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Abstract— Real-time transportation surveillance is an essential
part of the intelligent transportation system (ITS). However,
images captured under low-light conditions often suffer poor
visibility with types of degradation, such as noise interference
and vague edge features, etc. With the development of imaging
devices, the quality of the visual surveillance data is continually
increasing, like 2K and 4K, which have more strict requirements
on the efficiency of image processing. To satisfy the requirements
on both enhancement quality and computational speed, this
paper proposes a double domain guided real-time low-light image
enhancement network (DDNet) for ultra-high-definition (UHD)
transportation surveillance. Specifically, we design an encoder-
decoder structure as the main architecture of the learning
network. In particular, the enhancement processing is divided
into two subtasks (i.e., color enhancement and gradient enhance-
ment) via the proposed coarse enhancement module (CEM)
and LoG-based gradient enhancement module (GEM), which
are embedded in the encoder-decoder structure. It enables the
network to enhance the color and edge features simultaneously.
Through the decomposition and reconstruction on both color
and gradient domains, our DDNet can restore the detailed
feature information concealed by the darkness with better visual
quality and efficiency. The evaluation experiments on standard
and transportation-related datasets demonstrate that our DDNet
provides superior enhancement quality and efficiency compared
with state-of-the-art methods. Besides, the object detection and
scene segmentation experiments indicate the practical benefits for
higher-level image analysis under low-light environments in ITS.
The source code is available at https://github.com/QuJX/DDNet.

Index Terms— Intelligent transportation system (ITS), trans-
portation surveillance, low-light image enhancement, ultra-high-
definition (UHD), double domain guidance.
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I. INTRODUCTION

WITH the rapid growth of intelligent transportation sys-
tem (ITS), more and more visual sensors are employed

for transportation surveillance. However, when the imaging
device is under low-light environments, the acquired images
always suffer poor sharpness, low contrast, and undesirable
noise [1]. The poor imaging quality makes it difficult to see
the captured scenes clearly and brings great challenges to
higher-level image analysis, such as object detection [2], [3],
[4] and scene segmentation [5], [6], [7]. Even though some
imaging devices attempt to enlighten the darkness with extra
artificial light such as infrared and ultraviolet flashes [8], the
cost and the poor quality are the main limitations. Therefore,
an effective low-light image enhancement method is necessary
for nocturnal transportation surveillance. Moreover, with the
development of imaging and parallel computational devices,
the resolution of the captured visual surveillance data is
continually increasing, from the standard definition (SD, 480p,
720p), the high definition (HD, 1080p), to the ultra-high
definition (UHD, 4K). The corresponding image processing
algorithm has also been widely investigated under multiple
transportation scenes, e.g., parking lot [9], waterway [10], and
airport surveillance [11], etc. The trade-off between visibility
enhancement and computational complexity is a major prob-
lem to be solved in current transportation applications [12].

A. Motivation

The real-time transportation surveillance has two main
requirements for low-light image enhancement: effectiveness
and efficiency. Specifically, the main targets of transportation
surveillance are vehicles [13], pedestrians [14], vessels [15],
etc. It is thus necessary to enlighten the darkness effectively
with better noise suppression and feature preservation. For
traditional low-light enhancement methods, the illumination
is mainly improved by enhancing the contrast globally (e.g.,
histogram equalization (HE) [16]), which only improves visual
perception without effective noise suppression. Compared with
traditional methods, learning methods are robust to the noise
due to the strong learning ability of deep neural networks,
which could also improve the computational efficiency due to
the acceleration of GPU. However, in transportation scenes,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0001-5625-4147
https://orcid.org/0000-0002-1591-5583
https://orcid.org/0000-0001-7730-0421
https://orcid.org/0000-0002-0642-7684
https://orcid.org/0000-0003-2886-6968
https://orcid.org/0000-0001-9185-3989


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. The illustration of our DDNet for real-time low-light transportation
surveillance under different practical scenes.

Fig. 2. The comparison between the low-light enhancement results on UHD
images in transportation surveillance. From left to right: (a) raw 4K low-light
image, (b) enhanced result after resizing the image to 1080P, and (c) 4K image
enhancement. It is obvious that the resizing operation causes significant detail
loss on UHD images.

the edge feature is rarely considered in previous low-light
image enhancement methods [17], which is especially impor-
tant for higher-level image analysis like vehicle detection [13],
pedestrian detection [18], and scene segmentation [19]. In
practical applications, the frame rate of most transportation
surveillance cameras is less than 30 FPS [20], which is
thus the basic efficiency requirement of real-time image pro-
cessing methods. However, most previous low-light image
enhancement methods can not satisfy this requirement [21].
Therefore, in most cases, the UHD images will be firstly
resized to smaller scales for lower computational complexity.
It is doubtless that the image resizing has severe degeneration
on the image quality. As shown in Fig. 2, the resizing operation
causes significant detail loss, making the blur of vehicle license
plates. Many methods have achieved real-time processing on
UHD images, like Zero [22], SCI [23], and UHDFour [24],
but the results are unsatisfactory in ITS scenes.

To achieve effective real-time low-light image enhancement
in UHD transportation surveillance, we propose a double
domain guided network (DDNet). It achieves superior noise
suppression and brightness enhancement with enhancing the
feature map on the color and gradient domains simultaneously.
The experiments on running time have demonstrated the effi-
ciency of the implementation on UHD images. Furthermore,
the object detection and scene segmentation experiments indi-
cate the practical improvement for higher-level image analysis.
In general, this paper provides an effective and efficient
method to improve transportation surveillance under low-light
environments.

B. Contributions

In this paper, we propose a real-time low-light image
enhancement network for UHD transportation surveillance,
which achieves competitive enhancement quality and com-
putational efficiency. The main contributions of the proposed
method can be summarized as follows:

• We propose a double domain guided low-light image
enhancement network (DDNet), aided by Laplacian of
Gaussian (LoG)-based gradient information. It effectively
improves the image quality captured under low-light
conditions, with keeping most details on both color and
gradient domains.

• We design the LoG-based gradient enhancement mod-
ule (GEM) and the coarse enhancement module (CEM)
embedded in the encoder-decoder structure, which
enhances the color and gradient-domain features effec-
tively. Besides, a joint loss function is proposed to con-
strain the enhancement of different domains separately.

• The quantitative and qualitative evaluation experiments
compared with the state-of-the-arts are conducted on
standard and transportation-related datasets. Experimental
results show that our DDNet significantly improves the
enhancement performance. Besides, the running time
satisfies the requirements of real-time UHD transportation
surveillance. The object detection and scene segmentation
experiments indicate the improvement of our DDNet for
higher-level visual tasks in ITS.

The rest of this paper is organized as follows. The
recent studies on low-light image enhancement are reviewed
in Section II. In Section III, We introduce the details
of our DDNet. Numerous experiments on standard and
transportation-related datasets have been implemented to eval-
uate the enhancement performance and practical benefits for
transportation surveillance in Section IV. Conclusion and
future perspectives are finally given in Section V.

II. RELATED WORK

In this section, we briefly introduce the previous low-light
image enhancement methods (i.e., traditional and learning
methods) and their applications in ITS.

A. Traditional Methods

The traditional methods employ some mathematical mod-
els to enhance the low-light images. Histogram equalization
(HE) [16] flattens the histogram and expands the dynamic
range of intensity to improve the brightness of the image.
However, it is challenging to discriminate the noise and clear
information with HE-based methods. Excessive noise corrupts
the histogram distribution, making it harder to get reliable
information from low-light backgrounds. Retinex theory [25]
and related methods [26], [27], [28] decompose the low-
light image into the reflectance and illumination components
to get the underlying normal-light image. To make a better
balance between the brightness enhancement and noise sup-
pression. However, Retinex-based methods have two major
drawbacks. First, insufficient brightness enhancement in com-
plex scenes results in unqualified enhanced images. Besides,
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they have difficulty in balancing noise suppression and edge
feature preservation. Ying et al. [29], [30] suggested a camera
response model to improve the effect of low-light image
enhancement. Dong et al. [31] and DeHz [32] enhanced the
low lightness based on the atmospherical scattering model.
SRRP [33] kept the smoothness of the original illumination to
achieve qualified image enhancement. However, they failed
to simultaneously achieve satisfactory detail preservation,
illumination enhancement, and computational efficiency for
real-time UHD transportation surveillance.

B. Learning Methods

In recent years, deep learning [34] has achieved
widespread success in diverse fields of computer vision
tasks, such as object detection, scene segmentation, and
low-light image enhancement. Based on the Retinex the-
ory, many methods employed the CNN to formulate the
decomposition and enhancement of low-light images, e.g.,
KinD [35], RetinexNet [36], RUAS [37], Uretinex-net [38] and
LR3M [39]. Meanwhile, many multi-branch networks [40],
[41], [42], [43], [44], [45] were designed to tackle different
subtasks in low lightness enhancement, e.g., noise reduction
and color restoration. In addition to the supervised train-
ing, EnlightenGAN [46] and DRBN [47] enlightened the
darkness with the semi-supervised network. LLFormer [48]
used a vision transformer to achieve UHD low-light image
enhancement. Although with considerable efforts, the running
time of most previous works is not suitable for real-time
UHD transportation surveillance. Besides, in transportation
scenes, edge feature restoration is typically important, which
was rarely considered. Lu et al. [49] proposed a gradient
prior-aided neural network employing Laplacian and Sobel
filters to guide the enhancement. However, these filters are
sensitive to noise interference, which is harmful to image
quality enhancement. In this paper, we employ the robust LoG
operator to extract the gradient information and enhance it in
the network to obtain better edge features.

C. Applications in Transportation System

The efficient low-light image enhancement methods are
necessary for nocturnal surveillance in ITS. Therefore, many
efforts have been devoted to overcoming the restriction of poor
illumination. For instance, a CycleGAN-based image enhance-
ment method is proposed for railway inspections [50], and an
attention-guided lightweight generative adversarial network is
designed for maritime video surveillance [51]. Guo et al. [52]
enlightened the darkness in maritime transportation scenes
with a lightweight neural network. Besides, [53] and [54]
have demonstrated the benefits of low-light enhancement for
promoting the accuracy of higher-level image analysis tasks
in ITS.

III. DOUBLE DOMAIN GUIDED LOW-LIGHT IMAGE
ENHANCEMENT NETWORK

In this section, we first introduce the Laplacian of Gaussian
Operator (LoG) in Section III-A. The architecture of DDNet

and the implementation details of the self-calibrated convolu-
tions are then presented in Section III-B and III-C. The joint
loss function is introduced in Section III-D.

A. Laplacian of Gaussian Operator

The transportation surveillance under low-light environ-
ments suffers from low brightness along with vague edge
features, which causes knotty troubles to higher-level visual
tasks in ITS [55]. Therefore, it is necessary to consider the
restoration of edge features [56]. The Laplace operator is
the sum of the second-order partial derivatives of the gray
image function in the horizontal and vertical directions [57].
It responds to areas where the intensity changes rapidly and
can be used to extract the image edge features. The Laplacian
operator L(u, v) corresponding to the intensity value I of the
image pixel can be given as follows,

L(u, v) =
∂2 I
∂u2 +

∂2 I
∂v2 . (1)

A single image can be represented by a discrete set of pixel
values. The gradient feature map can thus be generated through
a second-order derivative discrete convolutional kernel KL ,
which approximates the Laplacian operator, i.e.,

KL =

 0 +1 0
+1 −4 +1
0 +1 0

 . (2)

However, the images captured in low-light environments
commonly contain unwanted noise. The sensitivity to noise
makes it challenging to accurately extract gradient features
from low-light images. To this end, we first reduce the
interference of noise on the image by Gaussian smoothing
filtering, which can be expressed as follows,

Gσ (u, v) =
1

2πσ 2 exp
(

−
u2

+ v2

2σ 2

)
, (3)

where σ is the Gaussian standard deviation. Benefiting
from the associative property of the convolutional opera-
tion, we obtain a hybrid filter by convolving the Gaussian
smoothing filter and Laplacian filter to generate LoG-based
gradient features. The 2-D LoG function centered on zero with
Gaussian standard deviation σ is given by

LoG(u, v) = −
1

πσ 4

[
1 −

u2
+ v2

2σ 2

]
e−

u2
+v2

2σ2 . (4)

The convolutional kernel of LoG is small, and the kernel
parameters are pre-calculated, which brings little compu-
tational burden. In this work, the convolutional kernel
parameters of LoG can be given as follows

KLoG =


0 0 +1 0 0
0 +1 +2 +1 0

+1 +2 −16 +2 +1
0 +1 +2 +1 0
0 0 +1 0 0

 . (5)

In the network, we first generate the gradient map of the
low-light image via the LoG-based operator, which will be
then enhanced in the GEM, as shown in Fig. 3.
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Fig. 3. The examples of the enhanced results on gradient domain, from
left to right: (a) low-light images, (b) LoG-based gradient feature map,
(c) GEM-enhanced gradient map, and (d) final enhanced images.

B. Network Architecture

An ordinary neural network can not simultaneously and
accurately generate the normal-light image and gradient fea-
ture map from the low-light image. We thus use multi-stage
architecture to perform fusion-decomposition-fusion on the
color and gradient domains. For the sake of better understand-
ing, Fig. 4 depicts the architecture of our DDNet. Specifically,
we first concatenate low-light images and their corresponding
LoG-based gradient feature maps and feed them into the
network. The proposed architecture includes six self-calibrated
convolutions with attention modules (ScCAM) in the periph-
eral en-decoder, GEM and CEM, respectively. As introduced
in Section. III-C, the ScCAMs leverage spatial attention to
identify valuable information locations within the feature
maps, which are then utilized for self-calibration convolu-
tions. This enables the convolutional modules to extract more
important features without incurring additional computational
costs. Additionally, the feature maps share similar structures,
e.g., the same size (width and height) and intensity range
([0, 255]), allowing ScCAM to effectively extract and enhance
the spatial features on gradient and color domains simultane-
ously. Therefore, the potential spatial features of gradient and
color domains are effectively mined and enhanced during the
en-decoding in GEM and CEM. The outputs of GEM and
CEM, as well as the outputs of previous encoders are then
fed to the final feature fusion decoder, which reconstructs
the normal-light image based on the fused feature map. It is
noted that during the training process, the enhanced gradient
and color maps are generated by their respective decoders,
which are constrained by individual loss functions to guar-
antee the restoration of both gradient and color information,
as introduced in Section III-D. Due to the comprehensive
enhancement on double domains with GEM and CEM, the
proposed DDNet restores the low-light image with clear edges
and natural colors.

C. ScCAM

To reduce the computational parameters, the majority of
deep learning-based lightweight low-light enhancement net-
works extract hierarchical features progressively. However, this
strategy leads to the insufficient utilization of low-frequency
information, which results in poor performance on image
detail restoration. Meanwhile, the self-calibrated convolutions
(SCCs) perform satisfactorily in a variety of low-level and

higher-level vision tasks [58]. SCCs can efficiently extract
multi-domain and multi-scale feature information to guide
the enhancement processing without additional computational
effort. In this section, we propose the ScCAM to conduct the
encoder-decoder structures. It mainly consists of two parts
(i.e., the upper and lower branches), as shown in Fig. 5.
In particular, the upper part computes the attention information
by introducing the spatial attention module, which can be
expressed as follows

yupper = Fscm

(
M

(
Fsam

(
f 1×1 (xin)

)
; f 3×3

(
f 1×1 (xin)

)))
,

(6)

where xin , f 1×1, f 3×3, Fsam , M(·; ·), and Fscm represent
the input of convolutional layer, the convolutional operation
with 1 × 1 kernel size, the convolutional operation with 3 ×

3 kernel size, the spatial attention module, the multiplication
function, and the standard convolution module, respectively.
In addition, the lower part uses the standard convolution
module to recover the spatial domain information, which can
be expressed as follows

ylower = Fscm

(
Fscm

(
f 1×1 (xin )

))
. (7)

The output features of these two parts are then concatenated
together and fed into a 1 × 1 convolution layer for information
fusion. To speed up model training, the local residual path
is employed to generate the final output feature. The output
(yScC AM ) of ScCAM can be thus yielded by

yScC AM = f 1×1 (
yupper ; ylower

)
+ xin, (8)

where (·; ·) represents the concatenation operation.
1) Spatial Attention Module: In the process of low-light

image enhancement, the complexity of scene information
increases the difficulty of enhancement. Considering the
human visual cerebral cortex, applying the attention mech-
anism can analyze complex scene information more quickly
and effectively. The spatial attention module is beneficial for
analyzing where the valuable information on the feature map
is, which contributes to focusing more precisely on the feature
map’s valuable information. As shown in Fig. 5, to achieve
spatial attention, we first use the average pooling and max
pooling in the channel dimension. The feature maps are then
concatenated and fed into a convolution layer with 7 ×

7 kernel to generate the final spatial attention feature map.
The spatial attention function can be expressed as follows

Fsam(I) = S
(

f 7×7
(

F s
avg(I); F s

max(I)
))

, (9)

where I, F s
avg , F s

max , f 7×7, and S(·) represent the inputs
of spatial attention module, average pooling, max pooling,
the convolutional operation with 7 × 7 kernel size, and the
sigmoid function, respectively.

2) Standard Convolution Module: In the standard convo-
lution module, the convolution layer is first employed to
guarantee the learning ability. Layer normalization (LN) is
independent of batch size, which reduces the computational
complexity when calculating normalization statistics. Fur-
thermore, the Parametric Rectified Linear Unit (PReLU) is
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Fig. 4. The flowchart of our double domain guided low-light image enhancement network. The coarse enhancement module (CEM) and LoG-based gradient
enhancement module (GEM) are embedded in the encoder-decoder structure to improve the image quality on separate domains. Moreover, the outputs of
diversified decoders are constrained by the proposed joint loss function respectively.

Fig. 5. The sketch map of the encoder-decoder structure, which employs
the Self-calibrated Convolutions with Attention Module (ScCAM) for spatial
and attention feature extraction.

employed to perform nonlinear activation on the normalized
data, which improves the generalization ability of the network
in complex low-light scenes. The standard convolution func-
tion can be generated as follows

Fscm(w) = P R(L N ( f 3×3(w))), (10)

where w, L N (·), and P R(·) represent the inputs of the stan-
dard convolution module, layer normalization, and parametric
rectified linear unit, respectively.

D. Loss Function

To effectively constrain each component of the DDNet,
we propose a joint loss function Ltotal consisting of Laplacian-
based gradient consistency loss LLap, coarse enhancement
loss LCoarse, and final enhancement loss LFinal, which can be
expressed as follows

Ltotal = ω1LLap + ω2LCoarse + ω3LFinal, (11)

where ω1, ω2, and ω3 are the weights of each loss, which
are set to 0.2, 0.2, and 0.6, respectively. The GEM and

CEM are proposed to enhance the gradient and color features,
respectively, which are constrained by the ℓ2 loss function.
The LLap and LCoarse can be given as follows

LLap =
1
N

N∑
p=1

1∑
i=1

|| Î l
i (p) − I l

i (p)||2, (12)

LCoarse =
1
N

N∑
p=1

3∑
i=1

|| Î c
i (p) − I c

i (p)||2, (13)

where N is the number of pixels, Î l
i (p) and I l

i (p) are the i-th
color channel of pixel p in the gradient map of low-light image
and ground truth, respectively. Î c

i (p) and I c
i (p) represent the

corresponding values on the color domain.
To finely fuse the gradient and coarse enhancement features,

we use the structural similarity (SSIM) [59] as the constraint
of the final enhancement to further refine the learning and
mapping, i.e.,

LFinal = 1 −

3∑
i=1

ssim( Î f
i , Ii ), (14)

where Î f
i is the final fine enhancement image, and Ii is

the ground truth. ssim(·, ·) calculates the structural similarity
consisting of the aspects of color, structure, and contrast.

IV. EXPERIMENTS AND ANALYSIS

In this section, the experimental details are first intro-
duced, which include datasets, evaluation metrics, and running
platform. To clearly demonstrate the superiority of DDNet,
qualitative and quantitative comparisons with several state-of-
the-art methods on standard and transportation-related datasets
are then presented. To validate the rationality of the net-
work, we conduct ablation experiments on each module. The
experiments on running time, object detection, and scene
segmentation are finally conducted, which demonstrate the
practical contributions of the proposed method to real-time
UHD transportation surveillance in ITS.
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A. Implementation Details

1) Datasets: It is commonly intractable to capture the
real-world low/normal-light image pairs, which brings great
challenges for data-driven image enhancement networks.
Therefore, to improve the robustness of our DDNet to complex
natural environments, we utilize the real-captured and synthe-
sized low-light images simultaneously. The most commonly
used dataset is LOL [36], which contains 1500 pairs of low-
light images. Among them, 500 pairs are captured in real
scenes, and the rest are synthesized with the adaption of the
Y channel in YCbCr image through the interface from Adobe
Light-room software.1

Besides LOL, to improve the enhancement effect on trans-
portation surveillance scenes, we select 1000 clear outdoor
images from the PASCAL VOC 2007 [60], COCO [61],
as well as DETRAC [62] datasets and synthesize the low-
light images with another method, which multiplies a specific
coefficient to all image pixels. The synthesized image L(x)

can be generated by

L(x) = C(x)m(x), (15)

where C(x) is the clear image, and m(x) is the coefficient,
which is a random number between 0.1 and 0.9. To prove
the generalization ability of DDNet, besides evaluation on the
LOL dataset, we also select representative low-light images
from DICM [22], LIME [27], MEF [63], and TMDIED dataset
for testing.

2) Evaluation Metrics: For low-light image enhancement,
the evaluation metrics can be broadly classified into two
groups: with or without the reference of ground truth.
To conduct a more comprehensive analysis of the enhance-
ment effectiveness, we first utilize the peak signal-to-noise
ratio (PSNR) [64], structural similarity (SSIM) [59], and
learned perceptual image patch similarity (LPIPS) [65] as
our reference-based evaluation metrics. Additionally, we have
incorporated the natural image quality evaluator (NIQE) [66]
and perceptual-based image quality evaluator (PIQE) [67]
as our no-reference metrics to quantitatively evaluate the
performance of image enhancement across diverse low-light
scenarios. It is noteworthy that larger values of PSNR and
SSIM, as well as smaller values of NIQE, PIQE, and LPIPS,
are indicative of better image quality.

3) Running Platform: In the training period, the Adam
optimizer is employed to suggest 100 epochs for train-
ing DDNet. The initial learning rate of the optimizer is
0.001, which is multiplied by 0.1 after every 20 epochs.
Besides, the experimental network is trained and tested
in a Python 3.7 environment using the PyTorch software
package. The computational device is a PC with an AMD
EPYC 7543 32-Core Processor CPU accelerated by an Nvidia
A40 GPU, which has also been widely used in industrial-grade
servers (e.g., Advantech SKY-6000 series and Thinkmate GPX
servers). The proposed method could be thus easily extended

1The hyperparameters of Adobe Light-room software: Exposure (−5 +

5F), Highlights (50 min {Y, 0.5}+75), Shadows (−100 min {Z , 0.5}), Vibrance
(−75 + 75F), and Whites (16(5 − 5F)). It is noted that the X , Y , and Z are
the variable obeys uniform random distribution U(0, 1), and F = X2.

TABLE I
THE QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND STATE-

OF-THE-ARTS ON THE LOL TEST DATASET [36]. THE BEST THREE
RESULTS ARE HIGHLIGHTED IN RED, BLUE, AND GREEN COLORS.

↑ AND ↓ REPRESENT THAT HIGHER OR LOWER VALUES INDI-
CATE BETTER RESULTS, RESPECTIVELY

to the higher-level visual task (e.g., vehicle detection and
tracking) in ITS.

B. Image Quality Assessment

To assess the quality of low-light image enhance-
ment, we compare DDNet with several state-of-the-art
methods, including HE [16], NPE [26], LIME [27],
JIEP [28], CRM [29], Dong [31], BIMEF [30], DeHz [32],
RetinexNet [36], MBLLEN [40], KinD [35], Enlight-
enGAN [46], DLN [41], Zero [22], StableLLVE [42],
RUAS [37], LLFlow [43], MTRBNet [44], and SCI [23]. It is
noted that the parameters of each model are loaded from the
corresponding official file of model weight.

1) Quantitative Analysis: We first compute objective evalu-
ation metrics (PSNR, SSIM, NIQE, PIQE, and LPIPS) for 15
LOL test images. As presented in Table I, LIME outperforms
the Retinex-based approach (i.e., NPE) overall, with credit to
the noise reduction achieved by BM3D. Furthermore, CRM
utilizes a camera response model, which is more effective
in extracting information from low-light backgrounds. Zero
yields unsatisfactory results in extremely low-light regions.
Although DLN utilizes both local and global features of low-
light images and exhibits better generalization capabilities,
the enhancement effect still falls short. Compared with the
state-of-the-arts, our DDNet has an obvious advantage in the
objective evaluation indicators with better stability, which is
beneficial from the comprehensive guidance of both color and
gradient domains.

We also made an objective evaluation of images on other
public datasets, including DICM [22], LIME [27], MEF [63],
and TMDIED, as illustrated in Tables II and III. Traditional
methods are relatively uneven because they are challenging
to deal with the nonuniform noise. The learning methods can
receive satisfactory performance on both low-light enhance-
ment and noise suppression, which thus performs better.
In addition, due to the decomposition and reconstruction of
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Fig. 6. The quantitative comparisons of enhancement methods on different datasets. From left to right: (a) DICM [22], (b) LIME [27], (c) MEF [63], and
(d) TMDIED datasets. NIQE (top) and PIQE (bottom) are employed as the quantitative evaluation indices.

Fig. 7. The visual comparisons of different enhancement methods for three typical images from the LOL dataset [36]. From left to right: (a) Low-light images,
restored images, generated by (b) HE [16], (c) NPE [26], (d) LIME [27], (e) CRM [29], (f) Dong [31], (g) BIMEF [30], (h) DeHz [32], (i) RetinexNet [36],
(j) MBLLEN [40], (k) KinD [35], (l) EnlightenGAN [46], (m) DLN [41], (n) Zero [22], (o) StableLLVE [42], (p) LLFlow [43], (q) MTRBNet [44],
(r) SCI [23], (s) the proposed DDNet, and (t) Ground Truth, respectively.

double-domain features, DDNet can effectively recover the
valuable information hidden in the dark with better robustness.
Therefore, the enhanced image can better satisfy the complex
transportation scenes and has the best quantitative evaluation
metric. In Fig. 6, we present the quantitative evaluation results
with the box plots. The first row is the NIQE evaluation results,
and the second row is the PIQE evaluation results. The non-
referenced metrics indicate that our method has better image
quality compared with the state-of-the-arts.

2) Visual Analysis: To compare the visual performance of
our DDNet with the state-of-the-arts, we first analyze the
visual differences in the standard LOL test dataset. As shown
in Fig. 7, HE has demonstrated significant improvements in
the brightness and contrast of low-light images with rapid
computational efficiency. However, it cannot suppress the
noise and results in color distortion in local areas. NPE and
BIMEF exhibit similar visual performance with poor contrast.
Although LIME can eliminate noise in localized regions of the
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Fig. 8. The visual comparisons of different enhancement methods on the real-captured UHD low-light images in transportation surveillance. From left to
right: (a) Low-light image, restored images generated by (b) HE [16], (c) Dong [31], (d) EnlightenGAN [46], (e) DLN [41], (f) Zero [22], (g) RUAS [37],
(h) LLFlow [43], (i) SCI [23], and (j) the proposed DDNet, respectively.

Fig. 9. The qualitative results of object detection experiments on low-light transportation surveillance data, which select YOLOv5 and YOLOX [3] as the
basic detection methods. From left to right: (a) Low-light images, the enhanced images of (b) KinD [35], (c) EnlightenGAN [46], (d) Zero [22], (e) RUAS [37],
(f) LLFlow [43], (g) SCI [23], and (h) the proposed DDNet, respectively. It can be seen that DDNet is more beneficial for detection accuracy improvement
due to the enhancement of edge features on the gradient domain.

Fig. 10. The trade-off between the running time, NIQR, and PSNR on 4K
images (3840 × 2160 pixels). The results show the superiority of our DDNet
among the start-of-the-art methods.

image, the BM3D algorithm struggles to distinguish between
noise and texture information. CRM produces severely skewed

color information in comparison to Retinex-based methods.
RetinexNet demonstrates promising color extraction capabil-
ities, but the edge feature is often severely compromised.
MBLLEN and KinD can effectively remove unwanted noise
information; however, the color naturalness is often unsatis-
factory. EnlightenGAN, which employs a weakly-supervised
architecture, can achieve low-light enhancement, but it is
ineffective in extremely dark areas. Zero is lightweight and
efficient, but the enhancement effect is often compromised
for the sake of computational speed. DLN suffers from noise
interference, which limits its effectiveness. While the StableL-
LVE recovers a significant amount of valuable information
from dark regions, the resulting image is often overexposed,
leading to a gray-and-white image with minimal contrast.
SCI exhibits unsatisfactory performance when applied to
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TABLE II
THE QUANTITATIVE COMPARISON OF NIQE BETWEEN OUR METHOD AND

THE STATE-OF-THE-ARTS ON DICM [22], LIME [27], MEF [63],
AND TMDIED DATASET. THE BEST THREE RESULTS ARE HIGH-

LIGHTED IN RED, BLUE, AND GREEN COLORS

TABLE III
THE QUANTITATIVE COMPARISON OF PIQE BETWEEN OUR METHOD AND

THE STATE-OF-THE-ARTS ON DICM [22], LIME [27], MEF [63],
AND TMDIED DATASET. THE BEST THREE RESULTS ARE HIGH-

LIGHTED IN RED, BLUE, AND GREEN COLORS

TABLE IV
THE ABLATION EXPERIMENTS ON THE SAM AND SCM. THE RESULTS

ARE SHOWN IN PSNR, SSIM, AND LPIPS ON THE 15 IMAGES FROM
THE LOL TEST DATASET [36]. ↑ AND ↓ REPRESENT THAT HIGHER

OR LOWER VALUES INDICATE BETTER RESULTS,
RESPECTIVELY

extremely low-light images. By comparison, our proposed
DDNet achieves a better balance between brightness enhance-
ment and noise suppression in comparison to the current
state-of-the-art methods.

To verify the robustness of the proposed method on
low-light transportation surveillance, we also collect UHD

TABLE V
THE ABLATION EXPERIMENTS ON THE GEM AND CEM. THE RESULTS

ARE SHOWN IN PSNR, SSIM, AND LPIPS ON THE 15 IMAGES FROM
THE LOL TEST DATASET [36]. ↑ AND ↓ REPRESENT THAT HIGHER

OR LOWER VALUES INDICATE BETTER RESULTS,
RESPECTIVELY

TABLE VI
THE ABLATION EXPERIMENTS ON THE WEIGHTS OF LOSS FUNCTIONS.

THE RESULTS ARE SHOWN IN PSNR, SSIM, AND LPIPS ON THE 15
IMAGES FROM THE LOL TEST DATASET [36]. ↑ AND ↓ REPRESENT

THAT HIGHER OR LOWER VALUES INDICATE BETTER RESULTS,
RESPECTIVELY. THE BEST RESULTS ARE SHOWN IN BOLD

TABLE VII
THE COMPARISON OF RUNNING TIME (UNIT: SECOND) BETWEEN THE

DDNET AND OTHER LOW-LIGHT IMAGE ENHANCEMENT METHODS

low-light images in transportation surveillance for testing.2

The comparison of global naturalness and local magnification
of the enhanced image is shown in Fig. 8. HE, RUAS, and SCI
suffer from overexposure, resulting in unnatural observation of
luminous objects. Dong and Zero fail to satisfactorily recover
the color features. EnlightenGAN and DLN are significantly
interfered by the noise. LLFlow performs better, but the com-
putational speed on 4K image can not meet the real-time video
surveillance. In general, the double domain-guided DDNet
can achieve both satisfactory enhancement and computational
efficiency.

3) Running Time Comparisons: To prove the advantage of
DDNet in terms of computational efficiency, we compare the
performance on the running time with the objective indicators
of the enhancement performance, as shown in Table. VII and
Fig. 10. It is noted that the time over one second is shown

2The real-captured UHD low-light images in transportation surveillance are
available at: https://github.com/QuJX/DDNet.
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Fig. 11. The detailed results of segmentation experiments on the ACDC dataset [68], which selects DAFormer [69] as the basic segmentation method. The first
and third rows are raw images, and the second and fourth rows are the visualized results of scene segmentation. From left-top to right-bottom: (a) Low-light
image, and the segmentation results on the enhanced images of (b) HE [16], (c) RetinexNet [36], (d) KinD [35], (e) EnlightenGAN [46], (f) Zero [22], (g)
RUAS [37], (h) SCI [23], (i) the proposed DDNet, and (j) Ground Truth, respectively. It is noted that the employed DAFormer is pre-trained on cityscapes
dataset. Compared with other methods, our DDNet enables the model pre-trained on normal-light images to perform better under low-light conditions.

in ’—’, which is not worth considering in UHD transportation
surveillance due to the poor efficiency. With the outperforming
enhancement performance, our method can enhance the 4K
images over 35 FPS on the experimental platform, which
is faster than most of the previous methods, meeting the
requirements of UHD transportation surveillance. Although
Zero [22] and SCI [23] are faster, their enhancement effect
is much worse than ours.

C. Ablation Study

In this section, we attempt to verify the necessity of ScCAM
and double-domain guidance. The 15 images from the LOL
test dataset are utilized as the basic reference. According to the
metrics provided in Table IV, the employment of the spatial
attention module (SAM) and standard convolution module
(SCM) significantly improves the enhancement performance.
When both SAM and SCM are employed, PSNR, SSIM,
and LPIPS performance are improved by 1.38, 0.015, and
0.019, respectively. The experimental results about double-
domain guidance are illustrated in Table V. The objective
evaluation performance is the worst when the information of
both color and gradient domains is not enhanced. The employ-
ment of coarse enhancement module (CEM) and LoG-based
gradient enhancement module (GEM) significantly improves
the enhancement performance. When both CEM and GEM
are employed, PSNR, SSIM, and LPIPS performance are
improved by 0.85, 0.009, and 0.019, respectively.

In addition, to verify the balance between the constraint
on different domains, we conduct the ablation experiment on
the design of loss function. Specifically, we set the weight
of each loss differently in the training period. Table VI
presents the quantitative result. Firstly, we fix the weight ratio
between ω1 and ω2 and adjust the ratio between them and ω3.
We then fix ω3 as the obtained best result and adjust the ratio
between ω1 and ω2. The ablation experiment indicates that

current weights can supervise the network better with more
satisfactory enhancement results.

D. Improvement of Object Detection in ITS

In order to further demonstrate the practical benefits of our
proposed DDNet in the domain of transportation surveillance,
we have employed the YOLOv5 and YOLOX [3] to detect
objects under low-light conditions, and compare the detection
results with or without the application of image enhance-
ment methods. To conduct our analysis, we have selected
experimental images from the COCO [61] and ExDARK [70]
datasets. Specifically, we initially selected 1500 transportation-
related images from the COCO dataset for the training of our
detection networks. Subsequently, we performed evaluation
tests on the ExDark dataset. As depicted in Fig. 9, the detection
networks exhibit poor performance in dark transportation
scenes, often failing to achieve accurate object detection owing
to the low contrast and vague edge features. However, fol-
lowing the application of enhancement methods, the detection
accuracy is significantly increased. Furthermore, in compar-
ison to state-of-the-art methods, the images enhanced by
DDNet demonstrate superior performance, primarily due to the
comprehensive recovery of both color and gradient features.
These findings provide evidence that DDNet holds practical
benefits for low-light transportation surveillance tasks, and is
beneficial for higher-level visual tasks in ITS when operating
under low-light environments.

E. Improvement of Scene Segmentation in ITS

The scene segmentation is also a typical higher-lever
visual task in transportation surveillance. To demonstrate
the practical improvement of our method for scene seg-
mentation, we conducted the comparison experiment on
ACDC [68], a real-captured transportation-related dataset
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under adverse visual conditions, including low-light, hazy,
rainy, etc. We employed the DAFormer [69] with the model
weight pre-trained on cityscapes dataset, which mainly con-
sists of normal-light images. Fig. 11 presents the visual results.
As can be observed, in low-light environments, the edge
features of objects appear vague, and the color brightness
is low, making it challenging for segmentation methods to
accurately classify the pixels. Additionally, accurately clas-
sifying small objects, such as distant pedestrians, is difficult
owing to the low contrast. Following the application of low-
light image enhancement method, the visibility of low-light
scenes is significantly improved. However, most state-of-the-
art methods tend to suffer from noise interference and color
distortion, leading to erroneous segmentation. Furthermore,
it is still challenging to accurately segment small objects due
to the vague edge features. In particular, our DDNet effectively
recovers the low-light image with better color naturalness and
clear edge features, resulting in more accurate classification
of challenging pixels in the enhanced images. Overall, our
method enables models pre-trained on normal-light images to
perform better in low-light conditions.

V. CONCLUSION AND FUTURE PERSPECTIVES

This paper proposes a double domain guided real-
time low-light image enhancement network (DDNet) for
UHD transportation surveillance. Specifically, we suggest the
encoder-decoder structure as the main architecture of the
learning network, and the original task is divided into two
subtasks (i.e., coarse enhancement and Laplacian of Gaussian
(LoG)-based gradient enhancement). The coarse enhancement
module (CEM) and LoG-based gradient enhancement module
(GEM) are proposed and embedded in the encoder-decoder
structure, which assist the network to efficiently enhance
the color and gradient features under the constraint of the
proposed joint loss function. Through the decomposition and
reconstruction of both color and gradient features, our DDNet
can perceive the detailed information concealed by the dark
background with greater precision. Image quality and running
time experiments on standard datasets and UHD low-light
images in transportation surveillance demonstrate that our
DDNet satisfies the requirement of real-time transportation
surveillance. Besides, compared with the state-of-the-arts, the
object detection and segmentation experiments prove that our
method contributes more to higher-level image analysis tasks
under low-light environments in ITS. It is mainly beneficial
from the guidance of both color and gradient domains.

In conclusion, our work presents a real-time low-light image
enhancement method for UHD transportation surveillance in
ITS. Although our method obtains promising results in this
study, it still faces several challenges, e.g., inadequate real-
captured dataset and relatively large model size. The further
improvement of our method includes follows.

• To overcome the inadequate real-captured dataset, the
semi-supervised architecture and generative adversarial
networks (GAN) will be considered to reduce the depen-
dence of our DDNet on paired datasets.

• Currently, although the proposed method achieves real-
time processing for transportation surveillance, the model

size is not lightweight enough. In the future, we will
consider employing the pruning technology [71] to build
more lightweight models.

• To overcome the blurred appearance features of the fast-
moving objects in real-time transportation surveillance
(e.g., the vehicles on the expressways), we will consider
to utilize the multi-task learning to achieve image deblur-
ring and enhancement simultaneously.
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