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Travel Demand Forecasting: A Fair AI Approach
Xiaojian Zhang , Qian Ke , and Xilei Zhao

Abstract— Artificial Intelligence (AI) and machine learning
have been increasingly adopted for travel demand forecasting.
The AI-based travel demand forecasting models, though generate
accurate predictions, may produce prediction biases and raise
fairness issues. Using such biased models for decision-making
may lead to transportation policies that exacerbate social inequal-
ities. However, limited studies have been focused on addressing
the fairness issues of these models. Therefore, in this study,
we propose a novel methodology to develop fairness-aware,
highly-accurate travel demand forecasting models. Particularly,
the proposed methodology can enhance the fairness of AI models
for multiple protected attributes (such as race and income) simul-
taneously. Specifically, we introduce a new fairness regularization
term, which is explicitly designed to measure the correlation
between prediction accuracy and multiple protected attributes,
into the loss function of the travel demand forecasting model.
We conduct two case studies to evaluate the performance of the
proposed methodology using real-world ridesourcing-trip data
in Chicago, IL and Austin, TX, respectively. Results highlight
that our proposed methodology can effectively enhance fairness
for multiple protected attributes while preserving prediction
accuracy. Additionally, we have compared our methodology with
three state-of-the-art methods that adopt the regularization term
approach, and the results demonstrate that our approach signifi-
cantly outperforms them in both preserving prediction accuracy
and enhancing fairness. This study can provide transportation
professionals with a new tool to achieve fair and accurate travel
demand forecasting.

Index Terms— AI, fairness, forecasting, machine learning,
regularization, travel demand.

I. INTRODUCTION

IN RECENT years, Artificial Intelligence (AI) has been
increasingly used in travel behavior analysis, due to its

powerful prediction capability [1], [2], [3], [4]. However,
a growing number of studies reported that AI has evident
fairness issues [5], [6], [7], [8], [9], [10]—making worse pre-
dictions for disadvantaged population groups (e.g., racial and
ethnic underrepresented groups, low-income individuals, and
women) than the advantaged groups. The unfairness of AI may
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negatively impact transportation policies and decision-making.
For example, research has indicated that AI predictive biases
can skew the allocation of safety improvement grants towards
advantaged communities and cause the road infrastructure in
disadvantaged communities to receive fewer investments [11].
Such unfairness issues are found to be more pronounced
in AI-based travel demand forecasting models [12], [13].
Specifically, unfair predictions of travel demand may cause
ridesourcing operators to consider reallocating fewer vehi-
cles [14] to the disadvantaged neighborhoods, consequently
leading to higher surge pricing [15], higher per-mile fees [16]
and longer waiting times [17] in these areas. Additionally,
unfair travel demand predictions may misinform transit agen-
cies and city governments in determining investments for
adding new transit services or infrastructures in disadvantaged
communities [13]. The unfair travel demand predictions may
also cause AI-based traffic management systems to prioritize
traffic flows in ways that benefit advantaged areas over disad-
vantaged ones, which may further worsen traffic congestion in
disadvantaged communities [18]. Over time, these ill-informed
transportation policies or decision-making caused by unfair
travel demand predictions could lead to further unintended
consequences for transportation equity [13], [19]. Accordingly,
it is crucial to incorporate fairness into AI-based travel demand
forecasting models [20].

Recently, some researchers have started to develop
fairness-aware AI methods in travel behavior modeling [11],
[12], [13], [21]. However, research on this important topic,
especially for travel demand forecasting (in this paper, we refer
to the first step of the four-step travel demand model, namely,
trip generation), is still lacking. For instance, although various
methods have been developed to mitigate the unfairness issues,
very few can be flexibly adopted by different types of models
(e.g., linear models, deep learning models with different archi-
tectures, etc.). In other words, there still lacks a systematic
framework to address the model’s fairness issue in a model-
agnostic (i.e., the method should be independent of models)
manner. Also, it remains largely unsolved how to prioritize
model fairness while preserving its prediction accuracy, both
of which are critical to ensure the trustworthiness of AI [22],
[23]. Additionally, previous studies have primarily focused on
correcting the unfairness of a single protected attribute. In real-
world dataset, however, the debiased model and results could
vary across different protected attributes, potentially causing
confusion and hindering adoption by end-users. For example,
one study has found that mitigating unfairness of one protected
attribute (i.e., race) could increase the prediction disparities of
another protected attribute (i.e., income) [13]. This suggests
that a model that is fair for one protected attribute could still
be unfair for other attributes [24]. However, few prior studies
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have been devoted to simultaneously tackling fairness issues
from multiple protected attributes [24], [25].

To address these research gaps, we aim to develop a
new methodology to enhance fairness in AI-based travel
demand forecasting models, especially focusing on trip gener-
ation forecasting. More specifically, first, we define Fairness
as the Equality of Prediction Accuracy, i.e., the prediction
accuracy is equal for advantaged and disadvantaged pop-
ulation groups. Next, we examine the potential unfairness
(i.e., prediction accuracy disparity) existing among several
state-of-the-art deep learning and statistical models for travel
demand forecasting, using real-world ridesourcing-trip data in
Chicago, IL and Austin, TX. We propose a novel absolute
correlation regularization method to simultaneously correct
the detected unfairness across multiple protected attributes
(e.g., race, education, etc). We further compare the proposed
methodology with other existing state-of-the-art regularization
terms to show its effectiveness in both preserving accuracy and
correcting unfairness. The unique contributions of this study
are presented as follows:

• This study is one of the first studies to examine the fair-
ness issues of travel demand forecasting models from the
algorithmic view. We improve knowledge on this topic by
detecting the unfairness issues of several commonly-used
deep learning and statistical models and proposing a
methodology to correct the unfairness.

• We introduce a novel absolute correlation regularization
term to address the model’s unfairness arising from
multiple protected attributes. This regularization term is
explicitly designed to penalize models that produce unfair
predictions, which holds notable transparency. Moreover,
the proposed regularization term is model-agnostic and
can be flexibly incorporated into the loss function of any
type of model architecture.

• We propose to use an interactive weight coefficient for
both the accuracy loss and fairness regularization terms.
This weight coefficient is tuned simultaneously with other
key hyperparameters of an AI model (e.g., number of
hidden layers, number of hidden neurons, and learning
rate of a multiple-layer perception model). Therefore,
the fairness-aware travel demand forecasting models can
optimally improve fairness while preserving prediction
accuracy.

The remaining paper is structured as follows: Section II
reviews the related studies. Section III introduces the fair-
ness definitions, metrics and unfairness correction method.
We introduce the empirical case studies in Section IV. The
modeling results are presented in Section V. Section VI
discusses the merits of the proposed methodology, echoes
the critical findings, proposes some policy implications and
lists several future research directions. Finally, Section VII
concludes our study.

II. LITERATURE REVIEW

A. AI Fairness Issues

In recent years, AI methods have been deployed in a
broad array of real-world applications due to their strength

in producing highly-accurate predictions. However, there has
been a growing recognition that, despite predictive superi-
ority, AI and machine learning techniques have also been
accompanied by increasing concerns of fairness [7]. Studies
from multiple fields have reported that AI algorithms could be
discriminatory to the disadvantaged population groups under
various applications, including healthcare, criminal justice,
credit assessment, translation, among many others [6], [7],
[8], [9], [10], [26]. For example, healthcare systems could
underestimate the health condition of black patients than white
patients, even if they have the same health risk score [10].
If these inherent biases are not addressed, using these AI
systems to assist decision-making will worsen the existing
social disparities [27].

1) Taxonomy of Fairness Notions: Numerous fairness
notions and corresponding mathematical formulations have
been proposed for different downstream learning tasks [27].
These fairness notions span various dimensions, including
classification vs. regression, group vs. individual and disparate
treatment [28]. In classification, multiple fairness notions are
created to mitigate “disparate impact”, i.e., if practices or
policies have disproportionately adverse effects on different
groups [29]. For example, statistical parity [30], equality of
odds and and equality of opportunity [31]. In regression,
notions like individual/region-based fairness gap [12], cross-
pair loss [28] and equal means [32] are introduced to address
real-world regression applications that require fairness con-
cerns. Fairness notions also branch into the axis of individual
and group. Individual fairness requires similar individuals
to be treated similarly, while group fairness equalizes the
outcome among all groups [30]. Another branch to classify
fairness notions is determining whether the disparate treatment
is allowed. Disparate treatment measures fairness through
treatment rather than the outcomes. It addresses both formal
classification and intentional discrimination [29], and includes
notions like counterfactual fairness [33] and fairness through
unawareness [30]. These fairness notions have laid a solid
foundation for defining and measuring fairness in real-world
problems.

2) Correcting Unfairness for Multiple Protected Attributes:
There are three possible ways to achieve the aforementioned
fairness, i.e., correcting the unfairness. First, pre-processing
the data (e.g., resampling or reweighting) and remove bias
before training the models (e.g., [34], [35]). Second, in-
processing: modifying the algorithms such as including
fairness penalty in the loss function [12], [28] or incor-
porating constraints [36]. Third, post-processing: correcting
unfairness by adjusting the learned algorithms [31], [37].
In this study, we selected the in-processing techniques due
to their transparency (i.e., directly taking fairness into model
optimization) and strong capabilities in achieving fairness even
when confronted with biased data [38] and the effectiveness in
mitigating bias amplification problems (i.e., the trained models
amplify the biases in the training data) [39].

In-processing methods involve two categories: implicit
method and explicit method [24]. Implicit methods debias
the models by implicitly removing bias from the latent
representations. They usually hypothesize that if the latent
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representations are less biased, the predictions produced from
the representations could also be less biased. The implicit
methods are commonly used in adversarial learning [40], [41],
[42], contrastive learning [43], etc. However, these methods
(1) are usually less transparent since we can hardly interpret
how the produced latent representations mitigate (or even
remove) the unfairness [44], [45] and (2) usually have specific
model architectures [42]. Explicit methods focus on explicitly
modifying the objective function while keeping the model
structure intact, for example, adding fairness-related regular-
ization terms or constraints. Therefore, the explicit methods
usually afford greater flexibility and can be applied to a wide
range of models. Existing explicit methods include absolute
correlation regularization term [5], pairwise fairness loss [28],
equal means [32], etc. This study adopts the explicit method
by integrating a fairness-related regularization term into the
loss function to jointly account for accuracy and fairness.

Achieving multi-attribute fairness has long been an endur-
ing challenge in using in-processing techniques to mitigate
unfairness [24]. To date, most of the existing literature purely
focused on correcting the unfairness of a single protected
attribute [28], [36], [40], [46], [47]. However, mitigating the
unfairness of one attribute may increase the unfairness of
another attribute [13]. This unexpected outcome may confuse
the end-users (e.g., travel demand modelers) and thus hinder
the adoption of the fairness-aware models. To tackle this
issue, [12] proposed to explicitly correct the unfairness of
multiple attributes by simply adding multiple regularization
terms (one for each attribute with a corresponding weight)
into the loss function. However, when the protected attributes
are correlated with each other (which is the case for most
travel demand forecasting problems), it could be challeng-
ing to determine the appropriate weight for each protected
attribute in order to achieve the optimal solution that min-
imizes the unfairness for the combination of the selected
protected attributes. Other related methods include learning
fair graph embeddings via adversarial learning [25], disentan-
gled representation learning [48], adding fairness constraints
for each protected attribute and achieving fairness via con-
strained optimization [49], [50]. However, as we discussed,
these methods are often less transparent and come with specific
model architectures, which hinder their adaptability. As of
now, there is a pressing need to develop transparent, effective
and flexible methods that can simultaneously account for
fairness for multiple protected attributes and can be applied
to any model class.

B. Addressing AI Fairness Issues in Travel Demand
Prediction

The standard method of estimating travel demand is the
four-step model, including trip generation, trip distribution,
mode split and traffic assignments [51]. Accordingly, recent
studies have started to examine and address the fairness
concerns of travel demand forecasting problems spanning
across these steps [12], [19], [21], [42], [52], [53]. Specifically,
several studies focused on resolving unfairness issues for trip
generation forecasting [12], [14], [21], [54]. For example, [12]
treated fairness as equal mean per capita travel demand across

groups over a period of time and evaluated the fairness issues
of several AI methods on demand prediction for ridesourcing
services and bike-share systems. Results showed that machine
learning spontaneously underestimated the travel demand of
disadvantaged people. They also proposed two fairness regu-
larization terms and a corresponding fairness-aware demand
prediction model to correct the unfairness. [21] proposed a
socially-Equitable Interactive Graph information fusion-based
mobility flow prediction system for Dockless E-scooter Shar-
ing (EIGDES) along with a novel regularization term to
ensure both the dockless e-scooter prediction accuracy and
spatial fairness. The proposed model and the regularize jointly
work to penalize demand overestimations and reduce output
disparities. In addition, one study [53] has explored addressing
fairness issues in trip distribution prediction. Specifically, the
authors predicted the Origin-Destination (OD) travel demand
by using Multi-Objective Reinforcement Learning (MORL),
where the objectives are optimizing transportation network’s
efficiency and mitigating the demand disparities among dif-
ferent population groups. Certain studies also explored the
unfairness issue in travel mode split problems [13], [19].
For example, [13] studied the prediction disparities among
population groups by using both a binary logistic regres-
sion and a three-layer deep neural network (DNN). They
also developed an absolute correlation term as fairness reg-
ularizers to mitigate the mode-choice prediction disparities
among different population groups. Fairness concerns were
also addressed in traffic assignment problems [55], [56], where
the objective is usually to obtain optimal travel flows that
minimize the discrepancy of user travel time sharing the
same link. In addition to four-step model, researchers also
developed unfairness correction methods for other tasks, such
as traffic safety [11] and infrastructure planning [57]. For
example, [11] proposed a Synthetic Minority Oversampling
Technique (SMOTE) with the attentive interpretable (TabNet)
model to enhance the fairness of traffic crash prediction. These
fairness-enhancing methods offer transportation professionals
new insights on transportation resource allocations and a novel
instrument for designing a fairer transportation ecosystem.

However, there are still two critical knowledge gaps that
have yet to be addressed. Firstly, prior research has primarily
concentrated on equalizing per capita travel demand among
different population groups, but we should note that travel
demand disparities may have already been introduced during
the data creation process, which is often beyond our con-
trol [13], [58]. For example, multiple studies found that rich
people are more likely to use ridesourcing services than the
poor [59]. That means this behavioral bias among different
population groups may naturally exist [60]. However, to date,
no study has investigated how to appropriately account for
this type of bias, especially for travel demand forecasting
models. Second, the existing fairness-aware travel demand
forecasting methods necessitate particular model structures,
which has very limited adaptability. Thus, developing a
model-agnostic (i.e., independent of the model structure)
method that can be flexibly adopted by different types of
AI models is promising. To date, however, a systematic
method in a model-agnostic manner to address fairness issues,
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TABLE I
A LIST OF SYMBOLS AND NOTATIONS

especially for travel demand forecasting problems, is still
lacking.

III. METHODOLOGY

The methodological framework is outlined as follows. The
travel demand forecasting problem will be mathematically
defined in Section III-A. In Section III-B, we will introduce the
fairness metrics used in the proposed methodology, followed
by the unfairness correction approach for multiple attributes
(in Section III-C). The notations are summarized in Table I.

A. Travel Demand Forecasting Problem

The goal of travel demand forecasting is to predict the future
travel demand for each area (or other spatial unit such as traffic
segments) given previously observed time-series data. This
study considers travel demand forecasting as a trip generation
modeling problem. Specifically, we consider the transportation
network as a weighted directed graph G = (V, E, W), where
V is a set of nodes (i.e., areas or traffic segments) with
|V | = N ; E is a set of edges representing the connectivity
between two nodes; and W ∈ RN×N is a weighted adjacency
matrix representing the node’s proximity (e.g., distance or
functional similarity). Given weighted directed graph G with
N nodes, we assume time t ∈ T is a discrete variable where T
is a set containing all possible timestamps, let xt = (x i

t , i ∈ I)

represent travel demand at time t , where I is the index set of
nodes, x i

t is the travel demand corresponding to node i ∈ I at
time t , and let X t =

[
xt−K , · · · , xt−1

]
be historical K travel

demand before xt . The travel demand forecasting problem
could be formulated as learning a function h(·) : RN×K

→

RN×M which maps the historical K travel demand to travel
demand at next M time interval for all nodes in a given graph
G. Let Ŷ t = [x̂t , · · · , x̂t+M−1] denote the predicted travel
demand for next M time interval starting from timestamp t ,
where x̂t = (̂x i

t , i ∈ I) refers to the predicted travel demand at
timestamp t for all nodes, then we can mathematically write:

h (X t | G) = Ŷ t = [x̂t , · · · , x̂t+M−1] (1)

B. Fairness in Travel Demand Forecasting Models

This study defines Fairness as the equality of predic-
tion accuracy. Intuitively, we assume that the travel demand
prediction accuracy should be independent of the protected
attributes. Taking racial composition as an example, equality
of prediction accuracy suggests that the prediction accuracy
for any racial group should be equal.

In this study, we use the Absolute Percentage Error (APE)
to measure the predictive accuracy for each node instead of
the Mean Absolute Error (MAE) or Root Mean Square Error
(RMSE). We believe the magnitude of the travel demand
(especially for the emerging mobility) for an advantaged
community (e.g., high-income community) should be naturally
greater than a disadvantaged community [61]. This type of
behavioral bias may largely be introduced during the data
creation process instead of applying the algorithm [58], [60].
If we quantify the equality of prediction accuracy by using
MAE and RMSE, which are scale-dependent [62], [63] (i.e.,
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sensitive to the magnitude of the forecasting outcome), the
results could be biased and may not accurately reflect the
performance disparities across different communities. Instead,
APE scales the magnitude and describes the performance by
percentage, and is thus scale-independent. We believe using
APE as a performance metric for prediction accuracy can help
cancel out the behavioral bias that has already been embedded
in the data.

Recall from the previous section, a travel demand forecast-
ing model is to learn a function h which takes K historical
travel demands

[
xt−K , · · · , xt−1

]
as input and predict travel

demand from next M time interval starting from time t , i.e.,
Y t . We define et = (ei

t , i ∈ I) to indicate the prediction
accuracy (i.e., APE) at time t , and ei

t is the prediction accuracy
of node i at time t . Specifically,

ei
t =

∣∣∣∣ x i
t − x̂ i

t

x i ′
t

∣∣∣∣ (2)

where x i
t , x̂ i

t are the ground truth and predicted value of node
i at time t , respectively; x i ′

t = max
(
x i

t , 1
)

is used to ensure
the fraction is defined [64], [65]; ei

t is the absolute percentage
error for node i at time t . The lower the value of ei

t , the better
the predictive performance.

Suppose Z = [z j , j ∈ J ] is the matrix of protected
attributes of interest, where J = {1, 2, . . . , Q} is the index
set of attributes, where Q is the total number of protected
attributes; z j = (zi

j , i ∈ I) represents the protected attribute
j , and zi

j denotes the protected attribute j at node i , I is
the set of index for nodes. Denote pi

j as a binary indicator
indicating if node i is belonging to advantaged (i.e., pi

j = 1)
or disadvantaged (i.e., pi

j = 0) groups for protected attribute
j , and accordingly let I+

j = {i : pi
j = 1} and I−

j = {i :

pi
j = 0} represent the set of advantaged and disadvantaged

node index for demographic attribute j with size N+

j = |I+

j |

and N−

j = |I−

j |, respectively. We note that assigning value
for pi

j , i.e., determining whether each node should be labeled
as advantaged or disadvantaged, is case-specific and should
be decided by end-users such as the city government, the
transportation system operators or the travel demand modelers.
Subsequently, Equality of Prediction Accuracy is defined as:

E
(

et |pi
j = 1

)
= E

(
et |pi

j = 0
)

∀ j ∈ J , ∀i ∈ I (3)

i.e.
1

N+

j
·

∑
i∈I+

j

ei
t =

1
N−

j
·

∑
i∈I−

j

ei
t ∀ j ∈ J (4)

where E
(

et |pi
j = 1

)
and E

(
et |pi

j = 0
)

are the conditional

expectation of prediction accuracy et given pi
j = 1 and pi

j =

0, and represents the mean APE for advantaged group and
disadvantaged group respectively. That is, for any protected
attribute j , a fair model should have equal prediction accuracy
for different groups. Moreover, when a forecasting model is
conducted, we could measure the model fairness by quantify-
ing prediction accuracy disparities, especially between nodes
with different labels, for instance, low-income communities
and high-income communities.

In this study, we introduce Prediction Accuracy Gap (PAG)
as a fairness metric to measure prediction accuracy disparity
and if fairness/unfairness achieves/occurs. Define:

P AG j = E
(

et |pi
j = 0

)
− E

(
et |pi

j = 1
)

, ∀i ∈ I (5)

Intuitively speaking, PAG directly measures the prediction
accuracy disparity between these two types of nodes. A high
value of PAG indicates that the machine learning model
delivers inconsistent predictive performance among nodes; in
most cases, the performance is worse in disadvantaged nodes.
PAG is also connected with the popular recognition that a
model is considered fairer if it suggests a smaller difference
between two group’s prediction accuracy [66].

In this study, we also use Correlation Coefficient as another
fairness metric. The correlation coefficient can naturally mea-
sure the extent to which the predictions are biased on specific
protected groups. Intuitively, if fairness is achieved, correlation
between prediction accuracy and any protected attribute should
be zero. By using correlation coefficient as a measure of
fairness, we assume that the target variable (i.e., prediction
accuracy) is linearly correlated with the independent variable
(i.e., protected attribute).

Recall from the discussions above, et is the prediction accu-
racy (APE) at time t , and zt refers to the protected attribute
j for all nodes. Then, the correlation between prediction
accuracy et and the protected attribute z j across all nodes
is denoted by r(et , z j ). Define:

r(et , z j ) =

∑
i∈I

(
ei

t − ēt
) (

zi
j − z̄ j

)
(√∑

i∈I
(
ei

t − ēt
)2)(√∑

i∈I

(
zi

j − z̄ j

)2
)

(6)

where ēt = E(et ) and z̄ j = E(z j ). In our experiment, we add
small ϵ = e−20 to denominator to keep it always positive.
Although correlation coefficient does not require a label for
each region, we cannot directly read the prediction accuracy
disparity from it.

C. Unfairness Correction Method for Travel Demand
Forecasting Models

In this study, we introduce an absolute correlation regular-
ization approach, which adapts the efforts from [5], to mitigate
the prediction accuracy disparities existing among groups.
In [5], the authors applied this approach to a classification
problem by minimizing the false positive rate (FPR) gap
between groups. We generalize this approach to a regression
setting (i.e., travel demand forecasting problem) by mini-
mizing the prediction accuracy disparities among different
communities.

More importantly, including [5], most previous studies have
primarily focused on correcting the unfairness of one single
attribute. In real-world dataset, however, the debiased model
and results could differ among various protected attributes.
Also, a model that is fair for one protected attribute could
still be unfair for other attributes [13], [24]. One feasible
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solution to solve this issue is to consider multiple attributes at
the same time when correcting the unfairness of the models.
We expected that a fair model should produce fair predic-
tions for all types of attributes instead of focusing solely
on one.

Therefore, we propose a methodology that can correct the
unfairness for multiple protected attributes. More specifically,
we propose to use the Multiple Correlation Coefficient [67],
denoted as R, to measure the correlation between the target
variable, i.e., prediction accuracy, and a set of protected
attributes (including race, education, age and income). A larger
R suggests that a stronger dependence may exist between the
target variable and the explanatory variables. We expect that
a fair prediction should lead to R = 0, or at least, a small
value. Accordingly, we will use R as the regularization term
in the loss function to account for fairness loss. We should note
that the linear model may encounter potential multicollinearity
concerns. However, there is no need to address them since the
goal of the linear model is forecasting rather than estimating
the coefficients [68].

Recall from previous subsections, we will use the pre-
diction accuracy et as the target variable and Z =

[z j , j ∈ J ] to represent the matrix of multiple protected
attributes of interest. And, we use r(et , z j ) to indicate the
correlation between prediction accuracy et and the pro-
tected attribute z j across all nodes. Given these notations,
we will naturally write the vector of correlations between
each protected attribute z j and prediction accuracy e j , i.e.,
c =

(
r(et , z1), r(et , z2), . . . , r(et , zQ)

)⊤, and the correlation
matrix calculated by the correlation coefficient among each
pair of protected attributes, denoted as �, i.e.,

� =


r(z1, z1) r(z1, z2) . . . r(z1, zQ)

r(z2, z1)
. . .

...
...

. . .

r(zQ, z1) . . . r(zQ, zQ)


Consequently, the absolute value of the multiple correlation

coefficient between et and Z), i.e., R(et , Z), which is the
square root of the coefficient of determination (i.e., R2) of
the linear model [69], can be written as:

R(et , Z) =

∣∣∣√c⊤�−1c
∣∣∣ , (7)

where c⊤ is the transpose of c and �−1 is the inverse matrix
of �.

Accordingly, given graph G and a forecasting model Ŷ t =

h(X t |G), we add the multiple correlation coefficient, R, into
the loss function, denoted as L(X t , Z|G) as shown in Eq. 8.
In this way, the model will simultaneously account for the
unfairness issues sourcing from multiple protected attributes.
Let Y t = [xt , · · · , xt+M−1] denote the ground truth travel
demand of next M time intervals starting from t , mathe-
matically, the loss function of the forecasting model to be
minimized, i.e., L(X t , Z|G), is written as:

L(X t , Z|G) =

∑
t

{(1 − λ) · l (Y t , h(X t |G)) + λR(et , Z)} ,

(8)

and,

l (Y t , h(X t |G)) =
1
N

N∑
i=1

(
x i

t − x̂ i
t

)2
(9)

In the above equations, x i
t , x̂ i

t refer to the ground truth and
predicted travel demand for node i at time t , respectively;
l is the primary loss function for forecasting model, and in
this study, we use mean squared error (MSE) for l; λ is the
interactive weight coefficient, a concept borrowed from the
traditional multi-task learning framework [70], [71], which
controls the weight between the prediction loss and the fairness
loss.1 When λ = 0, the model will be unaware of the fairness;
and when λ = 1, the model will completely focus on correct-
ing the unfairness. We can directly treat λ as a hyperparameter
to find the optimal model that effectively addresses fairness
while preserving accuracy. The prediction accuracy disparity is
captured and mitigated by the correlation regularization term,
in Eq. (7). The regularization term is dedicated to shrinking
the potential prediction accuracy disparity that existed among
groups toward zero. Incorporating it into the loss function
enables the machine learning model to automatically keep
track of the fairness during training.

Note that when there is only one single protected attribute of
interest, the multiple correlation coefficient, i.e., Eq. 7 reduces
to Eq. 6.

IV. CASE STUDY

In this section, we will describe two real-world
ridesourcing-trip datasets and seven commonly-used
travel demand forecasting models used for case studies.
Section IV-A and Section IV-B present the data collection
and processing process. Table II presents the descriptive
statistics of all input variables. In Appendix.A, Fig. 1 displays
the spatial distribution of the average ridesourcing demand
per hour. We will briefly introduce the selected deep learning
and statistical models for unfairness detection and correction
in Section IV-C.

A. Chicago Ridesourcing-Trip Data

In this study, we collected the publicly available
ridesourcing-trip data from Chicago Data Portal2 for case
study. The data are from November 1, 2018 to March 31, 2019,
containing 45,338,599 trips. There are plenty of attributes
included in this dataset, but only pick-up locations and times-
tamps are considered for this research. Since we focused
on trip generation (i.e., origin demand) forecasting, all trips
are aggregated at the census-tract level and hourly counted.
We prepared the data for modeling in the same way as
previous studies [59], to account for the missing-data issues
and outliers. The data preparation process produced the trip
generation data for 711 census tracts. We split the first 70%

1In traditional multi-task learning setting, the objective function is usually
written as λ ∗ f1 + (1 − λ) ∗ f2 where f1 and f2 are two learning tasks and
λ ∈ [0, 1] is the weight on task 1. Here, in our study, fairness is explicitly
designed as an additional task alongside prediction accuracy.

2https://data.cityofchicago.org/Transportation/Transportation-Network-
Providers-Trips-2018-2022-/m6dm-c72p/explore
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TABLE II
DESCRIPTIVE STATISTICS

data for training, the following 10% for validation and the
remaining for testing. The census-tract-level demographic data
(i.e., protected attributes) were collected from the American
Community Survey (ACS) 2015-2019 5-year estimates data,
including the percentage of white, the percentage of low-
income households, the percentage of population with a
bachelor’s degree or above and the percentage of young
populations (with age in 18-44).

B. Austin Ridesourcing-Trip Dataset

This study also collected ridesourcing-trip data from
RideAustin3 for case study. The data ranges from October 1,
2016 to April 13, 2017, including 1,259,574 trips in total.
Similar to the case study in Chicago, we only retained pick-up
locations and the corresponding timestamps from the dataset
for empirical analysis. All ridesourcing trips were aggregated
at the census-tract level on an hourly basis. Finally, the
prepared dataset includes 191 census tracts. The first 70% of
the whole dataset was split for model training, followed by
the following 10% for validation and 20% for testing. Four
protected attributes, including the percentage of white, the
percentage of low-income households, the percentage of pop-
ulation with a bachelor’s degree or above and the percentage
of young populations (aged 18-44) were also collected from
ACS 2013-2017 5-year estimates data.

C. Model Comparison

In this study, we applied seven models as the major baseline
models to measure the fairness metrics and perform the
bias mitigation. We also compared their performance with
historical average method. All used models are detailed as
follows:

• Historical Average (HA): We calculate the historical
average travel demand using the mean values of all
observations from the inputted sequence.

• Multivariate Linear Regression (MLR): MLR is fre-
quently used in machine learning studies as the bench-
mark model. This study treats observations at every
timestamp t as a covariate.

• Autoregressive Integrated Moving Average Model
(ARIMA): ARIMA is one of the most fundamental
statistical models for forecasting time-series data [72].

3https://data.world/ride-austin/ride-austin-june-6-april-13

ARIMA consists of three basic parts: auto-regressive,
first-differencing and moving-average part. The order
of the auto-regressive (p) and moving-average (q) and
the degree of first-differencing (d) included should be
prespecified before building the model. In this study,
we established ARIMA model to predict the travel
demand for all areas at once.

• Multiple Layer Perception (MLP): MLP is a
commonly-used deep neural net model. In this study,
the model architecture is set as 1 hidden layer with
300 hidden linear neurons. A drop-out layer rate 0.01 is
set after the hidden layer to avoid overfitting.

• Gated Recurrent Unit (GRU): GRU is a widely-adopted
Recurrent Neural Network (RNN) model with gated hid-
den neurons [73]. GRU can generate the predicted travel
demand xi,t+1 by inputting the hidden status at timesampe
t − 1 and the travel demand at timestamp xi,t . In this
way, GRU can dynamically capture the travel demand
information at the current timestamp while maintaining
the historical demand trend. We use GRU model for
forecasting the travel demand for all nodes at once.

• Temporal Graph Convolution Network (T-GCN):
T-GCN can capture the spatial dependency and tempo-
ral information at the same time [74]. Specifically, the
spatial dependency is calibrated by the spatial adjacency
graph Gad j , where 1 indicates two nodes are spatially
adjacent and 0 otherwise. T-GCN takes the hidden status
at timestamp t − 1 and the graph-convolution-processed
travel demand information at timestamp t as the input.
Therefore, T-GCN can effectively deal with data that have
strong spatial dependency such traffic speed data.

• Convolutional Long-short Term Memory
(ConvLSTM): ConvLSTM is one of the most novel
approaches for spatio-temporal forecasting problem [75].
ConvLSTM has a convolution structure in both the
input-to-state and state-to-state transitions; it determines
a certain cell’s future states by considering the inputs and
past states from its local neighbors. This characteristic
allows it a more powerful strength in handling spatio-
temporal correlations. In this study, the convolutional
kernel size of the ConvLSTM is set to 5.

• Spatio-Temporal Graph Convolution Network
(STGCN): STGCN is an effective approach for
spatio-temporal traffic flow forecasting [76]. STGCN
consists of several spatio-temporal convolution (ST-Conv)
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blocks. Each block has a “sandwich”-like structure: two
gated sequential convolution layers and one spatial graph
convolution layer in between. This allows STGCN to
distill the most useful spatial features and capture the
most essential temporal features collectively. In this
study, we set the number of ST-Conv blocks as 2.
Let di, j denote the distance between node i and node
j , the element in the weighted adjacency matrix, i.e.,
wi, j ∈ W , is given by:

wi, j =

 exp

(
−

d2
i j

σ 2

)
, i ̸= j and exp

(
−

d2
i j

σ 2

)
≥α

0, otherwise.

,

(10)

where σ 2 and α, assigned as 104 and 0.5, are thresholds
that control the sparsity of W .

MAE, RMSE and Mean Absolute Percentage Error (MAPE)
are employed to evaluate the model’s prediction accuracy. Note
that we only calculate MAPE for samples with ridesourcing
demand larger than 10 since MAPE is sensitive to small
values [3], [77]. Correlation coefficient and PAG are used to
detect and evaluate the model’s prediction fairness.

V. RESULTS

This section sequentially reports the modeling results of
all benchmark models, the evaluations of their underlying
fairness issues and the results after applying our proposed
unfairness correction approach. We conducted empirical exper-
iments using the real-world ridesourcing-trip data in Chicago,
IL and Austin, TX. The analytical spatial unit is census tract.
We incorporate the regularization term into the loss function
for all models. All experiments were completed in a Pytorch
environment using an Ampere A-100 GPU. We tuned the
hyperparameters such as batch size and sequence length under
each fairness weight λ using grid search. We built our models
with Adam optimizer [78]. Early stopping method is also
taken to avoid overfitting problems. In this study, we use
60 and 40 percentile statistics for the protected attributes
as the threshold to determine the label (i.e., pi

j ) of each
node (e.g., census tract). For instance, the 60 percentile of
white population percentage attribute is 62.35%, for nodes
with white population percentage over 62.35% are labeled
as advantaged. We also test the sensitivity of such threshold
settings by using 50 and 50, 70 and 30 percentile statistics.
The detailed results are presented in Supplementary Materials.
Overall, major findings hold across different threshold settings,
which further highlights the effectiveness of the proposed
unfairness correction method.

A. Unfairness Detection

The predictive performance and two fairness metrics (i.e.,
correlation [Corr] and prediction accuracy gap [PAG]) of all
models with respect to four protected variables are presented
in Table III and Table IV.

We show the results of the predictive performance for each
benchmark in Chicago ridesourcing-trip data (Table III) and
Austin ridesourcing-trip data (Table IV).

Regarding prediction accuracy, all benchmark models show
a similar trend across two case studies. The performance
ranking is ConvLSTM ≈ STGCN > GRU > T-GCN >

MLP > ARIMA > HA. It indicates that the prediction
accuracy gradually increases as the model becomes more com-
plex. Two convolution models, i.e., STGCN and CovLSTM,
are best-performing among all models. Both STGCN and
ConvLSTM can incorporate spatial and temporal information
through the convolution blocks, which enhance their prediction
power. Among two RNN-based models, GRU outperformed
T-GCN for both MAE, RMSE and MAPE10. MLP, due
to its simple model architecture, underperformed all neural
network-based models. Compared with deep neural networks,
traditional statistical models, i.e., MLR and ARIMA, have
relatively low prediction accuracy. However, their performance
still significantly outperformed HA. MLR and ARIMA both
have a prespecified (linear) model structure and cannot capture
the nonlinearity between the inputs and target variables, which
restricts the predictive capability.

Regarding fairness issues, for Chicago ridesourcing-trip
data, Table III shows that HA exhibits completely inverse
relationships in correlation and gap compared with other
models. Since HA has the worst predictive performance, the
corresponding fairness metrics could be unreliable. The results
illustrate that both statistical and deep learning models have
evident fairness issues. Protected attributes, including race,
education and age, are negatively correlated with the prediction
accuracy which means that communities with high proportion
of white population, high education-attainment rate and more
young people have high prediction accuracy. Income level is
positively related to predictive performance, indicating that
communities with more low-income households may have
higher perdition error. In terms of magnitude, we found that
education and age have the largest value of correlation with
prediction accuracy, followed by income and race. Although
there are variations in the magnitude of correlations, the
signs for all protected attributes among all models except
for HA are consistent. In addition to correlations, we also
explored the PAG between the advantaged groups and dis-
advantaged groups. Table III presents that all gaps have a
positive value (except for HA), indicating that the prediction
error for disadvantaged groups is higher than for advantaged
groups. Additionally, the prediction accuracy disparity is more
pronounced for education and age than for race and income.

For Austin ridesourcing-trip data, all benchmark models
demonstrate a similar performance (both trend and direction
of associations) compared with using Chicago dataset. How-
ever, results showed that the fairness issues are relatively
subdued in Austin dataset. In other words, the extent of
unfairness (as shown by correlation coefficient and PAG) is
notably diminished in comparison to the Chicago dataset.
Notably, Table IV shows that prediction accuracy is less
biased regarding race and income. Two best-performing
models (i.e., STGCN and ConvLSTM) may produce satis-
fying fair predictions. For example, the correlation between
prediction accuracy and race delivered by ConvLSTM is
0.000 and the PAG regarding race is only −0.391%.
This evidence indicates that the unfairness in prediction
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TABLE III
MODELING RESULTS OF THE BENCHMARKS IN CHICGAO

TABLE IV
MODELING RESULTS OF THE BENCHMARKS IN AUSTIN

accuracy should be of little concern for this protected
attribute.

B. Unfairness Correction

We tuned a set of values of λ (i.e., the weight for fair-
ness loss) by grid search to validate the effectiveness of the
proposed unfairness correction method. Table V and Table VI
present the results of simultaneously mitigating the unfairness
issues for multiple protected attributes across two case studies.
We only present the best λ (i.e., the one that can significantly
improve fairness while largely preserving prediction accuracy)
from the empirical experiments. We also add experimental
results of correcting unfairness of only one single attribute
at the bottom of each table for comparison. For the sensitivity
analysis of λ, please refer to Section V-D. As discussed
in previous section, only very limited prediction accuracy
disparities are detected on race (percentage of white popu-
lation) and income (percentage of low-income households)
in the case study of Austin (as shown in Table IV). Thus,
we decided to only correct the unfairness of prediction accu-
racy manifested in education (percentage of bachelor’s degree
holders) and age (percentage of young population) in this
case.

There are several key findings to highlight. First, results
of the multi-attribute scenario show great consistency across
two datasets. Table V and Table VI show that in almost all
trails, incorporating a small fairness weight can significantly
reduce the absolute value of the correlation and PAG across
all protected attributes. For example, in Chicago dataset,
incorporating only 0.050 fairness weight for T-GCN can lead
to 93.131%, 90.673%, 92.989%, 73.803% reduction of the
absolute values of the PAG for race, education, age and

income, respectively. In the meantime, the correlation between
prediction accuracy and protected attributes also improved
more than 75%, but RMSE only increased by 3.535%.
In Austin dataset, setting λ as 0.025 for ConvLSTM yields
68.973% and 88.496% PAG shrinkage on education and age
by sacrificing only 5.661% and 1.118% increase on RMSE
(from 3.162 to 3.341) and MAPE10 (from 0.314 to 0.318),
respectively.

Second, the effects of the proposed unfairness correction
method vary across models and protected attributes. For
example, Table V shows that when mitigating the income
bias, setting λ as 0.025 only reduces 24.558% of the PAG
in absolute value for STGCN; while for ConvLSTM, the
same setting can lead to a 81.983% reduction. In addi-
tion, the case study on Chicago ridesourcing-trip data
reveals that compared with education and age, the absolute
value of PAG for race and income are more likely to be
reduced by MLP. While ConvLSTM shows more strength
in reducing PAG for education and age than race and
income.

Third, by choosing an appropriate λ, both fairness and
accuracy can be improved at the same time. Taking Austin
dataset as an example, adding 0.5 fairness weight on MLP
can simultaneously reduce the absolute value of PAG and
correlations for all protected attributes while even reducing
RMSE and MAPE10 by 0.128% and 7.865%, respectively.

Moreover, we found that MLR and ARIMA showed limited
capabilities in mitigating unfairness. In Chicago dataset, the
prediction accuracy disparities of education and age (as shown
in the change of PAG) for MLR and ARIMA even increased
after debiasing multiple protected attributes. Also, our exami-
nation of the Austin dataset indicated that after incorporating
the proposed fairness regularization term, although the PAG
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TABLE V
MULTI-ATTRIBUTE UNFAIRNESS CORRECTION IN CHICAGO

for MLR and ARIMA decreased, the magnitude of this reduc-
tion was comparatively modest in comparison to other models.
In fact, these two models are less flexible compared with other
deep learning models since they have a pre-specified model
structure. We believe that this inherent limitation could hinder
their effectiveness in addressing fairness concerns.

Lastly, in most cases, our proposed multi-attribute unfair-
ness correction method shows better performance in reducing
disparities of prediction and preserving accuracy compared
with only debiasing a single attribute, especially for complex
deep learning models (e.g., MLP, GRU, T-GCN, STGCN
and ConvLSTM). For example, Table V shows that when
considering multiple attributes together, ConvLSTM can close
more than 81% of PAG of income in absolute value; while
for the single-attribute scenario, the PAG is only reduced
by around 60%. However, we also observed in certain
cases, single-attribute unfairness correction could produce
fairer performance. For example, GRU is found to be more

effective in reducing PAG when only debiasing age for Austin
dataset.

C. Comparison Between Multi-Attribute and Single-Attribute
Unfairness Correction

To provide a more comprehensive demonstration of the
efficacy of the proposed multi-attribute unfairness correc-
tion approach and to pinpoint potential shortcomings in the
single-attribute bias correction method, we conduct a com-
parative analysis of unfairness correction outcomes achieved
through debiasing the age variable alone versus debiasing
multiple attributes simultaneously. We have chosen the top-
performing model, i.e., ConvLSTM, for demonstration. The
resulting findings can be found in Table VII.

We found that correcting unfairness regarding one attribute
might even create more biases for other protected attributes,
which aligns with one previous study [13]. This finding
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TABLE VI
MULTI-ATTRIBUTE UNFAIRNESS CORRECTION IN AUSTIN

TABLE VII
PERFORMANCE COMPARISON BETWEEN ONLY DEBIASING AGE

AND SIMULTANEOUSLY DEBIASING MULTIPLE ATTRIBUTES

highlights the importance of considering multiple protected
attributes at once. Specifically, results showed that compared
with the original model that purely focused on prediction
accuracy, solely correcting unfairness of age variable could
indeed help drop the absolute value of PAG. However, by only
considering age, the PAG for other variables, especially for
race and income variables, even increases. For example,
in Austin dataset, debiasing only Age shrank the PAG from
4.642% to 0.771% by significantly sacrificing the PAG of
income from 0.888% to 8.238%. This unexpected outcome
may further shed light on the fact that the transportation
resource allocations intended to be fair for distinct age groups
could nonetheless still be unfair regarding communities with
different income levels. Notably, the results showed that

the proposed multi-attribute unfairness correction method can
effectively debias multiple protected attributes and in almost
all cases the absolute value of PAG is significantly dropped
compared with the original model without sacrificing too much
prediction accuracy.

D. Sensitivity Analysis of Fairness Weight

We also explored the influence of the fairness weight, i.e.,
λ, in shaping the interaction between accuracy and fairness
based on the predictive performance of seven models with four
protected attributes. Fig. 2 presented in Appendix.C illustrates
the sensitivity analysis of λ in determining accuracy and
fairness. The x-axis is the value of λ while the y-axis is the
performance metrics (RMSE, MAPE10, correlation coefficient
and PAG). Generally, the accuracy for deep learning models
decreases when λ gradually increases. While for traditional
statistical models such as MLP and ARIMA, the marginal
effect of λ is relatively small. We also found that increasing
λ may even help improve the prediction performance for
MLP and ARIMA. One possible reason could be that the
added fairness regularization term helps reduce the variances
of the predictions so that such linear models achieve a better
performance on testing data. Figures show that as λ grows,
the correlation will first drastically increase/decrease, and then
remain flat or slightly change. Notably, setting a small weight
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(λ ≤ 0.1) can lead the correlation drop to around 0. The PAG
shows a decreasing trend as λ gradually increases. But in most
cases, the gap may get over-corrected when λ is greater than
0.1. According to the tables shown in Section V-B, a suitable
fairness weight possibly exists in the range between 0 to
0.1. This finding further reinforces the effectiveness of our
proposed unfairness correction approach: incorporating only a
small amount of weight for fairness can lead to a significant
improvement in producing fair predictions. We also found
that increasing fairness weight may not monotonically reduce
the PAG. This finding echoes the results in [13], where they
showed that increasing fairness weight might even extend the
PAG. Our computational experiments show that this scenario
frequently occurs for traditional statistical models. This finding
also suggests the need for more fine-grained searching ranges
of λ when conducting hyperparameter tuning. Overall, the
sensitivity of the effects of λ shows great consistency across
two case studies. Finally, we noticed that in Austin case,
setting fairness weight as 0.4 for GRU led to a substantial
increase in RMSE and PAG. One possible reason could be
that this combination of hyperparameters might explode the
gradients and thus lead to this numerical instability.

E. Comparison With Benchmark Fairness Regularizers

This study compares the performance of the proposed
unfairness correction approach (i.e., the absolute correlation
regularization term) with three state-of-the-art benchmark reg-
ularizers, including Equal Mean (EM) [32], Region-based
Fairness Gap (RFG) and Individual-based Fairness Gap (IFG)
[12]. For experiments, we only consider single-attribute sce-
nario as these three benchmark regularizers are explicitly
designed for addressing unfairness of a single protected
attribute. For Chicago Ridesourcing dataset, we select race
(percentage of white population) for model debiasing; while
for RideAustin dataset, education variable (percentage of
bachelor holders) is chosen for comparison. All benchmark
regularizers are set with the best-performing λ yielded by our
proposed method for comparison.

Table VIII presents the comparative analysis between our
proposed method (i.e., absolute correlation regularizer) and
three state-of-the-art benchmark regularizers. Results unequiv-
ocally show that the proposed method evidently outperforms
other methods in terms of preserving prediction accuracy as
well as approximating equality of prediction accuracy. Among
all regularizers, EM delivers the worst performance. This is
expected since EM focuses on balancing the target variable
(i.e., ridesourcing demand) of disadvantaged and advantaged
groups instead of the prediction accuracy. However, this
method could be questionable since the variations in ridesourc-
ing usage between different population groups may naturally
exist due to socioeconomic and demographic disparities [61].
RFG and IFG tend to yield improved outcomes in terms of
both accuracy and fairness when compared to EM. Moreover,
in certain scenarios, their performance (especially for corre-
lation and RMSE) surpasses that of the proposed method.
We attribute this to their capabilities to effectively reduce
variations in per capita travel demand for each individual
population group, as indicated in [12]. However, these two

metrics may still not be able to fully account for the inherent
disparities of different population groups in generating travel
demand [59]. In most cases, especially for deep learning
models with more complex model architectures, the proposed
method can significantly help reduce the PAG between disad-
vantaged and advantaged groups while largely preserving the
prediction error. Although in some cases the proposed method
may not always be the best-performing one regarding both
RMSE and MAPE10, the accuracy still remains satisfactory.

VI. DISCUSSION

The above sections demonstrate the modeling results of
our proposed unfairness correction method. In this section,
we will discuss the merits of the unfairness correction method,
policy implications, and the limitations of the work and future
research directions.

A. Merit of the Unfairness Correction Method

The merits of the proposed unfairness correction method are
threefold.

First, a new regularizer to simultaneously debias multiple
protected attributes. The current literature rarely discusses how
to effectively address fairness issues for multiple protected
attributes. However, designing a method that can accommodate
various fairness needs is necessary for real-world applica-
tions [24]. This study addresses this issue by proposing to use
Multiple Correlation Coefficient (i.e., R of a linear model) as
a regularization term and incorporating it into the loss function.
The multiple correlation coefficient can directly measure the
correlation between the target variable (i.e., prediction accu-
racy) and a set of protected demographic variables (i.e., race,
age, education and income). By minimizing the coefficient
of multiple correlation, AI models can simultaneously debias
multiple protected attributes. Unlike adding multiple regular-
ization terms (one for each attribute) [12], this approach is
straightforward and easy to implement, and thus there is no
need to fine-tune the fairness weight for different attributes
(only one is enough). Also, this approach has little concern
about the multicolinearity issues among different protected
attributes (as shown in Appendix.B), since the goal of the
linear model is to use the set of protected attributes to forecast
the prediction errors instead of estimating and interpreting
the beta coefficients [68]. Overall, our proposed unfairness
correction method enables future studies to flexibly debias
multiple protected attributes of interests.

Second, flexibility and transparency. The proposed unfair-
ness correction method is model-agnostic and may be
generalizable for different applications and different data
modalities. We implemented the unfairness correction method
on both statistical and deep learning models. Results jointly
demonstrated that, generally, this approach could mitigate the
unfairness while only slightly reducing the overall accuracy.
Specifically, we correct the unfairness by incorporating an
explicitly designed absolute correlation regularization term
into the loss function without modifying the model structure.
It allows the unfairness correction method great flexibility to
be independent of the underlying model. Scholars can thus
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TABLE VIII
COMPARISON WITH STATE-OF-THE-ART BENCHMARK REGULARIZERS

flexibly adopt any model they want in addressing fairness
issues. Also, the proposed method enjoys great transparency
since end-users (e.g., stakeholders) can easily understand how
fairness is being taken into account and improved (from
the fairness regularization term). Moreover, this method is
transferable for other forecasting applications. Besides travel
demand forecasting, other important issues including traffic
count forecasting, pedestrian activity forecasting or crash
frequency forecasting may also have silent fairness prob-
lems. Researchers can apply our proposed method to address
the fairness issues and provide fair decision-making. This
study only examined the proposed method using time-series
(panel) data. However, we believe it can be easily general-
ized to other applications with different data modalities. For
example, transportation-planning models, which usually use
cross-sectional data, should also be examined with fairness
analysis. Our unfairness correction method can be flexibly
adopted by planning models (e.g., [59]) to inform fair design
of transportation ecosystems. Flexibility is also reflected in
that, once the models are trained, access to protected attributes
is no longer required. Unlike the post-processing technique
that always requires access to the protected attribute [31], [36],
our approach lifts this restriction and can be flexibly adapted
for future forecasting tasks.

Third, effectiveness in achieving fairness while preserving
prediction accuracy. Multiple studies reported that machine
learning has a trade-off between accuracy and fairness (e.g.,
[28], [36]), i.e., the reduction of unfairness will inevitably trig-
ger an accuracy drop. Our scheme addresses this trade-off by
incorporating an interactive weight coefficient (i.e., λ) into the
loss function. We treat λ as a hyperparameter of the learning
tasks (i.e., improving fairness while preserving accuracy) and

tune it together with other hyperparameters. In this way, the
model automatically finds the optimal hyperparameter com-
bination that has the best performance in improving fairness
while maintaining prediction accuracy. Most of our experi-
ments revealed that this approach could significantly reduce
unfairness only at little expense of accuracy decline. While
in some cases, our proposed method can even significantly
improve fairness and slightly improve prediction accuracy.

B. Policy Implications

Dynamically balancing the supply and demand for trans-
portation systems is important to improve cost-benefit effects
and efficiency. And this balance relies heavily on accurate
predictions [2]. Although machine learning intensively pro-
motes predictions, it may simultaneously introduce bias. The
overall satisfactory predictions may hide a huge prediction
accuracy gap across areas of the city or underrepresented
groups of residents [12], [13]. Our study also confirms
this finding. Specifically, Table III shows that both machine
learning and statistical models can produce lower prediction
accuracy for the disadvantaged communities (i.e., the non-
white-majority, the lower-education-attainment, the elderly
and the low-income) than that of the advantaged communities.
The predictive disparity implies that if transportation planners
naively use such travel demand forecasting models without
accounting for the fairness issues, the modeling results will
lead to ineffective transportation resource allocations, impede
the mobility of the disadvantaged communities, and even
possibly further exacerbate the existing operational biases of
ridesourcing services, e.g., higher trip-cancellation rate, longer
waiting times and higher per-mile fees for disadvantaged
communities [16], [17], [79], [80].
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Fig. 1. Spatial distribution of the average ridesourcing demand per hour.

Our proposed method can help mitigate the unfairness issues
of the current ridesourcing operations to better serve the
disadvantaged communities. We believe that ridesourcing pol-
icymakers should consider incorporating our proposed method
into the travel demand modeling framework to inform fairer
ridesourcing resource allocations and operations. Additionally,
two fairness metrics can be used by city governments to
evaluate and regulate ridesourcing operations. Moreover, the
fairness measurements and unfairness correction method can
be adopted to facilitate the effective operations of other travel
modes such as public transit and shared micromobility. For
example, an accurate and fair demand forecasting model will
enable transit authorities to provide more personalized transit
services to balance operation efficiency and effectiveness [81].
Also, a fairness-aware travel demand forecasting model will
help micromobility (e.g., bikeshare and e-scooter) operators
better rebalance the vehicles and ensure fair distribution of
service availability throughout the day [82]. As travel demand
is a crucial element in cost-benefit analysis, our proposed
fairness-aware travel demand forecasting model can also act
as a guiding tool for improving evaluations of the economic
sustainability of the mobility systems in projects [83], [84].

C. Limitations and Future Research Directions

This study has some limitations that warrant follow-up
investigations. For example, we only evaluated the proposed
methodology using two fairness metrics (i.e., prediction accu-
racy gap and correlation coefficient) in this paper. Future
works may consider using a wider range of fairness metrics
to conduct a comprehensive evaluation. Moreover, by using

correlation techniques, we assume the prediction accuracy is
linearly correlated with the protected attributes. Future studies
may consider exploring whether this association is nonlin-
ear and developing corresponding methods. Another widely
debated research topic is the connection between accuracy
and fairness. Several previous studies have shown that the
accuracy-fairness trade-off exists across datasets and applica-
tions [28], [58] while others have shown that improvements in
accuracy and fairness can co-occur [20]. Hence, forthcoming
investigations may shed further light on this relationship, such
as identifying scenarios in which fairness and accuracy can
both be enhanced or where the accuracy-fairness trade-off is
prominent. In addition, this study only examined one travel
mode (i.e., ridesourcing). A more comprehensive analysis that
includes various travel modes (e.g., transit, car-sharing, and
shared micromobility) and diverse contexts (e.g., different
locations) should be conducted to test the generalizability
and robustness of the unfairness correction method. Also,
we only considered the first step (i.e., trip generation) of the
four-step travel demand models. A more comprehensive travel
demand model should also include trip distribution (origin-
destination demand) estimation [51], [59], [85]. Therefore,
future studies may consider addressing fairness issues in the
distribution of travel demand as well. Finally, we note that
this study is for empirical prediction rather than a causal
analysis [68], [86], i.e., we are not investigating which factors
are causing and how much they contribute to the unfairness.
However, we acknowledge that such causal analysis should be
an important component for a complete picture of fair travel
demand modeling, and thus needs to be considered by future
studies.

VII. CONCLUSION

This study examines the fairness issues in travel demand
forecasting models and develops a new methodology to
enhance their fairness while preserving the prediction accu-
racy. By leveraging two real-world ridesourcing-trip data from
Chicago, IL and Austin, TX, the unfairness issues of seven
state-of-the-art AI-based models on forecasting travel demand
are evaluated. A novel and transparent in-processing method,
which is based on an absolute correlation regularization term,
is proposed to simultaneously address the unfairness aris-
ing from multiple protected attributes. We also compare the
performance (including both fairness and accuracy) of our
proposed unfairness correction method with three state-of-the-
art unfairness correction methods to show its effectiveness.

The results highlight that both statistical and machine
learning models have pronounced fairness issues, wherein the
prediction accuracy for advantaged groups are notably higher
than disadvantaged groups. Our proposed unfairness correction
method can effectively enhance fairness for multiple protected
attributes while preserving prediction accuracy. The compar-
ative study reveals that our proposed method significantly
outperforms other methods in both fairness and accuracy.
Beyond its performance, our proposed method has remarkable
flexibility—it is model-agnostic and can be adapted to various
applications and different data modality. In summary, this
study advances our understanding of fairness issues in travel
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Fig. 2. Sensitivity analysis of λ across two case studies.

TABLE IX
CORRELATION MATRIX OF PROTECTED ATTRIBUTES (CHICAGO)

TABLE X
CORRELATION MATRIX OF PROTECTED ATTRIBUTES (AUSTIN)

demand forecasting and equips transportation researchers with
a powerful tool to foster fairness within the transportation
ecosystem.

APPENDIX A

Fig. 1 shows the average ridesourcing demand per hour
in Chicago, IL and Austin, TX. The spatial unit is the
census tract. This plot reveals an evident disparity regarding
ridesourcing demand across different areas.

APPENDIX B

The pairwise correlation matrix of the selected four pro-
tected attributes for two case studies is shown in Table. IX

and Table X. Results show that the protected attributes are
evidently correlated with each other.

APPENDIX C

The results of the sensitivity analysis for fairness weight,
i.e., λ are presented in Fig. 2. We specifically investigated the
effects of λ on model’s prediction accuracy by RMSE and
MAPE10 and fairness by both PAG and correlations. Note:
In Austin case, setting fairness weight as 0.4 for GRU led
to a substantial increase in RMSE and PAG. One possible
reason could be that this combination of hyperparameters
might explode the gradients and thus lead to this numerical
instability.
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