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Abstract— The estimation of the amount of uncertainty fea-
tured by predictive machine learning models has acquired a great
momentum in recent years. Uncertainty estimation provides the
user with augmented information about the model’s confidence
in its predicted outcome. Despite the inherent utility of this
information for the trustworthiness of the user, there is a thin
consensus around the different types of uncertainty that one can
gauge in machine learning models and the suitability of different
techniques that can be used to quantify the uncertainty of a
specific model. This subject is mostly non existent within the
traffic modeling domain, even though the measurement of the
confidence associated to traffic forecasts can favor significantly
their actionability in practical traffic management systems. This
work aims to cover this lack of research by reviewing different
techniques and metrics of uncertainty available in the literature,
and by critically discussing how confidence levels computed for
traffic forecasting models can be helpful for researchers and
practitioners working in this research area. To shed light with
empirical evidence, this critical discussion is further informed by
experimental results produced by different uncertainty estimation
techniques over real traffic data collected in Madrid (Spain),
rendering a general overview of the benefits and caveats of every
technique, how they can be compared to each other, and how
the measured uncertainty decreases depending on the amount,
quality and diversity of data used to produce the forecasts.

Index Terms— Uncertainty estimation, confidence, traffic
forecasting.

I. INTRODUCTION

ROAD traffic forecasting has been a subject of intense
academic research for decades [1]. This modeling task

was originally approached based on regressive techniques for
time series analysis [2], [3], [4], veering over time towards
Machine Learning (ML) methods [5]. When compared to
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traditional regression techniques, ML allows for the detection
and characterization of hidden relationships among data in
exchange for a higher level of complexity. A glance at the
recent literature contributed on ML-based traffic forecasting
reveals that deep neural networks (also referred to as Deep
Learning) conform nowadays the core of almost any traffic
forecasting work [6], [7], yielding a torrent of works that
are not only abundant, but increasing steadily every year [8],
[9]. This sustained interest of the research community in this
topic suggests that traffic forecasting still poses challenges
for the method used to address this modeling task. However,
several comprehensive studies expose that traffic forecasting
has reached its modeling performance asymptote, wherein the
addition of extra layers of complexity in the modeling proposal
yields negligible performance gains [10], [11]. This prevailing
performance-driven pursuit for new traffic forecasting models
is far from being actionable from the perspective of Intelli-
gent Transportation Systems [12]. As a result, most of the
challenges of this research area identified years ago remain
unsolved to date [1], [13].

This noted lack of actionability in current traffic forecasting
solutions can be addressed by moving the research focus away
from performance metrics towards augmenting their output
with valuable information to support practical decision making
processes of traffic managers. When the quality of estimated
forecasts reaches enough quality in terms of model predictive
error, it is of utmost practical interest to explore the individual
level of confidence associated to each forecast. Model error is
a quantitative measure of the performance of the model when
producing forecasts for a certain set of input traffic values [14],
[15]. However, both the input data and the modeling technique
itself may be subject to different sources of uncertainty [16].
This means that even models with high performance metrics
can yield predictions that are inaccurate beyond the threshold
within which they are useful [17], which propagates to a
confidence level of the model in its predicted outcomes. It is
not possible to gauge the error of a given prediction until
the actual value (ground truth) occurs. However, measuring
the uncertainty under which the prediction is furnished – in
other words, assigning a confidence level to the prediction –
can be approached at inference time using different strategies.
Thus, a manager or service consuming such forecasts would
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not only be informed about the estimated traffic value for a
certain location in space and time, but also the confidence
under which the predicted value can be trusted. Besides, from
the practitioners point of view, knowing the uncertainty also
provides information about when to stop trying to improve a
model.

In this regard, many disciplines (especially those where
decisions made based on the model’s output may entail a
risk for the human life) have dealt with the quantification of
uncertainty in data-based modeling, so that the provision of
augmented predictions with confidence estimates has already
become a matter of intense research. Within the medical
domain, for instance, the confidence of ML models is crucial in
model-based clinical diagnosis [18], and it has been obtained
for diverse purposes [19], [20], [21], [22]. Other fields for
which the actionability of forecasts is highly relevant have
also considered measuring the confidence of predictions, e.g.
in the energy sector [23], [24] or in weather and climate
modeling [25], [26], [27].

The ITS domain is not unfamiliar to the application of
confidence estimation techniques, specially in cases where
predictions issued by a model play an essential role in deci-
sion making processes. For instance, within the autonomous
driving field, vehicles need to sense and anticipate the con-
textual circumstances in which they operate to determine
their behavior in uncertain environment. Researchers working
on vehicular perception are highly focused on dealing with
uncertainty when estimating the next maneuver [28], [29],
[30] or the trajectory of other vehicles and pedestrians [31],
[32], [33]. It is also the case of air traffic management,
a field comprising multiple subareas in which decisions must
be made fast, and errors can entail important operational
consequences and high economical costs. As a result, assessing
the uncertainty of forecasts has been addressed in this area
for diverse purposes, from aircraft trajectory prediction [34]
to the demand estimation of airport facilities [35], [36] to
help managers scale services. In relation to the latter example,
and closer to the road traffic domain, a considerable body
of literature related to forecasting uncertainty has focused
on travel demand estimation. For instance, authors in [37],
[38], [39] examine the statistical robustness of forecasts and
propose different methods to detect them. In [40], infrastruc-
ture capacity constraints are considered to propose a new
methodology that quantifies uncertainty, similar to what [41]
does for an established and operating travel demand system
in Sweden. Analogous research is performed for transport
mode choice predictions in [42], with equivalent actionable
results.

All these research contributions deal with the prediction of
travel demand, which is intended to be provided to public
authorities, infrastructure and public transportation managers
and investors. By informing them about the uncertainty associ-
ated to the demand estimation, insights on how traffic and the
demand of transportation services will operate in the long term
are produced, which can be used to scale appropriately such
infrastructures and services. When decision making is based
on short-term traffic forecasts, the impact of a forecasting

error has a shallower relevance. Anyhow, if these forecasts
are meant to be used for any real-world purpose, measuring
their uncertainty is of paramount importance for their trust-
worthiness and actionability. Following up the work in [43],
the performance of travel demand forecasts was not properly
considered in terms of the uncertainty it was subject to. Up to
this point, all the mentioned works involve forecasting up to
several minutes or hours. Long-term traffic estimations can
also be studied for traffic demand analysis, goal for which
measuring their uncertainty becomes an essential actionability
driver [44].

This manuscript finds its motivation in the lack of an
unified referential work consolidating the state of the art
related to uncertainty estimation applied to short-term traffic
forecasting problems. To cover this niche, we herein offer
a short yet instructive summary about the different types of
uncertainty that may arise in road traffic forecasting scenarios,
an enumeration of the practical reasons why the confidence of
traffic forecasting models is a key driver for their practicality,
different uncertainty estimation approaches used nowadays to
quantify such a confidence, and scores utilized to compare
among such techniques. This multi-faceted analysis is com-
plemented by an extensive experimental benchmark with real
traffic and weather data collected over the city of Madrid
(Spain). Specifically, the experimental setup and the results
obtained therefrom permit to answer with empirical evidence
three research questions (RQs) that touch the core of the
overall study:

• RQ1 (Techniques and comparison framework): How do
different uncertainty quantification techniques perform
when applied to a particular traffic forecasting model?
Which are their main strengths and weaknesses for each
problem? Which scores can be used to compare these
techniques? What does each of them contribute to the
improvement of the model’s actionability?

• RQ2 (Scenario under study): Which changes in the avail-
able data affect uncertainty? How can the confidence of a
forecasting model be improved by changing/augmenting
data at its input?

• RQ3 (The relevance of calibration): What impact does the
calibration process of some of the uncertainty estimation
techniques have on their outcome? Why is it relevant for
traffic forecasting?

The rest of this paper is structured as follows: first,
Section II introduces the readership to the different sources
of uncertainty that one can encounter in traffic forecasting
scenarios. This section also enumerates different practical
purposes for which the uncertainty of traffic forecasts must be
measured, and provides an overview of uncertainty estimation
techniques, along with scores that can be used to compare
their effectiveness. Section III introduces the data and the
experimental setup devised to answer the RQs formulated
above. Section IV presents and discusses the obtained results,
structuring their analysis in terms of the RQ under target.
Lastly, insightful concluding remarks are offered in Section V,
together with future research directions departing from this
study.
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II. ESTIMATING THE CONFIDENCE OF TRAFFIC
FORECASTING MODELS: SOURCES OF UNCERTAINTY,
PRACTICAL PURPOSES, TECHNIQUES AND MEASURES

As argued in the introduction, uncertainty quantification
can improve significantly the worth of any forecasting model.
Although it is an old area of study in statistics and probability,
its application to machine learning techniques is relatively
recent [45], [46]. It has been exposed before that decision
makers in many application fields (e.g., medical diagnosis,
industrial prognosis) demand the provision of quantitative met-
rics related to the trustworthiness and reliability of predictions
issued by machine learning models. This is certainly not the
case of traffic forecasting, a vibrant field with hundreds of
publications on a yearly basis, in which confidence measure-
ments are rarely provided. There are some notable exceptions
that were surveyed in [16], which revealed that most works at
the time reporting confidence intervals obtained them experi-
mentally by repeating experiments and measuring the variance
and standard deviation of forecasts. Some other works pub-
lished thereafter took advantage of particular characteristics
of Kalman filter modeling techniques to extract confidence
intervals for the predictions [47], [48]. However, this is not
a common practice: in the traffic forecasting literature, only
performance scores are usually computed.

Interestingly, machine learning techniques for predictive
modeling have reached ever-growing levels of complexity over
the years, rendering their modeled knowledge more opaque
and difficult to understand for the user consuming their pre-
dictions [10]. As a result, different methods for explaining their
inner structure in an user-interpretable manner are under active
investigation lately [49]. As a supplement to such explain-
ability methods, informing about the uncertainty associated to
the predictions supports even further the trustworthiness of
forecasting models, and favors decision making processes not
only linked to the usefulness of the traffic forecasts themselves
(e.g. traffic congestion management), but also in regards to the
intelligent collection of traffic data.

This section delves into these ideas by introducing briefly
to the different sources of uncertainty in traffic forecasting
(Subsection II-A), by discussing on the diverse purposes
and inherent usefulness of uncertainty estimation in this
context (Subsection II-B), by shortly reviewing state-of-the-
art uncertainty estimation techniques (Subsection II-C), and
by enumerating different quantitative metrics that can be
used to evaluate the quality of estimated confidence intervals
(Subsection II-D). The overarching goal of this section is to
set the knowledge basis towards the experimental part of this
work.

A. Sources and Types of Uncertainty in Traffic Forecasting

The uncertainty of a model trained with supervised learning
can have different kinds of sources. It is commonly accepted
that this uncertainty of the output of the model (evaluations of
the model with new data) can include a fraction of epistemic
uncertainty, that accounts for all the uncertainty that the
modeling process itself introduces, and aleatory uncertainty,
that regards the irreducible uncertainty that is present in the

Fig. 1. Sources of uncertainty present in traffic forecasting.

data due to their inherent variability [50]. However, both
the number of different uncertainty sources and their sepa-
rability are open practical questions subject to debate among
statisticians, frequently an outset for deeper philosophical
discussion [51]. Epistemic uncertainty can (theoretically) be
reduced, being it part of the way in which data are structured
and represented. On the contrary, aleatory uncertainty cannot
be decreased, as it is inherent to the variability and noisy nature
of data. Discerning among both sources of uncertainty can
be interesting precisely for reducing the share of epistemic
uncertainty. Nonetheless, burrowing through the philosophical
grounds of the very definition of uncertainty [52], it is unclear
whether different sources of uncertainty can be disentangled
from each other, or even that the uncertainty associated to data
can be isolated from other data features.

Practical implications of segregating aleatory and epistemic
uncertainty in traffic forecasting are clear: while epistemic
uncertainty can be reduced to an extent depending on the
modeling choice in use, measuring the amount of aleatory
uncertainty can dictate whether the addition of new variables
and/or the collection of new data helps reducing it effectively.
Unfortunately, from a practical point of view such a segrega-
tion of uncertainty types might not be feasible [51]. Moreover,
it might be even irrelevant as long as mechanisms are designed
to reduce the global uncertainty that aggregates both sources.
In fact, not all uncertainty estimation techniques discussed
in this work provide separated uncertainty measurements,
consideration that will be contemplated in their experimental
comparison.

B. Uncertainty Estimation in Traffic Forecasting: What For?

The use of uncertainty estimation techniques in some of
the aforementioned fields is straightforward: quantifying the
confidence under which a model produces its output is crit-
ical for its actionability in many diverse applications. For
this reason, research about uncertainty estimation methods is
growing and becoming available for very diverse machine
learning models. Short-term traffic forecasting has probably
a less critical nature than, for instance, medical or finance
sectors. However, measuring uncertainty of traffic forecasts
can also be profitable if we consider the purposes for which
it can be performed. Such purposes are graphically illustrated
in Figure 2 and explained in what follows:

• Improved actionability: the unequivocal application of
estimating uncertainty is to provide practitioners with a
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Fig. 2. Purposes of uncertainty estimation in the context of traffic forecasting.

confidence interval of predictions, so that better decisions
can be made [12]. Unlike customary regression scores,
which are commonly obtained for a whole test dataset
and apprise about the general (averaged) performance of
the trained model, uncertainty metrics reach the individual
prediction level, giving confidence information for each
data point predicted by the model. This not only provides
valuable information about the extent to which each
individual prediction can be trusted, but also allows for
a further study on how traffic behaves in different time
intervals and seasons over the year.

• Model selection and comparison: as explained before,
a part of the total uncertainty of the output of a
forecasting scheme can be attributed to the way the
information is modeled. Uncertainty can be, therefore,
another dimension in a model comparison framework,
allowing researchers and ITS experts to choose models
that perform with narrower confidence intervals. Models
performing similarly in terms of regression error but
introducing less epistemic uncertainty, can be considered
more desirable in some contexts. Furthermore, examining
the uncertainty associated to individual predictions can
be also interesting to select models that reduce the
uncertainty in critical segments of the traffic data series
(e.g. in hours featuring high traffic intensity).

• Feature selection: prior to the application of a training
algorithm that fits the parameters of the model to repre-
sent a reality represented by data, raw traffic information
is arranged into a dataset with a feature space X and an
output space Y . Even before the training process starts,
the way in which variables are selected and processed
for constructing X and Y can affect their degree of
uncertainty [51]. This uncertainty should be deemed
as epistemic, as it falls under the way knowledge is
represented and usually is subject to the experience of
the expert at hand. From this conceptual point of view,
it is interesting to highlight that the way in which input
data are selected, shaped and fed to the model towards
its training must be also considered a part of the model.
Thus, analogously to the previous concept, uncertainty
metrics can help, within the framework of a benchmark,
to define which input features provide more trustworthy
results. Likewise, metrics can be helpful to seek features
that help reducing the uncertainty induced by the overall
forecasting model.

• Active learning: uncertainty estimation is also an essential
component of algorithms that learn actively [53]. Active
learning consists of constructing training datasets dynam-
ically, where training samples are added progressively and
aimed at reducing uncertainty and increasing diversity.
Latest research in this vibrant field is highly reliant on
uncertainty estimation [54], [55], and the way in which
uncertainty is measured is a matter of study in itself [56].
In the context of road traffic forecasting, the installation
of new traffic reading sensors (either provisional or fixed)
can be decided upon the study of the distribution of
uncertainty in space and time, especially when traffic
measurements are scarce in locations of interest for traffic
management. If forecasts for such locations exhibit a
higher degree of uncertainty, new measurement cam-
paigns can be commanded to collect more data that
allow improving the confidence of the predictions issued
by the model. This is especially relevant in practical
circumstances where traffic profiles for a certain place
are inferred from data collected in other nearby points of
the road traffic network [57].

• Trend change detection: a well-calibrated confidence
interval for the output of the model should characterize,
with the established confidence level, the percentage
of real traffic data that falls within the interval. This
a priori notion can be used to detect whether, in a
traffic data stream, an excessive number of real traffic
data points fall outside the confidence interval of the
model. If this occurs, it can be an evidence of a change
in the underlying distribution of traffic data requiring,
upon its detection, an update of the model’s knowledge
(via incremental training, selective forgetting or any other
adaptation method alike). Despite its unquestionable prac-
tical benefits (especially in dynamic urban road networks
prone to different non-stationarities affecting its traffic
flows), this adaptation approach have not been studied
until very recently [58].

There are deeper questions related to uncertainty that could
concern practitioners, such as the risk of introducing depen-
dence among random events that affect the system being
modeled [51]. Nonetheless, the essential actionability aspects
presented above can help ITS stakeholders design more confi-
dent models, and understand them better in order to put their
output to practice.

C. A Brief Overview of Uncertainty Estimation Techniques

Quantifying the uncertainty present in the output of a
model implies measuring the way in which it can vary. This
can be expressed as the variance or standard deviation of
each predicted value, or by reporting different statistics (e.g.
confidence intervals or percentiles) of the estimated output
distribution [16]. When dealing with machine learning models,
once a dataset is built and the parameters of the chosen
model are trained through a training algorithm, the outputs
of such model will not vary given a fixed input. For a certain
forecasting query, there is only one output given one input to
the model. Unless probabilistic formulations of the model’s
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parameters are formulated (as in Bayesian neural networks),
most machine learning models are deterministic after their
parameters have been trained. Thus, with an already trained
model, estimating the variability of each forecast requires in
general an uncertainty estimation technique.

On this basis, many techniques and methods have been
developed by the community to characterize the output distri-
bution of a machine learning model based on prior knowledge
from training data. Once this output distribution is estimated,
the usual approach consists of defining significance levels and
obtain confidence intervals. Some machine learning models
allow changing their default operation to obtain predictions
based on percentiles. These model-specific approaches have
been described in the literature as intrinsic [59]. Conversely,
extrinsic uncertainty estimation techniques are not specific to
a particular machine learning model, but allow obtaining a
measurement of uncertainty once a model has been trained
(i.e., a post-hoc estimation), normally through a calibration
process.

Even though some authors have tried to categorize the
landscape of uncertainty measuring techniques [59], it appears
to be difficult to find consensus beyond the differences
between intrinsic and extrinsic techniques exposed above. For
instance, some techniques allege to be able to discriminate
between the epistemic and aleatory uncertainty present in
the output of machine learning models [60], [61], frequently
based on Bayesian formulations of their underlying training
mechanisms. Other branch of techniques based on wrapper
methods rely on a calibration process prior to the training
phase of the algorithm, whereas other techniques hinge on
the use of ensembles or the generation and modeling of
multiple data bootstraps to approximate the output distribu-
tion. Additionally, different variants of deep neural networks
have been proposed in the last years to estimate the output
distribution, via the probabilistic definition of their trainable
weights, evidential formulations of the loss function used to
guide the training process, or the derivation of mechanisms
to sample the sought distribution. The more recent are the
research works in this, the more specific for deep learning they
happen to be. In [62], an uncertainty estimation framework
is proposed, which focuses only on deep spatio-temporal
forecasting. Methods are very similar to the ones proposed
in other works: methods that produce distributions in their
inner behavior (Bayesian approaches), and methods which
are modified so the probability distribution of their output is
forced (frequentist approaches). A similar characterization is
proposed in [63].

Beyond the discussion on the suitability of one taxonomic
criterion or another, in what follows we examine the most
widely adopted options to estimate the uncertainty in machine
learning models used for regression tasks. To this end we pause
briefly at the specific techniques organized in the taxonomy
shown in Figure 3. This short review connects tightly with the
experiments designed to answer RQ1, where a comprehensive
comparison benchmark over real traffic data will expose the
strengths, weaknesses and the applicability of the methods
reviewed below:

Fig. 3. Taxonomy of uncertainty estimation techniques tackled in this work.

• Conformal prediction: as defined in [64], [65], conformal
predictors are confidence predictors. Their operation is
based on the conception of nonconformity measures,
which allow predicting regions of points instead of indi-
vidual points (i.e., confidence intervals) by using the
statistical knowledge that can be obtained through a cal-
ibration process from the training samples. This method
has been prevalent in the machine learning community
for years [66], being used in applications arising in
many fields [67]. Conformal prediction is agnostic to the
particularities of the underlying model, and can be used,
in principle, with any machine learning algorithm and
dataset configuration.

• Ensemble methods: ensemble learning consists of the
aggregation of knowledge obtained from different models
learned from different views of the data. Combining the
predictions issued by different methods learned from the
same data has been proven to yield better performance
than any contributing member to the ensemble, which
is achieved by reducing the spread in the predictions
made by such models [68], [69]. Besides the increased
robustness favored by this smoothing process, ensembles
represent an easy and straightforward approach to sample
the distribution associated to the combined output; once
trained, each base learner yields a different prediction for
a given input, all of which are aggregated by averaging
or other more sophisticated combination procedures (e.g.
weighting based on out-of-bag performance estimates).
Thus, confidence intervals can be obtained by charac-
terizing statistically the distribution of all the different
predictions produced by each learner in the ensemble for
a given input [70].

• Bootstrapping: this model-agnostic technique is used to
estimate the uncertainty associated with a sample statistic
by resampling with replacement from the original dataset
(bootstrapping). All such bootstraps are used to learn
a forecasting model. The outputs of such forecasting
models for a given test instance are collected and used to
create a sampling distribution of the statistic of interest
(e.g., the traffic forecast), which represents the variability
or uncertainty associated with the estimate. From this
distribution we can compute prediction intervals, i.e.
a range within which the true traffic measure is likely
to fall [71]. In addition to different works relying on
bootstrapping for estimating the uncertainty of different
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traffic data models [40], [72], [73], modifications of
the naïve bootstrap procedure have been proposed to
account for all sources of uncertainty in prediction inter-
vals. One of such methods [74] will be used for the
benchmark discussed in the experimental part of this
manuscript.

• Quantile regression: This family of methods was origi-
nally conceived for linear regression methods, for which,
instead of using the median as an output, asymmetric
errors were considered in order to have upper and lower
boundaries of an interval defined by a quantile [75].
More modern contraptions have used this notion as a
base to estimate uncertainty of other machine learning
models [76], [77] or deep learning models in which the
different quantiles are predicted directly with the trained
model, as an output of the model [78]. Quantiles have
been introduced in loss functions of several learning
algorithms, from gradient boosting regression to deep
neural networks [79]. These reformulation of the loss
functions permit to predict not the median, but instead
the extremes of an interval defined by the quantile sought.
Their main difference with respect to previous methods in
terms of prediction interval is the distribution of points
inside the interval. Other methods generate predictions
that may have an unknown distribution. Once they are
characterized, the boundaries of the interval are obtained
according to a significance level. This approach produces
only boundary lines, and they are normally distributed.
A characteristic prediction would be the median, but
any other predicted points inside the interval would be
placed according to their significance level. This becomes
a relevant issue when comparing the output of these meth-
ods to other uncertainty estimation approaches, as the
experimental discussions later held will clearly show.

• Bayesian inference based algorithms: in general, these
algorithms aim to characterize the posterior probability
distribution of the model parameters based on the avail-
able data and the assumption of an a priori distribution
of the parameters. Once this distribution is characterized
after training, we have the possibility of establishing con-
fidence levels. Particularly with deep Bayesian networks,
the parameters of the model (weights) are driven by
a priori probability distribution (often set to be Gaussian),
making the so-called family of Bayesian neural networks
a model choice particularly suited to estimate uncertainty
in modeling problems [80]. Many authors in different
fields have taken advantage of Bayesian formulations.
For instance, a thorough review of different applications
of Bayesian learning approaches in the health domain
can be found in [81], whereas use cases have been
reported for other diverse scenarios such as plant disease
detection [82], solar power forecasting [83] or weather
forecasting [84], among others. More recently, some
attempts at applying Deep Bayesian neural networks for
the delivery of confidence-aware road traffic forecasts
have been done [85], [86], but efforts in this regard to date
have been significantly lower than in other application
scenarios.

• Model-specific methods: finally, in this last category we
gather all techniques that are specific to a certain family
of forecasting models. Many of them have been pro-
posed for deep neural networks, leveraging the flexibility
granted by the use of a loss function to guide the training
process, or the existence of neural computation mech-
anisms that allow for an approximate representation of
the sought output distribution. Salinas et al. [87] propose
modelling the conditional distribution of the upcoming
samples of the time series, for which a likelihood distri-
bution is assumed, and the predictions produced by the
trained model are samples of such distribution, analo-
gously to Bayesian methods. A representative technique
of the former approach is evidential deep learning [88],
which was proposed to overcome the high computational
complexity of the training process of Bayesian neural
networks and the dependence of the estimated uncertainty
on the suitability of the assumed priors for the network
weights. In doing so, evidential deep learning proposes a
framework in which a prior distribution is placed on the
statistics of a Gaussian output distribution (as opposed
to Bayesian neural networks, where priors are imposed
to the network weights), so that the addition of newly
observed traffic samples provides more support for the
neural network to learn the parameters of the evidential
distribution. On the other hand, Montecarlo Dropout [89]
resounded loudly in the community for its simplicity and
scalability to integrate the model’s output likelihood by
randomly switching off neurons in a neural network at
inference time. In a recent contribution, authors of [62]
identified novel methods based on imposing variability
of the model output and thus characterizing its distribu-
tion. On one hand, Mean Interval Score regression uses
the Mean Interval Score (MIS), also known as Winkler
score [90] as the loss function to minimize in a neural net-
work learning process. This score is based on the interval
length at each point, and its computation is very similar
in practice to quantile regression, as the upper and lower
intervals of the prediction are predicted individually once
a significance level is defined. Thus, a neural network
aimed at reducing the distance between the intervals that
guarantees the significance levels would return the fittest
intervals. On the other hand, and in the line of making
small perturbations to a deep neural network in order to
get variability in the outcome, authors have also resorted
to the model-agnostic bootstrapping approach commented
previously [91]. Lastly, an intrinsic approach included in
IBM’s UQ360 library [59] is heteroscedastic regression,
which takes advantage of the expected noise of the
data in the model to capture both kinds of uncertainty,
as it was shown in [92]. An alternative is homoscedastic
regression, which assumes that noise is constant across
data points. Additional uncertainty estimation techniques
for deep learning models were gathered in a recent
review [63]. The principles underlying most techniques
reviewed therein remain the same: to infer the output
distribution with probabilistic models (different flavours
of Bayesian models), or force the model to have one
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with a frequentist approach like ensembling, Montecarlo
Dropout, MIS regression or bootstrapping.

• Methods suited for graph-based models: traffic vari-
ables often hold spatio-temporal correlations that can
be exploited for forecasting when dealing with short
prediction horizons, geographically close measurement
locations and moderate to high sampling rates. When this
is the case, graph neural networks have received much
attention in the last few years due to their inherent capa-
bility to capture spatial relationships by conceiving the
road network as a graph. Their combination with convolu-
tional and/or recurrent neural blocks have been proven to
excel at modeling such spatio-temporal correlations [9].
When it comes to the estimation of spatio-temporal
forecasts provided by these models, proposals have been
scarce and mostly restricted to extensions of the above
model-specific methods for Deep Learning models. This
includes mostly Bayesian formulations of graph neural
networks [93], [94], [95] or ensembles [96], [97], [98],
[99]. More recently, evidential deep learning has been
explored for spatio-temporal traffic modeling using graph
neural networks [100].

D. Measuring and Comparing Uncertainty Estimations

The output of any of the methods presented above should be
regarded as a measure of the amount of uncertainty associated
to their predictions. This is not a trivial aspect: as argued
in Subsection II-A, boundaries between different types of
uncertainty are not clear, and not all methods measure the
model’s confidence by following the same principles. For this
reason, there is a series of metrics that, departing from a
common ground, not only provide a notion of the amount
of uncertainty, but also indicate whether the measurement
of uncertainty itself is performed equally. As in any other
regression task, in traffic forecasting the measurement of the
uncertainty at the output of a model can be performed by
establishing a significance level beforehand (usually denoted
as α), and by defining confidence intervals that contain a
fraction of the possible outputs that matches the defined α.
Thus, uncertainty relates to the width of the interval for each
estimated point. For a certain significance level α, a narrower
interval represents a less uncertain output of the model for
which it is estimated.

Beyond these baseline principles, there is no consensus in
the literature regarding these metrics, to the point of referring
to the same metric with different names, or using metrics that
cannot be measured for all uncertainty estimation methods.
With a practical stance, we now summarize a list of uncertainty
metrics that can be used to measure different aspects of
the estimated uncertainty, their different usages and practical
implications. The adopted nomenclature for the rest of the
paper is the one used in [101]:

• Interval width: this first metric refers to the amplitude
between the lowest and highest points of the estimated
interval around each predicted data point. The concept
of efficiency or informational efficiency of a conformal
predictor [65] is related to this width, while a common

uncertainty quantification metric known as sharpness
[102], which is computed based on the variance at each
point, measures essentially the same. The name infor-
mational efficiency used by some sources in the related
literature refers to the way in which the interval informs:
a very narrow interval with high confidence is very
informative, while a very wide interval that covers a great
number of possible values gives less information with the
same confidence, thus it is less efficient. This metric can
be also found referred to as Mean Interval Length (MIL,
as in [101], [103]), or Mean Prediction Interval Width
(MPIW, [59], [104]). Given a significance level α, this
metric expresses how wide must the interval be to include
the fraction of values defined by α. As the width can be
different for each traffic forecast, it is common to obtain
an averaged value of MIL (or MPIW). Mathematically,
this metric is defined as:

MIL =
1
T

T∑
t=1

(ut − lt ), (1)

where ut and lt are the upper and lower boundaries of the
confidence interval estimated by the technique at hand,
and T is the number of instances in the test dataset.

• Interval coverage: this second metric is the fraction of
the possible outputs that is covered by the interval. This
can be related to the so-called validity metric [65], and
has been also referred to as Interval Coverage Percent-
age (ICP, [101], [103]) or Prediction Interval Coverage
Probability (PICP, [59], [104]). This metric provides a
notion of how valid the interval is, as its value should
concur with the percentage of samples defined by the
established significance level (1 − α). The metric is
defined as per eq. 2:

ICP =
1
T

T∑
t=1

I(lt ≤ yt ≤ ut ), (2)

where lt and ut are the lower and upper confidence inter-
val boundaries as in Expression (1), yt denotes the ground
truth value associated to the t-th predicted value ŷt in
the test set, and I(·) denotes an auxiliary binary function
taking value 1 if its argument is true (0 otherwise).

• Interval width with relation to the forecasting error:
RMIL [101] is a variant of MIL that relates the size of the
estimated confidence interval to the error of the forecast.
This allows for larger intervals in order to cover those
cases with largest forecasting error (i.e., those traffic val-
ues that result to be more difficult to forecast precisely).
As a result, RMIL permits to compare two forecasting
models that deal with different input predictors in terms
of uncertainty. The metric is defined as:

RMIL =
1
T

T∑
t=1

(ut − lt )
|yt − ŷt |

, (3)

where yt is the real value for the t-th test instance, and
ŷt denotes the predicted value for that instance issued by
the forecasting model. This metric can return very high
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(even infinite) values if the prediction is very close to the
real values, reason for which it has not been considered
for the experimentation of this work.

• Calibration curves: The calibration of a forecasting model
aims to achieve a statistical consistency between the
distribution of the forecasts and the distribution of the
real values [105]. The outputs of a well-calibrated fore-
casting model will follow a similar distribution to the
real values of the ground truth the model is representing.
This property is explored through calibration curves, i.e.,
a two-dimensional plot relating every predicted value to
the real observation it approximates [59]: as such, the
optimal calibration curve is the identity function, whereas
the deviation of the curve with respect to the optimal
calibration is denoted as calibration error. It is relevant
to note that, although previous metrics can be comparable
for any uncertainty estimation approach, the way in which
output distributions are obtained may affect substantially
to the measurement of the calibration curve and error.

• Other metrics: Gneitig et al. [106] proposed a set of
proper scoring rules that cover, among others, diverse
probabilistic aspects of interval forecasts, including com-
bined metrics of some of the aforementioned scores,
e.g., calibration and sharpness. Wu al. [62] uses one
of these scoring metrics, the Mean Interval Score MIS,
not only as an evaluation, but as objective function to
minimize in order to obtain confidence estimates. Metrics
like Negative Log Likelihood, Interval Score or Check
have been used in a variety of uncertainty estimation
works [107], providing a different perspective to the
analysis of the size of the intervals and their coverage
of real samples. Considering that they provide similar
insights as the above metrics, and there are some hin-
drances to apply them to all of the uncertainty estimation
methods (for instance, some of them are only intended for
quantile-based methods), we have prioritized the metrics
introduced previously in our experiments for the sake of
a clearer and more uniform analysis.

These metrics can be used to assess the impact of different
datasets and configurations of the forecasting model, as well
as to examine the convenience of each of the uncertainty quan-
tification methods. The insights extracted from their analysis
will be helpful answering the different research questions of
the experimental study discussed in the next section.

III. EXPERIMENTAL SETUP

In order to assess and compare the uncertainty estimation
techniques and confidence metrics presented above, and to
discuss on their implications for the actionability of traffic
forecasts, an experimental setup has been defined, which
comprises several scenarios with real-world traffic data and
different features. To this end, the setup relies on the extensive
collection of traffic flow readings made public by the Madrid
City Council in its Open Data portal (https://datos.madrid.es/),
which releases a 5-year historic record of 15-minute traffic
flow observations collected in more than 3,800 locations over
this city. With these data, together with meteorological and

Fig. 4. Distribution of the selected traffic loops located in the city center
of Madrid (Spain), whose collected data have been used for the experiments
reported in this work.

calendar information, different datasets X have been com-
posed. Hence, an scenario is defined based on the datasets in
use, the considered forecasting horizon (i.e., the gap between
the query time and the time at which the target variable
sought occurs), and the forecasting model used to model the
relationship between its input variables and the traffic measure
to be predicted. By examining the relative behavior of the
confidence metrics in each one of such scenarios, we can 1)
gauge how each dimension of the scenario affects uncertainty
(in response to RQ2), and 2) compare uncertainty estimation
methods in terms of the metrics in different contexts (providing
informed insights for RQ1).

A. Datasets

The data used for defining the scenarios introduced above
are based on real urban traffic data collected in 10 different
locations of the city of Madrid (Spain). The selection of
inductive loops has been made according to the variability
of the surrounding urban topology of every sensor, in order to
analyze the potential relationship between the traffic profiles
in those locations and the measured uncertainty of a modeling
pipeline aimed to forecasts those traffic measures. The spatial
distribution of the selected sensors, depicted in Figure 4, shows
that some loops are placed in locations with heavy traffic
conditions (i.e., references1 3697, 3910 and 5761), while
others are placed in small roads of residential areas or main
arterial roads traversing commercial districts.

Data collected for the whole year 2019 were built into
datasets to train and test different forecasting models. Such
datasets include information of up to 5 steps (i.e., 1 hour
and 15 minutes) of past traffic measurements before the
traffic point to be predicted (t−4, t−3, t−2, t−1, and t0). This

1These numerical references correspond to the labels assigned to the loops
in the Open Data portal from which data were retrieved.
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Fig. 5. Datasets created for the experiments.

window of observations will be configured as the input to the
models in 2 forms ω = {1, 5}: either all past measurements
(ω = 5) or just one (ω = 1). For each case, different
forecasting horizons h = {1, 2, 4, 8} are considered, producing
predictions in instants t+1, t+2, t+4 and t+8, and providing
traffic forecasts of up to two hours in the future. Datasets
may include (or not) meteorological information (temperature,
cloud cover, humidity and precipitation intensity) and calendar
information regarding local and national holidays, academic
and scholar calendar and day of the week. The availability of
this data at the input to the models is denoted by two binary
variables m = {0, 1} (meteorology) and c = {0, 1} (calendar).
With these different types of input variables, datasets with
all possible combinations are created following the scheme
in Figure 5, leading to a collection of 320 datasets resulting
from 10 loops × 2 window lengths |ω| × |m| (meteorological
information available or not) × |c| (calendar information
available or not) × 4 forecasting horizon values. Models will
be tested and their uncertainty measured with different sets
of these combinations, in order to extract insights and answer
each of the research questions stated in the introduction.

Additionally, a standardization procedure was applied to
all data to guarantee the correct operation of some of the
models, particularly those that are sensitive to differences in
the statistical support of their predictors. Lastly, datasets were
split into train and test partitions, stratifying them across all
months of the year available for training. For each month,
3 weeks were considered as train data, whereas 1 week was left
for test data. This permits to include all kinds of traffic profiles
(which are highly variable throughout the year) in the training
dataset, and also allows for a proper train-calibration-test split
for the Conformal Prediction approach: the calibration set will
consist of the 3rd week of each month, thus providing data
from all along the year to calibrate the models. Techniques
that do not include a calibration step do not use this part of
the dataset as training data, so all the models receive the same
training information.

B. Methodological Approach

Departing from the collection of 320 datasets defined in
the previous section, a processing pipeline is established. The
steps are schematically depicted in Figure 6.

Fig. 6. Schematic diagram of the processing pipeline applied to the traffic
forecasting datasets under analysis.

To answer RQ1, several predictive methods that cover all the
uncertainty estimation approaches described in Section II-C
are considered. Prediction tests are conducted with each model
and the dataset combination comprising all features (m = c =

1) and the forecasting horizon set to h = 1. The uncertainty
of each (model, dataset) combination is then estimated with
the available techniques. On the other hand, the predictive
performance of the model has been measured by means of
the coefficient of determination R2. This score is bounded
between 0 and 1, and as opposed to other metrics such as
RMSE, allows for a meaningful comparison between datasets
that may have different numerical ranges.A relevant remark
related to this first comparison among techniques is that not
all techniques are suitable for all algorithms. For instance,
measuring uncertainty through techniques closely linked to
specific elements of deep neural networks (e.g., Monte Carlo
dropout) are not available for tree-based shallow learning algo-
rithms. Thus, the comparison of techniques will be influenced
by the capacities and limitations of the underlying predictive
models, as well as by the epistemic uncertainty they introduce.
Table I shows the specific models that have been considered
for each uncertainty estimation technique in our experimental
benchmark. We note that the time granularity of the datasets
in use (15-minute slot) and the traffic variable under target
(traffic flow in vehicles per unit of time) do not suggest that
spatial relationships between loops can be exploited towards a
better forecasting performance. This statement does not hold in
scenarios considering other traffic variables collected at higher
rates in simpler road networks, such as speed in highways.
Therefore, graph-based models (e.g. GCN) are not considered
in our experiments.

In addition to the predictive performance of the consid-
ered forecasting models (which may differ among them),
the comparison benchmark also accounts with the confidence
metrics described in Section II-D. By simultaneously reporting
on both confidence and forecasting error, we will be able
to compare them in model-agnostic dimensions, connecting
clearly with the responses sought to answer RQ1. When
it comes to RQ2, a single uncertainty estimation method
and predictive model will be selected, based on the results
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TABLE I
PREDICTIVE MODELS USED IN THE CASE STUDY AND THE UNCERTAINTY TECHNIQUES APPLICABLE TO EACH OF THEM

Fig. 7. Average flow in each location (red line). The shaded area represents ± one standard deviation.

obtained from the prior experimentation done in regards to
RQ1. The rest of dataset combinations (different horizons and
different sets of features) will be used to obtain forecasts,
estimate uncertainty and assess their impact on the confidence
levels. Lastly, tests with calibration-based and non-calibrated
techniques will be conducted using different combinations of
datasets, so that RQ3 can be replied in an empirically informed
fashion.

IV. RESULTS AND DISCUSSION

We now discuss on the experimental results of the setup
described in Figure 6. In doing so, we organize our examina-
tion of such results in terms of the research questions posed in
the introduction. Models and uncertainty estimation techniques
have been tested with different sensors placed in around the
city in order to have different traffic profiles and also assess
the impact of the traffic behavior on the modeling tools. Thus,
traffic profiles of the 10 traffic sensors are shown on Figure 7.
Each plot nested in this figure represents the average traffic
(computed over 96 daily traffic traces) of every sensor in the

i th 15-minute interval of a day, where the standard deviation
is also provided as a shaded area to illustrate the intra-day
variability of the traffic profiles at each sensor’s location.

As revealed in this figure, sensors such as 3642, 6132 or
3500 have very low traffic profiles, with less than 300 vehi-
cles/hour on average for the busiest hour. This implies more
real traffic data close to 0 vehicles/hour and larger relative
errors in the prediction. Large deviation areas like the one in
sensor 4458 anticipate larger confidence intervals, while loops
like 4192 with narrower deviations and wider dynamic range
are expected to provide better performing and less uncertain
models. As a sample of how intervals are produced, a single
day of data collected by sensor 4458 is shown on Figure 8,
in which the real data and the confidence intervals produced by
the combination of conformal prediction (CP) and a Random
Forest regressor (RFR) are presented. The interval is highly
informative, as its width unveils when the most uncertain
predictions are produced, and how uncertain they may be.
A prediction at noon with a 90% confidence will be quite
uncertain.



11190 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2024

Fig. 8. One day of traffic data collected in loop 4458. Real values are
shown on top of the confidence intervals estimated by conformal prediction
for a random forest forecasting model.

Once the inherent variability of traffic data has been shown,
we proceed by discussing on the quantitative results produced
for addressing every research question:

A. RQ1: How Do Different Uncertainty Quantification
Techniques Perform When Applied to a Particular Traffic
Forecasting Model?

The first research question regards the performance of the
uncertainty estimation techniques considered in our bench-
mark. As indicated in Table I, not all of such techniques
operate in the same fashion, reason for which the metrics
proposed in Section II-D are used as a standardized framework
that allows comparing them under unified criteria.

We start our discussion around RQ1 by inspecting Figure 9,
which shows the mean interval length, or the average width
of the interval (MIL) obtained for the datasets comprising
meteorological and calendar features (m = c = 1), using each
predictive model and uncertainty estimation approach. On top
of each bar plot, the performance score R2 is shown with
a red line. As expected, performance is generally lower for
those sensors with lower traffic profiles, particularly for 3500,
which scores the worst with R2 values not surpassing beyond
0.7. The lower performance of ADABoost based methods
(namely, CP-ABR, E-ABR and B-ABR) is specially visible
here, but can be also noticed in the rest of sensors. This
predictive method suffers the burden of removing data or
removing estimators for estimating uncertainty, and in general
is not a suitable option if confidence is to be measured.
On the other hand, deep learning approaches (including het-
eroscedastic regression) present generally wider intervals than
conformal prediction approaches except in the case of MIS
regression, which stands closer to QR-DL. A noteworthy
increase is perceived when using evidential formulations of
deep learning models. Indeed, the confidence intervals pro-
vided by EvDL are significantly wider than those elicited
by other uncertainty estimation techniques, except for sensor
5761. This can be explained by the renowned sensitivity
of evidential formulations with respect to its regularization
coefficient λ [88]. This value was left equal to a constant value
(1.0) for all experiments so as to expose this known issue.
Oppositely, inspecting the behavior of bootstrapping methods
reveals a similar performance to other model-agnostic tech-
niques in terms of predictive capacity and MIL, yet requiring

a significantly higher computational effort to estimate its
prediction intervals (one model must be learned for each of
the 100 bootstraps configured for the experiment).

On the other hand, conformal prediction (CP) based meth-
ods perform very similarly to each other across different traffic
loops in terms of the MIL metric. This holds in all cases except
for CP-ETR in two of the sensors (10124 and 3500). The
removal of certain nodes that does not happen in the very
similar Random Forest model produces extreme peaks in the
estimation of the interval boundaries when real observations
are very close or equal to 0. This explains these high values
that are produced after averaging these peaks with the rest
of the points of the boundary, which are essentially almost
the same as for Random Forest. Conformal prediction, quan-
tile regression, bootstrapping or ensemble methods produce
intervals of very similar widths for most of the cases, while
Bayesian methods present an irregular behavior in terms of
interval width and a subpar predictive performance reflected
in generally lower R2 values.

Measuring the average interval width through the lens of the
MIL metric shows one face of the uncertainty associated to a
traffic forecast: the narrower the interval, the more trustworthy
the prediction can be thought to be. However, too narrow
intervals can leave too many real samples outside them. This
reason motivates the adoption of ICP as the second confidence
metric for the discussion of this first set of results.

Figure 10 depicts the distributions of the interval coverage
ICP of each method over the different sensors. The red line
represents the statistical significance α established for the
confidence levels. In principle, the coverage of all methods
should be close to this line, disregarding the input dataset,
for the sake of a reliable behavior. It is noticeable that CP-
based methods achieve a stable and close-to-α distribution of
the ICP metric: this implies that the interval width values
discussed before steadily cover 90% of the real traffic sam-
ples, rendering them useful to know the model uncertainty.
Quantile approaches have a larger dispersion, specially for
deep learning, which can also be perceived for MIS regression,
closer to quantile approaches than to techniques like dropout or
evidential learning. This means that for intervals with similar
width, the amount of real samples that are left out the interval
is more dependent on the input data. Results for obtaining
uncertainty estimates from the ensemble version of AdaBoost
are clearly the worst, with confidence intervals similar in size
to others, but covering much less real data (they are wider
in some areas but much narrower in others, providing similar
average widths, but worse coverage). This is linked to the way
in which AdaBoost builds each estimator using information
from the previous ones: since it is a sequential process
in which every estimator specializes in difficult-to-forecast
examples, weak learners composing the boosting ensemble are
not by themselves reliable forecasting models [108]. Lastly,
we again observe that deep learning based approaches (also
HR and BNN) produce larger confidence intervals. The cov-
erage analysis of these wider intervals reveals that, naturally,
they cover more real samples. For evidential deep learning,
very large intervals cover up to the entirety of the real data.
This could appear as convenient, as the intervals cover more
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Fig. 9. Mean Interval Length (MIL) obtained by the uncertainty estimation methods over different forecasting models learned from the data collected by
every loop. The forecasting horizon is h = 1. Predictive performance is presented in red (R2 score).

Fig. 10. Interval Coverage Percentage (ICP) obtained by the uncertainty
estimation methods over different forecasting models learned from the data
collected by every loop. Boxplots represent the distribution of ICP values
over the 10 loops with a forecasting horizon h = 1. Red line represents the
established confidence level α = 0.9.

real samples, but it is far from informative and actionable,
as the intervals do not comply with the established significance
level: the desired output is the narrower interval that covers
the established amount of samples. This can be appreciated
in Figure 11, where intervals produced for two test days in
loop 4458 for BNN, EvDL and CP-RFR are compared to
each other. Predictive performances appear to be very similar:
forecasts of BNN, in purple, show a higher deviation with

Fig. 11. Two days of test traffic data collected in loop 4458. Real values
(ground truth) compared to forecasts given by three differently performing
methods, together with their estimated confidence intervals for α = 0.9.

respect to their ground truth at some points, yielding a slightly
lower R2 score. The intervals of EvDL appear to be similar
for a large part of the day, but they are overestimated in the
night periods, leading to less useful confidence information
for actionability purposes (e.g. adaptive street lighting in the
concerned part of the road network). In the case of BNN, its
confidence interval seems to be more similar to that produced
by CP-RFR in this particular scenario, but it tends to be wider
on the upper boundary, leaving space for more samples, and
thereby increasing the value of the ICP metric above its target
confidence level α.

On the other side, approaches featuring larger interval
widths also present a higher dispersion in their measured
ICP values, revealing their higher dependency on the input
data. In general, CP-based approaches show the most stable
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TABLE II
CONFIDENCE METRICS OF CP-RFR OVER DIFFERENT DATASET AND TRAFFIC SENSORS

behavior independently of data and underlying model, due to
the calibration process whose importance will be analyzed in
subsequent sections.

B. RQ2: Which Changes in the Available Data Affect
Uncertainty? How Can the Confidence of a Forecasting
Model Be Improved by Changing/Augmenting
Data at Its Input?

After exploring a general performance view of all proposed
methodological approaches in all available locations, the best
performing model and uncertainty estimation technique is cho-
sen in order to delve into the way in which the configuration of
the input dataset X affects the uncertainty of forecasts issued
by such models. We select the CP-RFR combination (namely,
Conformal Prediction with Random Forest Regressor), so that
both ICP and MIL metrics are computed over the different
dataset configurations resulting from the reduction of the
number of input features and the consideration of different
prediction horizons h. Before proceeding with the analysis of
the obtained results, we emphasize that the aim of this research
question is not to examine whether uncertainty estimation can
be an effective criterion for feature selection. Instead, RQ2
aims to expose that increments in performance due to the
inclusion of relevant features (which might contribute to the
model’s performance, and could hence be identified by any
given feature selection method) and/or the removal of samples
can be counterproductive when it comes to the uncertainty at
the output of the model.

Table II summarizes the metrics obtained in all these
experiments. Several clear patterns arise in the light of these

results. To begin with, an expected degradation of predictive
performance occurs for all situations when the predictive
horizon h is increased. However, removing features from the
original complete dataset has, in most cases, a slim impact
in what regards to the prediction error: forecasting with all
features renders very similar predictive scores that considering
only traffic and calendar (i.e., disregarding meteorological fea-
tures). There are cases in which removing the meteorological
features produces better results (sensors 3500 and 3910) for
h = 4, from where one may conclude that these features
do not contribute significantly to the model’s performance
in this circumstances. Analogously, when traffic and meteo-
rological datasets are fed, the differences to the case when
only traffic data is used for forecasting are negligible in most
cases (with exceptions like the higher predictive horizons for
sensor 10124). This minor contribution of weather features
to the model’s performance was identified in [109], as a
consequence of an highly stable weather in this city, and the
inherent relation of certain weather conditions with calendar
features. This conclusion should motivate the community to
go beyond predictive performance and also examine whether
additional features contribute anyhow to the reduction of the
uncertainty associated to the forecasts.

Secondly, when the focus is set on the ICP metric, its steady
behaviour throughout the whole set of scenarios is remarkable
albeit expected, as the calibration stage of Conformal Pre-
diction is precisely aimed at achieving this. The next section
will revolve around this in connection to RQ3, analyzing
the consequences of obtaining confidence intervals without
any calibration. Furthermore, considering that the values of
ICP guarantee that the demanded 90% of true samples are
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TABLE III
PERFORMANCE AND INTERVAL WIDTH WITH COMPLETE AND ABLATED DATASETS

inside the intervals provided in all cases, the width of such
intervals can be compared fairly to each other. In general,
trends noted in the MIL metric are similar to those found
in performance measurements: the more difficult to predict,
the wider the interval. However, this measurement provides
another perspective of the contribution of different variables
in each case. For instance, increasing the prediction horizon
from h = 1 to h = 8 results in a R2 degradation of around
0.2 for loops 4458 and 3500. For this similar performance
degradation, the confidence interval is 2.27 times wider in
h = 8 than in h = 1 for loop 4458, while it is only
1.3 times wider in the other sensor. Thus, performance and
confidence intervals do not degrade equally, because they are
not co-linear. This means that performance itself is not enough
to estimate uncertainty. On the other hand, it is possible to
observe some situations in which removing variables favors
the confidence; in some of them like in sensor 6980 with
forecasting horizon h = 2 the change is small, but the model
is more confident without meteorological features: Traffic and
calendar presents a narrower interval than all features, and
only traffic is also narrower than traffic and meteorological
features. This seems an interesting way of analyzing whether
a set of features do contribute to the confidence of the model.
This happens for loop 4458, where weather features have a
positive impact in both cases. Moreover, there are cases in
which removing a variable results in narrower intervals, such
as loop 3697 with meteorological features and only traffic
features. This improvement in uncertainty could be due to
statistical variance of these particular data (MIL is computed
by averaging over thousands of samples), but in any case
it reinforces the intuition that these variables have a meager
contribution to performance.

Lastly, we conduct a data ablation study to grasp a better
understanding of the impact of training data on the levels
of uncertainty estimated at the output of traffic forecasting
models. By systematically removing data points from the
training datasets, we can analyze how these ablations affect
both the performance and the measured uncertainty of the
models. Experiments designed for this purpose consist of 1)
removing a percentage of the training and calibration data,
and 2) comparing the uncertainty metrics to those elicited by
models learned from the complete data. In doing so, the rest
of the considered study variables (types of features, horizon,
modelling approach) are fixed, whereas the ablation of data
is performed over the traffic datasets with prediction horizon
h = 1. We follow the scheme described in Section III-A, i.e.,
training and calibration data are spread throughout the whole

year, with portions of data reserved for test to guarantee that
all seasonal variations are captured by the models. Thus, every
4 weeks there is a block of 2 weeks of training data, 1 week of
calibration data and 1 week of test data. For this experiment,
the first 3 weeks of a subset of these blocks are removed.
Then, models are trained without these data and tested again.
The experiment has been repeated with 3 different levels of
ablation, removing 25%, a 50% and a 75% of the training and
calibration data.

Results of this set of experiments are summarized in
Table III. These results reveal that for all loops, the predictive
performance given by the R2 metric reported therein remains
almost unaltered when removing training data. This negligible
impact of reducing the training data in the predictive capa-
bilities of traffic forecasting models was expected as per the
conclusions of the study in [110], which showed that the mod-
els can be trained with very reduced datasets, achieving similar
levels of performance to those with larger training datasets,
due to the stability in traffic data patterns for those particular
locations. However, when it comes to uncertainty, it can be
observed that interval sizes are increased for most sensors,
slightly when the percentage of removed data is small, but
considerably as this percentage is increased. Considering this
last group, the increase of interval sizes ranges between 5%
to 11%, which can be attributed to the lack of some particular
kinds of days in the training data. For instance, the whole
data from the month of August are removed from training and
calibration, but there is a test week with August days, whose
traffic usually features a very different statistical behavior than
the rest of the months. While forecasting errors are smoothed
due to the strong auto-correlation existing between the target
variable and the features (behavior changes in test week will
also be reflected in the features), the confidence metrics reflect
a general increase due to the absence of these data in the
calibration tests. It is interesting to observe that the sensors
with least relative change (namely 4192, 3697 and 5791) are
those with narrower variances (Figure 7).

When confidence estimation techniques are properly cali-
brated, the size of the confidence interval can be a valuable
indicator of the way in which features contribute to the
confidence levels of the output. Thus, besides obtaining an
actionable piece of information with the confidence intervals
that guarantee the inclusion of a certain amount of true
samples, the analysis of these intervals allows for further
insights than can be helpful when designing the dataset X
for learning the forecasting model. In the particular datasets
considered in this study, it is apparent that meteorological
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TABLE IV
CONFIDENCE METRICS OF CALIBRATED AND NON-CALIBRATED APPROACHES OVER SCENARIOS WITH ONLY TRAFFIC DATA (m = c = 0)

features contribute slightly in terms of predictive performance,
but having the intervals not only confirms this point, but it even
stresses it out for some sensors. For example, loop 5761 has
equal results in terms of performance for all features and for
traffic and calendar datasets, but the latter presents smaller
confidence intervals. This is an interesting outcome, as it
shows that in the case of slight variance in the datasets, like
the case of stable meteorological data, models can be unable
to represent small variations, but estimating uncertainty can
reveal these nuances.

C. RQ3: What Impact Does the Calibration Process of Some
of the Uncertainty Estimation Techniques Have on Their
Outcome? Why Is It Relevant for Traffic Forecasting?

The last research question relates to the calibration of mod-
els and its impact on the quality of the estimated uncertainty.
Certainly, the concept of calibration is not new [111], but is
relatively overseen in a broad part of the literature focused on
uncertainty estimation. The calibration process aims at guaran-
teeing the properties of the output interval. In the results shown
in previous section it is possible to observe that regardless
the dataset attributes, it the confidence estimation technique is
calibrated, the output interval always covers a percentage of
true samples very close to the significance level established
by design. This means that the width of the intervals can
be trusted (an important feature for the trustworthiness of
the uncertainty estimation and the actionability of forecasts)
and always have the same meaning among the considered
combinations of models and estimation techniques.

In order to assess the relevance of this calibration process,
we note that it is an essential part of Conformal Prediction.

Therefore, we perform a comparison of the aforementioned
CP-RFR to a non-calibrated uncertainty estimation counterpart
(E-RFR), as well as to other methods characterized by an
unstable ICP behavior in Figure 10, namely, HR and EvDL.
The outcomes of this comparison are presented in Table IV,
considering the least favorable datasets (only traffic) as the
effects of the lack of calibration on the estimated uncertainty
become more noticeable with less variability in the input.
As the calibration process consists precisely of statistically
characterizing the behavior of such a variability, in low-
variability scenarios out of distribution data instances may
have more weight in the definition of the intervals. Uncertainty
estimation techniques that do not consider this can end up
providing 1) wider intervals to cover more real samples than
the specified percentage (due to the fact that they consider for
the intervals points that are outside the significance boundaries
in the training data distribution); or 2) narrower intervals that
do not meet the statistical significance specifications.

The first 4 columns of Table IV correspond to the calibrated
method: in them, it is possible to observe the persistence of
the ICP value for all loops and all values of the forecasting
horizon h. When considering the same forecasting model
(RFR) but using the ensemble technique to estimate the
intervals, very similar R2 scores are obtained (as expected,
as they essentially resort to the same algorithm for producing
the forecasts). However, in this case the whole set of results
appears to be under-calibrated, as the coverage of the estimated
intervals is lower than the expected one (85%), giving place
to narrower intervals. Should these intervals and performance
levels be considered to compare them to those elicited by
CP-RFR, the comparison would declare E-RFR as the best
forecasting method. Nonetheless, it is leaving 5% of the
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Fig. 12. Calibration curves (colored in blue) corresponding to each case in Table V. The dashed orange line corresponds to the ideal case where the confidence
intervals estimated for the model are perfectly calibrated. The area between the calibration curve and the ideal case is given in each figure.

real samples outside the coverage of its confidence intervals,
thereby penalizing the trustworthiness of the estimated uncer-
tainty. HR seems to work the other way around, by increasing
the size of the interval up to covering almost all real cases
(ICP close to 99%), and obtaining similar regression results.
Lastly, EvDL was shown in the previous section that it failed
to provide reliable confidence levels with the complete dataset
and horizon h = 1: the reported interval width tended to
be wider and ICP values were close to 1 in most cases.
When only-traffic data were provided, this method performed
erratically. Apparently, wider intervals and ICP values close
to 1 are consistent with h = 1, but while for some sensors
this behavior is sustained, others present a notable decay in
predictive performance (see the cases of sensors 4458, 6980,
3910, in comparison to other methods), and also in the size of
the interval, reducing the coverage to very low levels (even to
only 20% of samples in loop 3697). This demeanor is sharper
for those sensors with larger dynamic ranges, suggesting the
susceptibility of the method to deal with data in the tails
of the distribution unless 1) its regularization parameter λ is
properly tuned; or 2) by performing a posterior calibration of
the model’s output.

Additional tests were conducted considering CP-RFR and
levels of confidence equal to α = 0.85 and α = 0.99 in order
to assess if such methods are just providing the intervals that
are proper for other levels of confidence. Table V reports,
for one of the sensors, a trend that prevails over the totality
of loops analyzed in these experiments: in general, intervals
obtained for α = 0.9 that cover 85% of the real traffic samples
are narrower than confidence intervals provided by CP-RFR
for α = 0.85. The same behavior occurs when α = 0.99.
One may arrive at the conclusion that intervals computed by
these methods for α = 0.9 are better to estimate intervals
with support equal to 0.85 and 0.99, as they provide narrower
results; however, and unlike with CP, these results lack any
statistically guarantees.

To further argue on the need for calibrated traffic fore-
casts, we inspect the relationship between different confidence
levels α and the observed traffic values for the forecasting
horizon values and uncertainty estimation techniques reported

TABLE V
CONFIDENCE METRICS FOR CP-RFR WITH DIFFERENT CONFIDENCE

LEVELS α COMPARED TO OTHER METHODS WITH
A FIXED CONFIDENCE LEVEL

in Table V. Figure 12 shows the calibration curves (also
referred to as reliability diagrams for each of these cases.
A calibration plot examines whether the confidence interval
estimated for a confidence level α actually captures a fraction
α of the observed test values. The area between the curve
obtained for different α values and the ideal case (a perfectly
calibrated model) is a numerical indicator of how miscalibrated
the model can be regarded to be. Plots included in this figure
reveal that both E-RFR and HR are not properly calibrated
for high values of α: E-RFR is slightly overconfident in its
estimated uncertainty (i.e., the computed intervals are too
narrow for what they should be), whereas HR is found to
be underconfident in this same region of α values (namely,
its estimated intervals cover are too wide). By contrast, the
calibration process performed in conformal prediction allows
computing accurate interval estimates for any value of α,
as exposed by the closeness of its calibration curves to
the ideal case and the notably smaller miscalibration area
annotated inside the plots.

V. CONCLUSION

As in many other areas related to ITS, traffic fore-
casting has widely embraced the irruption of data-based
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modeling approaches relying on Machine Learning algo-
rithms. Advances held over the years have achieved in
a pursuit towards solutions capable of producing forecasts
of ever-growing precision, exploiting efficiently relationships
held within traffic data flows over space and time. Lately,
performance-driven research studies are progressively steering
towards the trustworthiness and actionability of traffic fore-
casts produced by such data-based models, in view of the nar-
row performance gaps attained by modern modeling choices.

In this context, this paper has aimed at bringing the attention
of the community working in traffic forecasting to this matter.
Among the manifold perspectives from which one can favor
the trustworthiness of data-based models, we have emphasized
on the need for quantifying the confidence of the data-based
model associated to its predicted traffic values. Assessing
the uncertainty propagated to the model’s output allows a
traffic manager to better design countermeasures against future
congestion events in the road network, delineate better traffic
light schedules, decide where to deploy new traffic sensors and
collect data therefrom, or quantify whether forecasts can be
predicted more confidently if the model is supplied with data
supplied by new sources of information. In short, uncertainty
quantification (also referred to as model’s confidence) is a
key for human decision making based on the output of traffic
forecasting models. Besides providing this rationale, this work
provides an overview on the most representative uncertainty
estimation methods, as well as quantitative measures to gauge
the quality of the estimated confidence intervals. This first
part of the manuscript pretends to be a soft entry point to
newcomers interested in confidence-aware traffic forecasting,
establishing the main motivational reasons for research in the
area, essential information pointers, a summary of baseline
techniques and a description of evaluation measures and
protocols.

To further complement this material, a comprehensive set
of experiments over real traffic data collected in the city of
Madrid (Spain) has been designed, comprising different sets
of features, uncertainty estimation techniques and Machine
Learning based forecasting models. Results stemming from
this setup have lead to several lessons learned about the role of
confidence/uncertainty in the actionability of traffic forecasts.
In the first place, a diversity of uncertainty estimation tech-
niques has been compared to each other, evincing that there is
not a single source of uncertainty, nor is there a unique way of
approaching its calculation. Nevertheless, the metrics used to
assess the validity and informational efficiency of the confi-
dence intervals estimated by such techniques has uncovered
that Conformal Prediction is more stable and reliable than
approaches based on the ablation of models to statistically
characterize their output (e.g. ensemble models or Monte
Carlo dropout), but also better than models specifically suited
for the purpose (e.g., Bayesian Neural Networks). Besides,
Conformal Prediction yields a transparent and traceable way
of obtaining confidence intervals, and the calibration stage
that lies at the core of its procedure helps maintain the
size of the intervals to the minimum that guarantees the
coverage of unseen test samples. This feature, combined with
its model-agnostic nature, renders Conformal Prediction as a

very interesting option for estimating the uncertainty of traffic
forecasts. On the other side, methods like evidential Deep
Learning fail to produce reliable intervals due to its known
susceptibility to the value of its parameters and the suitability
of the evidential priors. Other methods yield different levels
of quality in regards to their estimated confidence intervals,
which depend on the characteristics present in the input data
from which traffic forecasts are predicted. Our experiments
have also confirmed that calibration is essential to reliably
estimate the uncertainty of forecasts for a given confidence
level.

Further along this line, we have verified that the partic-
ularities of the dataset at hand may affect the amount of
uncertainty associated to the model’s output. In the traffic
dataset used for the experiments, the stability and inherent
predictive potential of the traffic time series cause that other
sources of data that could potentially help to deliver more
precise forecasts have a low relevance and a low impact in
uncertainty. In general, short-term traffic forecasting models
can benefit marginally from additional sources of data, due
to the acknowledged relevance of the time series variables
that take part in the model. However, there are cases in
which the impact becomes noticeable in the precision of
traffic forecasts, whereas in other cases the addition of new
data sources produces similar performance results, yet worst
confidence intervals. These cases prove that the composition
of the datasets used for traffic forecasting can also be driven by
the examination of its consequences for the uncertainty of the
model. Therefore, a principled assessment of the uncertainty
of traffic forecasts throughout the modeling pipeline and the
actionability that it grants should be of pivotal importance in
future studies, considering it as an additional dimension in
comparison benchmarks, and as a criterion to decide whether
to include new sources of information (e.g. social media, traffic
cameras) that may jeopardize the confidence of the model in
its predictions.

Beyond the questions addressed experimentally in this
research work, other applications of uncertainty estimation
that were presented in Section II have not been explored to
date. We envision a rich agenda, plenty of uncharted research
lines, related to confidence-aware traffic forecasting. Among
them, we remark the high stability of properly calibrated
intervals, which can be helpful for trend change detection over
traffic data streams. Indeed, a continuously flowing stream
of traffic data should fall within the estimated confidence
interval, since it statistically represents the regular behavior
of traffic data in the location of interest. If real samples
eventually start falling out the confidence interval, this can
be symptomatic of a contextual change of the traffic behavior
(due to e.g., roadworks or any exceptional circumstance like
an accident), so that a closer inspection can be enforced or an
update of the traffic forecasting model be triggered upon its
occurrence. When dealing with spatio-temporal models such
as GNNs, a question that naturally arises in the context of
this manuscript is how the uncertainty present at the output of
the model distributes over space and time. We foresee that the
development of methods capable of attributing the prediction
uncertainty to the different collection points of a road network
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can be informative to design data collection strategies using
temporally deployed traffic sensors. This hypothesis, together
with the current momentum of spatio-temporal GNN mod-
elling for traffic forecasting, is an interesting path to extend
the insights provided in the present work. Lastly, a promising
application of uncertainty estimation techniques arises from
its natural connection to the active learning research area: by
measuring confidence intervals over different regions of the
feature space at the input of the model, one can identify where
most of its uncertainty is concentrated, contributing to the
identification of suitable locations in the road network and/or
periods in time where more traffic data should be collected.
This information can be ultimately be used for designing new
traffic measurement campaigns with provisionally deployed
sensors over the city, showcasing another purpose for which
uncertainty estimations can effectively contribute to the action-
ability of traffic forecasts.
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