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Traffic Hazards on Main Road’s Bridges: Real-Time
Estimating and Managing the Overload Risk

Roberto Ventura , Giulio Maternini, and Benedetto Barabino

Abstract— The risk associated with extreme traffic loads on
bridges has seldom been explored, with State-of-the-art evalua-
tion methods being time-consuming and unsuitable for fast risk
management. Traditional risk management advocates optimizing
offline bridge maintenance plans. In contrast, novel approaches
that can assess and manage this risk live through Intelligent
Transportation Systems (ITSs) are lacking. This study addresses
these gaps with a three-block framework. It utilizes Weigh-
In-Motion (WIM) systems for collecting bridge-specific traffic
load data, develops a probabilistic Risk Prediction Model for
estimating the frequency and severity of overloading events
drawing on current Structural Design Codes (SDCs), and sim-
ulates an ITS-based architecture for implementing management
actions. The framework was tested on 2.5M+ WIM raw data
records gathered from the ring road of Brescia, Italy. Results
showed that bridge design loads were overcome more frequently
than SDCs prescriptions, and violations of the Traffic Code
mass limit significantly affected risk predictions. These findings
underscore the need for increased attention when issuing permits
for extremely overweighted vehicles and encourage enforcement
strategies implemented by ITS-based architectures for real-time
risk management.

Index Terms— Bridge overload risk, bridge risk prediction
models, weigh-in-motion, real-time bridge management strate-
gies, traffic load hazard.

I. INTRODUCTION

BRIDGES are among the most vulnerable elements of
road networks because they may have structural issues

that could compromise their use or, worst case, cause a
collapse [1]. The whole transportation system is impacted by a
bridge closure, being a negative event that lengthens user travel
times, stops commodities from reaching their destinations and
results in additional congestion [2]. After hydraulic actions,
vehicular traffic is the primary element that affects bridge
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safety. Indeed, a recent survey of more than 4,500 bridge
failures worldwide from 2010 to 2016 revealed that overload
and vehicle collisions are two of the top five most common
reasons for failures [3].

Focusing on overload hazard, extremely heavy trucks are a
threat for bridge safety. In fact, as traffic volume increases,
truck loads routinely exceed bridge load limits, occasionally
leading to collapses. These events are frequently observed in
developed nations like the USA and Europe, as well as in
developing ones like China (e.g., [3], [4], [5]).

Extremely heavy trucks can be subdivided into two cate-
gories: Permits (PMTs) and Illegally Overweighted Vehicles
(IOVs) ( [6], [7], [8]). PMTs have a Gross Vehicular Mass
(GVM) that exceeds the restrictions outlined in the Traffic
Code (TC). However, they operate legally under permissions
granted by Road Authorities (RA). Conversely, IOVs circulate
without any permission and deserve attention as they elude the
TC by travelling overweight.

Consequently, the implementation of Intelligent Trans-
portation Systems (ITSs)-based architectures that integrate
Weigh-In-Motion (WIM) devices for monitoring and man-
aging the risk of extreme traffic loads is essential for
ensuring bridge safety. WIM continuously measures vehicular
attributes, including their masses (e.g., [9], [10], [11], [12]).
These data could be processed to evaluate the risk of overload-
ing on bridges. This would enable effective implementation of
risk management measures, e.g., rerouting excessively heavy
vehicles before reaching the bridge.

However, even if several methodologies for assessing and
managing the risk of bridge failures have been described in the
literature, the risk induced by extreme traffic loads has seldom
been investigated. Research showed that: (i) the traffic load
on bridges was almost exclusively obtained from literature
models; (ii) the current risk metrics require time-consuming
evaluation procedures, making a real time risk management
strategy tricky; and (iii) ITS-based architectures, which safe-
guard bridges from overload by managing the traffic flows,
are missing, as only optimization bridge maintenance plans
that are conceived to operate offline are available. Given these
scenarios, the objective of this study is to develop and test a
three-block framework for estimating and managing the risk
posed by extreme traffic load hazard. Specifically, the first
block collects bridge-specific traffic load hazard data by WIM
systems. The second block builds a time-dependent (bivariate)
probabilistic Risk Prediction Model (RPM) by specifying,
calibrating, and validating frequency and severity models, and
accounting for the occurrences of overloading due to traffic
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load hazard. The third block implements the RPM in an
ITS-based architecture for achieving actual risk management.

The methodology was experimentally tested along the heav-
ily transited ring road of the city of Brescia (Italy) using
2.5M+ WIM raw vehicular records gathered over five months
by a pilot station located on an important bridge. The results
can suggest methods for immediate risk evaluation and traffic
management.

The remaining paper is organized as follows. Section II
summarizes the literature on bridge failure risk analysis.
Section III presents the framework for evaluating and man-
aging extreme traffic load risk. Section IV shows a real-world
experiment of the framework. Section V concludes the paper
and provides future perspectives.

II. LITERATURE REVIEW

A. Methods of Bridge Risk Analysis

The risk of bridge failure was investigated in several ways.
These typically differentiate between natural and anthropic
hazards. The former are threats induced by natural events, such
as floods, hurricanes, scour, tsunamis, and earthquakes (e.g.,
[13], [14]). The latter are menaces due to human activities,
such as fires, blasts, terrorist attacks, vehicular collisions, and
traffic loads (e.g., [15], [16]).

The risk induced by traffic loads is the focus of this research
and has only been partially investigated in previous studies.
The retrieved literature has been summarized in TABLE I,
which illustrates the following main points.

The data adopted for risk analyses were gathered from
different sources. Some countries (e.g., USA and UK) have
public bridge databases (PBDs) along road networks. Con-
sequently, these studies frequently collect data from PBDs.
Conversely, other studies retrieved data from original design
reports (ODR), on-site surveys (OSS), and, in some cases,
by their integration with laboratory tests (LT). This is because
these studies assess bridges located in other countries or
require more detailed knowledge about structural parameters.
The road network topology was gathered from open-source
maps (OSM) or GIS databases. The traffic flow data along
road links were directly collected by road agency archives,
such as the FHWA Freight Analysis Framework tool (FAF) or
computed by Origin-Destination matrixes (OD) provided by
statistics institutes. Finally, while the traffic load on bridges
was mainly obtained from models, only four papers analyzed
field data collected by WIM devices.

The sample size was characterized by strong variability.
Specifically, studies can be clustered for the number of
investigated bridges. The first cluster included a few existing
case-study bridges or fictitious bridges modeled by bridge
design code specification. The second cluster was conceived
at a network level, thus including studies ranging from small
to very large bridge networks.

The literature provides contributions along three main direc-
tions according to the objective of the proposed analysis.
The first direction is numerically predominant and assumes
traffic load hazard as a component of a broader multi-hazard
risk assessment framework (e.g., [17], [18], [19], [20]). For

example, [17] proposed an approach for identifying, assessing,
and quantifying risk on bridges resulting from numerous
hazards, such as overload, fatigue, earthquake, storm surges,
scour, vehicle collisions, and vessel collisions.

The second direction is numerically inferior and includes
papers focused on traffic load hazards. For example, [2]
and [21] proposed frameworks to quantify the risk on bridges
along highway networks by considering vehicular overload
effects and consequent fatigue phenomena. The number of
trucks crossing the bridges, the percentage of these trucks that
were overweight and the probability that overweight trucks
could cross the bridge simultaneously were accounted for in
the proposed models.

The third direction concerns only two studies assuming traf-
fic load hazard as an input to merely estimate the consequences
induced by bridge collapse. Specifically, [22] presented a
detailed methodology to calculate the indirect losses account-
ing for the costs derived from the increase in traveled distance
and travel time due to detours. Besides, [23] provided a
broader insight of the possible consequences prompted by
bridge failures considering repair costs (single element fail-
ures); rebuilding costs (entire system failure); traffic delay
costs due to repair work and detours; traffic management costs
during repair work; casualty costs involving vehicles falling
from the bridge, vehicles hit by the fallen bridge, and vehicles
crashing into the fallen bridge; and other indirect costs.

The modeling techniques primarily depend on the way in
which the risk is intended: there is no agreement among
researchers because at least two risk mathematical defini-
tions emerge. The former definition states the risk as the
sum of the probability of occurrence of each failure sce-
nario times the associated (direct and indirect) consequences
(e.g., [21], [24], [25]). The latter definition states the risk
merely as the probability of occurrence of an undesired event
(e.g., [26], [27]).

According to the first risk definition, tools were proposed
for quantifying the two components. As for the probabil-
ity of occurrence, the Reliability Analysis Method (RAM)
was frequently adopted. It computes the reliability index,
a parameter that is related to the failure probability, and that
is a conventional tool for evaluating the safety of existing
structures, according to current standards, such as Eurocodes.
The reliability index was typically calculated using the struc-
tural performance function (SPF), as in [18], [20], [24], [28],
and [29]. The SPF is defined as the difference between
structural capacity and demand functions. It represents the
structural failure condition when a negative value occurs.
Specifically, the structural capacity function relied on geomet-
rical and material properties. The structural demand function
was often constructed by inferring the maximum traffic load
on the bridge through extreme value theory.

It employed generalized extreme-value distributions,
as observed in [18] and [28]. Occasionally, the RAM
was integrated with fragility curves, describing the
probability of failure as a function of hazard intensity
([2], [17], [21]). Fragility curves for the overload hazard
were calculated using numerical simulations based on 3D
non-linear grillage Finite Element Models (FEMs) of the
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TABLE I
SUMMARY OF THE LITERATURE THAT ACCOUNTS FOR THE RISK INDUCED BY TRAFFIC LOADS ON BRIDGES

bridge superstructures ([2], [21]) or through analytical
formulations that considered the average daily truck
traffic, the percentage of overweight trucks, and bridge
deterioration ([17]), for example.

As for the associated consequences, direct failure conse-
quences (e.g., rebuilding/repairing costs) were parametrically
determined. Conversely, two approaches were employed

regarding indirect consequences: (a) empirical and (b) analyt-
ical. For (a), the estimation of increased vehicular operating
costs and users’ travel time involved multiplying traffic vol-
umes passing on the bridges and detour lengths by some
parameters (e.g., average detour speed, average vehicular
occupancies, marginal operating costs, marginal value of time).
Additionally, costs related to injuries and fatalities were
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estimated based on statistics computed from past bridge failure
events (e.g., [17], [18], [28], [20]). Concerning (b), the compu-
tation of increased vehicular operating costs and users’ travel
time involved developing Transportation Network Models
(TNMs) that simulated network damage states, as in [2], [22],
[24], [31], and [32]. Similarly, costs associated with injuries
and fatalities were determined using models that considered
vehicular flows on the bridges, vehicular occupancy, safe
following distance, impact speed/injury probability, and failure
kinematics, as evidenced by [19], [23], and [34].

According to the second risk definition, [26] considered a
binary response variable based on a PDB condition score and
built a Binary Logistic Regression (BLR) model to predict it.
Conversely, [27] defined the risk as the probability of collapse
events and predicted them through a fault tree analysis (FTA).
Finally, following the risk estimation, someone delved into
identifying best maintenance actions to minimize the overall
risk at the network level, employing optimization methods.
For instance, [21] utilized a Local Search Nearest Neighbor
Heuristic Algorithm (LSNN) to optimize the network’s risk.
This involved minimizing a cost function, expressed as the sum
of costs associated with each individual bridge failure while
adhering to a financial constraint imposed on the overall inter-
vention cost. Additionally, in some cases, a Genetic Algorithm
(GA) was utilized to determine the most suitable maintenance
actions and the optimal timing for their implementation (e.g.,
[24], [28]).

B. Literature Gaps and Proposed Advancements

Undoubtedly, all previous studies have contributed to the
analysis of the risk induced by traffic load hazards on bridges
with separate goals and provided valuable results. However,
several gaps persist:

i. The list of bridge-safety factors.
ii. The source of analyzed data.

iii. The computational effort required by current risk metrics.
iv. The type of proposed risk management actions.

As for (i), no study has revealed, in single research, such a
long list of the overall bridge safety factors, which may affect
the frequency and the severity of bridge failures.

As for (ii), the traffic load acting on bridges was obtained
from previously developed models in almost all studies.
Indeed, although WIM systems are a well-known technology
(e.g., [6]), only a few works analyzed field WIM raw data
to propose a risk assessment and mitigation strategy based
on maintenance plans. Nonetheless, because of traffic load
hazard’s strong spatial and temporal dependence, methods that
assume actual bridge-specific data as input are essential to
achieving an effective risk management strategy.

As for (iii), achieving a rapid computation of current risk
metrics might be tricky for RAs. Indeed, existing methods
require time-expensive elaborations for estimating the two
risk components because: 1) refined structural analyses must
be performed for evaluating the probability of occurrence of
failure events by RAM, 2) refined cost and traffic analyses
must be conducted for determining direct and indirect failure
consequences. These sophisticated assessments could make it

difficult to implement an immediate risk management strategy,
in which traffic management actions must be taken quickly
to avoid bridge overload. Moreover, budget constraints often
prevent RAs from calibrating such advanced structural, cost,
and traffic models.

Nevertheless, a real-time risk management approach could
outperform a static one. Therefore, a straightforward risk
assessment procedure that accounts for the failure probability
and consequences indirectly could add to existing procedures
based on RAM, cost analysis, and traffic models. In fact,
once the design traffic load thresholds have been determined
according to the traffic load schemes outlined by the current
Structural Design Codes (SDCs), a frequency and severity
metric can be used that measures how often and how seriously
these thresholds are exceeded in each time period. These
metrics could serve as a catalyst for indirectly measuring the
likelihood and the consequences of potential bridge failure
occurrences prompted by traffic load hazard. Additionally,
these metrics might be assessed using proper mathematical
models that connect it to a set of predictors categorized
into exposure, bridge side, temporal context, and traffic load
hazard. These models, which mine from WIM datasets, could,
thus, advance theoretical comprehension of the phenomena of
bridge overload by understanding the impact of predictors on
overload frequency and severity.

As for (iv), while many authors investigated the best
bridge maintenance plans, only [33] provided a preliminary
attempt to reduce traffic load-related risk by implementing
a traffic management strategy. Nevertheless, they adopted a
static procedure merely based on posting bridges for maxi-
mum allowable loads. In addition, although [30] developed a
Digital Twin system to provide safety alerts against bridge
overturning, no traffic management actions have been pro-
posed. However, as bridge maintenance plans focus on bridge
capacity rather than demand, traffic management measures
implemented through ITS-based architectures could effectively
reduce traffic load risk. Hence, ITS-based architectures that
acquire site-traffic load data and act through immediate traffic
management actions to reduce the risk of bridge overload
should be investigated. This paper aims to cover all these gaps
inclusively.

To summarize, the proposed framework significantly differs
from the conventional methods (e.g., [2], [21]). Particularly,
focusing on points (ii), (iii) and (iv), the main differences
involve the following key aspects:

a. Indirectly measuring the probability of bridge failure
events: while [2] and [21] directly employed the tradi-
tional RAM, this study introduces an innovative indirect
approach. It assesses a frequency metric by counting
traffic overloading events. Using an Econometric Model
(EM), the frequency is straightforwardly linked to several
traffic-related predictors derived from WIM records.1

1At the time of revising this paper, the authors were engaged in
two other papers focused on comparing the performance of Econometric
and Machine Learning models in predicting the frequency and severity
metrics components separately (https://dx.doi.org/10.2139/ssrn.4417358 and
https://doi.org/10.1016/j.heliyon.2023.e23374, respectively).
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Fig. 1. Conceptual framework for bridge risk evaluation and real-time
management.

b. Indirectly measuring the consequences of bridge failure
events: while [2] and [21] directly evaluated cost met-
rics, this study introduces an innovative indirect method.
It assesses a severity metric by categorizing traffic overload-
ing events. Using an EM, the severity is straightforwardly
linked to several traffic-related predictors derived from
WIM records.1

c. Mitigating the risk of bridge failure events by traffic man-
agement actions: while [2] and [21] proposed static risk
mitigation strategies, this study suggests a live approach.
It introduces dynamic traffic management actions by ITS
technologies like traffic lights, variable message signals,
and cloud computing platforms to reroute high-risk vehicle
platoons away from bridges.

III. CONCEPTUAL FRAMEWORK FOR BRIDGE RISK
EVALUATION AND REAL-TIME MANAGEMENT

The conceptual framework for bridge risk evaluation and
management is described in this section. It defines the steps
of a bridge failure event according to specific factors and
integrates them into a risk assessment methodology while
providing management strategies for its mitigation. Fig. 1
provides a scheme of this framework, described in what
follows.

A. Conceptual Construction and Bridge Failure Factors

A bridge failure event is induced by the interaction of four
groups of factors: bridge-side factors, context factors, anthro-
pogenic hazard factors and natural hazards factors. In this
research, all these factors are denoted as “intermediate safety
factors,” borrowing the well-accepted definitions suggested by
ISO 39001 [35] for road safety analysis and adapting it to the
scope of bridge risk assessment.

Further factors may be defined to measure the number of
vehicles and individuals that could induce or be interested by
bridge failure events. They are referred to as “risk exposure
factors,” according to ISO 39001 [35].

Consequently, the interaction between the intermediate
safety and risk exposure factors leads to the occurrence of
bridge failure events. Moreover, both factors may affect the
probability (or the frequency) of bridge failure events and
their severity. The frequency and severity of bridge failure
events are reflected in several outcome factors. This study
refers to them as “final safety outcome factors,” according
to ISO 39001 [35].

Drawing on the previous literature, Parts A, B and C
reported in the Supplementary Material section provide a
census of intermediate, risk exposure and final safety factors,
respectively. They are organized in a multi-level hierarchy.

B. Methodology for Real-Time Risk Evaluation and
Management

The proposed framework is focused on the risk of over-
loading events induced by extreme traffic load hazard and
is organized into three main blocks, each of which meets a
specific requirement as follows:

• Block 1 operates “offline” to collect data on the traf-
fic on the bridge and handles these data to obtain a
bridge-specific traffic load hazard dataset.

• Block 2 operates “offline” to specify, calibrate, and vali-
date a time-dependent (bivariate) Risk Prediction Model
(RPM).

• Block 3 operates “online” to achieve live risk manage-
ment by implementing an ITS-based architecture.

Each block is subdivided into several steps, described and
formulated in the flowchart shown in Fig. 2. It is noteworthy
that, to enable real-time risk management, the computational
complexity of “online” processes must be short. Thus, this
need is addressed by designing the most time-consuming
computational processes in Block 1 and Block 2. They are
intended “offline” before starting the risk management phase,
which exclusively operates “online” in Block 3.

1) BLOCK 1: Build a Bridge-Specific Traffic Load Hazard
Dataset: Block 1 is organized in 5 steps. According to
Step 1.1, the first block starts with raw data traffic load
collection during a monitoring period by WIM systems. They
are placed on each lane of a road section near the bridge. For
each passing vehicle, a standard WIM architecture measures
the passing datetime, the gross vehicular mass, the passing
speed, the vehicular length, the vehicular width, the number of
axles, the typology of each axle (i.e., single or double wheel),
the mass acting on each axle, and the distance between each
pair of axles (i.e., interaxle).

From these measures, a dataset of raw bridge-specific exper-
imental records is mined. More formally, let:

• T be the monitoring period and t ∈ T [s] the generic
timestamp (or instant).

• I be the set of bridge lanes and i ∈ I be the generic lane.
• V E H(T, i) be the set of vehicles recorded by WIM

during T along i ∈ I and veh ∈ V E H(T, i) be the
generic vehicle.

• U be the set of vehicular classes recognized by the WIM
system and u ∈ U be the generic class.

• GV M(veh) [kg] be the Gross Vehicular Mass of veh ∈

V E H(T, i), i.e., the total mass of the vehicle.
• speed(veh) [km/h] be the passing speed of veh ∈

V E H(T, i), i.e., the mean passing speed among all
vehicular axles.

• length(veh) [m] be the vehicular length of veh ∈

V E H(T, i), i.e., the distance from the first and the last
axles.
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Fig. 2. Methodology for the evaluation and real-time management of the risk induced by extreme traffic load hazard.

• AX L(veh) be the set of axles of veh ∈ V E H(T, i) and
axlk ∈ AX L(veh) be the k-th axle.

• t ype(axlk) be the typology of axlk ∈ AX L(veh), which
could be single wheel or double wheel.

• mass(axlk) [kg] be the mass acting on axlk ∈

AX L(veh).
• I N T (veh) be the set of interaxle of veh ∈ V E H(T, i)

and intr ∈ I N T (veh) [m] be the r-th interaxle.
Next, according to Step 1.2, the WIM raw data undergo
pre-processing to eliminate anomalies and outliers using a
designated Filtering Procedure (FP) and Quality Control
Algorithm (QCA), respectively. Following the application of
FP and QCA, a validated traffic dataset is obtained. Addi-
tional information about the pre-processing methods can be
found in PART D (Section I) of the Supplementary Material
section.

Next, according to Step 1.3, for each bridge lane i∈I , the
overall vehicular load acting on it in each instant t∈T (denoted
as Gi (t) [k N ]) is computed from the validated traffic dataset.
Its determination is mandatory for the subsequent identifica-
tion of overloading events induced by traffic. Since the bridge
deck has a certain length, and the WIM system only provides
records of axles at a single point, it is necessary to ascer-
tain the law of motion of each axle (i.e., axlk∈AX L(veh);
∀veh∈V E H(T, i)) along i∈I . This enables the determination

of the application point of each load at times other than its
passage on the WIM. The formalization of this procedure is
presented in PART E of the Supplementary Material section.

Next, according to Step 1.4, the monitoring period (i.e., T )

is further divided into temporal frames (or timeslots) to
investigate how the characteristics of the vehicles passing on
the bridge varies over the time. More formally, let S be the
set of timeslots and T (s) be the subset of T in the timeslot
s∈S. Then intermediate safety and risk exposure factors of
traffic load hazard are computed on the traffic flow observed
during T (s).

According to Step 1.5, the final safety outcome factors
are computed to account for the frequency and severity of
bridge failure events induced by traffic load hazard. Among
these factors, those related to limit states are selected for two
main reasons: 1) the Limit State Method (LSM) is widely
adopted by current Structural Design Codes (SDCs), e.g.,
the Eurocodes and the Italian NTC ( [36], [37]), that are
well known among researchers and practitioners; 2) limit
states enable to account for the seriousness of bridge failure
events in a faster way than direct and indirect consequence
factors. According to the LSM, a “bridge failure” does not
necessarily indicate a collapse; rather, it is defined as any
situation (e.g., the overcoming of a “limit state”) that could
lead to a malfunction in the system.
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TABLE II
LOAD COMBINATIONS PRESCRIBED BY [36] AND [37] FOR LIMIT STATES

VERIFICATIONS AND ASSOCIATED DESIGN TRAFFIC
LANE LOAD THRESHOLDS

In the proposed framework, the rigorous individuation of
limit states overcoming events is replaced by a more straight-
forward detection of design lane load overcoming events,
as budget constraints frequently prevent road management
authorities from the calibration of a refined structural model.
Hence, a set of different design traffic lane load thresholds is
defined. These thresholds are related to different degrees of
magnitude of the effects suffered by the bridge when they are
exceeded.

More precisely, let T H be the set of traffic lane design
load thresholds and thi∈T H be the generic threshold for i∈I .
The traffic load schemes proposed by current SDCs can be
assumed as reference to a straightforward quantification of
each thi∈T H . For example, [36] and [37] prescribe various
load combinations linked to varying levels of solicitation mag-
nitudes These combinations are intended for use in verifying
different limit states, as outlined in TABLE II. These load
models rely on several considerations to achieve a target
reliability level, including, for example, a 1,000-year return
period of the characteristic value, a dynamic amplification
factor (which depends on pavement roughness, roughness, and
vehicle properties), and future increases in traffic.

Next, to obtain the input data for the risk model fitting,
the count and typology of overloading events are determined
for each timeslot s∈S and lane i∈I . An overloading event
is defined as a circumstance in which the traffic load on the
lane i∈I exceeds one or more design load thresholds. More
formally, let:

• DL O be the set of design load overcoming events and
dlo ∈ DL O the generic event.

• DL O(thi , s) be the subset of DL O related to the over-
coming events of thi ∈ T H during T (s) on i ∈ I .

Therefore, for each t∈T (s), thi∈T H and i∈I , the generic
dlo∈DL O(thi , s) is identified when the load is lower or equal
than the considered threshold (i.e., Gi (t) ≤thi ) and, in the
instant immediately after t + dt∈T (s), the load is higher than
the same threshold (i.e., Gi (t + dt) > thi ). More formally:

dlo ∈ DL O (thi , s)

⇐⇒

(Gi (t) ≤ thi ) & (Gi (t + dt) > thi ) ;

∀thi ∈ T H ; ∀t ∈ T (s); ∀s ∈ S; ∀i ∈ I (1)

Thus, by computing each DL O (thi , s), the final safety out-
come factors are obtained.

2) BLOCK 2: Build a Model for Predicting the Risk of
Overloading Events: Block 2 is organized in 5 steps. Accord-
ing to Step 2.1, an index is defined to evaluate the risk
connected to the design load overcoming events induced by
the traffic hazard. There are some methods that may be applied
to evaluate the risk. In this study, we considered a time-
dependent index. It integrates frequency and severity functions
of the design overloading events, as well as the exposure
factors accounting for all the intermediate outcome factors
considered. This choice is due to the possibility of specifying
each function according to the WIM data and simplifying the
interpretability of its outcomes among practitioners. The risk
index is evaluated as follows. Let:

• Es be the exposure factor during T (s), intended as the
rate of occurrence of the hazard event (i.e., a traffic load
application on the bridge).

• Ps be the probability factor during T (s), intended as
the likelihood that, once the hazard event occurs, the
complete loading sequence will follow with the neces-
sary timing and coincidence to result in a design load
overcoming event.

• Cs be the consequences during T (s), intended as the
most probable result of a design load overcoming event,
including direct and indirect costs.

• Hs be the frequency of design load overcoming events
during T (s), intended as a driver of the probability of
design load overcoming events.

• Vs be the severity of design load overcoming events
during T (s), intended as a driver of the consequences
of design load overcoming events.

• X be the set of frequency predictors, x j ∈ X be the j th

predictor and x j,s be the value of x j ∈ X observed in
T (s).

• Y be the set of severity predictors, y j ∈ Y be the j th

predictor and y j,s be the value of y j ∈ Y observed in
T (s).

According to the well-accepted concept of risk, the risk
index related to s∈S (denoted by Rs) may be defined as
follows [38]:

Rs
def
= Es∗Ps∗Cs; ∀ s ∈ S (2)

Although the calculation of (2) is simple, each term needs
to be estimated by modeling the experimental data. A way to
perform this task is to build a complete bivariate risk model
(frequency and severity) based on appropriate predictors and
to include the exposure factor in the frequency predictors.
The latter is a natural choice that follows directly from the
definitions of exposure, probability, and frequency factors.
Indeed, it can be easily proven that frequency of design
load overcoming events during T (s) (i.e., Hs) is obtained by
multiplying together the following components: 1) the rate of
recurrence of the hazard event (i.e., Es); 2) the likelihood that,
once the hazard event occurs, the complete loading sequence
will follow with the necessary timing and coincidence to result
in a design load overcoming event (i.e., Ps). Specifically, the
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frequency of overloading events is estimated as a function
of the risk exposure factor and of a set of predictors mined
from bridge-time-specific intermediate safety outcome factors.
Similarly, the severity is evaluated by a prediction model on
predictors mined from the same intermediate safety outcome
factors. Finally, the risk index is obtained as shown in (3):

Rs
def
= Hs(Es, Xs)Vs (Ys) ; ∀s ∈ S (3)

To prepare data for the frequency model, according to
Step 2.2, first the frequency of dlo∈DL O is defined and
then computed. Specifically, it is defined as the total count
of times in which the vehicular load acting on each bridge
lane i∈I exceeds the threshold thi∈T H defined in Step 1.5.
More formally, for each s∈S, the frequency Hs coincides
with the cardinality of the DL O(s). This means the count
of occurrences in which a threshold is exceeded, considering
all bridge lanes (4). This approach is conservative because
it assumes that the lanes are independent of each other,
neglecting the transverse distribution capacity of the bridge
deck.

Hs
def
= |DL O(s)| = count

i∈i;thi ∈T H
(dlo ∈ DL O (thi , s)) ;

∀s ∈ S (4)

Poisson and Negative Binomial could be applied for model-
ing the frequency of overloading events. These may appear to
be the dominant mathematical tools for modeling non-negative
discrete response variables, as in the case of such events,
owing to their solid statistical properties. However, exposure
(Es) refers to a variable for which, when equal to zero value,
the frequency of events must be zero. Therefore, the prediction
frequency model of load overloading can be evaluated by a
Generalized Linear Model with a Negative Binomial Regres-
sion (NBR) error structure, as applied in other fields (e.g.,
[39], [40], [41]).

More formally, let α, β and γ j be the coefficients of
the frequency model. The functional form of the frequency
prediction model is as follows:

H̃s = αEβ
s e
∑

x j ∈X γ j x j ,s ; ∀ s∈S (5)

To implement a model validation technique that relies on
unbiased out-of-sample evaluation, the dataset is randomly
split into training (T r) and testing (T e) subsets.

To prepare data for the severity model, according to
Step 2.3, the severity of dlo∈DL O is first defined and then
computed. Specifically, the severity related to s∈S may be
defined as the highest degree of seriousness experienced from
the bridge when at least one design load overcoming event has
occurred during T (s). Thus, the severity can be evaluated by
an ordered-response discrete variable. Because the overload
associated with the ULS is a very rare event, the severity may
be modeled by a binary variable (denoted with zs). It takes
1 if the irreversible SLS and/or ULS thresholds are exceeded at
least once in at least one i∈I during T (s); otherwise, it takes
0. This approach is conservative because it assumes that the
lanes are independent of each other, neglecting the transverse

distribution capacity of the bridge deck. More formally:

zs
def
=


1 i f ∃i ∈ i : (|DL O (th(FuC)i , s)| ≥1)

or (|DL O (th(ChC)i , s)| ≥1)

0 otherwise;

∀s ∈ S : Hs ̸= 0; (6)

Therefore, Vs is defined as the conditional probability that zs
will be equal to 1 in s∈S when a non-null frequency of design
load overcoming is observed (i.e., Hs ̸= 0). More formally:

Vs
def
= P(zs = 1 ); ∀s ∈ S : Hs ̸=0; (7)

Because of the binary nature of the response variable, a way
to build the severity prediction model is to adopt a Binomial
Logistic Regression (BLR) (e.g., [39], [42]). This choice was
made to facilitate the reading of the results. Indeed, they may
be interpreted using the Odds Ratio (OR), which returns the
number of successes (a severe event) against each failure (a
non-severe event) and can be straightforward, computed by
taking the exponent of the parameter estimate. More formally,
let δ and η j be the coefficients of the severity model. The
functional form of the severity prediction model is defined as
follows [43]:

Ṽs = P

(
zs = 1 |

y j ∈Y

{
y j , s

})

=
e
δ+
∑

y j ∈Y η j y j,s

1 + e
δ+
∑

y j ∈Y η j y j ,s
; ∀ s∈S; (8)

Next, according to Step 2.4, once the best frequency and
severity models have been estimated, the RPM is built by
joining the former with the latter. More formally:

R̃s = H̃s Ṽs (9)

The results of (9) quantitatively measure the risk for each
s∈S, and each s∈S is classified according to a risk scale to
identify the most critical timeslots (STEP 2.5).

It builds on multi-level risk scales adopted in other risk
analysis contexts (e.g., [39], [44]). Specifically, a five-level risk
scale is proposed by establishing four thresholds to identify a
range of acceptable values for all predicted Rs (Table III).

Precisely, once the R̃s have been computed for each
timeslot, they are organized in decreasing order. Next, four
thresholds based on the 25th , 50th , 75th , and 95th percentiles
of the ordered Rs distribution (denoted as χ1, χ2, χ3 and χ4,
respectively)2 are set to define the five risk levels.

2Concerning the first three thresholds (i.e., χ1, χ2 and χ3), these were cho-
sen using a traditional statistical approach, adopting the three well-established
main quartiles (i.e., χ1 = Q1 = 25th , χ2 = Q2 = 50th and χ3 = Q3 =

75th). Regarding the fourth threshold (i.e., χ4), guidance was derived
from a preliminary analysis of risk index values obtained in the real-
world experiment. Specifically, it was empirically set at the 95th percentile
(i.e., χ4 = 95th), because only sporadic occurrences of severe design load
overcoming events were observed in timeslots with risk index values below
this level. This decision aimed to strike a balance between the maximum
acceptable risk and the need to avoid undue threats to bridge operability. It is
worth noting that one does not have to adhere to the previous scale to use the
framework, which acknowledges the freedom to establish this scale in some
other ways.
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TABLE III
DEFINITION OF THE RANKING SCALE FOR THE RISK RANGES OF LIMIT

STATES OVERCOMING EVENTS

Fig. 3. Main components of the ITS-based architecture.

3) BLOCK 3: Implement a Real-Time Risk Management
Strategy: Block 3 is organized in 4 steps. Once the risk index
is computed according to (9), and critical timeslots have been
highlighted, actions can be taken to address safety bridge
shortcomings.

Specifically, according to Step 3.1, an ITS-based archi-
tecture to manage the traffic flowing on the bridge is
implemented. As shown in Fig. 4, the main components of
this architecture are a WIM device, a Variable Message Sign
(VMS) panel, a Traffic Light (TL), and a Cloud Platform
(CP). PART F (Section F.1) of the Supplementary Material
section provides more details on the procedure to be used to
quantitatively determine the location of physical components
(WIM, VMS, TL).

The CP encompasses 1) a Cloud Database (CD) for stor-
ing WIM data; 2) a Computing Unit (CU) for processing
WIM data and automatically controlling the VMS and the
TL devices; and 3) a self-developed Cloud Software (CS)
that integrates the required algorithms. These components
reciprocally communicate through a low-latency connection
(e.g., a 5G network) and are conceived to operate continuously
24 hours a day for a week.

According to Step 3.2, monitoring windows with a fixed
temporal duration are defined. More formally, let MW be
the set of monitoring windows and mw∈MW be the generic
window. Each window has the same duration, denoted as
|T (mw)| [s]. During each mw∈MW , the raw traffic data are
acquired by the WIM and streamed at the CD. These data are
processed by the CU based on the instructions provided in the
CS. Specifically, the FP and the QCA described in Step 1.2 are
first executed to remove anomalies and outliers. Secondly,
risk exposure and intermediate safety outcome factors are
computed as described in Step 1.4. Finally, the RPM fitted

in BLOCK 2 is executed to predict the risk index associated
to mw∈MW (denoted as Rmw).

According to Step 3.3, traffic management actions are auto-
matically undertaken to mitigate the risk of traffic overloading
events on bridge. To perform this task, a Risk Management
Algorithm (RMA) is implemented in the CS. The nature of
traffic management actions is a function of the risk level
predicted in every mw∈MW . Depending on the action’s
typology, the CU promptly sends a digital signal to the actuator
ITS-components (i.e., the VMS and the TL) through the
low-latency connection, automatically initiating the intended
action.

Particularly, if Rmw is classified as Maximum Risk Level
(i.e., RL1), a yellow-red cycle is triggered on the TL. Hence,
access to the bridge is prevented for all vehicles in the pla-
toon passing on the WIM during mw∈MW . Simultaneously,
a message is displayed on the VMS. It indicates the platoon
to leave the main road. Conversely, if Rmw is classified as
High-Risk Level (i.e., RL2), displaying a message asking
only the heaviest trucks in the platoon to leave the main
road may be appropriate. Hence, this traffic control action is
automatically started by the CU on the VMS. Finally, if Rmw is
classified as Above Average Risk, Below Average Risk or Low
Risk levels, no risk management interventions are activated
because the monitoring window is deemed to be safe enough.
More formally, the RMA is described by the pseudocode in
(15), in which GV M lim is a fixed threshold that may be chosen
considering the design load associated with ChC to safeguard
the bridge against ULSs and irreversible SLSs. It is important
to note that the traffic management actions of RMA are
intentionally kept simple to ensure practical implementation
by RAs. The aim is to avoid unnecessary complications that
could hinder real-world application.

Algorithm 1 Risk Management
1 For each mw ∈ MW
2 If (Rmw∈L R1) Then
3 Display “All vehicles must take the

next exi t ′′ on the VMS
4 And Trigger a yellow − red cycle on the TL (10)
5 Else If (Rmw∈L R2) Then
6 Display “All vehicles heavier than GV Mlim

must take the next exi t ′′ on the VMS
7 Else Do nothing
8 End If
9 End For

According to Step 3.4, the RPM and the risk scale may
be periodically updated because they are built on traffic data
recorded by the WIM during a fixed monitoring period.
However, the traffic load hazard characteristics could change
for several reasons, such as the construction of new roads (or
the decommissioning of existing ones) or the development of
new residential areas, commercial hubs, or industrial districts.
Hence, a periodic recalibration is required to account for this
variability.
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IV. REAL-WORLD EXPERIMENT

A. Research Context

The proposed framework was experimented in Brescia
(Lombardy Region, Italy), which is the second largest city
in the region and one of the most important industrial and
commercial hubs in Italy ( [45], [46]). The Brescia metropoli-
tan area houses many businesses involved in processing iron
and steel goods, manufacturing heavy and high-density metal
products, and features several quarries extracting stone materi-
als for construction work. Consequently, there is a substantial
demand for heavy lorry transportation, which subsequently
affects the road network ( [6], [7]). A bridge along Brescia’s
South Ring Road was selected in collaboration with the local
Road Authority (RA), i.e., the Provincia of Brescia. The RA
pinpointed this bridge as one facing the most significant traffic
loads within its network. It is a simply supported overpass
structure over a secondary road, approximately 23.50 m span
length, and it is composed by 13 longitudinal precast concrete
girders. In this case study, the road section has two separate
carriageways, with two vehicular lanes in each direction.

B. Results and Discussion

The overall framework was implemented in a MATLAB©

script running on a common mobile workstation (Intel(R)
Core (TM) i7-10750H CPU @ 2.60GHz 2.59 GHz processor,
32.0 GB RAM, Windows 11 Pro 64 bit).

From a general perspective, the experiments confirmed that
the most time-consuming computational processes occurred
within Blocks 1 and 2, taking approximately 36 minutes.
This extended computation time was a result of the pro-
longed monitoring period considered for establishing the risk
model, involving four months and around 2M raw vehicular
records. In contrast, Block 3 required a computational time
of about 3∗10−3 s to process WIM data for the few vehi-
cles passing through each monitoring window, generating a
risk prediction. This value is negligible when compared to
the duration chosen for each monitoring window (i.e., 5 s).
Therefore, given the current availability of promising solu-
tions for low-latency communication between ITS components
(e.g., 5G networks [47]), risk management actions could be
triggered within a timeframe compatible with an effective risk
management strategy (in the order of a few milliseconds).

More specific details regarding the findings related to the
three individual blocks are provided below.

1) BLOCK 1: A WIM device was installed by the local RA
in December 2021 near the bridge on the northern carriageway.
Since heavy vehicle transit is forbidden in the left lane,
only the right lane was instrumented to accomplish restrictive
budget limitations. Therefore, the monitored bridge lanes in
this case study (i.e., I ) comprise the right lane of the northern
carriageway, identified as lane 1 (i.e., i = 1) in the following
discussion. The adopted WIM system consists of two stainless
steel plates placed on the road surface, equipped with fiber-
optic sensors, connected to a data logger. It is a “10 accuracy
class” instrument, according to the OIML recommendations
for WIM devices [48]. Some details on WIM records acquired

TABLE IV
DETAILS OF WIM RECORDS ACQUIRED DURING

THE MONITORING PERIOD

during a four-month monitoring period (i.e., T ) are shown in
Table IV.

As reported in Step 1.2, raw traffic data were pre-processed
to remove anomalies and outliers by implementing the FP and
QCA into the MATLAB© script. Although a high fraction
of records was excluded (Table IV), these mainly refer to
very light vehicles (i.e., cars and vans, with a GVM below
1,000 kg and an axle mass under 500 kg). The WIM device
faced challenges in determining some vehicular parameters
for these records. A manual check, aligning WIM records
with images captured by a nearby camera, confirmed that
the excluded vehicles were predominantly the lighter ones.
This is because current WIM devices are primarily designed
for weighing heavy vehicles rather than their lighter counter-
parts. Consequently, the reliability of the following analyses
remains unaffected, as lighter vehicles contribute minimally
to determining the traffic load on the case-study bridge, even
in extreme cases (such as crowded situations).3 Nevertheless,
this outcome suggests that manufacturers should enhance the
efficiency of WIM devices to attain a more comprehensive
characterization of the traffic flow.

Next, the vehicular load action on the instrumented bridge
lane (i.e., G1(t)) was determined from the validated traf-
fic database through the motion law analysis (Step 1.3).
To achieve an adequate temporal and spatial resolution, a
0.01 s time step was chosen in the calculations. It corre-
sponds to a maximum 0.25 m step in axle positions if the
maximum speed in the validated traffic database is assumed
(i.e., 90 km/h).

According to Step 1.4, T was subdivided in timeslots
(i.e., s∈S). Since the risk modeling was performed on a
monthly scale, the timeslot duration was set to one hour. Thus,
a total of 2,696 hourly timeslots were obtained. Next, the

3To quantitatively support this affirmation, let us consider the value of the
lowest design traffic lane load threshold for the case-study bridge (i.e., 450 kN
for the Frequent Combination, according to Table VII), which corresponds
to a GVM of approximately 45’000 kg. Therefore, a vehicle with a GVM
lower than 1,000 kg represents less than 2.2% of this threshold. Moreover,
let us conservatively suppose a very short length of 2.5 m for this vehicle.
Considering the span length of the case-study bridge (23.50 m) and assuming
a very small distance between vehicles (0.5 m), it can easily be proven that no
more than 8 of these very short vehicles can simultaneously exist on a bridge
lane, even in crowded situations. These vehicles would collectively weigh no
more than 8,000 kg, constituting less than 18% of the 45’000 kg design traffic
lane load threshold. Hence, it is evident that the potential of these vehicles
to generate even non-severe design overload events is very low. Furthermore,
the negligible potential of these vehicles to generate severe design overload
events is even more apparent. Indeed, the GVM of these lightweight vehicles
represents no more than 1% (for one vehicle) and 7% (for 8 vehicles) of the
lowest design traffic load threshold associated with a severe overloading event
(i.e., 1,085 kN for the Characteristic Combination, according to Table VII).
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TABLE V
GVM LIMITS PRESCRIBED BY THE ITALIAN TC FOR EACH VEHICULAR

CLASS RECOGNIZED BY THE WIM SYSTEM

intermediate safety factors were computed for each timeslot.
Particularly, as for bridge-side factors, since performing an
in-depth structural analysis is out of the scope of this study,
only parameters related to global geometrical properties were
considered. As for context factors, as the emphasis is on
temporal rather than spatial risk dependence, the former were
privileged. As for hazard factors, because this research is
focused on traffic risk, only, those related to traffic load were
considered among anthropic hazard factors. Particularly, traffic
load hazard factors were grouped into traffic flow character-
istics, vehicular characteristics, interaction between vehicular
and bridge characteristics, compliance with TC prescriptions,
and actions induced on the structure. To compute factors for
compliance with TC prescriptions, Italian TC mass limits were
considered for each vehicular class recognized by the WIM
system (Table V) and for individual axles and axles pairs
(Table VI).

Finally, the hourly flow is selected among the risk exposure
factors, because it better describes the risk temporal depen-
dence due to its greater resolution over other exposure factors,
e.g., the Average Daily Traffic. PART G of the Supplementary
Material section, which is self-explicative, presents the list of
the risk exposure and intermediate safety factors considered in
the analysis, along with corresponding descriptive statistics.

As reported in Step 1.5, the design traffic load thresholds
were calculated for the instrumented lane of the case-study
bridge, and the overcoming events (i.e., dlo∈DL O) were
identified for each timeslot by applying eqn. (1). Thus, by col-
lecting each subset DL O (th1, s), the dataset of final safety
outcome factors was obtained. The results are reported in
Table VII.

It also shows that, as for thFuC , no overcoming event
occurred during T . This is a reassuring result, since the ULS is
the most adverse scenario, associated with a structural collapse
or failure. Conversely, as for thChC , one overcoming event

TABLE VI
MASS LIMITS PRESCRIBED BY THE ITALIAN TC FOR SINGLE AXLES AND

FOR PAIRS OF ADJACENT AXLES. FOR THE LATTER, THE MASS LIMIT
IS INTENDED FOR THE WHOLE MASS ACTING ON THE PAIR

TABLE VII
DESIGN TRAFFIC LOAD THRESHOLDS: CALCULATED VALUES FOR THE

INSTRUMENTED LANE OF THE CASE-STUDY BRIDGE AND THE COUNT
OF OVERCOMING EVENTS DURING THE MONITORING PERIOD

every 204 hours (i.e., a return period of about 8 days) was
observed. Although the ISLS is a less adverse scenario than
ULS, this would seem a worrisome result since the overcoming
of the associated design lane load was found to occur with
a significantly greater frequency than the 1,000 years return
period prescribed by the current Italian SDC (i.e., [37]).
This would underscore the necessity of implementing traffic
management measures on the case-study bridge to reduce the
occurrence of these overloading events to comply with SDCs
requirements. Notworhty a more detailed structural analysis
accounting for the traffic load effect should validate this result.

Finally, as for thFrC , 5.3 overcoming events per hour,
on average, were detected. Though these events are related
to the RSLS, they must be carefully assessed as they could
adversely affect structural appearance, durability, or water
tightness.

2) BLOCK 2: Once raw WIM data had been prepared, the
observed frequency of overloading events was determined for
each timeslot according to (4), and the frequency prediction
model was built according to (5). Table VIII reports the
coefficient estimates and the p-values of each factor included
in the best fit model. Items in bold denote significant variables
at <.05 level.

As a general perspective, this model fit the data well.
Indeed, the statistical χ2 test on dr produces a small p-value
for goodness-of-fit (< 0.001). Additional insights into the
performance of the frequency model are presented in PART H
of the Supplementary Material section.

As for predictors, the results confirms that most of them
are highly significant (i.e., p-value < 0.05), showing a strong
regression effect. Focusing on each highly significant predictor
separately, the following considerations result.

As for the exposure risk factor, the results show that
the exponent (i.e., β) is positive, as expected (e.g., [21]).
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TABLE VIII
RESULTS OF THE FREQUENCY PREDICTION MODEL

Therefore, a 1 veh/h increase in the hourly flow increases the
count of overcoming events as well, while keeping all other
variables constant at their means. This implies that RAs should
prioritize their attention on bridges experiencing higher traffic
volumes, especially during peak periods.

As for temporal context factors, the negative coefficient
associated with the type of day (i.e., γ1) indicates that the
frequency was lower on the weekend. This is a conse-
quence of the lower number of commercial activities during
weekends.

As for the traffic flow characteristic factors, the speed
factored significantly. Particularly, a 1 km/h increase in the
mean speed reduces the count of overloading events (i.e.,
γ4< 0), while keeping all other predictors constant at their
means. This result could be justified as follows. First, the
faster vehicles are likelier to belong to lighter categories [6].
Second, an increase in speed reduces the permanence time
on the bridge and, therefore, leads to a lower probability of
multiple presences. This implies that excessively low speed
limits on bridge decks could potentially compromise safety.
Considering that RAs occasionally impose very low speed
limits for heavy vehicles on damaged bridge decks to mitigate
dynamic effects, this result is relevant and warrants further
investigation [4].

As for vehicular characteristic factors, three predictors
proved to be highly significant: the vehicle length, the axle
imbalance ratio, and interaxle. Particularly, a 1 m increase
in the minimum length reduces the count of overcoming
events, while keeping all other variables constant at their
means (as shown by coefficient γ5 < 0). Maybe extending the
length of shorter interposed vehicles could create separation
between two successive heavy vehicles, thereby decreasing the
probability of simultaneous presence on the bridge. This would

imply the need for a minimum headway for heavier vehicles
when passing over bridges. Conversely, as for axle imbalance
factor, it has a contrasting effect, since opposite signs were
found for mean and maximum axle imbalance ratios (i.e.,
γ6 < 0 and γ7 > 0).

As for the interaction between vehicular and bridge charac-
teristic factors, the maximum mass linear density (i.e., GVM
length ratio) is highly significant, and the coefficient is positive
as expected (i.e., γ9 > 0). Therefore, a 1 kg/m increase in the
GVM length ratio increases the count of overcoming events
while keeping all other predictors constant.

As for the compliance with TC prescriptions factors, the
subgroup has the stronger influence on the frequency since
six factors proved extremely significant: five related to the
whole vehicle and one related to individual axles. Regarding
the whole vehicle factors, the frequency increases as the GVM
limit ratio and the percentage of overloaded vehicles rise (i.e.,
γ10 > 0, γ12 > 0, γ13 > 0 and γ14 > 0).

It indicates that vehicles exceeding TC mass limits induce
a higher risk than compliant ones, which is an expected
result (e.g., [8], [21]). This implies the necessity for RAs to
implement additional controls to prevent violations of GVM
limits for transportation carriers. Besides, a greater frequency
was found when extremely loaded vehicles (GVM higher
than 44’000 kg) following one another were detected (i.e.,
γ15 > 0). This endorses the findings of [21] and suggests
that the queuing of extremely loaded vehicles should be
prohibited on bridges. As for single axle factors, a 1% increase
in the overloaded axle fraction strongly amplifies the count
of overcoming events (i.e., γ16 > 0). It is noteworthy to
report that the overloaded axle fraction emerges as the factor
with the most substantial positive impact on overloading
frequency. This is evident from having the greatest positive
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TABLE IX
RESULTS OF THE SEVERITY PREDICTION MODEL

estimate among all the coefficients. This finding aligns with
expectations, given that overloaded axles contribute to adverse
impacts on road infrastructures (e.g., [49]). It also confirms the
need to introduce additional controls to prevent violations of
axle mass limits by transportation carriers.

Next, because of Step 2.3, the observed severity of overload-
ing events was determined (according to (6) and (7), and the
severity prediction model was built (according to (8). Table IX
reports the coefficient estimates and the p-values of each factor
included in the best fit model. The numerical entries in bold
represent significant variables at <.05 level.

From a general perspective, this model fits the data well.
Indeed, the statistical χ2 test on d.r. leads a small p-value
for goodness-of-fit (<0.001). Further insights into the perfor-
mance of the severity model are detailed in PART H of the
Supplementary Material section.

As for predictors, the results confirm that many are highly
significant (p-value < 0.05), showing a strong regression
effect. Particularly, the highly significant factors concern
vehicular characteristics (i.e., axle imbalance ratio) and com-
pliance with TC prescriptions (i.e., maximum GVM limit
ratio). Focusing on each highly significant predictor separately,
the following considerations result.

As for vehicular characteristics factors, the negative coef-
ficient of the minimum axle imbalance (i.e., η4) (or,
equivalently, OR < 1) indicates that a unit increase of mini-
mum axle imbalance toward 1 (i.e., axle perfectly balanced)
reduces the severity odds. Probably, more prudent operators
are more likely to comply with mass limit prescriptions.
Thus, the likelihood of observing extremely loaded vehicles
on the bridge should be minor, hence decreasing the severity
odds. As for the compliance with TC prescription factors, the
coefficient of the maximum GVM overload ratio computed
on all vehicular classes (i.e., η5) is positive as expected
(or, equivalently, OR > 1). The maximum GVM overload
ratio (computed on all vehicular classes) is identified as the
factor with the strongest positive impact on overload severity,
according to the greatest positive coefficient’s estimate.

Conversely, a negative coefficient (or, equivalently, OR <

1) was estimated for the maximum GVM overload limit ratio
computed on Class 1 vehicles only (i.e., η6). This confirms
that, while heavy trucks exceeding the TC mass limits induce
more severe events on the bridge than legally loaded ones,

Fig. 4. Weekly distribution of the predictions for each risk level (sunday
being the first day).

an increase in the overloading ratio of light vehicles (i.e., cars
and vans) does not negatively affect bridge safety.

Next, the RPM was built by joining the frequency and
severity models fitted in Steps 2.2 and 2.3. Therefore, the risk
index (i.e., R̃s) was predicted for each s∈S by applying (9),
and the five-level risk scale was set up.

Some considerations emerge when the weekly and daily
distribution of the predictions are explored for each risk level.

As for the weekly distribution, Fig. 4 indicates that Wednes-
day (day 4) was the riskiest day due to the greatest occurrence
of RL1 predictions. Moreover, approximately 98.5% of max-
imum risk (i.e., RL1) timeslots occurred from Monday (day
2) to Friday (day 6). Hence, Sunday (day 1) and Saturday
(day 7) were the safest days, with the highest percentage
timeslots inside RL4 and RL5. This is consistent with the high
significance of the type-of-day factor found in the frequency
model.

As for the daily distribution, Fig. 5 shows that almost all
RL1 timeslots arose during daylight, with the first and the
second maximum peak in the 6th and 13th hours, respectively.
Since Class 5 vehicles presented their peak flow during the
early morning, and permits were more likely to belong at
this class,4 permit vehicles probably had the greatest contri-
bution in determining RL1 predictions. Conversely, illegally
overloaded vehicles (that more likely belong in other classes5)
were probably the leading cause of the second maximum RL1
peak. Finally, night-time turned out to be the safest period
with the highest percentage of RL5 timeslots. These findings

4This is because permits typically involve specially designed vehicles with
an increased number of axles, specifically intended to carry extreme loads.

5This is because illegally overloaded vehicles typically involve ordinary
vehicles, not specially designed with an increased number of axles.
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Fig. 5. Daily distribution of the predictions for each risk level.

suggest that RAs should: 1) pay greater attention to the impact
on bridge safety when issuing permits for extremely loaded
vehicles; and 2) conduct more control activities, especially
during weekday daylight hours, to identify and penalize ille-
gally overloaded vehicles.

3) BLOCK 3: To manage the highest risk situations, the
ITS-based architecture should be implemented as shown in
Step 3.1. However, due to budget constraints, the case study
is limited to a preliminary ITS architecture design and a
simulation of its operativity based on real data. Hence, the
location of the main physical components (i.e., WIM, VMS,
and TL) was identified in a GIS environment. For more details,
please refer to PART F (Section F.2) of the Supplementary
Material.

As reported in Step 3.2., the procedure was simulated using
a month of WIM raw data (534,729 vehicles) acquired from 1st
to 31st May, 2022. Hence, 518,381 monitoring windows with a
5 s temporal duration were defined. For each monitoring win-
dow, the raw WIM data were virtually collected in actual time,
streamed at the CD and pre-processed by the CU to remove
anomalies and outliers according to FP e QCA algorithms.
A total of 199,475 vehicles were globally preserved after the
pre-processing. Next, the value of each risk explanatory factor
for each monitoring window was computed by the CU, and
the risk index related to each monitoring window (i.e., Rmw)
was calculated instantaneously.

Traffic management actions were simulated as indicated in
Step 3.3. Hence, the RMA described by the pseudocode in
(10) was virtually implemented during the considered month.
According to the th(ChC)1 threshold, a value of 108,000 kg
was set for GV M lim to safeguard the bridge against ULS
and ISLS. Table X reports the amount of monitoring windows
and vehicular flow involved in RMA actions. The number of
vehicles involved in the actions is not negligible (i.e., 415).

Table XI quantifies the effectiveness of proposed traffic
management actions in mitigating the risk of design load over-
coming events by comparing together the following quantities:

TABLE X
AMOUNT OF MONITORING WINDOWS AND VEHICULAR FLOW

INVOLVED BY RM ACTIONS

TABLE XI
QUANTIFICATION OF THE EFFECTIVENESS OF PROPOSED TRAFFIC MAN-

AGEMENT ACTIONS IN MITIGATING THE RISK OF DESIGN LOAD
OVERCOMING EVENTS DURING THE SIMULATION PERIOD

a. The count of events detected during the simulation period
for each design load threshold. This metric was obtained
directly by performing the motion law analysis on actual
WIM data acquired during the simulation period.

b. The count of events that would have been avoided during
the simulation period if the traffic management measures
were truly implemented. This metric was directly obtained
by performing motion law analysis by excluding records
associated with vehicles that would have been diverted
before reaching the bridge.

Despite its relative simplicity, it is evident that the proposed
strategy has great potential to mitigate the risk of traffic
overload on the bridge. Indeed, it would have enhanced
the safety of the bridge against the traffic load hazard by
preventing the totality of severe overload events detected
during the simulation period. Moreover, it would have also
extended the lifetime of the bridge by avoiding more than
60% of non-severe overload events.6 Finally, these findings
provide empirical validation for the efficacy of the thresholds
chosen to establish the five-level risk scale, upon which traffic
management actions depend.

6The remaining (not avoided) non-severe overload events are those belong-
ing to the lower risk levels.
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V. CONCLUSION

Since an extreme traffic load hazard is one of the main
causes of bridge failures, realizing live risk estimation
and management systems is mandatory. However, the risk
induced by extreme traffic loads has rarely been explored
in literature, and the existing methods required computation-
ally expensive elaborations not compatible with a real-time
risk management strategy. Indeed, while (offline) optimized
bridge maintenance plans were suggested to reduce the fail-
ure risk, online traffic management procedures implemented
by Intelligent Transportation System (ITS)-based architec-
tures and driven by bridge-specific data are missing. This
study contributes to the literature in a threefold manner as
follows:

• Identification of a complete list of safety factors (and
sub-factors) that affect design load overcoming events on
bridges.

• Proposal of a framework that estimates the risk of extreme
traffic load hazard and simulates its management. Specif-
ically, this framework collects (i) WIM raw data and
handles these data to provide a bridge-specific traffic load
hazard dataset. Next, (ii) it specifies the risk components
in terms of frequency, severity, and exposure factors.
Then, it models their relationships to build a (bivariate)
probabilistic Risk Prediction Model (RPM) to forecast
frequency and severity components according to a set
of intermediate outcome factors. Finally, (iii) it proposes
an ITS-based architecture to implement live management
actions.

• Illustration of the practical effectiveness of this frame-
work in a real case-study. An easy-to-read control
dashboard helps make a diagnosis of the riskiest days
of the week and time slots. Moreover, a simulation is
carried out of the number of times a management action
should be implemented.

The proposed methodology was implemented considering
2.5M+ WIM raw data collected during a five-month period
in a pilot station on a bridge along the heavy transited
ring road of the city of Brescia (Italy). Both the frequency
and severity components demonstrated satisfactory fitting and
predictive performance. Consequently, the risk model can be
considered globally effective in classifying various levels of
risk. Furthermore, the overloaded axle fraction and the Gross
Vehicular Mass (GVM) overload ratio emerged as the factors
with the most substantial positive impacts on the frequency
and severity components, respectively.

The findings have at least three main implications.
• They suggest the need for greater caution by RAs when

permits for extremely overloaded vehicles are issued,
since the likelihood of inducing limit states overcoming
events is significantly higher than for ordinary trucks.

• They recommend enforcement strategies for the iden-
tification and sanctioning of illegally loaded vehicles
traveling without any authorization.

• They highlight the need for implementing ITS-based
architectures for the real-time management of the risk
related to the traffic load hazard.

It is noteworthy that one might question the innovation
of this work as it applies well-established EMs to forecast
the frequency and severity components. However, a primary
innovation of this research lies not in formulating new models
but in the incorporation and utilization of existing models
in an alternative setting. EMs have been widely used in
various economic and engineering fields (e.g., [39], [40], [41],
[43]). However, their combination into a framework for live
evaluation and management of the risk posed by traffic load
hazards on road bridges is a novel aspect of this study. Never-
theless, because the framework is modular, further modeling
improvements could be implemented without altering other
steps. Indeed, these steps are designed to operate properly
despite of the mathematical form of the risk prediction models.

Besides, the generalizability of the work might be ques-
tioned given that empirical data are derived from a single
bridge lane bridge in the real-world experiment. However,
the significance of this research lies in the framework rather
than the specific case study. The framework’s validity is
kept by the general formulation of its three blocks. Each
step enables the use of different methods or datasets without
impairing the framework’s functionality. Hence, the methodol-
ogy implemented is flexible and can be generalized. New input
data from a different bridge makes the methodology valid to
other primary roads and easily extendable to include secondary
and local roads.

Moreover, someone might argue that such a refined
approach to traffic management might be academic and
unnecessary because a simple WIM-based threshold signaling
scheme might be preferred. However, the main shortcoming of
the latter strategy stems from its deterministic connotation. For
example, how do you account for the probability that multiple
vehicles, each with a mass below the fixed thresholds, may
act simultaneously on the bridge deck and thus apply a higher
load than the design one?

Finally, this study indicates new avenues for further
research. First, the value of the vehicular load acting on each
monitored lane was utilized in this study as a straightfor-
ward criterion to assess the frequency and severity of bridge
overload as a driver of failure probability and consequences,
respectively. Since it is the traffic load effect that directly influ-
ences bridge safety, an assessment of the structural response
should be necessary for a specific evaluation of bridge safety.
It should consider the load transversal distribution capacity of
the bridge deck among the different lanes. This is because dif-
ferent lane load configurations can generate different demands
for a given total applied lane load in terms of internal actions
on structural elements. Therefore, future studies can make use
of this specialized approach to better identify the limit states
overcoming prompted by overloading events.

Second, although the exposure factor may even have an
impact on severity, in this study it was included only in the
frequency component to ensure consistency with well-accepted
risk theory. Future studies could examine the effect of exposure
on the severity of bridge overload, as well as develop a
trivariate risk model in which the exposure factor will be
considered as a response variable along with frequency and
severity.
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Third, EMs (i.e., Negative Binomial and Logistic Regres-
sion) were used in this research since it is easy to understand
how each explanatory element affects overload risk. However,
Machine Learning techniques (e.g., Artificial Neural Net-
works) demonstrate promising results and will be investigated
as is done in other sectors of engineering (e.g., [50], [51]).

Fourth, the methodology proposed in this study partially
deviates from the real-world scenario. In fact, it disregards
(i) the negative effects of traffic interruptions on bridge users
and on the community (e.g., increased travel times, costs,
and externalities), (ii) the problem of rerouting heavy vehicles
diverted from the bridge to ensure they can reach their destina-
tion via an alternative route. Future studies should integrate all
these aspects, including extending the proposed methodology
to the network level to prioritize traffic management actions
among bridges.

Finally, the relatively low percentage of WIM records
retained after pre-processing procedures suggests that WIM
manufacturers should improve the efficiency of these devices
to achieve a more complete characterization of the traffic flow.
Specifically, reducing the minimum thresholds for measuring
axle mass and total mass would enable the inclusion of lighter
vehicles in a broader manner in the analysis. This adjustment
would contribute to more comprehensively accounting for
extreme (marginal cases) but (possible) risky situations such
as crowding on the bridge.
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