N
j=1

(
y
(j)
A − y

(j)
Ci

)2

(
1

2N

∑N
j=1

(
y
(j)
A+B

)2

−
(

1
2N

∑N
j=1 y

(j)
A+B

)2
) . (6)

In the scalar product yA · yCi
, the values of Y computed

from A are multiplied by the values of Y for which all factors
but Zi are resampled while the values of Zi remain fixed.
If Zi is noninfluential, then high and low values of yA and
yCi

are randomly associated. If Zi is influential, then high (or
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low) values of yA will be preferentially multiplied by high (or
low) values of yCi

, increasing the value of the resulting scalar
product. The reader should refer to [3] and [17] for a detailed
explanation of (5) and (6).

There are no universal recipes for the choice of N . It can
vary from a few hundreds to several thousands. In order to
assess if the indices calculated for a given N are sufficiently
stable, it is worth calculating their confidence interval. This
can be easily carried out via a parametric bootstrapping. In
practice, in order to calculate the sensitivity indices presented
in (5) and (6), per each step of the process in the range [1, N ],
the term in the summation at the numerator of both equations
needs to be available. Performing a parametric bootstrapping
of the indices means sampling N ′ combinations of these terms
of the same size N with replacement. The confidence interval
will be then created given the distribution of the N ′ indices.
If the confidence interval will result sufficiently small, then
the number of model evaluation can be considered sufficient.
For this paper, the results of the indices calculation will be
presented in the graphical form.

IV. MICROSIMULATION CASE STUDY

The proposed methodology is applied to the identification of
the parameters to be considered in the aggregate calibration of
a complex traffic simulation model of a specific traffic day in an
urban motorway near Porto, Portugal.

A. Microsimulation Model

To test the presented method, an advanced driver behavior
model, i.e., MITSIMLab [16], was chosen. Its integrated driver
behavior model presented in [16], [18], and [19] is of particular
interest due to the high interaction of all advance models de-
scribing the driver behavior and the high number of parameters
(101). It integrates four levels of decision making, namely, tar-
get lane, gap acceptance, target gap, and acceleration, in a latent
decision framework based on the concepts of short-term goal
and short-term plan. This model has been successfully applied
in several traffic scenarios and complex driving behaviors [20].
The description of all 101 parameters considered is presented
in the Appendix.

Almost all previous calibrations of MITSIMLab considered
all demand parameters [origin and destination (OD) entries]
and a small subset of supply (driving behavior) parameters.
This subset was typically defined based on the purpose of
each calibration without any statistical analysis. SA of the
MITSIMLab model were found in a couple of previous stud-
ies. In [21], an iterated OAT approach was used to a set of
parameters from four specific models (car-following and free-
flow acceleration, gap acceptance, and lane utility models),
for the analysis of weather effects in a freeway corridor in
Virginia, USA. The constant parameters (αCL, αRL) of the car-
following model, the desired speed constant parameter (βff)
of the free-flow acceleration, and the gap acceptance constant
parameters (αlead, αlag) were found to be significant against
loop sensor data (counts and speeds). In [22], experimental
design techniques were carried out to test the sensibility of

eight parameters of a MITSIMLab car-following model using
speed, count, and density loop sensor data in a short congested
corridor in California, USA. A small set of parameters of the
car-following deceleration model (hlb

cf , αdec
cf , and γdec

cf ) was
found as sensitive.

B. Network and Traffic Data

The network chosen for this study was the A44 road in
the region of greater Porto, Portugal. It is a two-lane urban
motorway with 3940 m and five main interchanges (see Fig. 2).

Located in the south bank of the Douro River, this road
represents one of the main south entrances for the commuters
living in the south-western region of greater Porto and to heavy
vehicles heading to the main national port. Each stretch length
is less than 1500 m. A44 is a dual-carriageway motorway,
with two 3.50-m-width lanes, 2.00-m-width shoulders in each
direction, and an additional lane in just one of the five stretches.
The main section has acceleration and deceleration lanes in
all interchanges, although often as short as 150 m. On- and
off-ramps are connected to local roads, generally with tight
curves, intersections, or pedestrian crossings, which tend to
significantly reduce vehicle speeds.

The demand data were estimated using the generalized least
squares (GLS) simultaneous estimation method [23] applied
to 5-min aggregated daily loop counts and OD sample data
from license plate matching. A simulation for the morning peak
period was set up in MITSIMLab (warming period of 30 min).
Since the possible measures of performance (MoPs) are all
the time series of counts and speeds at the existing eight
different detectors (see Fig. 2), a strategy to aggregate them
in a single measure needs to be put in place. To this aim, per
each simulation, we computed a measure of goodness of fit
(GoF) between real and simulated time series. In order to assess
the dependence from the GoF measure selected, we used three
of them, namely, the root-mean-square error, the root-mean-
square percentage error, and the Theil inequality coefficient U ,
(please prefer to [24] for their formulation and description).
Eleven different outputs were considered to assess the differ-
ences between the results achieved at different locations: GoF
measures computed on each single detector, on all the detectors
of each road direction, and on all the detectors of the network.
In total, therefore, we performed the SA of 66 different GoF
measures.

For the computation of the sensitivity indices task,
MITSIMLab was installed under Scientific Linux in a cluster
with 80 cores with 1 GB of random access memory. This
resource allowed for a faster processing of all simulations.

Fig. 2. Schematic of the A44 motorway.
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V. RESULTS OF THE SA

A. Group SA: Variance-Based SA

Fifteen groups were identified on the submodels specified in
MITSIMLab (see the Appendix). The parameter grouping was
based on the intrinsic formulation and the separate estimation
of these submodels during MITSIMLab’s development. When
mapping the Sobol quasi-random sequences, parameters were
assumed to be uniformly distributed with lower and upper val-
ues extracted from previous estimations ([16], [18], and [19]).
A total of 34 816 (N = 2048) simulations (nonreplicated) were
carried to compute the group sensitivity indices.

In Fig. 3, results of the group SA considering the Theil
inequality coefficient as GoF measure calculated on counts and
speeds from all the detectors are reported. The major figures
here presented are based on this measure since it provides the
most consistent and stable results [24]. It is clear that, from first-
order indices (white bar), count profiles are mainly driven by
the parameter combinations of Group 2 (Car Following—CF),
Group 10 (Driver Heterogeneity), and Group 13 (Lane Utility
Model); whereas speed profiles are also influenced by Group 1
(Reaction Time).

The model stochasticity accounts for almost 20%–25% of
variance with counts and 10%–15% with speed. Just a few
groups are influencing model outputs with their main effect or
their interactions: Groups 2 and 10, for example, account for
80% of the output variance for the count data in the south–north
direction. The higher impact of model stochasticity using
counts when compared with speed suggests the use of the latter
for driver behavior calibration. Different directions (different
traffic conditions) showed different sensitive parameters, e.g.,
merging and gap-related models (Groups 5, 9, and 11) had less
significance for the noncongested direction (north–south). In
addition, group interactions happen to be nonnegligible in the
(congested) south–north direction. This was as expected since
lane change models are typically defined by several submodels
(gap acceptance, gap choice, etc.) and bring more complexity
to the calibration procedure.

B. Final SA: Elementary Effects

Four groups influencing the speed and count profiles were
selected for further analysis: Group 1 (Reaction Time), Group 2
(CF), Group 10 (Driver Heterogeneity), and Group 13 (Lane
Utility Model). These groups account for 39 parameters in total,
with a consequent reduction of almost two thirds in the total
number of parameters. This number might be considered quite
high for a comprehensive variance-based analysis, suggesting
further group analysis. However, we considered the possibility
of performing a variance-based SA (adopting the elementary
effects approach [25]), evaluating only the total-order sensitiv-
ity indices. It is particularly useful in computationally costly
mathematical models or in models with a large number of
inputs. In fact, as clearly pointed out in [3], total-order indices
reach stability much sooner than first-order ones, thus requiring
less model evaluations. We therefore tried using a Monte Carlo
experiment size of 512, resulting in 20 992 model evaluations.
Five replications of each combination were considered for the

Fig. 3. Group analysis bar plots of total-order (black) and first-order (white)
indices on the Theil coefficient GoF, using (left) counts and (right) speeds,
with its 90% confidence intervals. (a) South–sorth direction. (b) North–south
direction. (c) All sensors.

analysis, and the other parameters values were set to the values
obtained from the group analysis best solution.

In Fig. 4, the relatively narrow (90%) confidence intervals
show the good quality of the indices estimation. It is possible
to ascertain that there are six parameters outperforming all the
others with regard to the output speed variance, namely, μRT

[#1], βacc
cf [#8], αdec

cf [#12], γdec
cf [#13], ρdeccf [#14], and μh

[#19] (from Groups 1, 2, and 10), both in counts and speed.
In addition, three other parameters from the lane changing
model (Group 13) account for a significant share of the total
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Fig. 4. Elementary analysis bar plots of total-order sensitivity indices for each of the 39 parameters on the Theil coefficient, using (left) counts and (right) speeds,
with its 90% confidence intervals. (a) South–north direction. (b) North–south direction. (c) All sensors.

output variance, namely, αCL [#23], β1,i [#34], and θMLC [#39]
(Group 13).

Finally, the same analysis was carried out extending the sim-
ulation period to the off-peak scenario, resulting in the inclusion
of the desired speed add-on parameter, i.e., βff (Group 3), which
affected the free-flow acceleration model and, therefore, the
loop sensor speed data.

Together with their interactions, these ten parameters are
able to account for a high share (90%) of the output variance,
thus sufficient to provide, once correctly estimated, a correct
representation of traffic dynamics with just 10% of uncertainty.

• μRT and μh are the mean of the reaction time and head-
way threshold distributions, respectively. These are known
to be important parameters, particularly when analyzing
individual models separately. As expected, their share in
the outputs variance is clear when analyzing the total
sensitivity index, as both of them work as input to other
submodels.

• αdec
cf is the constant parameter of the CF deceleration

model. It is a typical parameter considered for any cali-
bration, and its contribution is once again exposed in this
analysis.

• βacc
cf is the speed parameter in the CF acceleration model

and sensitive for the noncongested speed GoF.

• γdec
cf and ρdeccf are the gap and speed differences between

the subject and the leader vehicles of the CF deceleration
model. Although γdec

cf was already found as significant
in the previous SA of MITSIMLab, it is clear that both
parameters should be taken into account.

• αCL, β1,i, θMLC are parameters of the lane changing
model. The characteristics of the A44 motorway clearly
conditioned this outcome, as the low number of lanes in
our network configuration limits this behavior.

• βff is the constant parameter of the desired speed function.
It is a typical parameter to be considered in the calibration
of free-flow speeds.

C. General Remarks

The results sustained the importance of model parameters
related to the deceleration regime of the car-following model,
as already stated in previous studies. Other parameters usually
excluded from calibration procedures appear to be quite sig-
nificant. The intrinsic physical meaning of certain parameters,
such as the reaction time and headway threshold distributions
parameters or even the main constant parameter of the Lane
Utility Model, points to the importance toward the aggregate
calibration, and their total sensitivity indices results proved
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as such. Another important conclusion is the importance of
the SA itself. The identification of calibration parameters is
very sensitive to each case study configuration and observed
traffic conditions. Fig. 4 shows a clear difference between
GoF measures of a dense traffic scenario [see Fig. 4(a)] and
a noncongested one [see Fig. 4(b)]. Similar conclusions were
obtained for GoF measures disaggregated by loop sensors,
where sensors near ramps revealed lane change and merging
models parameters to be much more relevant for a calibration
process.

The group analysis has allowed individuating the most
important submodels, namely, the reaction time model, the
car-following model, the lane utility model, and the drivers’
heterogeneity model. In addition, it has allowed choosing
among different possible measures of GoF and among differ-
ent traffic measures those able to better depict specific traffic
dynamics. The final SA has then been performed with the last
39 model parameters and has allowed identifying a group of
ten parameters (out of 101), accounting for almost the 90% of
the output’s variance, with a consequent significant simplifi-
cation of the calibration and estimation phase. Moreover, the
methodology required 55 808 parameter combinations instead
of 421 888 (−80%) otherwise required for applying variance-
based techniques to the whole set of parameters.

Regarding the specific SA results, the importance of deceler-
ation parameters along with driver specific distribution param-
eters was confirmed. However, these parameters should always
be considered altogether as their interaction is nonnegligible.
In addition, lane changing models should not be left aside in
comprehensive calibration procedures, particularly when using
counts as MoPs.

VI. FINAL KRIGING-BASED CALIBRATION

The calibration of a traffic simulation model is usually based
on aggregated data, namely, local counts, speeds, occupancies,
or, when available, path travel times. Here, we test if such
common calibration approach results in appropriate estimates
of not only aggregate variables but also detailed variables
typically used in behavioral and safety studies. For this purpose,
MITSIMLab was calibrated for a specific weekday (May 11,
2011), and simulated detailed traffic statistics were compared
with the observed ones.

In typical calibration methodologies, the number of sim-
ulations to be performed may quickly reach an unfeasible
number when dealing with a large set of MoPs, GoF measures,
replications, and parameter sets, representing a major obstacle
in the whole problem [26].

In recent years, it has been demonstrated that the use of
metamodels may significantly reduce the computational bur-
den of the calibration and validation task of traffic simulation
models [26]. By definition, a metamodel is an approximation
of the input/output function defined by the simulation model.
This approach has been widely used in general simulation and
optimization fields and particularly suited for the purpose of our
statistical validation. Thus, per each MoP/GoF combination, a
surrogate of the simulation model could be computed and used
for parameter calibration.

Fig. 5. Speeds (horizontal axis) versus counts (vertical axis) Theil inequality
coefficient values for the MITSIMLab (gray) and Kriging (black) estimates in
the (left) morning peak and (right) off-peak.

Kriging models have been used in several fields for the simu-
lation optimization of expensive simulation models. They have
been recently applied with success in the evaluation of different
calibration algorithms of a microsimulation application [26],
[29]. The Kriging approach was originally developed in the
geostatistics field [27] and may be viewed as an estimator based
on the value of neighbor points. The basics of the Kriging
model can be found in [27] and [28].

The Kriging metamodels of MITSIMLab were estimated on
the basis of the results of 1024 combinations of the ten sensitive
parameters (ten replications per each simulation). Again, the
OD for the specific weekday was estimated using the GLS
simultaneous estimation method [23]. The Kriging estimation
was based on the publicly available MATLAB toolbox DACE
[30]. The estimated metamodels were then used to explore
the objective function of the calibration problem, by using its
output to compute several thousand GoF measures of different
parameter combinations. Fig. 5 shows scatterplots of how both
counts and speed toward a minimum in the Theil inequality
coefficient as the parameter combinations vary. They also show
that while the Kriging model is almost able to nullify the
distance between real and simulated counts, this is not the case
for the average speed. This is due to the prior GLS estimation
of the demand parameters (OD matrix), which have a direct
influence on loop sensor count measurements.

For what concerns the final calibration approach, in the
authors’ opinion, a single best solution should not be defined for
several reasons: the Kriging approximation might not capture
small changes existing in the true model, a single best option
may easily change considering the variability of traffic data
measurements, and the best solution for speed-related GoF may
not be the best for counts-related GoFs. For these reasons,
the 30 best sets of parameter combinations with comparable
(speed) GoF performances were kept for the validation test,
and ten replications of each were carried out in MITSIMLab
for stochasticity control. The number of combinations was set
based on a user-predefined GoF threshold for the generic full-
day calibration (U ≤ 0.085).

A. Aggregated Data From Loop Sensors

The 30 best combinations obtained from the SA-based cal-
ibration presented in the previous sections managed to appro-
priately replicate the observed loop sensor counts and speeds.
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Fig. 6. Simulated (gray) versus true (dark) (top) counts and (bottom) average speed. (a) Full network data for the best parameter set of full-day calibration
(b) Loop 401-1 data for the best parameter set of full day calibration (c) Loop 401-1 data for the best parameter set of AM peak calibration (d) Loop 401-1 data
for the best parameter set of off peak calibration.

Total loop sensor counts and average speeds in the entire
network showed a good and stable fit along the daily variations
[see Fig. 6(a)], with a Theil coefficient of 0.083 for a generic
calibration of a full day using all sensor data. However, the
selection of different MoPs will always have a strong impact on
the simulation results. As expected, local calibration resulted
in better local fitting results (U = 0.066, for a calibration of
the MoP using sensors in the south–north direction during
the morning peak period, and U = 0.056 for the calibration
of the MoP using sensors in the north–south direction during
the off-peak period), but failed to capture traffic characteristics
in noncalibrated scenarios. In Fig. 6(b)–(d), for example, the
different calibration results for sensor 401-1 (in the south–north
direction) using a full network MoP calibration and two calibra-
tions using the MoPs based on the sensor measurements in the
peak and in the off-peak are presented.

B. Detailed Data From Trajectories

It is common practice by practitioners and even researchers
to use simulators calibrated with aggregated data to extract fur-
ther detailed traffic information from the transportation system
under analysis. A common example is the extraction of acceler-
ations and surrogate safety measures for vehicle emissions and
safety modeling, respectively. This practice is generally wrong,
particularly when the detailed variables or driving behaviors
scrutinized are far from the ones used in the original model es-
timation and the calibration process. It might be the case where
the appropriate conditions are met, but one should always test
these simulation outputs against their real counterparts. To this
aim, simulated trajectories obtained using the aforementioned
30 best parameter combinations for the off-peak period were
compared with real trajectories collected on site through aerial
remote sensing [31]. For consistency, the model was calibrated

with the proposed method for the specific day of trajectory
extraction. Cumulative distribution functions (cdfs) of a set of
six detailed variables, namely, speed, headway, acceleration,
deceleration, and two safety-related surrogate measures, i.e.,
the time to collision (TTC) and the deceleration rate to avoid
crash (DRAC), were extracted (see Fig. 7).

For the entire A44 motorway, including its entry and exit
links, it is clear that the majority of the detailed variables could
not be appropriately simulated. Although loop sensor speeds
were used for aggregate calibration, speeds on acceleration
and deceleration lanes, ramps, and access links are far from
being replicated. In Fig. 8, it is clear that under dense traffic
conditions, both speed and headway for specific road sections
were considerably underestimated by the model.

Fig. 9 shows a very good fit of simulated speeds and head-
ways in a very specific road section group and under light traffic
conditions. In fact, 37% of the loop sensor observations belong
in such specific groups, resulting in a much better fitting of
speeds.

Finally, the simulated accelerations and safety-related surro-
gate measures cannot be used without their appropriate calibra-
tion using their on-site counterparts.

VII. CONCLUSION AND DISCUSSION

The common approach usually adopted in calibration of
simulation models consists in solving an optimization problem
in which the distance between some measured and simulated
traffic measures is minimized by changing the value of their
parameters. This approach has several shortcomings as it does
not take into account the high level of uncertainty in the traffic
demand and in the simulation model parameters. In addition,
the entire problem is made more complex as what is measured
is just one of the possible traffic realizations due to the same
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Fig. 7. cdfs for different detailed traffic variables. (a) Speed(m/s)
(b) Headway(m) (c) Acceleration(m/s2) (d) Decelaration(m/s2) (e) TTC (s)
(f) DRAC(m/s2).

Fig. 8. (Left) Speed and (right) headway cdfs in the center lane of three-lane
sections (with acceleration lane) (grade higher than +2%, speed limit over
100 km/h, and dense traffic). Negative simulated headways are due to biased
estimation of simulated vehicle lengths.

demand, supply, and composition of the population (e.g., due
to the changes in the departing times, etc.).

In this paper, the entire calibration problem has been for-
mulated under the light of uncertainty management. In this
respect, the SA is crucial to individuate the most important

Fig. 9. (Left) Speed and (right) headway cdfs in the right lane of two-lane
sections (grade higher than +2%, speed limit over 100 km/h, and light traffic).

sources of modeling uncertainties. A multistep approach for the
SA of computationally expensive and high-dimensional traffic
simulation models is presented and applied to the MITSIMLab
model. Then, rather than finding the parameter combination
that best reproduces the real measures, one should look at a
number of combinations for which the model behaves relatively
well. At this point, the entire model uncertainty due to the
different combinations and to the model stochasticity should
be considered (and not fixed as with the calibration) in the
form of distributions of the model outputs. In this framework,
the validation of the model should be carried out by checking
whether the individuated uncertainty is sufficient to cover the
uncertainty of the real system.

Results show the robustness and usefulness of the approach,
by which it was possible to save as much as the 80% of
model evaluations without necessarily paying in terms of result
accuracy.

Many aspects of this novel view need further research. The
evaluation of the best combination set selection criteria and the
different possible grouping structures with regard to the final
parameter values should be carried out. Other types used in
different MoP formulations should be also tested. In addition,
alternative SA methods and screening methods at each step
of the proposed methodology should be studied, particularly
when relevant variance-based designs still rely in an excessive
number of simulations. Finally, for computational efficiency
assessment, the proposed methodology should be applied to
different simulation model formulations. However, the results
presented throughout this paper might aim at slightly modifying
how the reliability of traffic simulation is perceived.

APPENDIX

INTEGRATED DRIVING BEHAVIOR MODEL

The integrated driving behavior model proposed by [16]
is integrated in the microscopic traffic simulator MITSIMLab
[18], [19]. A brief review of all the models considered in the
current analysis is here presented. The reader should, however,
refer to [16], [18], and [19] for its full description. All the
parameters considered for potential calibration were classified
in the following 15 different groups.

1) Reaction time: When a new vehicle enters the network, it
is randomly assigned an update step size, which specifies
the frequency with which drivers update their driving
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behavior. This value is drawn from a truncated normal
distribution with mean, standard deviation, and lower
and upper bounds, i.e., μRT, σRT, and lbRT and ubRT,
respectively (Group 1, four parameters).

2) Car-following acceleration: Different models describe
the acceleration behavior under the various situations.
The stimulus-sensitivity framework [32] was adapted for
all the acceleration models considered in MITSIMLab.
The car-following model, for both acceleration and de-
celeration (g ∈ {acc, dec}) is given by

agcf(t) = agcf

[
V (t)β

g
cfΔχ(t)−γg

cf

]
×k(t)δ

g
cfΔV (t− τRT)

ρg
cf + εgcf(t) (A1)

where V is the speed of the subject vehicle; Δx and
ΔV are the gap and speed differences between the lead
and subject vehicles, respectively; k is the traffic density
downstream of the subject vehicle; τRT is its driver
reaction time; and εgcf is the random error term. The car-
following state depends on the headway between the sub-
ject and the front vehicle. In MITSIMLab, each vehicle
has its own headway threshold (see Group 10) However,
general thresholds such as the minimum response dis-
tance Δxmin

cf and the general headway lower bound hlb
cf

are also considered for this specific model (Group 2, 11
parameters).

3) Free-flow acceleration: When the headway between the
subject and the lead vehicle is big enough and the subject
vehicle speed is higher than a threshold Vmin, the vehicle
free-flow acceleration is given by

aff =αff �VDS(t−τRT)−V (t−τRT)�+εff(t) (A2)

VDS(t)=βff + Vlim + γffδ
h
s + δkffk(t) + ρ

Vf

ff Vf (t) (A3)

where V is the speed of the subject vehicle, VDS is the
desired speed of the subject vehicle, Vlim is the local
speed limit, δhs is 1 if the subject vehicle is heavy and
0 otherwise, k is 1 if the traffic density downstream is
equal or less than a threshold θff and 0 otherwise, Vl(t)
is the front vehicle speed, τRT is the driver reaction
time, and εff(t) is the random error term (Group 3, seven
parameters).

4) Merging: When a vehicle reaches a lane dropping area, it
may be tagged as a merging vehicle. The acceleration is
then calculated relaxing the car-following gap limitation
and restricting overtaking when using the dropping lane.
Upstream (Δxu) and downstream (Δxd) lengths from
the beginning section of the dropping lane set the total
area where a vehicle can be tagged as merging. The
probability of being tagged is given by p0 and only if the
number of vehicles in the merging area is less than nmax

(Group 4, four parameters).
5) Mandatory lane change state (MLC): MLC is derived

from previous models of MITSIMLab [18]. When the
general lane changing model proposed in [16] cannot be
applied due to the lack of acceptable gaps (dense traffic
conditions), an MLC may be initiated, limiting the lane

alternatives in the lane choice and gap acceptance models.
A vehicle may switch to the MLC state only if its current
lane is ending or does not connect to the next link in its
path. The probability of initiation of such state is derived
from the following equation when the distance to the
downstream node is less than Δxmin:

PMLC = exp

(
−Δx2(

αMLC
0 + αMLC

nlc
nlc(t) + αMLC

k k(t)
)2

)

(A4)

where Δx is the distance to the downstream node limited
by the lower bound Δxlb, nlc is the number of lane
changes required to reach the target lane, and k is the lane
density. Δtmin is an additional parameter that sets the
minimum time in the lane when tagged for MLC (Group 5,
five parameters).

6) Yielding probability: When a vehicle is in nosing state,
the lag vehicle is set to yielding with probability pno if it
was not previously yielding and pyes otherwise (Group 6,
two parameters).

7) Nosing probability: When a vehicle has decided to change
lanes and is in MLC state, a merging model that captures
merging by gap creation, either through courtesy yielding
of the lag vehicle or nosing of the subject vehicle, may be
applied. The probability of a subject vehicle being set to
the nosing state is given by

P nos = 1/
[
1 + exp

(
αnos + βnos

ΔV _ΔV _(t) + βnos
IΔχ

IΔχ(t)

+ βnos
lgap

lgap(t) + βnos
nlc

nlc(t)
)]

(A5)

where ΔV _ is the relative speed between the subject
vehicle and the lead vehicle on the target lane, IΔx is an
impact factor depending on both the remaining distance
to the point at which the lane change must be completed
and on a parameter λnos, lgap is the total gap length, and
nlc is the number of lane changes required to reach the
target lane (Group 7, six parameters).

8) Nosing rules: The application of the nosing model is
also restricted by a maximum waiting time before nosing
tnosmax, a maximum and a minimum distance for nosing
Δxnos

max and Δxnos
min, and a maximum yielding time tyieldmax

for the lag vehicle (Group 8, four parameters).
9) Courtesy yielding probabilities: They are modeled as

fixed probabilities. pcyield0 , pcyield1 , pcyield2 , and pcyield3 are
the probabilities to yield to 0, 1, 2, and 3 vehicles when
tagged as MLC (Group 9, four parameters).

10) Driver heterogeneity: The acceleration model error terms
for the car-following and free-flow behavior follow a nor-
mal distribution with mean, zero, and standard deviation
σacc
cf , σdec

cf , and σff , respectively; the headway threshold,
which rules the choice between car-following and free-
flow acceleration models, is obtained from a truncated
normal distribution with parameters μh

dv and σhh
dv and

lower and upper bounds lbh
dv and ubh

dv (Group 10, seven
parameters).
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11) Target gap acceleration: Captures the behavior of drivers
who target a lane change and already chose the corre-
sponding target gap. This formulation is part of the model
proposed in [16], i.e.,

αTG = αTG
g

[
DTG(t− τ)βTG

D · exp
(
βTG
ΔV+

ΔV TG
+ (t)

)
· exp

(
βTG
ΔV _ΔV _TG(t)

)
+ εTG

g (t)
]

(A6)

where DTG is the distance to the desired position for the
target gap and has different formulations for each of the
possible TG ∈ {backward, adjacent, forward}; ΔV TG

+

and ΔV TG
− (t) are the positive and negative relative target

lane leader speeds, respectively; τ is the driver reaction
time; and εTG(t) ∼ N(0, (σTG)2) is the random error
term (Group 11, 13 parameters).

12) Gap acceptance model: It evaluates the adjacent gaps
in the target lane model and decides to switch lanes
immediately or not. The adjacent gap is split into lead and
lag gaps, which both need to be acceptable for the lane
change action. A gap is acceptable if it is greater than the
corresponding critical gap, whose mean is modeled as a
random variable following a lognormal distribution, i.e.,

ln
(
Gl,cr

n (t)
)
= αl + βl

ΔV+
ΔV l

+(t) + βl
ΔV_ΔV l

_

+ βEMUEMUl(t) + αl
vvn + εl(t) (A7)

where Gl,cr
n is the critical l (l ∈ {lead, lag}) gap; ΔV l

+

and ΔV l
− are the positive and negative speed differences,

respectively, between the subject vehicle and the l vehicle
on the target lane limited by a threshold ΔVmax; EMUl is
the expected maximum utility of the target gap l; vn is the
individual specific error term; and εl ∼ N(0, (σl)2) is the
random error term (Group 12, eight parameters).

13) Lane utility model: At the top of the drivers’ decision tree
is the lane choice model. Modeled as a discrete choice
problem, the probability of choosing a target lane is
computed through a logit formulation using the following
utility function:

UTL =αTL + βTL
RMLδRML + βTL

Vl
Vl(t) + βTL

ΔχΔχ(t) + βbδb

+ βhδh(t) + βkδk(t) + βTL
tailδtail + [Δχexit(t)]

θMLC

×
∑

(βnlc,iδnlc,i(t)) + βnextδnext(t) + βaddnadd(t)

+ βgapEMUTL(t) + αTL
v vn + εTL(t) (A8)

where αTL is a constant parameter for the target lane
TL ∈ {left, current, right}, δRML is a dummy variable
equal to 1 if TL is the rightmost lane, Vl is the speed
of the lead vehicle on TL, Δx is the gap between the
lead and subject vehicles, δh is a dummy equal to 1
if the traffic density in TL is higher than a threshold
kceil, δb and δh are dummy variables equal to 1 on the
presence of bus and heavy good vehicles in TL, δtail is
a dummy variable that captures the drivers’ tendency to
move out of their current lane if they are being tailgated
and is equal to 1 if the backward gap is less than Δxback

floor,

Δxexit is the distance from the subject vehicle to the next
exit, δnlc,i are i dummy variables equal to 1 for each i
number of lane changes required to reach TL, δnext is
a dummy for the need of exiting on the next off-ramp;
nadd is a dummy for the number of lane changes required
from the TL to the off-ramp, EMUTL is the maximum
utility of the available gaps in TL given by the target gap
model, vn is the individual specific error term capturing
correlations between observations, and εTL is the random
error (Group 13, 17 parameters).

14) Target gap model: When a driver has decided to switch
lanes, the target gap model captures the drivers’ intention
on the lane changing decision process, when the adjacent
gap is rejected. The subject vehicle will then adjust its
speed and position depending on the chosen target gap.
Similarly to the lane choice model, the probability of
choosing a target gap is modeled as a logit model using
the following utility equation:

UTG = αTG + βΔχTG
ΔχTG(t) + βlTG

lTG(t) + βδf δf (t)

+βΔVTG
ΔVTG(t) + αTG

v vn + εTG(t) (A9)

where ΔxTG is the distance to the target gap TG ∈
{backward, adjacent, forward}; lTG is the effective gap
length; δTG

f is a dummy for the presence of a front vehicle
on the current lane; ΔVTG is the relative gap speed; vn is
the individual specific error; and εTG is the random error
(Group 14, six parameters).

15) Demand stochasticity: The OD matrix is a key input on
the variability of the simulation output. In this paper, the
common stochasticity of the OD matrix was analyzed by
considering a common variance (σ2

OD) for all OD paths
and a distribution factor (βOD), which determines the
percentage of vehicles departing randomly (Group 15,
two parameters).
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