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Abstract— Autonomous vehicles are expected to operate safely
in real-life road conditions in the next years. Nevertheless,
unanticipated events such as the existence of unexpected objects
in the range of the road, can put safety at risk. The advancement
of sensing and communication technologies and Internet of
Things may facilitate the recognition of hazardous situations
and information exchange in a cooperative driving scheme,
providing new opportunities for the increase of collaborative
situational awareness. Safe and unobtrusive visualization of the
obtained information may nowadays be enabled through the
adoption of novel Augmented Reality (AR) interfaces in the
form of windshields. Motivated by these technological oppor-
tunities, we propose a saliency-based distributed, cooperative
and rendering scheme for increasing the driver’s situational
awareness through (i) automated negative obstacle (potholes)
detection, (ii) AR visualization and (iii) information sharing
(upcoming potential dangers) with other connected vehicles or
road infrastructure. An extensive evaluation study using a variety
of real datasets for pothole detection showed that the proposed
method provides favorable results and features compared to other
recent and relevant approaches.

Index Terms—Pothole detection, collaborative awareness,
point cloud processing, augmented reality, CARLA, visualization,
driver’s safety.

I. INTRODUCTION

NFORMATION-CENTRIC technologies have started to

play a central role in the recent automotive industry boost-
ing new research trends in semi or fully Automated Driving
Systems (ADS). Autonomous vehicles, ranging from level
3 to level 5 of autonomy [1], are expected to operate safely
in real-life road conditions, but the reality is that obstacles
like potholes, bumps, and other unexpected objects are not
uncommon in an everyday driving context. For this reason,
the detection and identification of obstacles are imperative
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for reliable operation of autonomous vehicles [2]. Moreover,
driver inattentiveness plays a major role in driving safety and
is the culprit of road accidents around the world [3], [4],
thus a lot of work has been devoted in the quantification of
the abstract mechanics of human situational awareness [5].
Enhancing situational awareness is especially critical in the
case of semi-autonomous cars, where the operator may be
distracted by secondary activities, e.g. looking at the phone
or reading a book. If the driver has to take over control,
it is important to minimize the required reaction time. This
can be achieved by monitoring and presenting to the driver
the crucial information about the environment, thus keeping
him/her aware of potentially hazardous situations. Inherent
challenges include the need for unobtrusive information dis-
play, avoiding the effects of tunnel vision which could lead
to actually overlooking critical information [6]. The problem
of road pothole detection is commonly targeted using imaging
(camera) data and computer vision techniques [7], [8], [9].
Although image-based techniques have achieved great success,
one common drawback is that they are sensitive to motion blur
and changes in lighting and/or even shadows [10]. Also, most
techniques do not account for other passing vehicles [11]. This
can make them unreliable in real use cases, which is a major
weakness in problems involving human safety. In light of all
this, the use of a 3D LiDAR (Light Detection and Ranging)
sensor could provide more robust sensing capabilities for the
analysis of potholes, in the same way that it is used to increase
the accuracy of road’s boundary detection [12], [13], [14].
On the other hand, a limitation of the LiDAR sensor is that,
due to refraction and reflection, water appears as a black hole
in the imagery calculated from LiDAR data [15], imposing
additional challenges in the detection of potholes filled with
water.

The purpose of this work is to increase the driver’s sit-
uational awareness through automated cooperative obstacle
detection, visualization and information sharing with other
connected vehicles in a V2X (vehicle-to-everything) setting.
To address the above issues, we developed a point cloud
processing system that takes as input road environment data
and classifies them into safe and potentially hazardous regions
by identifying obstacles lying in the range of the road.
We selected LiDAR as sensing modality for the surrounding
environment due to its ability to retrieve depth information and
its large range, making it suitable for driving environments.
For more robust estimation, LiDAR data are fused with
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information on driving patterns, such as the steering angle of
the wheels. For implementation and evaluation, we utilized
the open-source CARLA simulator [16] including also a
multi-agent system of vehicles, and we augmented it with our
obstacle detection and tracking component. In this simulated
environment, information sharing between agents is enabled,
so that vehicles are notified about incoming obstacles even
when there is no direct line-of-sight. Our method is capable
of detecting static obstacles both negative (e.g., potholes) and
positive (e.g., speed bumps or hazardous objects) within the
range of the road. However, according to the literature the
detection of negative obstacles poses more challenges, which
have not been handled efficiently by the available methods so
far [8], and is more specific to driving scenarios, in contrast
to general object detection which has been extensively being
studied in mobile robot navigation research.

To avoid any information visualization clutter, we propose
the use of AR for visualizing critical information in the driver’s
field of view. AR rendering is based on classical perspective
projection, where for each point (of the point cloud) the
pixel coordinates in the image space of the AR interface
are calculated through projection and a color is assigned
indicating the object class. Interfaces that can be used for
in-vehicle visualization include AR headset, Head-Up Display
(HUD) [17], [18] or even the car’s windshield with transparent
display. The contributions of the proposed approach can be
summarized as follows.

« Development of an obstacle detection module that takes
into account the extraction of saliency maps from point
clouds.

o Generation of data for randomized multi-ego connected
vehicle in cooperative driving scenarios.

o Creation of realistic synthetic data of potholes that can
be entered in the town maps of the CARLA simulator for
the design of lifelike driving situations.

« AR visualization for point cloud projection registered on
the scene images.

« Development of public and open access libraries with
code for the aforementioned components!-2-3- 4

The rest of this paper is organized as follows. First we
present previous works in related domains in Section II,
and then describe in detail the proposed methodology in
Sections III and IV. Section V follows with some experimental
results in comparison with other state-of-the-art methods,
while Section VI draws the conclusions and directions for
future work.

II. PREVIOUS WORK

In the following, we provide an overview of methodologies
tackling the main challenges of the presented approach.

1) Negative Obstacle Detection: A major element that adds
unpredictability in path planning for self-driving cars are
obstacles in the road. Negative obstacles can appear in the

1 https://github.com/Stagakis/saliency-from-pointcloud
2https://github.com/Stagakis/carla—data—gcneration

3 https://github.com/Stagakis/roadpatch-with-pothole-generator
4https://github.com/Stagakis/carlapc]processing
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form of objects beyond the surface of the road, or cracks
and holes in paved areas. There has been major work on
obstacle detection, raging from real-time implementations [7],
to offline schemes that act as automated informants to the
authorities responsible for maintenance [19], or as efficient
unsupervised techniques for pothole detection [20]. Most of
the existing works implement a broad spectrum of computer
vision and/or machine learning techniques to analyze imaging
information [7]. The methods differ mainly on the utilized
features and classifiers for obstacle representation and recog-
nition. In respect to performance, a direct comparison of
methods is not feasible because most works are evaluated on
their own (simulated) data. In fact, there is lack or restricted
access to a common benchmark dataset with potholes and
obstacles, that can be used for comparison.

Asad et al. [21] explored the potential of deep learning
models (YOLO family and SSD-mobilenetv2) for real-time
pothole detection leading towards the deployment on edge
devices. However, they used only images, and despite the
good detection results, the visualization of the information was
considered as disturbing for real-case implementation.

Jenkins and Young [22] discussed the design of a system
to alert motorcyclists for different hazard categories including
roadway hazards (e.g., potholes, other vehicles or pedestrians,
roadway debris, uneven surfaces), in a manner that facilitates
direct perception and action to appropriately respond to such
hazards and reduce the risk of accidents and injuries. However,
no real-time data processing is performed, and analysis is
based on data that have been already stored in the cloud.

Heo et al. [23] proposed a 2D pothole risk assessment
standard to visually indicate risk signals to the driver by
comparing the size of the pothole detected using the developed
model with the size of the tire contact patch area. The authors
conclude that if a risk assessment method could be used in
real-time, it may not only be useful for road maintenance but
also for detecting large potholes that are not recognizable by
drivers in driving situations.

Other methods focus on road cracks detection from high
resolution cameras on smartphones. Since such data are more
easily available, those methods can bypass the extraction of
hand-crafted features and utilize deep architectures, such as
convolutional neural networks [24], [25], [26], [27]. However,
in the case of dense traffic situations and poor lighting condi-
tions, techniques utilizing images from smartphone camera are
less effective. In contrast to computer vision techniques which
exploit texture information from images, 3D point cloud pro-
cessing techniques exploit the object’s geometrical properties
[15], [28], [29]. Bosurgi et al. [29] identify potholes in road
sections by estimating area, perimeter and depth information
from 3D data of pavement surfaces. Chen et al. [15] propose a
framework for obstacle detection using the pitch and rotation
angles of a LiDAR sensor to create a 2D image-like plane
where the unordered set of points (from the point cloud) are
projected. From this “LiDAR-imagery” a 2D histogram is
extracted and used to find the road plane. If an adequate part
of the road, in front of the vehicle is flat, those points form
a straight line in the histogram representation, and anything
above the line can be classified as a positive obstacle (points
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higher than the road plane), while points below the line as a
negative obstacle (points lower than the road plane). Moreover,
since water bodies cannot be detected by LiDAR due to
refraction and reflection, the authors propose a technique to
detect potholes filled with water by scanning the image for
large areas of missing data.

Gu et al. [28] improves the aforementioned method by pro-
jecting the points on the camera plane and interpolating the
depth values of the projected points to receive a depth image.
They use both horizontal and vertical histograms to coarsely
detect the road area and refine it respectively. Although they
state their method as sensor fusion between the monocular
camera and LiDAR, they do not utilize the color values of
the camera images. Both works [15] and [28] use the KITTI
dataset as a benchmark and achieve great results, comparable
to machine learning methods.

Other techniques for pothole detection may include laser
scanning, ground penetrating radar, ultrasonic sensor, as well
as multi-sensor fusion, especially concerning fusion with
imaging information. An extensive review of such techniques
falls beyond the scope of this article. However, an interested
reader may be referred to the survey in [30].

2) Point Cloud Saliency: One of main challenges in tech-
niques utilizing point clouds is the inherent noise and the
increased computational cost due to the unordered data struc-
ture of point clouds. To address such challenges, saliency map
extraction has been proposed as a powerful step in point cloud
processing to reduce noise and data dimensionality, leading to
more robust solutions and computational efficiency [31], [32].
Yet, the use of local saliency in pothole detection has not been
sufficiently examined. Saliency maps were constructed from
point clouds obtained from Mobile Laser Scanning (MLS)
in [33] for road crack detection. MLS point clouds contain
spatial information (i.e., Euclidean coordinates) and intensity
information, and thus the extracted features could leverage
both height and intensity information. Feature saliency was
estimated by calculating the distances from the normal of each
point to the principal normal of the input point clouds. In a
similar setting, Wang et al. [34] extracted saliency maps in
MLS point clouds by projecting the distance of each point’s
normal vector to the point cloud’s dominant normal vector into
a hyperbolic tangent function space.

3) Cooperative Driving: While significant advances have
been made for single-agent perception, many applications
require multiple sensing agents and cross-agent communi-
cation for more accurate results. Objects, captured by the
single-agent’s sensor devices, may be heavily occluded or far
away from the sensors’ view, resulting in sparse observations.
Nevertheless, failing to detect and predict the accurate position
or moving intention of these occluded or “hard-to-see” objects
might have harmful consequences in safety-critical situations,
and especially if the reaction time is very narrow [35]. The
development of multi-agent solutions can lead to collaborative
perception and, through information sharing, may improve
the driving performance and experiences, providing endless
possibilities for safe driving.

Recently, cooperative autonomous driving has been consid-
ered as a possible solution to improve the performance and

safety of autonomous vehicles [36]. Cooperative perception for
3D object detection can be performed via early or late fusion
of information, i.e., combination of multiple sensing points of
view or fusion of object detection results, respectively.Both
fusion approaches can extend the perception of the sensing
system, however, only the early fusion approach can actually
exploit complementary information. A major challenge that
arises regarding cooperative perception is how to effectively
merge sensors’ data received from different vehicles to obtain a
precise and comprehensive perception outcome. Additionally,
despite the attention that cooperative driving has attracted
recently, the absence of a suitable open dataset for bench-
marking algorithms has made it difficult to develop and assess
cooperative perception technologies.

Xu et al. [37] presented the first open dataset and used it to
benchmark fusion strategies for V2V (vehicle-to-vehicle) per-
ception. They also plan to extend the dataset with more tasks as
well as sensor suites and investigate more multimodal sensor
fusion methods in the V2V and V2I (vehicle-to-infrastructure)
settings. Arnold et al. [36] proposed a system that produces
a perception of complex road segments (e.g., complex
T-junctions and roundabouts) using a network of roadside
infrastructure sensors with fixed positions. Chen et al. [38]
studied the raw-data level cooperative perception for enhanc-
ing the detection ability of self-driving systems. They fuse
the sensor data collected from different positions and angles
of connected vehicles, relying on LiDAR 3D point clouds.
Liu et al. [39] addressed the collaborative perception problem,
where one agent is required to perform a perception task and
can communicate and share information with other agents on
the same task.

Chen et al. [40] proposed a point cloud feature-based coop-
erative perception framework for connected autonomous
vehicles to increase object detection precision. The features are
selected to be rich enough for the training process, and at the
same time have an intrinsically small size to achieve real-time
edge computing. Guo et al. [41] proposed a cooperative fusion
method to combine spatial feature maps for achieving a higher
3D object detection performance. Yuan et al. [42] proposed a
3D keypoints feature fusion scheme for cooperative driving
detection to remedy the problem of low bounding box local-
ization accuracy. Fang et al. [43] presented an iterated split
covariance intersection filter-based cooperative localization
strategy with a decentralized framework. In addition, they
adopted a point cloud registration method to obtain the rel-
ative pose estimation using mutually shared information from
neighbour vehicles. Kim and Liu [44] presented the concept of
cooperative autonomous driving using mirror neuron-inspired
intention awareness and cooperative perception, providing
information on the upcoming traffic situations ahead, even
beyond line-of-sight and field-of-view.

4) Situational Awareness and AR Infotainment: In the case
of semi-autonomous vehicles, where the operator/driver may
be asked to take manual control of the car at any moment, it is
of great importance [45] to implement notification paradigms
that direct the operator’s, possibly reduced, attention to the
event that triggered the take-over request [46], [47]. Recently,
the automotive industry started to invest funds and efforts into
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AR technology and its integration with In-Vehicle Information
Systems (IVIS) for intuitive and non-intrusive information
display to the driver.

The design of AR in-vehicle systems for infotainment is
a challenging task. Rao et al. [48] performed an analysis of
design methods on different use cases aiming to identify the
difficulties in implementation aspects. Despite the vast amount
of requirements for these systems to work reliably, such as
latency, bandwidth, weather conditions etc, they concluded
that the integration of augmented reality in vehicles will help
drivers navigate their environment better, and thus will be more
widely adopted.

While IVIS existing in many modern vehicles with touch
Liquid-Crystal Display (LCD) displays and voice commands
may seem to offer most of the utilities of an AR info-
tainment system, they may actually be distracting to the
driver. Strayer et al. [49] showed in a recent study that some
IVIS require a high cognitive demand or complex command
sequences to be handled, and this can in turn lower the
awareness of the operator. This is perpetuated by the fact that
most IVIS are placed on the dashboard and usually demand
their operation to avert (even momentarily) the driver’s gaze
from the road. In contrast, AR HUDs perform information
rendering on top of the environment and thus the driver does
not need to share focus in multiple locations.

The distraction potential of AR HUDs was assessed by Kim
and Gabbard [50]. An AR-enabled windshield was used in
a simulated environment with a real-life driving video feed
to test various methods of pedestrian visualization. The gaze
behavior and cognitive processes were measured and it was
found that the visual and cognitive distraction potential of
AR depends on the perceptual forms of graphical elements
presented on the displays. Specifically, in some cases visual-
izations, e.g., in the form of a “virtual transparent shadow”
indicating the pedestrian’s anticipated path, improved the
driver’s attention without degrading awareness of other objects
or scene elements. On the other hand, the use of bounding
boxes localizing pedestrians showed to have negative effects,
because this approach either overloaded (visually) the scene or
degraded the driver’s attention on other — not highlighted but
possibly critical — scene elements. These outcomes indicate
that, while the potential of AR for improving situational
awareness is tangible, a lot of attention must be paid for the
AR design to not end up cluttering and obstructing the driver’s
attention.

Kettle and Lee [51] reviewed the AR visualizations for
in-vehicle vehicle-driver communication, regarding factors
like the display mode (e.g., windshield, simulated, HUB,
etc.), the display design (e.g., bounding boxes, warning
symbols, arrows, etc.) and the display information (e.g., haz-
ard detection, pedestrian detection, vehicle detection, road
signs, etc.). They concluded that there are many benefits of
implementing AR interfaces, and such interfaces have the
potential to improve driving performance through braking
and takeover responses. The research on augmented reality
displays on windshields for improving driver awareness also
extends to fully Autonomous Vehicles (AV). Such informative
human-machine interfaces may help to form a mental model of
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Fig. 1. Schematic diagram of the proposed methodology.

the vehicle’s sensory and planning system, thereby enhancing
trust in AV, which is currently quite low in the general
public [52], [53], [54]. Lindemann et al. [55] conducted a user
study on urban environments for evaluating the situational
awareness of the driver in various scenarios. They found
that their explanatory windshield display had positive results
and improved the operator’s trust. Yontem et al. [56] also
designed an AR windshield interface targeting future vehicles.
Their main focus was also to increase driver awareness by
presenting graphical cues in a non-intrusive way based on
a human-centric design and taking into account the human
peripheral vision.

While the above methods provide essential feedback on the
assessment of such interfaces’ design, a significant limitation
is that most studies were based on basic or non-interactive
simulations, with the steering wheel and pedals not influencing
the simulated environment and thus restricting the feeling of
immersiveness of the simulations during the evaluation study.
A more realistic, experimental study on the benefits of AR in
driver’s behavior was performed by Kim et al. [57] outdoors
in a parking lot. It focused on pedestrian collision warning
based on visual depth cues delivered in a conformal manner
through a monocular display seated above the dashboard, or a
volumetric display providing binocular disparity. A limitation
of this study, which we address through our AR visualization
component (subsection I'V-A of section IV), is the limited field
of view of the display used in the experiments, potentially
creating a tunneling effect of the human vision.

III. OBSTACLE DETECTION

This section presents the proposed methodology on obstacle
detection and is followed by section IV on visualization
and communication aspects. The main components of the
methodology are illustrated in the schematic diagram in Fig. 1
and can be encapsulated in the next steps:

o Extraction of saliency map: A saliency value is estimated
for any point of the point cloud scene based on its local
geometry, as well as the local geometry of its neighboring
points.

o Scene segmentation: The estimated saliency map is then
used as a feature to segment the point cloud into areas
characterizing (i) the safe area of the road, (ii) be-aware
or dangerous areas within the range of the road, and (iii)
areas out of the range of the road.

« Static object recognition: Static objects (i.e., potholes and
bumps) can be identified and their point coordinates are
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Fig. 2. Point cloud map of both two vehicles (egol and ego2).

stored and then used for the AR-based visualization and
communication to other nearby vehicles.

In this work, we assume the existence of two or more
vehicles (referred as egol and ego2 vehicles in this paper) that
are moving on the same map of a town but not necessarily at
the same time, i.e., they are in spatial proximity but possibly
not in temporal proximity. Fig. 2 presents an example of two
registered point clouds, as received by the LiDAR devices of
egol and ego2 vehicles, showing also their starting points (in
arrows). We would like to mention here that all the following
analysis is applied to each vehicle separately.

A. Notations

Before presenting details on the individual steps, we provide
here the necessary definitions and notations. The input data
constitute a sequence of point clouds P;, i = 1,...,/ that
represents a set of / consecutive frames acquired by a LiDAR
device. Each point cloud P; consists of m; vertices v, where
the value of m; may be different from frame to frame. The
J-th vertex (v;) of a point cloud P; is represented by the
Cartesian coordinates, denoted v; = [x i Yj» 2 j]T, Vj=
1,---,m;, where the index i of the point cloud is omitted for
simplification. Thus, all the vertices can be represented as a
matrix V = [vi, va, -+, vy, ] € R¥™_ Let’s also denote
with WX the set of the indices of the k nearest neighbors of
point j. For a face f defined by three vertices (v;1, v;2, V;3),
the outward unit face normal n is calculated by the following

equation:
(vi2 = vj1) x (via = vj1)
n; = )
[ (vi2 = vj) x (vjz = vin) |
The point normal n;, representing the normal of each point
separately, is calculated as:

ZanelIl’/? ny (2)
n; = —k.
wk|

B. Saliency Map Estimation of the Point Cloud Scene

The purpose of this step is to calculate a metric of saliency
for each vertex of a point cloud. Assuming point clouds
without context information, saliency characterizes the geo-
metric properties in a local neighborhood of points, i.e., high
saliency values represent more perceptually prominent vertices
which usually correspond to sharp corners (high-frequency
spatial information). On the opposite, the geometrically least
important points are those that lie in flat areas.

For the estimation of the saliency map, we implemented
and modified the fusion technique presented in [32]. Instead
of using guided normals of centroids, as in the original
version [32], we now utilize normals for the points. This was
performed to accelerate computations. Since the number of
faces is usually approximately twice the number of vertices,
the point normals are almost half the number of the centroid
normals. For the sake of completeness, we present here our
approach for the estimation of the saliency map of a point
cloud scene, utilizing point normals.

Our fusion technique combines geometric saliency (s(1)
with spectral saliency (s®) features. The unique characteris-
tics of each of these saliency features make the methodology
more robust to point clouds acquired under real conditions,
thereby being potentially affected by noise and outliers. The
method processes each frame independently without examin-
ing past temporal information. Thus, as the methodology is
applied for each point cloud in the sequence independently, for
simplicity we omit the index i (indicating the frame number)
from now on in the equations.

For a point cloud P with m vertices, a matrix E €
R3x*+1D js constructed which includes in the first column
the m point normals (n; = [nj, ,n; ,n .17 of each vertex j,
j =1,---,m, respectively, and in the subsequent k& columns
the point normals of the k nearest neighbors of vertex j (i.e.
nj, € \IJf). The salient features extracted by this approach
capture global information since the matrix E is constructed
using the point normals of the whole scene.

In order to exploit the geometrical coherence between
neighboring normals, we apply Robust Principal Component
Analysis (RPCA) to decompose the matrix E into a low-rank
matrix L € R¥**+D and a sparse matrix S € R¥**+D,
as described in the appendix A. The matrix L consists of the
low-rank values n of the point normals n, while the matrix
S consists of the corresponding sparse values represented as
n. The values of this matrix are zero (or to be more specific
nearly zero) if the row (representing a neighboring patch of
points) corresponds to point normals with very similar values,
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i.e., the vertex lies in a flat area, and very large values if the
row corresponds to point normals with big dissimilarity (i.e.,
the vertex lies in a very sharp corner). The fact that most of the
local patches ‘llj? of a 3D surface are piecewise flat confirms
that the matrix S can be considered a sparse matrix.

n, Ny N nj
n, ny  fxp ... Ny

S=| . ) ) ) ) 3)
I.lm I'1ml I.ImZ I.lmk

In other words, sparsity of the matrix is assumed because
piecewise flat areas are the most dominant geometrical pattern
in a 3D surface.

1) Estimation of the Geometrical Saliency (global
approach): As the similarity of normals between neighboring
points is a measure of geometrical coherence of the local
neighborhood, we estimate the sparsity of the dissimilarity of
normals and use it as a feature for geometrical saliency, s(.
Low values of the sparse matrix indicate that the normals of
the point and its neighbors are similar (low-rank). This means
that if all points in a neighborhood have similar geometrical
characteristics, the respective patch represents a flat area.
On the opposite, high dissimilarity indicates that the surface
has an irregular shape. For a point v; the geometric saliency
feature, s;]), is estimated by the values of the first column of
the sparse matrix S according to:

@ e 2 [e2 5 > .
S; = ||n;]] —\/i’lh-l—n—b-l-l’l]z Vi=1,---,m (4

where 7, denotes the scalar value of the x coordinate, of the
[3-(j — 1)+ 11" row, of the 1% column of the S matrix.

2) Estimation of the Spectral Saliency (local azpproach ): For
the estimation of the spectral-based saliency, sj( ), for a vertex
J of the point cloud, we use the submatrix E; € R3x &+
that includes the 3 corresponding rows of the matrix E:

njx njxl nij njxk
Ej: nj, Nj, Nj, M , Vji=1,---,m (5
njz njzl n./zZ njzk

In other words, each submatrix E;, which is a subset of
the global matrix E;, consists of the point normals of a
local neighborhood of the vertex v;. Then, for each one of
these local matrices E;, the covariance matrix R; € R3*3 s
calculated:

R; =E,E] (6)

Next, the calculated matrix R; is decomposed into a matrix
U consisting of the eigenvectors and a diagonal matrix A =
diag(A 1, Aj2, A j3) consisting of the corresponding eigenval-
ues, ie., [U A] = eig(R;), where eig(.) represents the
eigendecomposition operation.

Finally, the spectral saliency of each vertex is calculated by
the inverse />-norm of the corresponding eigenvalues:

1
5@ = Vi=1,-,m (7)

J 2 2 2
[35) 435y 425,

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

(a) (b) () (d)

Ai3), () edge

IR

Fig. 3. (a) Cube model, (b) corner (A;; = Ajp
(A1 = Aj2 > A43), (d) flat area (A;1 > Ajp = 4;3).

Eq. (7) indicates that large values of the term ,/ )\%] + )‘,'22 + )‘1'23

correspond to small saliency features implying that the cen-
troid lies in a flat area, while small values of the eigenvalues’
norm correspond to large saliency, characterizing the specific
centroid as a discriminative point.

This can be easily justified by the fact that a point normal
lying on a flat area is represented by one dominant eigenvector,
the corresponding eigenvalue of which has a very large value
(especially, considering that it is squared). On the other hand,
the point normal of a vertex lying on a corner is represented by
three eigenvectors, that correspond to eigenvalues with small
and almost equal amplitude, as shown in Fig. 3.

3) Normalization and Fusion of Local and Global Saliency:
Finally, we linearly scale the values of the geometric (s and
spectral (s®) saliency in the range of [0-1] and combine them
through weighted averaging according to:

wls_j(l) + wzs_j(z)

sj = —— Vj=1, , M (8)
where 5§ and 5@ denote the normalized geometric and
spectral saliency features, and w; and wj the corresponding
weights. We note here that we used equal weights (w; =
wy = 1) in all of our experiments, however, the weights can
be tuned to emphasize the local or global saliency descriptors,
respectively.

The proposed method has shown to be robust [31], [32],
even for complex surfaces with different geometrical char-
acteristics and patterns, since it exploits spectral properties
(i.e., sensitivity in the variation of neighboring normals) and
geometrical characteristics (i.e., sparsity of intense prominent
spatial features). An example of the visualization of the
saliency map, as applied to the point cloud of a scene shown
in Fig. 4 (a), is presented in Fig. 4 (b).

C. Scene Segmentation for the Identification of On-Road
Obstacles

The saliency map of each frame is used to categorize
different regions of the scene. For illustration purposes the
regions are visualized in different colors:

o Blue: The safe area of the road beyond the view of the

driver.

« Yellow: Be-aware areas representing negative obstacles.

o Cyan: Hazardous areas in the range of the road represent-

ing positive obstacles.

« Purple: Dangerous areas outside of the range of the road.

« Red: Recognized obstacles in the range of the road (e.g.,

potholes).

To define the vehicle’s moving direction steering data are
used received by internal sensors of the vehicle. The direction
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Fig. 4. (a) Image from the camera of the vehicle, the texture of a pothole is also apparent, (b) Extracted saliency map of the same road scene, (c) Segmentation
of the point cloud scene based on the saliency map, (d) Example of segmentation of the point cloud projected to the AR interface (in the view of egol),
(e) Perspective projection of the point cloud vertices to the AR interface and image filling, (f) Pothole recognition (highlighted in red color) and AR visualization
of the corresponding information (in the view of egol), (g) AR projection of the point cloud vertices to the scene image that depicts the starting point of
view of the ego2 vehicle, (h) Early warning of upcoming pothole to inform ego2, (i) Pothole recognition and visualization (in the view of ego2).

of the vehicle specifies which part of the scene in the field
of view is in front of the vehicle and is used as parameter,
in addition to saliency mapping, for the segmentation of the
point cloud. The more critical regions are the ones that lie
within the limits of the road. A segmentation example is
illustrated in Fig. 4 (c).

D. Data Simulations

For evaluation of our methodology, we created a rich dataset
using CARLA, an open-source autonomous driving simulator
[16]. CARLA is based on a server-client system, in which
the server is responsible for running the simulations includ-
ing the calculation of physics, weather conditions, collision
detection and sensor readings. It operates on the OpenDRIVE
specification [58] for defining junctions, traffic lights, etc, and
is used by CARLA for simulating independent agents, such
as other cars and pedestrians. This makes CARLA ideal for
creating complex scenarios and realistic driving conditions for
our tests.

The server running the simulations is powered by Unreal
Engine. Clients can connect and request changes to almost
any element in the world being essential for the creation of
scenarios. They also receive sensor data and manage input to
the vehicle controlled by the user. CARLA supports a wide
range of sensor suites with extensive configurability to its
intrinsic parameters. In our work, we use a LiDAR sensor on
top of the vehicle and a monocular RGB camera, placed in the
front part of the car, for simulated data collection. By placing

these sensors in an autonomous car and initiating its navigation
in the virtual environment, we were able to create a very large
dataset for evaluating our algorithms. In the future, we plan
to assess the AR visualization effectiveness, with respect to
reaction time and awareness increase, in a real environment
with a driver manually controlling a vehicle.

Contributions in CARLA simulator: Due to lack of bench-
mark point clouds datasets representing real road scenes
with obstacles (potholes and bumps), we used the CARLA
simulator to create obstacle-free environment data, in which
we subsequently introduced simulated obstacles. Specifically,
we designed obstacles as curved point cloud surfaces using
the open-source software Blender® and used them to substitute
parts of the road. To avoid modeling the obstacles by hand,
we followed an automated procedure to generate a plethora of
different obstacles based on several parameters, such as depth,
ellipticity and size. An example of a frame in the CARLA
simulator with a simulated pothole is presented in Fig. 4 (a)
(texture) and in Fig. 4 (b) (geometry).

IV. INTERFACES AND COMMUNICATION

Context-awareness is a critical factor for successful
take-over requests and a lot of effort has been devoted to
determining the type of stimulus (e.g. visual, auditory, vibro-
tactile) [59] and the required time-window [60], [61], [62].
In the case of partial or conditional driving automation, our

5 https://www.blender.org/
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framework could be used to prepare the driver to quickly take
the control of the vehicle, if requested. In order to ensure
that the driver is able to swiftly take over the control of the
vehicle in an efficient way, we developed a notification system
that presents relevant information about the condition of the
environment. Our notification system is based on non-intrusive
visual cues to prevent tunnel visioning, alerting the driver
of potential risks and also directing his/her attention to the
objects of interest that sparked the take-over request. In that
way, in addition to assisting the human operator during manual
driving, the system can, in times of automated driving, trigger
the attention of the operator to possible external hazards
and preparing him/her to resume control. The visualization
technique presented in this section is designed as an AR
windshield interface, although this is not restrictive, i.e. the
method can be implemented in any AR interface.

A. AR Visualization

The visualization of obstacles is performed by projection.
Assuming the position is known for the AR interface and the
LiDAR relative to the world, we construct a transformation
matrix to map the points of the point cloud from the LiDAR
relative coordinate system to the AR interface’s coordinate
system. The transformation between two different coordinate
systems is typically performed by applying serially a scale,
a rotation and then a translation transformation. Since both
coordinate systems are orthonormal, the scaling can be omit-
ted. Also, by taking advantage of the rigid body nature of the
vehicle where the LiDAR and AR interface is located, we also
omit the rotation matrix given that, without loss of generality,
we can assume that the two coordinate systems are aligned.
According to these assumptions, the LiDAR coordinates are
transformed into the AR interface’s coordinates by a simple
translation.

For projecting the points of the point cloud to the AR
interface, we assume a simple pinhole camera model. If the
AR interface is, for example, an AR windshield, then the wind-
shield represents the image plane and the head of the driver
the principal point with coordinates (xop, yp). That way, the
focal distance f = (f%, f,) represents the distance from the
driver to the image plane. With the dimensions of the image
plane (windshield), and specifically the aspect ratio, known,
the frustum is fully defined and the projection can be made
from a point in 3D windshield coordinates (x, y, z) to pixels
(u, v) on the image plane using the following equation:

" 1 0 xo fx 0 0 X

(U) =(0 1 y|[Oo A O)fy

0 0 O 0 0 0/ \z
An undesirable property is the sparsity of the projected pixels
attributed to the sparsity of the point cloud. To overcome this
limitation, we use an iterative nearest neighbour algorithm on
the image space to fill the gaps between projected points. The

result of this process is shown in Figs. 4 (d)-(i).

More specifically, Fig. 4 (d) and Fig. 4 (g) illustrate the
segmented point cloud projected to the AR interface of egol
and ego2 correspondingly. Note that all information is ren-
dered for the sake of completeness. In real-world cases only
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the necessary information (e.g., arrows or recognised potholes)
will be rendered so as to avoid clutter. Fig. 4 (e) shows
the perspective projection of the points to the AR interface
and image filling for egol. In Fig. 4 (f) and Fig. 4 (i),
the pothole recognition and visualization is depicted for the
vehicles egol and ego2, while a warning about an upcoming
pothole (retrieved from the database) before reaching the field
of view of ego2 is presented in Fig. 4 (h).

We would like to clarify here that for evaluation of our
methodology and demonstration purposes in the previous
figures we project and illustrate in the 2D display device all
the information from scene segmentation. However, in real
driving scenarios only the most relevant information of the
scene (e.g., dangerous objects, potholes) would be highlighted
and displayed so as to decrease the amount of any unnecessary
information that may bother or confuse the driver.

B. Information Storage and Vehicle Communication Rules

One of the advantages of autonomous vehicles is their abil-
ity to communicate with each other forming a cyber-physical
system of systems. Many new opportunities arise from the
ability of systems to share information, one of which is the
transmission of objects or landmarks of interest that were
previously observed by an agent, to other agents of the system
who could benefit from such information. In particular, our
work focuses on information sharing among vehicles about
encountered obstacles, such as potholes and bumps, through a
centralized server. When a vehicle identifies an unexpected
(i.e., unregistered) obstacle, the vehicle sends a request to
the server and after further inspection, the new potential
obstacle is either discarded or added to the database. Vehicles
may also send information regarding already known obstacles
when they come across them. Such information includes the
Global Positioning System (GPS) location, dimensions and
geometrical characteristics in case the obstacle needs updating
in the database, e.g. it has increased in size or has been fixed.
Through this communication system, a driver can be warned
about potential hazards that may not yet be in his field of view
or they are obstructed by other objects and thus, increase his
performance and decision-making abilities. We should clarify
that our work does not focus on communication protocols
and defence mechanisms against potential network attacks, but
rather defines a solid framework describing the roles of each
node and the information flow.

By using the LiDAR-based obstacle detection method,
described in section III, the vehicle transmits via a commu-
nication component to a central server the points belonging
to the obstacle, segmented from the point cloud scene. The
information is coupled with a timestamp and the GPS location
of the vehicle at that instance. The server then transmits to any
vehicle in the vicinity of the obstacle, alerting (autonomous
vehicles or human operators) about potential hazards from a
large distance and thus helping alleviate the inability of the
LiDAR sensor to identify obstacles from such a range. In the
case of a driver, we also use the AR interface of the vehicle to
display, in a non-distracting manner, the location and nature
of the potentially upcoming obstacle.
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Potholes can change shape over time, most commonly due
to deterioration of the surrounding pavement and erosion
caused by environmental effects or in the opposite case due
to pothole repair. Thus, periodic updates are necessary for the
long-term reliability of the pothole visualization component.
As there is a need for periodical evaluation of the objects
in the server database and update in the case of changes,
we assign a shape- and geometry-based descriptor at each
obstacle, so that it is characterized by a unique representative
signature. Thus, every vehicle encountering the obstacle in a
nearby range, calculates the descriptor of the obstacle’s area.
The new descriptor is then transmitted to the server and is used
to confirm whether the information is up-to-date. In the case of
a difference in the descriptor’s value, an algorithm running in
the server decides between keeping the old descriptor, updating
it with the new one, or marking the obstacle as removed and
deleting the entry from the database.

More specifically, we implement a simple system that (when
a new pothole is detected) initiates a database search to retrieve
whether the pothole is new or already existed and needs to be
updated. Since potholes are static and thus change only in
shape, the similarity check is based only on the bounding
box of the re-identified pothole. When the overlap of the
bounding boxes is less than a threshold, the previous object
is replaced by the new one. In our experiments we used a
threshold of 15% reshape in the area in either direction to
avoid frequent unnecessary updates, while also retaining the
required precision in representation. Similarly, the algorithm
checks for significant changes in the bounding box dimensions.
A flowchart showcasing the information update and commu-
nication pipeline between two vehicles is shown in Fig. 5.

V. EXPERIMENTAL ANALYSIS

In this section, we will present and discuss in detail the
experimental analysis and will evaluate our proposed frame-
work.

A. Experimental Setup, Datasets and Metrics

The experiments were carried out on an Intel Core i7-
4790HQ CPU @ 3.60GHz PC with 16 GB of RAM. The core
algorithms are written in Matlab and C++. The evaluation of
the methodology was performed using (i) synthetic dataset of
potholes that we have created and (ii) 3D point cloud potholes
from real datasets with known models (used as ground truth)
which have been evaluated by other methods too [9], [63],
[64], [65].

The pothole detection algorithms are compared in terms
of the pixel-level (for image-based methods) and point-level
(for point clouds) precision = [T P/(T P + FP)], recall =
[TP/(TP 4+ FN)], accuracy = [(TP + TN)/(TP +
TN + FP + FN)] and F — score = 2 - [(precision -
recall)/(precision + recall)], where TP, FP, TN, FN,
represent the number of True-Positive, False-Positive, True-
Negative and False-Negative pixels, respectively. The positive
class includes all vertices belonging to the pothole (P) and
the negative class all vertices belonging to the road (R).
The performance metrics can also be expressed as shown in
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Fig. 6. Pothole detection in point cloud data of real potholes [63]. Two
dense models are visualized: modell (rows 1-3) and model2 (rows 4-6). For
each model, the three rows illustrate (i) the ground truth, (i) the heatmap
visualizing the saliency map of the pothole and (iii) the estimated point cloud,
respectively. The columns show results with decreasing density resolutions (in
respect to the original model): (a) original model, (b) ~ 50% of the vertices,
(c) ~ 10% of the vertices, (d) ~ 5% of the vertices.

Table I, where Real Pothole (RP) represents the recall or in
other words the percentage of vertices correctly annotated as
pothole, Real Road (RR) represents the percentage of vertices
correctly annotated as road, Not real Pothole (NP) represents
the percentage of vertices wrongly annotated as pothole and
Not real Road (NR) represents the percentage of vertices
wrongly annotated as road.
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Fig. 7.

Pothole detection on real data [9]. (a) RGB images of potholes, (b) corresponding point cloud of potholes with texture, (c) point cloud of potholes,

(d) ground truth binary mask of potholes, (e) estimated binary mask of potholes, (f) enlarged details of the ground truth point cloud, (g) enlarged details of

the estimated point cloud.

TABLE I
EVALUATION METRICS FOR POTHOLE DETECTION (IN PERCENTAGE %)
(x100%) Annotated as Pothole | Annotated as Road
Actual Pothole RP =T NR = 1 - RP
Actual Road NP = | - RR RR = ¥

B. Results

A quantitative comparison of our approach to other methods
is challenged by the absence of datasets containing labeled and
real potholes in point cloud format. Furthermore, the existing
LiDAR-based methods [68], [69], [70] in the literature are still
in their early stages, often using 2D LiDAR data, and they
do not provide any available open datasets for quantitative
comparison. Therefore, the only way to compare our pothole
detection method was with image-based approaches that pro-
vide the corresponding point clouds for each pothole image.
Despite the distinction in detection techniques between point
clouds and RGB images, we maintained consistency by using
the same models and metrics to ensure a fair comparison.

For the evaluation of our method, two public available
datasets [9], [63] were utilized providing point clouds of real
potholes. Fig. 6 visualizes results of our pothole detection
method for the dataset created by real potholes [63] under
different density resolutions (Fig. 6 (a)-(d)). Points in red
represent the vertices belonging to the pothole, while points
in blue represent vertices belonging to the road, both for the
ground truth and the estimated point clouds. Two dense models
(Fig. 6 (a)) are utilized as presented in rows 1-3 and 4-6,
respectively. To investigate the performance of our approach
in more realistic conditions, we increasingly downsampled the
original point cloud (Fig. 6 (b)-(c)) to evaluate the robustness

of detection of our algorithm. The corresponding number of
vertices for the two models (original and downsampled) are
shown above each model, respectively. The heatmap (rows
2 and 5) illustrates the geometric and spectral saliency per
vertex (as estimated from Eq. 8). Higher salient values are
depicted with deep red color while lower salient values with
deep blue.

Due to the sensitive nature of the specific application
involving safety of drivers (via information visualization for
situational awareness), we prefer our algorithm to provide a
small percentage of NR than having even a small value of
NP (please refer to Table I). To wrongly identify as a pothole
a small area of the road around an actual pothole is not as
critical in our application as the opposite, namely to fail to
present or partially present a potentially dangerous object (e.g.,
pothole, ramp). The detailed results with all evaluation metrics
are shown in Table II for each of the thirteen 3D models of
the point cloud dataset, and under different point cloud density
resolutions. The results of this table show that our method
is robust even for very low point cloud density. This is an
important observation, since the output of the LiDAR device
has a low density resolution pattern.

Fig. 7 visualizes some examples of the pothole detection
algorithm applied in an other dataset [9]. The first column
of this figure illustrates the RGB image presenting real road
potholes. In the second column (Fig. 7-(b)), the corresponding
point cloud with the relative texture is presented. The geometry
represented by the 3D coordinates of the point cloud (without
any color information) is presented in Fig. 7-(c). Fig. 7-(d)
shows the ground truth vertices (in red) representing the
pothole and Fig. 7-(e) presents our pothole estimation result.
Figs. 7-(f) & (g) just present enlarged details of Figs. 7-(d) &
(e), respectively, for easier visual comparison.
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TABLE II
POTHOLE DETECTION ACCURACY (IN PERCENTAGE %) FOR DIFFERENT DENSITY RESOLUTIONS OF THE POINT CLOUD MODELS
Models Original ~ 0.5 * Original ~ 0.1 * Original ~ 0.05 x Original
Model 1 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0
NP =044 [ RR=9956 || NP=040 | RR=99.60 || NP=0.68 | RR=99.32 || NP = 0.89 RR =99.11
Model 2 RP =100 NR =0 RP =100 NR =0 RP =99.38 | NR = 0.62 RP =100 NR =0
NP =065 | RR=9935 || NP=058 | RR=9942 || NP=098 | RR=99.02 || NP =1.22 RR =98.78
Model 3 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0
NP =041 [ RR=99.59 [| NP=0.36 | RR=99.64 || NP=0.63 | RR=99.37 || NP =0.74 RR = 99.26
Model 4 RP =9991 | NR =0.08 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0
NP =045 [ RR=9955 || NP=041 [ RR=99.59 || NP=0.76 | RR=99.24 || NP =0.93 RR = 99.07
Model 5 RP =100 NR =0 RP =100 NR =0 RP =99.36 | NR = 0.64 RP =100 NR =0
NP =062 | RR=9938 || NP=056 | RR=99.44 || NP=0.86 | RR=99.14 || NP =1.25 RR = 98.75
Model 6 RP = 100 NR =0 RP =99.57 | NR =043 RP = 100 NR =0 RP = 100 NR =0
NP =052 [ RR=9948 [| NP=046 | RR=99.54 || NP=0.78 | RR=99.22 || NP =1.22 RR = 98.78
Model 7 RP =99.92 | NR =0.08 RP = 100 NR =0 RP =99.15 | NR =0.85 RP = 100 NR =0
NP =047 [ RR=9953 [| NP=044 [ RR=99.56 || NP=0.80 | RR=99.20 || NP = 1.10 RR = 98.90
Model 8 RP =100 NR =0 RP =100 NR =0 RP =100 NR =0 RP =100 NR =0
NP =048 | RR=99.52 || NP=044 | RR=99.56 || NP=0.73 | RR=99.27 || NP = 1.06 RR = 98.94
Model 9 RP = 100 NR =0 RP =99.13 | NR =0.87 RP = 100 NR =0 RP = 100 NR =0
NP =045 | RR=9955 || NP=037 | RR=99.63 || NP=0.65 | RR=9935 || NP =0.96 RR = 99.04
Model 10 RP =99.92 | NR =0.08 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0
NP =042 [ RR=9958 || NP=038 | RR=99.62 || NP=0.68 | RR=99.32 || NP =0.84 RR =99.16
Model 11 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0 RP = 98.56 NR = 1.44
NP =0.59 | RR =99.41 NP =051 | RR=9949 || NP=095 | RR=99.05 || NP =1.03 RR = 98.97
Model 12 RP =100 NR =0 RP =99.36 | NR = 0.64 RP =100 NR =0 RP = 100 NR =0
NP = 0.44 | RR = 99.56 NP =036 | RR=99.64 || NP=0.64 | RR=99.36 || NP =0.81 RR =99.19
Model 13 RP =99.96 | NR =0.04 RP = 100 NR =0 RP = 100 NR =0 RP = 100 NR =0
NP =042 [ RR=9958 || NP=038 | RR=99.62 || NP=0.65 | RR=99.35 || NP =0.79 RR =99.21
Average RP=9998 | NR=0.02 || RP=99.85 | NR=0.15 || RP=99.83 | NR=0.17 || RP=99.88 NR = 0.11
NP =049 | RR=99.51 || NP=043 | RR=99.57 || NP=0.75 | RR=99.25 || NP=0.99 | RR =99.01%

TABLE III
COMPARISON OF THE POTHOLE DETECTION ACCURACY AMONG DIFFERENT STATE-OF-THE-ART APPROACHES

Dataset | Method | Correct Detection | Incorrect | Misdetection | Recall | Precision | Accuracy | F-score
1 [68] 11 11 0 0.520 0.543 0.989 0.531

2 [69] 22 0 0 0.462 0.998 0.994 0.632

1 3 [65] 22 0 0 0.499 0.987 0.994 0.663
4 [64] 21 1 0 0.701 0.964 0.995 0.811

our 22 0 0 0.853 0.993 0.991 0.918

1 [68] 42 10 0 0.975 0.971 0.999 0.973

2 [69] 40 8 4 0.874 0.991 0.997 0.929

2 3 [65] 51 1 0 0.980 0.980 0.999 0.980
4 [64] 52 0 0 0.950 0.883 0.992 0.915

our 402 0 0 0.909 0.996 0.992 0.951

1 [68] 5 0 0 0.612 0.771 0.995 0.683

2 [69] 5 0 0 0.534 0.992 0.996 0.694

3 3 [65] 5 0 0 0.582 0.983 0.996 0.731
4 [64] 5 0 0 0.702 0.996 0.996 0.823

our 5 0 0 0.953 0.984 0.996 0.969

1 [68] 58 21 0 0.800 0.822 0.994 0.800

2 [69] 67 8 4 0.695 0.992 0.995 0.817

Total 3 [65] 78 1 0 0.771 0.982 0.996 0.864
4 [64] 78 1 0 0.890 0.898 0.996 0.894

our 67 0 0 0.899 0.994 0.992 0.945

2 Only 40 of the refereed (52) models were founded online.

Table III provides a qualitatively comparison of our method because the other methods use only the visual information of
versus other approaches of the literature. However, it should the RGB images, while our method uses only the geometrical
be mentioned that the results are not directly comparable information of the corresponding point cloud.
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The experimental analysis showed that our methodology is
superior to image-based pothole detection methodologies. This
may be attributed to the use of LiDAR sensing, which provides
depth information and has a large range, making it suitable for
driving environments. In contrast, image-based methods rely
on visual cues, such as changes in color or texture, which
can be ambiguous and difficult to interpret. Moreover, the
depth of a pothole cannot be accurately estimated by 2D
information alone. LiDAR sensors can provide 3D information
about the road surface, enabling more accurate detection and
localization of potholes. This allows accurate identification and
localization of potholes even when the potholes are partially
obscured by other objects or difficult to identify in images.
Additionally, LiDAR sensors are less affected by changes in
lighting conditions, such as shadows and reflections, which
can impact the performance of image-based methods. They
also have a longer range than cameras, enabling obstacles’
detection at greater distances, and providing in this way drivers
with more advanced warning of potential hazards, thereby
improving overall safety. The point cloud processing system
analyzes the environmental data and classifies regions as safe
or potentially hazardous based on the presence of obstacles.
A flexible visualization system was implemented to prioritize
the display of critical information in the driver’s field of view
and accordingly adjust the properties of rendered information.
This ensures that the driver is alerted to potential hazards in a
non-intrusive way, without being overloaded with unnecessary
information.

C. Visualization and AR Rendering

The detected potholes are rendered on an AR display in
the driver’s field of view, which can be a head-up display
(HUD) or a windshield display. The rendering of potholes can
be overlaid on the real-world view, using a variety of visual
cues to indicate their severity. For example, potholes that are
more salient could be rendered in larger sizes, brighter colours,
or with animated effects, while less dangerous potholes could
be rendered in smaller sizes or subtler colours.

To ensure the safe and effective conveying of informa-
tion about potholes, the AR visualization system should be
designed to be non-intrusive and appropriate for the driving
context. We have implemented a flexible visualization system
(Figs. 8-9) that allows to select a number of properties for
the obstacles to be rendered (size, colour, animation and
visualization type), such as to maximize the driver’s ability to
realize the presence of hazardous obstacles while minimizing
distraction. Next, we first present some general recommenda-
tions on the choice of optimal properties for the visualization
system, and upon this we present our preliminary research on
the evaluation of users’ personal preferences for customization
of visualization properties in a simulated driving environment.

To present information in a non-intrusive way, it is important
to strike a balance between providing enough information
to enhance situational awareness while avoiding information
overload that may distract the driver. Some strategies for
presenting AR information in a non-intrusive manner are: (a)
Prioritize information [71] that is critical for safe driving, such
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as upcoming obstacles or hazards. (b) The size and placement
of information can affect how noticeable it is to the driver
[72]. Important information should be presented in a larger size
and placed in a location where it can be easily seen without
distracting the driver from the road. (c) Colours can affect how
noticeable and attention-grabbing information is [72]. High-
contrast colours, such as red, can be effective for highlighting
critical information, while more muted colours can be used
for less important information. (d) Animation can be attention-
grabbing, but it can also be distracting. Animated information
should be used sparingly and only for critical information that
requires immediate attention [73]. (e) Drivers have different
preferences for how they want information presented to them
[74]. Providing customization options for the size, colour, and
placement of information can help drivers tailor the infor-
mation to their preferences and reduce distraction. Feedback
from drivers can help identify areas where the presentation of
information can be improved and help strike the right balance
between providing enough information and not distracting the
driver.

« Size: The size of the rendered obstacles should be propor-
tional to their saliency. More important obstacles, such as
potholes, should be rendered larger than less important
ones. However, it is important to avoid rendering the
obstacles so large that they become intrusive or dis-
tracting. The size of the rendered obstacles should be
designed to quickly grab the driver’s attention and provide
sufficient information for the driver to take appropriate
action.

o Color: The use of color can also help convey the saliency
of obstacles. Brighter colors, such as red or yellow, can
be used to indicate high saliency, while less important
obstacles can be rendered with subtler colors. The use
of contrasting colors can also help the driver quickly
differentiate between obstacles and the surrounding envi-
ronment.

o Animation: Animation can be used to provide additional
visual cues that indicate the saliency of obstacles. For
example, obstacles that are in the driver’s immediate path
could be rendered with a flashing or pulsating effect,
while less important obstacles could be rendered with
subtler animation.

« Visualization type: The AR content may be provided
through different visualization techniques (Fig. 8):

— Wedge 3D. This method is based on rendering
objects in a form of a pyramid-like scheme. The
height of the pyramid is proportional to the distance
between the user’s vehicle reference and the object.

— Arrow. This visualization method involves a stick and
an arrow tip. The arrow’s direction (in 3D) follows
the object’s position, while the length of the stick is
proportional to the corresponding distance.

— 3D Minimap. Three layers of concentric spheres are
used to provide an estimation of the object’s distance
from the vehicle’s position.

— Radar. The objects are represented as small squares
in a radar-like area.
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Fig. 8. Visualization using (a) 3D wedge, (b) 3D arrows, (c¢) 3D minimaps, (d) Radar, (e) 3D sphere representing the object of interest, (f) 3D mesh overlay.

— Meshes Sphere. Similar to the previous method,
however, the occluded objects are represented by
spheres.

— Occluded Meshes As is. The occluded information is
presented at the appropriate distance by transparently
rendering the object’s silhouette.

Additionally to the visual symbolic warnings, other alternative
modalities can be used as well. For example when a vehicle
is approaching a pothole that has been detected by another
vehicle, it could receive a text or sound warning to slow down
or take immediate action.

1) Rule-Based Visualization and Warnings: In terms of
visualizing and representing the outcomes of the pro-
posed method through AR rendering, we suggest using a
colour-coded system to indicate the severity of the detected
potholes. For example, green could represent a small or shal-
low pothole, red could indicate a larger or deeper pothole that
poses a greater risk to the driver, while orange could represent
an intermediate situation (Fig. 9). The size and shape of the
rendered pothole could also be adjusted to reflect its severity
and distance from the driver. To ensure that the information
is presented in a non-intrusive way, we suggest limiting the
amount of information displayed on the AR-HUD to only
the most critical or relevant obstacles. This can be achieved
through intelligent filtering and prioritization algorithms that
take into account factors such as the driver’s speed and
direction of travel, as well as the severity and proximity
of detected obstacles (like the Pavement Condition Index
(PCI) [75] and the International Roughness Index (IRI) [76]).
By combining the IRI with the depth and size of potholes,
a more comprehensive measure of the severity of the road
surface condition can be obtained. By providing only the
most relevant information, we can help reduce the risk of
information overload and ensure that the driver’s attention
remains focused on the road ahead.

2) User Evaluation Study: In order to design the visu-

alization scheme following user-centered principles, a user
evaluation study was performed to assess personal prefer-

ences while driving in a simulated environment. A steering
wheelchair was implemented for the driving simulation, and
a VR display device with leap motion sensor was used to
provide the AR information (Fig. 8). Out of all properties,
we focused on the customization of the visualization type
which is considered more critical and less subjective than other
factors like size, color, and animation.

A total of 12 adult (4 females, 8 males) participants took
part in the experiment. Most of them were either employees
or students at the University of Patras. The age range of
the participants was 23 to 45 years with an average value
of 27.5 years. The experimental process consisted of two
parts. In the first part, the participants familiarized themselves
with the simulator and the driving process. They were not
given any specific instructions or time constraints, and were
free to drive in any direction and for any duration they felt
comfortable with. During this phase, the simulated vehicles
adhered to driving rules and moved safely on the road. The
participants had the opportunity to explore the simulator envi-
ronment using all the provided visualization methods. In the
second part, the participants were asked to follow a predeter-
mined route that included various hazardous situations based
on predefined scenarios. The different visualization methods
available were utilized to enhance the drivers’ situational
awareness. Spatial indicators were used to guide them along
the correct path. Finally, a questionnaire was administered at
the end of the experimental process, which included general
demographic questions (gender, age, education, etc.), inquiries
about technology usage frequency, and questions pertaining
to the evaluation of the visualization techniques. Specifically,
the participants evaluated whether the information provided
through the visualization techniques met their personal expec-
tations, increased their trust and acceptance, and whether it
was understandable and non-distracting.

The most important outcomes of the evaluation study are
summarized next. All participants agreed that utilizing the
proposed visualization system would enhance their driving
safety and awareness of critical upcoming events. They also
found the tool particularly useful when navigating unfamiliar
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Fig. 9.

(i-iii) Different severity prioritization of potholes based on their size and volume, (a) image of the camera without any visual cue, (b) projected point

cloud representing the identified pothole, (c) overlay visualization of the pothole.

mixed traffic environments. Furthermore, a significant major-
ity of participants (83.3%) expressed a positive inclination
towards using the proposed visualization system to alleviate
their nervousness while driving in unknown areas. Regarding
the application’s efficacy in promoting safe and secure driving,
all participants were in favor (66.7% strongly agree, 33.3%
somewhat agree) of utilizing it. Nearly all participants (11
out of 12) demonstrated awareness of VR/AR training tools,
and all of them (100%) expressed interest in utilizing VR/AR
technology for training or learning purposes. It should be
however mentioned, that the characteristics of the group of
participants might not reflect that of the average population,
since the majority of participants (75%) had prior experience
using an AR device, tool, or application, and all of them
(100%) have previously used a VR device, tool, or application.

With regards to visualization type, attendees had diverse
preferences. The most popular method was the presentation
of occluded objects as transparent meshes, and the display
of the object’s silhouette in their true form (83.3% rated it
from 4 to 5 on a scale of 1 to 5). On the other hand, the least
popular method was the use of minimaps (50% rated it below
3 on a scale of 1 to 5).

VI. CONCLUSION

In this work, we propose a cooperative obstacle detection
and rendering scheme that utilizes LiDAR data and driving
patterns to identify obstacles within the road range. Our system
allows for information sharing between connected vehicles,
enabling drivers to be notified about incoming potholes even
when there is no direct line-of-sight. This cooperative driving
scheme increases situational awareness and reduces the risk
of accidents caused by unexpected obstacles. Our method is
based on the analysis of point clouds which is challenged by

the lack of benchmark datasets obtained from LiDAR devices.
To overcome this problem, we created our own synthetic
dataset and added it to the maps of the CARLA simulator,
thereby creating realistic driving environments. The compar-
ison of our method with other state-of-the-art approaches,
regarding the accuracy of pothole detection in real datasets, has
shown its effectiveness providing very promising outcomes.
Our proposed approach can be extended to cover a wider
range of road hazards beyond potholes, such as debris or
uneven road surfaces. By utilizing the same LiDAR sensor
technology, we can detect these hazards and provide similar
AR visualizations to drivers. Moreover, we plan to investigate
the integration of other sensing modalities, such as RGB-D
cameras, which could provide additional visual information to
improve the accuracy of obstacle detection and enhance the
situational awareness of drivers. In addition, our methodology
can be further improved by incorporating machine learning
algorithms to enhance the accuracy and efficiency of obstacle
detection and classification. We plan to explore the use of
deep learning models, which have shown promising results
in various computer vision tasks, to enhance our point cloud
processing system. Lastly, we envision that our proposed
approach could be applied beyond personal vehicles, such
as in autonomous vehicles and public transportation systems.
By leveraging V2X communication, our cooperative obstacle
detection and rendering scheme could provide a safer driving
experience for all road users.

APPENDIX A
ROBUST PRINCIPAL COMPONENT ANALYSIS (RPCA)

RPCA is a powerful mathematical tool that has been used in
many scientific domains in order to decompose an observed
measurement E into a low-rank matrix L, representing the
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ideal data unaffected by any kind of noise, and a sparse matrix
S, representing the noisy data. Decomposition is performed by
solving the following equation:

argmin [|L|l« + A|IS|l1, st L+S=E, 9

L,
where ||L| is the nuclear norm of a matrix L (i.e, >°; 0;(L)
is the sum of the singular values of L).

A lot of works have been proposed all of these years,
presenting excellent results. However, despite the effectiveness
that some works [77], [78] have presented in the past, the
execution times of the proposed algorithms need improvement.
This convex problem can be solved using a very fast approach,
as described in [79], according to:

1
argmin Z|L+8 ~Ellp + ISl st rank(L) = K (10)
L,S
L+ = argmin L +S” —E||f s.t rank(L) = K (11)
L

8¢ = argmin LD + S —E|[r + 2|81 (12)
S

In each (¢) iteration, the Eq. (11) is updated with rank = K.

If —%£— > ¢, where u denotes the singular values and ¢ is a

smal’l:tlk;drleshold, then the rank is increased by one (i.e., K =
K +1) and the Eq. (12) is updated too. To update the Eq. (11),
a partial SVD(E — S®) is estimated keeping K components.
To update the Eq. (12), a shrinkage operator is used D(.),
where:

DE—-L D 1) =sign(E — LTY)max{0, [E—L*D| — 1}
(13)
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