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Abstract— Transports is one of the sectors that produce the
highest emissions of CO2; in the last ten years, there has been
a process of decarbonization which has led to a considerable
increase in Electric Vehicles (EVs). However, the sudden intro-
duction of a large number of Electric vehicle supply equipment
(EVSE) supplying electrical energy to EVs could cause problems
in the management of the electric grid which must cope with the
consequent increase in the electrical load demand. In this context,
the 24 hour ahead forecast of the power curve associated with
the recharge of EVs becomes of vital importance to ensure the
reliability of the electric grid. In this paper, different Machine
Learning models based on Recurrent Neural Networks (LSTM,
GRU) and with different architectures, are compared based on
their capability to accurately predict the power curve of an EV
charging station one day in advance. A Sequence to Sequence
model has been implemented and a thorough analysis of an
Attention layer has been detailed. The models are tested on a
real world open dataset.

Index Terms— Electric vehicles, day-ahead forecast, deep
learning.

NOMENCLATURE
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EVSE Electric vehicle Supply Equipment.
RES Renewable Energy Sources.
STLF Short-Term Load Forecast.
MTLF Medium-Term Load Forecast.
LTLF Long-Term Load Forecast.
SSLTF Super-Short-Term-Load-Forecasting.
ANN Artificial Neural Networks.
LSTM Long-Short-Term Memory.
GRU Gated Recurrent Unit.
S2S SequencetoSequence.
RNN Recurrent Neural Networks.
ED Encoder-Decoder.
EMD Empirical Mode Decomposition.
MIMO Multi-Input-Multi-Output.
EMS Energy Management System.
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I. INTRODUCTION

ELECTRIC load forecasting has gained more and more
attention during the last ten years along with the increase

in global electric car stock that reached 26 million units
in 2022 [1]. The main reason behind this phenomenon is
found in the growing awareness about climate change that led
consumers to adopt more environmentally friendly choices. In
2022, the transport sector alone produced 7.98 Gt of CO2 [2],
the only ways to reduce its impact are decarbonization and
electrification of transports, however, this type of evolution
still has its own downsides when it comes to the huge
increase of EV fleet that will cause a higher need of charging
stations, numerous studies have been conducted to model the
penetration of electric vehicles and their impact on the national
grid [3]. Electric vehicle supply equipment (EVSE) supplies
electricity to an electric vehicle (EV) [4]. It is usually called a
“charging station” or “charging dock” and it provides electric
power to the vehicle for recharging the EV batteries. The new
power load demand will cause a significant rise in the peak
load and a decrease in reserve margin [5] representing a threat
to the security of the national power grids. In this context
the forecast of power load demand from EVSEs becomes the
turning point to ensure the perfect management of the national
grid balance.

EV load forecast is a form of Demand Side Management
(DSM) [6], [7], [8] that can be crucial to balance load demand
and power production. It is particularly relevant when the
vehicles are integrated into Distributed Generation (DG) such
as a micro-grid [9]. The management of energy dispatch
is the main issue when dealing with DG, the optimization
of energy flows is not trivial and is largely addressed in
the literature using several different techniques [10], [11].
Renewable Energy Sources (RES) play a key role in DG,
a coupling between EV load forecast and RES generation
forecast is strategic in this sense, a common example is
the coupling with photovoltaic power forecast [12]. In the
framework of a micro-grid, an EV could also play a double
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role, behaving alternately as a load and as a source of energy
(Vehicles-to-grid) or even acting as a decentralized source
for energy trading, becoming Connected Electric Vehicles
[13], [14].

Based on the time-horizon of the prediction, short-term,
medium-term, and long-term forecasting can be defined.
Although there is a lack of coherence in this classifica-
tion in literature, Short-Term Load Forecast (STLF) usually
refers to predictions of the load demand between one hour
and one week ahead (crucial in the optimization of the
grid operation), Medium-Term Load Forecast (MTLF) is
used to forecast load from one week to one year in the
future and is mainly important in the planning of mainte-
nance operations; lastly, Long-Term Load Forecast (LTLF)
has to do with predictions that exceed one year and are
mainly involved in the decision process for big investments
in new infrastructures and generation units [15]. Another
category that has gained importance in the latest years is
the Super-Short-Term-Load-Forecasting (SSLTF) [16], also
defined as Ultra-Short-Term-Load-Forecasting [17] or Very-
Short-Term [18], corresponding to minute predictions or,
in general, under one hour.

Electric load forecasting methods can be categorized
into traditional statistical models and artificial intelligence
models [17]. Traditional models include time series anal-
ysis methods, Autoregressive Integrated Moving Average
(ARIMA), regression analysis, Kalman filtering, and statistical
methods, while artificial intelligence methods include Artificial
Neural Networks (ANN), Support Vector Machine, and Deep
Learning (DL) models. At the very early stage in EV load
forecasting studies, statistical models were the most suitable
choice as the lack of real, organized data about EV charging
made it necessary to build realistic scenarios data through
computational algorithms. With the availability of actual
EVSE load data, the approach to EV load forecasting shifted
totally from a probabilistic to a data-driven one. Nowadays the
main direction of the research in EV power load forecasting
is concentrated on ANNs in all their declinations [19], [20].

In this paper S2S (SequencetoSequence) based on Long-
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) models are proposed, an attention mechanism inspired
by Badahnau [21] with dot alignment score is added. Our
contributions in this paper are:

1) a review of the state-of-the-art models for electric and
EV load forecast.

2) The application of the proposed models to a real world
EV charging dataset with the aim to test and compare
the performances of EV charging load forecast with
24 hours in advance.

3) A detailed analysis on the forecasting accuracy of more
complex models compared to simpler RNNs architec-
tures with a focus on the “Attention” mechanism.

4) A thorough appraisal of hyperparameters tuning and
their influence on the forecasting performances.

The research is based on one of the few available public
datasets found in the literature. The remainder of this paper is
as follows. Section II describes the related works. Section III

outlines the methodology adopted in the study with a detailed
presentation of attention mechanisms, Section IV presents the
case study analyzed in the paper, it describes how the dataset is
composed, how the data has been treated and reshaped to enter
the models introduced and how the results will be evaluated.
Section V displays and discusses the results of both study
cases while Section VI draws the conclusions of the study.

II. RELATED WORKS

Although it is a common opinion that Recurrent Neural Net-
works (RNNs) have outperformed all other techniques, there is
not a model that surpasses the others in every task, this leads
to a large literature of comparative studies among different ML
models, as listed in Table I with increasing time horizon. In the
framework of SSTLF forecasting, Machine Learning and in
particular LSTM seems to be highly effective in forecasting
the load on minute-level. In [16], the LSTM model results are
superior to all other models even on a second, more random,
dataset that is less representative of a typical usage. In [17]
a novel LSTM-based model is the best-performing model on
two different time scales. Authors in [22] present a model
based on the Machine Theory of Mind composed of three
networks, the first two are built based on LSTM networks.
The authors of [23] propose a self-attention-based machine
theory of mind assessing its superiority on other 5 state-of-
the-art models using a quantile forecast evaluation metric as
the loss function.

Moving to slightly longer horizons (24 hours) in the realm
of STLF, a larger variety of models and techniques has been
analyzed in the literature, RNNs still have high relevance being
at the base of more complex architectures that are devel-
oped such as Encoder-Decoder(ED) models. Reference [24]
presents a performance comparison of four DL-based methods.
After tuning the number of hidden layers the GRU model with
only one layer results to have the best performance. In [25] the
analyzed and compared models are tested on three different
synthetically generated time series plus three real-life datasets.
The authors in [26] propose an LSTM model coupled with
feature engineering Empirical Mode Decomposition (EMD).

In [29], an S2S model is proposed, additionally, two dif-
ferent types of attention (Bahdanau [21] and Luong [43]),
are added to the S2S. They concluded that, as the prediction
length increases, the accuracy decreases, additional layers do
not improve the forecasting accuracy, and that overall S2S
models with attention performed better than non-S2S models
for all input lengths. A two-stage STLF model based on LSTM
and Multi-Level Perceptron (MLP) is presented in [35]. In [31]
a model based on Wavenet is described and evaluated through
a comparison with state-of-the-art ANN. Bedi and Toshni-
wal [33] propose a framework (D-FED) to forecast electricity
demand, it is based on LSTM with a novel moving window-
based Multi-Input-Multi-Output (MIMO) mapping approach
technique.

Examples of Reinforcement learning are proposed by [28]
and [37]. RL has been applied to EV in literature also to
integrate driving behavior in the Energy Management System
(EMS) as in [44] and to manage the forecasted charging
load in vehicle-based mobility-on-demand systems [45] or
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TABLE I
BIBLIOGRAPHIC REVIEW ON ELECTRIC LOAD FORECAST SORTED BY THE INCREASING TIME HORIZON

coordinated charging management of EVs based on local infor-
mation [46]. Prophet-BiLSTM is employed in the day-ahead
forecast of EV charging load in [47], it performed better
than transformer and DNN. Reference [48] is a review on
EV scheduling, clustering, and forecasting. Another review
on both load and occupancy day-ahead forecasts is presented
in [49], which direct and bottom-up approaches with both
statistical and machine learning models. It results that Machine
Learning models are mostly preferred over probabilistic mod-
els. For example, authors [50] present a novel spatiotemporal
Deep Learning network for traffic flow prediction problems,
which is capable of modeling the periodicity of traffic flow
data with a well-designed time embedding strategy from
15 minutes to 1 hour. Regarding the MTLF forecast, reaching a
monthly horizon, more complex model structures are proposed
to face the reduced accuracy that results from the increase in
the time ahead interval. A medium-term demand forecasting
S2S model is presented in [39], while [41] proposes a trilinear
deep residual network (TDResNet) structure. Finally, in [51],
authors propose an optimization procedure exploiting EV
forecast to schedule the recharging processes under dynamic
power prices such as real-time pricing, time of use, critical
peak pricing, and prime times refunds.

In this study, we conduct a comparison of forecasting
models employing RNNs for STLF with a prediction horizon
of 24 hours. This approach aligns with similar investiga-
tions outlined in the literature, as indicated in Table I. The
method presented here can be similarly applied to charging
stations, mirroring how Machine Learning has been employed

to enhance sensors’ intelligence [52]. In our work, the data
utilized for training and testing the models consist of publicly
available records from EV charging sessions [27]. To enhance
the accuracy of the RNN models, we introduce an ED structure
and incorporate an attention mechanism. The performance of
these enhanced models is then directly compared with the
baseline RNN model, considering persistence as a benchmark.
Additionally, we conduct a sensitivity analysis on the number
of layers and the quantity of RNN neurons in each layer to
evaluate their impact on the final forecasting results.

III. ADOPTED METHODOLOGY

A. Encoder-Decoder/Sequence to Sequence

The power load forecast of the charging station is a Many-
to-Many prediction as it usually takes in input the time series
of power sampled at a certain time-step and tries to predict
another sequence of values, it could require the two sequences
to have different lengths. A proper way to handle a Many-to-
Many prediction is an S2S model. S2S models are based on
an ED architecture that consists of 3 components: an encoder,
a context vector, and a decoder. Both the encoder and the
decoder are constructed as a stack of several RNN units. The
encoder takes a sequence as the input and transforms it into
a context vector, an element with a fixed shape that acts as a
condensed representation of the input time series. The output
of the encoder, the hidden state, is usually the state of the
last RNN time step. The length of the vector depends on the
number of RNN cells in the encoder. The context vector acts
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as the initial hidden state of the decoder part of the model as
it takes the output from the encoder and feeds it repeatedly as
input at each time step to the decoder. The decoder interprets
the context vector to make predictions for each time step
required in the output.

B. Attention Mechanisms

Attention mechanisms were introduced for the first time in
1997 by Bahdanau in [21], and a similar, modified version
was later presented by Luong [43]. They were developed
to solve the main issue that arises when dealing with S2S
models: the incapability of the network to remember long
sequences given as input due to the limited length of the
context vector. In an ED model, at each time step of the
decoder, important elements for the creation of the current
output could come from any point of the input sequence, but
the context vector is not capable of encapsulating the data
“seen” at the beginning of the input. Attention mechanisms try
to replicate the human brain’s capability of focusing on small
portions of the entire information provided at a time, paying
attention only to the ones that are relevant to the answer that
is required. The encoder functions exactly as in the case of a
simple Encoder-Decoder model producing a hidden state h for
each time-step. The context vector is not constant, but changes
at each time step of the decoder, calculated as a weighted mean
among all the hidden states of the encoder as shown in (1).

ct = αt,1h1 + αt,2ht + αt,mhm (1)

where ct is the context vector at the current time-step t and
hm is the hidden state of the last time-step in the input with
m being the length of the input sequence. The weight αt,i
is the alignment weight computed at the i-th time-step. Each
α is the result of the application of a softmax function to the
attention scores et,i to normalize them. The attention scores are
computed through a proper alignment model a(.), an operation
that scores how well the current hidden state of the encoder
hi matches with the hidden state of the decoder state st−1
at the previous time-step. Equation (2) and (3) illustrate how
alignment scores and alignment weights are calculated. The
weights favor the hidden states that are matching with the
previous output, in this way the context vector is paying
attention only to the parts of the input that are considered
relevant by the alignment function solving the problem of the
limited length.

et,i = a(hi , st−1) (2)
αt,i = so f tmax(et,i ) (3)

The decoder takes in input the context vector, the previous
hidden decoder state and the current output, to compute the
final prediction. The attention model described is the one
proposed by Bahdanau [21], in this case the alignment function
is a single-layer perceptron as shown in (4):

a(st−1, hi ) = vT
a tanh(Wasi−1 + Uahi ) (4)

where Wa ∈ Rn×n, Ua ∈ Rn×2n and va ∈ Rn are weight
matrices that are being optimized during the training process.

Fig. 1. Context vector comparison between Classic ED and Attention ED.

IV. CASE STUDY

Despite the growing popularity of EVs, the main issue when
dealing with EV charging load forecasting is the scarcity of
data. Only a limited number of sources that provide complete
data on EV load demand may be found, and most of them are
usually not publicly available. The study case proposed in this
work is based on one EVSE recording EV charging sessions:
the JPL dataset from Adaptive Charging Network (ACN).

A. JPL Dataset Description

The data collected by ACN have been made available to
provide researchers working in the field of electric vehicle
charging with a complete set of real data coming from existing
facilities. For the purpose of this study, the records from the
JPL (Jet Propulsion Laboratory) database will be used. This
site currently has 52 EVSEs, or charging stations, and it is only
open to employees making it a good representation of a typical
workplace schedule. Only a subset of all the available data
has been considered suitable due to the anomalies associated
with the pandemic, it includes the sessions from 31/12/2018 to
04/01/2020. Some of the values provided for each of them are
relevant to the study: session ID, station ID, connection time,
disconnection time, done charging time, and time zone. The
session ID is a univocal code identifying the single charging
event, in the same way, the station ID is a unique code
associated with a charging spot. The connection time expresses
the date and time at which the vehicle has connected to the
station, similarly, the disconnection time is the instant in which
the EV has disconnected from the charger, while the done
charging time is the date and time at which the charging
procedure was actually stopped. The time zone is used to
calculate the UTC time. The stations in the JPL parking lot are
all near in space and used mainly by the university employees
so the power curve of the whole parking lot is analyzed as
aggregated power. The multi-step forecast of the power load
will be performed using Machine Learning models based on
different Recurrent Neural Networks (RNN) and architectures,
the time horizon is 24 hours with 15 minutes time-steps for a
total of 96 steps, the data of the previous day (96 steps back)
is used as input to make predictions on the next day.

B. Pre-Processing on JPL Data

The data has been organized as a time series, creating a
series of 15-minute time steps, each of them associated with
the correspondent sum of the average power required by each
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Fig. 2. Input and Target represented as 3D matrices after the reshaping
procedure.

vehicle that was in charging mode during that time interval.
The time series has been re-framed to enter an ML problem
with input patterns (X) and output patterns (Y). The current
time is addressed as (t), future time steps (t + 1, . . . , t + N )
are the ones to be forecasted, and past observations (t −1, . . . ,

t−n) are used to make forecasts. At each time step X and Y are
computed shifting the original dataset n steps back and N steps
forward. After the reshaping, each sample X in the input is a
3D matrix with dimensions (samples, n, f ), the corresponding
output Y is a similar 3D matrix with dimensions (samples,
N, F) where f and F are respectively the features of the input
samples and the ones to be forecasted. The lag l is the number
of time-steps between the current time t and the first forecasted
step t + l. The training samples generation is schematized in
Figure 2. After the reshaping the input data is scaled between
0 and 1 using a MinMax scaler to achieve higher stability and
shorter training periods. Then the data is split into a training
set and a test set, having to do with time-series problems the
sets have been split sequentially.

C. Model Tuning and Evaluation on JPL Dataset

The models used to make predictions are all based on
RNNs, an S2S model with LSTM/GRU layers has been imple-
mented, and it is compared to simple LSTM and simple GRU.
Additionally, an attention layer inspired by the one described
by Badahnau [21] is introduced in the ED model to check
whether or not it can improve its performance. Proper tuning
is performed on the models to identify the best architecture
for each one. The hyperparameters undergoing the tuning are
the number of units in the RNN layers and the number of
RNN layers. In the case of S2S structures, both the number of
layers in the encoder and the number of layers in the decoder
are changing. Three values are considered for the number of
units in each layer: 32, 64 and 128; up to three layers are
considered in simple models and two layers in the ED ones
for a total of 36 different models. The main characteristics of
each model are summarized in Table II.

The first architectures to be analyzed in the simulations
were the S2S models with LSTM (ED LSTM) and GRU (ED
GRU). The built model has an encoder, a context vector, and a
decoder. The encoder consists of one or more layers of LSTM,
or GRU, based on the different cases. After the analysis of the
ED models their corresponding simple models were simulated
to understand if, and eventually in what amount the S2S model
could improve the performances.

Finally, an attention mechanism is introduced in the S2S
models (LSTM Attention) with the aim of assessing the
performances with respect to the previously analyzed models.

It has been chosen to build the attention model with LSTM
since it has shown better performances and higher stability in
previous cases. The employed attention layer is inspired by
the one described by Bahdanau [21]. The dot alignment score
is used, it is calculated as in (5) where hT

i is transposed of
the i-th hidden state in the encoder and st−1 is the previous
hidden state in the decoder.

et,i = dot (hT
i , st−1) (5)

The benchmark used to evaluate the models is the simplest
forecast baseline model, Naive Persistence (Persistence), it is
based on the most trivial assumption that can be made when
forecasting, it takes the value at the current time-step (t) and
assigns it to the predicted value for the next step (t +1), in our
case the value of the time-step (t) is assigned to the time-step
that has to be predicted 24 hours ahead (t + 96) as described
in (6), where yp is the predicted value and y the actual one.

yp(t + 1) = y(t) (6)

D. Performance Metrics

The performances of all the models are assessed using four
different evaluation metrics: Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Symmetric Mean Absolute Percentage Error
(SMAPE). They are among the most employed performance
metrics for time-series forecasting evaluation in the literature.

MAE, MSE, and RMSE are scale-dependent errors, which
means that the resulting error is on the same scale as the data,
so their values are not capable of expressing the performances
of the model in an absolute way but only relative to other
models in the same problem, while the adoption of Symmetric
Mean Absolute Percentage Error tries to solve this problem
giving a share instead of an absolute value leading to a scale-
independent error.

Besides, it should be underlined that the training loss func-
tion is calculated on the MSE which is normalized between
the minimum and maximum values of the time series in order
to speed up the training process, therefore the training and
test error represented in Figure 6 and 4 is a normalized MSE
(nMSE). The employed optimizer in the machine learning
models is Adam. Finally, the proposed algorithms have been
tested on a workstation at Politecnico di Milano, equipped
with an Intel® CoreTM i9-10900KF CPU with 10 cores of
base frequency of 3.7 GHz.

V. RESULTS

In Table II the performance comparison of the most accurate
models among those analyzed is reported. They are listed
according to their: architecture (naive, simple, S2S or mixed
with the attention mechanism), model (Encoder-Decoder or
not, LSTM, GRU, and Persistence), and number of layers
and units per layer. In addition, the elapsing time in the
training is reported. The best-performing model includes the
attention mechanism (LSTM Attention) and consists of an S2S
architecture with a double-layer LSTM both in the encoder
and the decoder made by 128 units in each layer. This model
scored the best MAE, MSE, and, RMSE slightly higher than
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TABLE II
PERFORMANCE COMPARISON OF THE BEST CASES FOR EACH FORECASTING MODEL

Fig. 3. Trend of the nMSE during the train (blue) and test (orange) of the
best performing model (LSTM Attention).

Fig. 4. Trend of the nMSE during the train (blue) and test (orange) of the
best performing model (ED LSTM).

the simple GRU and LSTM. However, these simple models
suffer from poor stability in terms of error trends in the training
process, compared to the relevant models with attention mech-
anisms. This can be clearly seen in Figure 4 where the training
error curve (in blue) of the LSTM with attention shows an
almost monotonic descending trend which is smoother than
the corresponding S2S LSTM training curve in Figure 3. The
LSTM Attention model shows one of the lowest SMAPE in
Table II and when counting the time duration it is not fast
in the single training epoch when compared to the others.
This result is reasonable if considering the higher amount
of trainable parameters needed for this model. However,
it performed 26 epochs before the training was stopped,
which is less than the relevant model without the Attention
mechanism. After the tuning of ED LSTM and simple LSTM,

it could be noticed that the simple model had outperformed the
correspondent ED one leading to the conclusion that a more
complex model was not advantageous. The same observation
could be done for the ED GRU and simple GRU. However the
introduction of the attention layer, in particular in the LSTM
Attention model, completely overturned the results improving
the performances of the ED LSTM, with a decrease in MAE of
8%, MSE was lowered by 19%, RMSE by 10%, and SMAPE
by 10%.

Some general considerations can be drawn from the analysis
of the tuning procedure which is shown in Figure 5. Regarding
simple models, their performance metrics MAE, RMSE, and
SMAPE tend to lower at first when increasing the complexity
of the model and then rise when reaching 128 units, both
LSTM and GRU reach the best performances with the model
(1 layer and 128 units) as can be observed in Figure 5.

In ED structures, increasing the number of units and layers
has different effects on LSTM and GRU, but both of them are
performing worse when reaching 128 similar to the simple
structures. The higher complexity of the model, when increas-
ing the number of layers in the encoder and the decoder,
increases the performances with 32 and 64 units but not in
the case of the biggest model with 128 units. In general, the
increasing complexity due to the higher number of units is
not associated with an increase in the accuracy of the forecast
while, on the other hand, it brings to longer training duration.
The model with attention is the only one that benefits from
an high number of trainable parameters. About the direct
comparison between LSTM and GRU, it can be underlined
that the second is performing worse on average and this is
less evident in the ED architectures but still it consistently has
lower training stability making LSTM more advisable.

Figure 6 shows the trend of the actual power and the trend
of the forecasts from the LSTM Attention model (in red)
and the ED LSTM (in green) during the week spanning from
28/10/2019 to 3/11/2019.

During this week, both models generally underestimated
the value of the actual time series giving an under-prediction.
However, the LSTM Attention model learned more accurately
the daily pattern and is capable of forecasting the starting
and the ending of the daily load. Besides, it also learned
the weekly pattern being capable of identifying the start
and the end of the working days. During the weekend the
performances are lower than expected because user behavior is
significantly less periodical and then more unpredictable. This
worse performance trend is more highlighted during peculiar
days such as national holidays.
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Fig. 5. Trend of the error metrics used to evaluate the models MAE, RMSE and SMAPE as function of the complexity of the models during the tuning
procedure, the number of layers and the number of units within the layers is increasing along x axis.

Fig. 6. Trend comparison between the actual total power of all EVSEs in JPL
dataset and the total power forecasted by the best model (LSTM Attention)
and the direct competitor model (ED LSTM), during a typical week.

Fig. 7. Trend comparison between the actual total power of all EVSEs in JPL
dataset and the total power forecasted by the best model (LSTM Attention)
and the direct competitor model (ED LSTM), on the Thanksgiving weekend.

Particularly low performances can be observed during the
week from 25/11/2019 to 1/12/2019 (Figure 7), they can be
easily addressed to the celebration of Thanksgiving day of

Fig. 8. Comparison between the trend of the actual total power of all EVSEs
in JPL dataset and the total power forecasted by simple model LSTM and the
ED LSTM on a typical week.

that year, the same is true for the Christmas holidays. This
behavior is reasonably due to the lack of holiday “examples”
included in the training set, which have a lower statistical
significance. Finally, Figure 8 shows the comparison between
the best model with just LSTM trend and the best ED LSTM
one, it can be noticed how the performances of the two models
are comparable, the ED is slightly worse than simple LSTM,
on the other side it is not able of properly predicting values
close to zero and during the weekend, however, its training
stability is a lot lower than the ED model one (ED LSTM).

VI. CONCLUSION

This paper presents and applies the LSTM model with the
attention mechanism feature to EV charging load forecast
24 hours in advance. The model is here applied to a real-world
Electric vehicle charging equipment public dataset, to test
and compare its performances with other state-of-the-art Deep
Learning models.
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From the comparison with the benchmark of Naive Per-
sistence, the best-performing model in terms of MAE, MSE,
and RMSE, is the proposed LSTM with attention mechanism
model. In addition, the obtained SMAPE is comparable to the
simple LSTM and GRU models, but it showed better stability
in terms of training error trend.

More in detail, the increased effectiveness of higher com-
plexity models compared to simpler RNN architectures and the
key role of the attention mechanism in improving S2S results
are here inspected. Finally, the tuning of hyperparameters
and their influence on forecasting performances is critically
analyzed.

The obtained results highlight how the presence of the
attention mechanism represents a turning point in EV charging
load forecast models justifying the increased complexity of
these models.

A notable limitation of this study is its dependence on the
availability of limited data, thereby constraining the extent
to which validation can be achieved. The lack of accessible
open and expansive datasets impedes the progress of scientific
research in this domain. However, further studies are directed
towards enhancing the precision of forecasting models through
the incorporation of supplementary inputs.

In future works, other inputs could be fed to the model to
complete the available information. In particular, exogenous
variables that could affect the periodical influx of electric vehi-
cles and the normal operation of relevant supply equipment
are of particular interest such as weather forecast, ambient
temperature, and rainfall. Furthermore, inspecting the influ-
ence of peculiar days affecting the EV users’ behavior, such
as the occurrence of holidays, mass events, maintenance or
roadworks, would be extremely useful to better model the EV
charging station occupancy trend and the overall associated
power supplied. These events are occurring occasionally and,
even if they are generally planned for a long time by the
municipalities, they are very difficult to detect and predict
without prior knowledge and due to the Machine Learning
model being data-driven and experience-based.

In conclusion, the presence of additional data would
allow us to build a more complex model, with several
trainable parameters of different types (numeric, boolean,
etc. . . ) improving the final electric vehicle supply equipment
day-ahead power forecast accuracy.
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