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Abstract— In this paper, we provide a survey on automotive
surround-view fisheye optics, with an emphasis on the impact
of optical artifacts on computer vision tasks in autonomous
driving and ADAS. The automotive industry has advanced in
applying state-of-the-art computer vision to enhance road safety
and provide automated driving functionality. When using camera
systems on vehicles, there is a particular need for a wide field of
view to capture the entire vehicle’s surroundings, in areas such as
low-speed maneuvering, automated parking, and cocoon sensing.
However, one crucial challenge in surround-view cameras is the
strong optical aberrations of the fisheye camera, which is an area
that has received little attention in the literature. Additionally,
a comprehensive dataset is needed for testing safety-critical
scenarios in vehicle automation. The industry has turned to
simulation as a cost-effective strategy for creating synthetic
datasets with surround-view camera imagery. We examine differ-
ent simulation methods (such as model-driven and data-driven
simulations) and discuss the simulators’ ability (or lack thereof)
to model real-world optical performance. Overall, this paper
highlights the optical aberrations in automotive fisheye datasets,
and the limitations of optical reality in simulated fisheye datasets,
with a focus on computer vision in surround-view optical systems.

Index Terms— Surround-view, fisheye, field-of-view (FOV),
optical effects, chromatic aberration, astigmatism, vignetting,
computer vision, simulation, synthetic data, fisheye projection.

I. INTRODUCTION

COMPUTER Vision is a field of research where algo-
rithms are designed to computationally interpret the

scene from images of the real world that the camera is in.
With the coming to the fore of neural networks in the last
decade, computer vision research has grown exponentially.
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Fig. 1. Illustration of a surround-view camera system for automated
driving. The cameras are FV (top left), MVR (top right), MVL (bottom left),
and RV (bottom right) [1].

Automated driving is an industry where computer vision has
begun to dominate [2]. In parallel, surround-view camera
systems have received attention. Through a combination of
several fisheye cameras located on a vehicle, such camera
systems offer a full 360◦ view around the vehicle, as illus-
trated in Figure 1. Surround-view systems were traditionally
employed for scene-viewing applications (such as blind-zone
monitoring [3] and bird-eye view vision [4]). More recently,
there has been particular interest in the computer vision tasks
that can be undertaken by surround-view systems, developing
from low-speed applications several years ago [5] to more
complete perception tasks in vehicle autonomy [1], [6]. Part of
this field of research is the creation of datasets of images from
automotive scenes using specific camera and lens combina-
tions. These datasets are the basis for developing, training, and
deploying computer vision models in the real world. However,
due to variations in optics and electronics (both in design and
due to manufacturing tolerances), different cameras capture
different scenes in different ways.

The impact of the electronic Image Signal Processing (ISP)
on the performance of computer vision is discussed in detail
in [7] and [8]. The impact of the variation in optics on
computer vision performance is, perhaps, not well studied in a
single place. In particular, wide fisheye cameras tend to suffer
more from optical artifacts and are much more apparent in
visual imagery than in other camera types [9, p.233]. Primarily,
the large incidence angle of light due to field curvature in
fisheye systems leads to much more serious astigmatism and a
higher-order chromatic aberration, which is difficult to correct
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especially as the FOV angle increases [10], [11]. Most papers
only discuss strategies to compensate or correct for optical
artifacts which is much more apparent in fisheye or wide
FOV panoramic optical systems [11], [12], [13]. In contrast,
in this paper, we discuss the optical artifacts associated with
wide FOV systems and their impact on computer vision
performance.

Fisheye cameras are unique and not well understood in
the computer vision space as a result of the extreme optical
artifacts present in the images [10], [11], [14]. For this reason,
more experiments are needed to understand how computer
vision performance is affected by the optical artifacts of this
type of camera lens. One can consider that optical artifacts
increase the further off-axis a light ray is. With the wide optics
of fisheye, there is, therefore, a greater potential for optical
artifacts. Thus, in this paper, we will discuss what is known
about the impact of optical aberrations on computer vision
performance in surround-view systems.

For safety-critical applications, such as vehicle autonomy,
this lack of understanding of computer vision model behavior
with different lenses is potentially dangerous, especially if
all potential scenes cannot be investigated. Outcomes on the
road can only be investigated by examining different traffic
scenarios, including corner cases that rarely occur and are
the most challenging to reproduce in test facilities. Simulation
can be a powerful tool where any corner-case traffic scenario
can be reconstructed as additional data for training computer
vision models. In this paper, we will survey the popular
vision simulation methods, and pay particular attention to
their ability to simulate surround-view cameras accurately,
including fisheye geometry and other optical artifacts. Not
only should the optical artifacts in simulations be accurate
for training, but if we can adapt the parameters of a simulated
optical model, it would be possible to show how computer
vision models behave using different camera lenses or cameras
produced within varying manufacturing tolerances. However,
despite its popularity in automated driving research, the use
of simulation in this area is a relatively new development. For
the particular use case of surround-view systems, significant
further development is required for simulations to approach
photorealism.

Since simulation is identified as a potential solution to the
scarcity of well-sampled fisheye data, a problem exists where
computer vision models should be trained with simulation
data and deployed into the real world. However, as will be
shown in this paper it is not as simple as applying fisheye
distortion to simulation. The entire lens as well as its realistic
effects on real-world images should be modelled in simulation.
For example, Figure 2 shows a fisheye image with many
readily apparent optical artifacts. For example, mechanical
and optical vignetting is visible at the corners of the image
where there is a slight shadow cast on the pixels. The effects
of geometric distortion can be seen as the shape of the
building is deformed from being rectangular to a convex-like
shape. Lateral chromatic aberration is evident on the sides of
buildings and trees. In particular, the left outline of the building
exhibits a deep blue color, which contrasts with the light
blue sky (see Section III-B Figure 5). The blurriness of the

buildings and scenery constitutes both sagittal and tangential
astigmatism.

The lack of optical artifacts in simulation is a shortcoming
because the effects caused by optical models are a crucial part
of the real world. If these are not simulated, there is a lack of
information provided to computer vision models in training,
leading to potentially unpredictable performance on the road.
Therefore, in current circumstances, computer vision models
cannot learn the full scope of the real world in simulation and
arguably cannot be deployed completely safely as a result.

There have been other surveys in the field discussing fisheye
cameras for automotive systems and simulation. None of
them has a specific focus on the optical background for
automotive surround-view systems and the optical artifacts
that are created by the optical systems, other than the obvi-
ous geometric distortion. An early survey [3] focused on
the scene-viewing application of blind-zone monitoring and
discussed the effects of fisheye geometric distortion and light
fall-off. In [15], a part-survey, part-positional argument is
provided on how surround-view perception systems should
be structured, based on what the authors coined the 4Rs of
automotive surround-view computer vision (Reconstruction,
Recognition, Relocalization, and Reorganization), itself based
on earlier work known as the 3Rs of computer vision [16].
In Kumar et al. [1], a review of optical systems in auto-
mated driving for fisheye (i.e. fisheye projection models, the
surround-view camera system, perception tasks, and popular
automotive datasets) is conducted. In [17], a superficially
similar survey to [1] is provided. However, in [17], the authors
provide more detail on automotive fisheye datasets (both real
and simulated), and the three tasks of object detection and
tracking, semantic segmentation, mapping and localization,
and surround-view monitoring. Other fisheye-related surveys
such as Gao et al. [18], focus on the different types of
wide field-of-view (FOV) systems for 360◦ panoramic, cata-
dioptric as well as briefly discussing fisheye segmentation
for autonomous driving. Finally, Mütsch et al [19] provide
an insightful overview of the advantages and drawbacks
of different simulator types for autonomous driving, where
an important insight into the different types of simulation
available, such as model-driven and data-driven simulation,
is provided. A lot of crucial points on simulation are raised
in Mutsch’s work which will be investigated here from the
surround-view camera perspective.

In all of the above surround-view surveys, only the obvious
geometric distortion is surveyed in detail, and as such, we only
mention this topic briefly in this paper. In none of the above are
the other optical artifacts of surround-view cameras discussed
(except for [3] that discusses light fall off). While simulations
are discussed in these surveys as a means to augment datasets
for automated driving development, there is also no discussion
provided of how realistic the optics of the simulations are.
In this paper, we aim to provide this discussion. Therefore,
to complement the other surveys mentioned, this paper will
(1) elaborate specifically on the types of image quality effects
found in fisheye optical systems, (2) investigate how these
optical artifacts impact computer vision, (3) establish the cur-
rent trend in simulation frameworks, distinguishing between
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Fig. 2. Illustration of 180◦ fisheye lens/camera combination. The captured image shows many optical artifacts associated with fisheye cameras, which
we will discuss later in the paper. Note: the marked dotted boxes (orange) represent lateral chromatic aberration (red) and strong astigmatism or optical blur,
geometric distortion effects on a building (blue), and both mechanical and optical vignetting at the periphery with slight shadow (green).

different simulation approaches applicable for automated driv-
ing and considering the accuracy of optical artifacts in current
simulations.

This paper is organized as follows. In Section II, we will
briefly discuss what surround-view optical systems are and
how they are designed. In Section III, we will discuss the
main image quality factors including Chromatic Aberration,
Astigmatism, Vignetting, and Geometric Distortion specifi-
cally for fisheye cameras and how these affect computer vision.
Then we examine computer vision applied to all surround-view
systems in Section IV, including surveying some recent new
proposals on how to measure computer vision performance
considering the spatially variant optics of surround-view cam-
eras. Finally, in Section V, an in-depth discussion is made
where the photorealism and image quality of simulations are
discussed and how fisheye can become part of computer
simulators (i.e. CARLA, Unity, etc.).

II. FISHEYE OPTICAL DESIGN

The optical design of a fisheye lens is a significant under-
taking, and we do not intend to cover all the details here. This
is the topic of papers (e.g., [20], [21]) and books (e.g., [9]) in
itself. The aim here is to give a reader some concept of the
complexity of the design and to highlight that, while much of
the optical design is to combat optical artifacts, it is impossible
to completely remove such artifacts.

The goal of an optical camera system is to form a sharp
image on the image sensor. We can geometrically consider this
as light rays converging on an image plane, as demonstrated
in Figure 2, where we show a fisheye image captured by a
fisheye lens. The optical lens illustrated in Figure 2 shows
a simple three-lens system, though fisheye lenses commonly
have more elements. The system shown consists of (1) a
fisheye lens, i.e., a lens with a very wide FOV; (2) a convex
lens where light rays converge upon exiting; and (3) an
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optical doublet which is a lens consisting of two differ-
ent optical media and is typically found in fisheye camera
systems. In an optical doublet, the two different media are
typically two different types of glass material fused together,
which aids in the reduction of chromatic aberration in lenses
(discussed in further detail in Section III-B). Naturally, fisheye
optical systems can become more complex when additional
lenses are added to this system depending on its application.
In [9, 259-266], further detail is introduced about ray tracing
by modeling optical surfaces as matrices.

Ray tracing is a method for modeling the projection of
a virtual ray (representing the light ray) through an optical
system, analyzing the refraction of light as it enters different
lens media (OpticStudio1 is an example of such a ray-tracing
software tool). An optical system has virtual light rays that
should ideally converge at a specific point at the end of an
optical system. Both the thickness and the refractive index of
the medium affect the direction of virtual rays. In an optical
system different types of media can be placed (i.e., lenses with
different refractive indices) together using Snell’s law [9, 259].
Each lens has an individual power associated with it which is
the reciprocal of its focal length as described by the equation:

φi =
1
fi

(1)

where fi is the i th focal length of a lens in an optical system
where there can be n optical lenses. A typical fisheye lens
(which is the large disc-shaped lens in Fig. 2) has very high
optical power due to its very small focal length leading to
the extreme convergence of light. Abnormally high optical
powers lead to extreme optical aberrations as light bends at a
wide angle through media. It is difficult to remove the optical
artifacts caused by extreme lens powers. Optical Artifacts that
directly affect optical systems such as Chromatic Aberration,
Astigmatism, and Vignetting are discussed in Section III. The
power tends to increase as more convex lenses are added to an
optical system. However, not all lenses in an optical system
are positive (e.g., the optical doublet shown in Fig. 2, in which
the convex part of the lens is positive (converging) whereas the
concave part is negative (diverging)). The overall lens can be
positive if the convex part has higher power than the diverging
part. The total power of an optical system (reciprocal of the
focal length), can be described as:

8 = φ1 + φ2 + . . . + φi + . . . + φn (2)

where, 8 is the total power of the optical system, φi is the
power of the i th individual lens, where there are n lenses in
the optical system.

The design of fisheye optics is an ongoing topic of research,
with some recent advances in the use of neural networks for
lens design [22]. An optical system with more lenses does not
necessarily imply a better-performing system. In one sense,
a more efficient optical design implies using the optimum
number of lenses. An eight-element wide FOV (120◦) lens was
proposed in [23]. However, this system suffers from optical
artifacts above 120◦ [21]. In [21], a simplified fisheye design

1Zemax OpticStudio: https://www.zemax.com/pages/opticstudio.

that optimizes optical artifacts is presented. Optical aberrations
will be discussed in the following sections, where we will
also survey the impact of the particular aberrations on the
performance of computer vision.

III. FISHEYE OPTICAL ABERRATIONS

In the previous section, we discussed the complexity of lens
design and how aberrations are not possible to completely
negate through optics. In this section, we look at what the
major optical aberrations are and survey their impact on
computer vision: (A) Spatially Variant Optical Quality, (B)
Chromatic Aberration, (C) Astigmatism, (D) Vignetting, and
(D) Geometric Distortions. Specifically, the spatial variation
on the image of the optical aberrations influences how objects
are perceived by the computational observer.

A. Spatially Variant Optical Quality

The spatially variant optical quality of a camera system
can be measured by examining the image spots generated
by rays propagating through the optical system (known as a
spot diagram) [27]. The spots of light created by a camera
on the image plane are known as the Point Spread Functions
(PSFs) of a camera system and are essentially the impulse
responses of the camera system. In normal optics, the PSF
can be approximately Gaussian (e.g., Figure 3a) [28], [29].
However, in fisheye optics, the PSF can be highly non-
Gaussian (Figure 3b). The spread of PSFs in the image is
shown in Figure 4. Ideally, a camera system is spatially
invariant where the same PSF describes the spatial impulse
response of the camera at any point on the image sensor.
However, fisheye cameras are spatially variant optical systems
where optical quality can differ greatly across the image plane.

Therefore, spatially variant optical quality should be consid-
ered when processing fisheye images. While the measurement
metrics for optical quality are of significant relevance, they
will only be briefly discussed here and are not the main
focus of this review. Traditional techniques exist for mea-
suring the quality of cameras in the industry such as the
Modulation Transfer Function (MTF) [30], [31] and signal-
to-noise ratio (SNR) (peak SNR or PSNR is a studied metric
for image quality assessment alongside MTF [32], [33]).
Lin et al. [34] considered evaluating image quality for motion
blur and camera exposure based on both MTF and SNR tech-
niques. However, the MTF has been considered insufficient
for image applications in certain cases. For example, a study
by Wolf et al. [35] shows that MTF and Refractive Power
metrics are not sufficient for measuring windscreen sharpness
alone for artificial intelligence algorithms especially, where the
camera is located behind the windscreen. As a result, other
traditional metrics such as Shannon Information Capacity
(SIC) [36] and Noise Equivalent Quanta (NEQ) [37] are now
being reconsidered as a way to evaluate computer vision
performance and could potentially form part of a research
direction in terms of computer vision for optical systems [34].

As a result of the challenge of measuring and fine-tuning
optical systems for artificial intelligence, recent work has
investigated the impact of modeling and varying the optical
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Fig. 3. Measurement of PSF for a simulated fisheye lens at the center and edge locations [24]. Note that in the center, the PSF is approximately
Gaussian, and has a relatively narrower peak indicating a sharper image. The Edge PSF is highly non-Gaussian and non-isotropic.

Fig. 4. PSF model of a full image [25], [26]. Note the highly varying indi-
vidual PSFs, from approximately isotropic in the center to highly non-isotropic
at the periphery.

parameters of narrow FOV optical designs using Neural Net-
works (NNs). In the work of Wittpahl et al. [25], for a 60◦

standard FOV camera, an artificial neural network is trained to
predict the spatially variant point spread function, given three
input (1) defocus, (2) field and (3) azimuth. This can then be
used to artificially model the impact of these three parameters
on the optical quality of an image, whereby the PSF model
is convolved with every pixel of a target image using PSFs
determined by the ANN-based prediction, with downsampling
and interpolation techniques using weighted kernels.

Furthermore, Lehmann et al. [26] performed an investiga-
tion by examining the spatial resolution and accuracy of the
model in [25]. The optimal topology of the ANN was found in
this process by using Mean Square Error (MSE) as a decisive
measure of modeling the 60◦ FOV model. It was found by a
variation of between 8 to 448 neurons; the mean performance
reached a plateau optimum of around 3 MSE within 50 to

100 neurons, with overfitting occurring when more neurons
are added to the topology. For each topology configuration
(i.e. variation in ANN) training was started 100 times with
different randomized bias [26].

In principle, there is no reason that the models described
in [25] and [26] cannot be generalized to any optical model
by design choice. For example, if a wide FOV camera model
is to replace the narrow FOV model, in principle it is possible
to reach a custom ANN topology for that specific model using
the same approach and would be interesting future work.

A caveat for the work of [25] and [26] should be high-
lighted. The images used were captured from a real camera.
High-end optics were used in which the optical aberrations
were small but non-zero. As such, the ANN-modeled PSF was
applied on top of an existing PSF of the image lens, which will
lead to distortion of the output image. As mentioned in [26],
to apply the optical model to the pre-recorded data, the data
taken by the original image lens would need to be deconvolved
and then convolved with the optical model. A natural question
arises as to whether it would be possible to apply the model
directly to data collection in simulation environments (see
Section V), which would be a fruitful direction of research.

B. Chromatic Aberration

Chromatic aberration occurs when long, medium, and short
wavelengths of the visible spectrum (corresponding to red,
green, and blue light) focus at different points in the image
plane (i.e., do not converge at one specific point). This is
an undesirable effect causing “color fringes” to appear at
discontinuities (i.e., edges) in an image.

There are both lateral (i.e., light dispersing on the
y-axis) and longitudinal (i.e., light dispersing on the x-axis)
versions of chromatic aberration. Lateral chromatic aberration
is demonstrated in Figure 5, where the further the rays of
light fall from the center of the fisheye lens or optical axis,
the wider the dispersion of light appears on the image plane.
Lateral chromatic aberration typically increases towards the
periphery of the FOV. As it is, essentially, a function of light
ray incident angle, it is particularly noticeable and is very
difficult to completely compensate for in fisheye lenses [38].



JAKAB et al.: SURROUND-VIEW FISHEYE OPTICS IN COMPUTER VISION AND SIMULATION 10547

Fig. 5. Lateral chromatic aberration on a fisheye lens. Light splits into
its components red, green, and blue (RGB) along the y-axis. We are only
interested in the red, green, and blue components of the light, as an image
sensor typically has only red, green, and blue pixels.

Fig. 6. Zoomed-in segment of a Woodscape dataset image showing
evidence of lateral chromatic aberration. Note the slight red/purple and
green tint in the pixels along the outline of the car and the road marking.

In Figure 6, it can be seen that lateral chromatic aberration
exists in images in the fisheye Woodscape dataset [39].

Conversely, longitudinal chromatic aberration occurs across
the entire image regardless of the position from which light
intersects the fisheye lens. In this case, the wavelengths of
light which are longer (i.e., red and infrared) tend to converge
past the image plane whereas shorter wavelengths (i.e., blue)
converge before the image plane. Longitudinal chromatic
aberration is easier to correct where stopping down a lens
(i.e., increasing the f-number) compensates for this effect.
Referring to Figure 5, there is no evidence of significantly
visible longitudinal chromatic aberration in Woodscape.

Chromatic aberration is typically compensated for either
through achromatic doublets in the optics (such as the optical
doublet seen for the fisheye lens design in Figure 2) or in
the Image Signal Processing (ISP) stage before demosaicing
of a camera system [40], [41]. Demosaicing is the stage at
which a Bayer RAW signal (having one color per pixel) is
converted into the standard RGB format. Images with lateral
chromatic aberration perform poorly in demosaicing as the
color effects shift the expected pixel detail in the resulting
RGB images. Lateral chromatic aberration is usually corrected
using Look-Up Tables calculated for a given lens type as a

post-processing step, but this is often not feasible. Recent work
has examined blind methods for correcting lateral chromatic
aberration [41]. It should be noted that the post-processing to
compensate for chromatic aberration does not fix the problem.
However, it is quite evident that it is not feasible to completely
correct chromatic aberration in fisheye cameras.

Pontinen et al [14] compared chromatic aberration between
a Sigma 8mm 1:4 D EX Fisheye [42] and AF DX
Fisheye-Nikkor 10.5mm f/2.8G ED [43] by applying different
correction models to identify which is more suitable for
180◦ wide FOV lenses. The four correction models used in
this study were shifting and scaling, affine, projective, and
polynomial. These models were applied on the red and blue
color channels where the green color channel was the reference
channel for correction. It was found that the shifting and
scaling correction model is adequate whereas the other models
didn’t improve chromatic aberration correction overall. What
was interesting from this study was the analysis of the camera
behaviors, where the change in aperture size and focus settings
on the cameras influenced chromatic aberration unique to
each camera design. For example, with increasing aperture
size from f/4 to f/32, the red channel aberration increased by
0.5 pixels for the Sigma lens. With the Nikon lens, there was
very little variation for the red channel.

It is intuitive to think that chromatic aberration will neg-
atively impact the performance of computer vision tasks,
as it is generally considered an unwanted optical artifact.
However, this is not completely clear (and there is relatively
little work examining this). According to a 2019 study by
Chang et al [44], it has been shown both qualitatively and
quantitatively that images with chromatic aberration outper-
form ‘all-in-focus’ images (i.e., images without any optical
aberrations) both in Depth Estimation and 3D Object Detection
applications using the NYU Depth v2 dataset [45] and a subset
of the KITTI dataset [46]. Table I gives a detailed insight into
the effects of different optical artifacts according to literature.
Chang et al. [44] is the only paper to date that gives evidence
of a chromatic aberrated lens and a freeform lens performing
better than the baseline or original data. Further evidence of
this behaviour can be seen in recent work where robustness
is significant against coma (a form of chromatic aberration)
for a ResNeXt50 network [32]. Additionally, Depth Estima-
tion for defocused NYUv2 images performs better than the
baseline (all-in-focus images) for a D3-Net architecture [47]
(see Table I). Whereas in all other literature concerning
chromatic aberration a negative or degrading performance
is observed for Object Detection and Instance Segmentation
applications. However, since the optical designs used in these
experiments have evidence of both chromatic aberration and
astigmatism, it cannot be conclusively determined that the
performance degradation is caused by any one artifact. Also
in recent work [48], [49], longitudinal chromatic aberration
was explicitly exploited for depth estimation on a bi-convex
lens using the different spectral channels of unsharpness.
The utility of chromatic aberration in tasks involving depth
(e.g., depth estimation and 3D bounding box tasks) may be
explained by the fact that the amount of chromatic aberration
present is dependent on the depth of the imaged object,
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TABLE I
COMPARISON OF OPTICAL ARTIFACTS ON COMPUTER VISION
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Fig. 7. An optical wedge or prism used for astigmatism correction.
As shown in the diagram by adding the prism in front of an optical system;
the rays are refracted to focus the light rays on the image plane producing a
sharp image.

Fig. 8. An example of a fisheye image displaying astigmatism. Note
the increased ‘blur’ in the horizontal direction compared to the vertical. The
Woodscape dataset does not exhibit significant astigmatism - this sample is
taken from the non-automotive hybrid structure-from-motion and omnidirec-
tional camera calibration dataset [50]. Note that some chromatic aberration
and vignetting are also visible.

and this relationship can potentially be exploited. However,
these experiments were performed on narrow FOV cameras.
As discussed, chromatic aberration can be particularly severe
in fisheye images, and no work (to the authors’ knowledge)
explicitly examines the impact of fisheye lateral chromatic
aberration on computer vision performance. Additionally, it is
not clear if other tasks, such as object detection or instance
segmentation, are impacted negatively by the presence of
significant chromatic aberration.

C. Astigmatism

Astigmatism is an optical artifact that impacts an image
by causing a directionally dependent defocus (Figure 8).
It is caused by an effect whereby rays in two perpendicular
planes have two different foci, as shown in Figure 9. It is
introduced into the optical system either due to a lens not
being rotationally symmetric or due to misalignment in lens
elements and can degrade the performance of an optical
system. Concerning Figure 9, the chief ray is a light ray
passing through the center of the aperture of the system. From

this ray, two different planes can be defined horizontally and
vertically (also known as the sagittal and tangential planes).
Likewise, there exist sagittal and tangential rays that form
two unique foci (i.e., Ft , Fs). Hence two different images are
formed (i.e., It , Is). There can be many variations of sagittal
and tangential planes by varying the angle of incidence of the
chief ray [9, 274-276]. In an astigmatic system, it is impossible
to focus both tangential and sagittal rays on one plane to
create a sharp image. It has been noted that in an astigmatic
system, the orientation of the object affects how imaging
occurs [51]. For example, the greater the angle between the
object and the optical axis, the greater the astigmatic difference
is between Ft and Fs , hence blurriness increases in the image.
Notice in Figure 9, two elliptical images are formed where
blurring is vertical for It and horizontal for Is . As astigmatism
increases, the divergence between sagittal and tangential rays
increases depending on manufacturing defects. The circle of
least confusion is the smallest circle or spot that a lens system
can make. The presence of astigmatism can change depending
on lens manufacturing imperfections. A typical PSF in these
conditions is shown in Section II (Figure 3b) (located at the
periphery of the PSF lens model in Figure 4), which represents
an astigmatic system occurring at the periphery of the lens
where strong radial distortion is present. Astigmatism impacts
the PSF of a given camera system directly (though it is not
the only impact). There have been many attempts over the
past few decades to correct astigmatism in optical systems.
For example, the rear half of a classical symmetric Celor
lens was used to reduce spherical aberration and astigma-
tism in a fisheye lens design [21], [52]. As described by
Muller et al [53], the Cooke Triplet is an optical system
with the ability to compensate for astigmatism. In that work,
the Cooke Triplet was applied on a subset of the Berkely
Deep Drive (BDD100k) [54] automotive dataset for blurring
between a defocus range of 1z = ±1.25, where a Mask
RCNN [55] model was evaluated across this range of defocus.
Within this range, it was shown that different Regions of
Interest (ROI) from the center to the edge of an image
have noticeably varying degrees of blurriness proving that the
spatial domain of an image has inconsistent image quality
and causes a significant drop in both statistical and spatial
performance metrics for the Mask RCNN model. From these
examples, it is clear that optical astigmatism has an undesired
effect but is very difficult to control in complex optical
systems. For wide-angle lenses such as fisheye, astigmatism
is particularly problematic where the radially varying PSFs
(discussed in Section II) affect the degree of blurring around
the periphery of the lens.

Due to the mass production and time constraints of pro-
ducing camera systems, this optical aberration cannot be
eliminated. To compensate for astigmatism, optical systems
could sometimes end up being rebuilt several times, but this
is industrially undesirable [56], [57]. To correct linear astigma-
tism, a manufactured lens can be rolled on its mechanical seat
so that one surface becomes tilted by an angle of α measured
in arc minutes which can be estimated by (3) [56]:

α =
d
R

(3)
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Fig. 9. Demonstration of astigmatism in a fisheye lens. Note the mismatching foci where the astigmatic images represent varying divergences of both
sagittal and tangential rays.

where d is the lateral displacement of the lens due to rolling
and R is the radius of curvature of the surface on the seat.
Finally, a thin optical wedge is added to the optical system
just before the light reaches the image plane as described
by [56], [58]:

WL A = −
1 − n2

n
∗ u ∗ ū ∗ α ∗ y (4)

where n is the index of refraction of the wedge, u is the slope
of the first order marginal ray before entering the wedge, ū is
the slope of the first order chief ray before entering the wedge
in image space respectively, and y is the marginal ray height
at the wedge [56]. Figure 7 demonstrates these parameters on
a sample optical wedge-shaped as a rectangular prism.

It has been demonstrated that astigmatism can be unde-
sirable for computer vision algorithms as it can influ-
ence the performance of object detection and segmentation
algorithms due to the blurriness of the target objects
[57, p. 43]. Substantial evidence in literature all demonstrate
this for computer vision [47], [53], [57], [59], [60] (see
Table I). An example of a negative impact on performance
can be seen in [53, p. 60-61], where it is demonstrated
that using a Mask-RCNN model the Average Precision (AP)
worsens in performance on the Precision-Recall (PR) curves
by applying a defocus of 1z = ±1.25 using the Cooke Triplet

lens. Contrarily, a positive impact can be seen in 3D Object
Detection results from Chang and Wetzstein [44], using an
optimized mask for a freeform lens initialized with astigma-
tism. For example, when trained on 5500 KITTI [46] images
the optimized lens model produced 37.51% Average Precision
(AP) which is 10.8% higher for easy 3D object localization
when compared to the all-in-focus (original) KITTI dataset.
Similarly, there is an 8.34% AP improvement for ‘easy’ 3D
object detection (‘easy’ being a difficulty parameter of the
KITTI performance metrics). When considering astigmatism
for the application of Depth Estimation, a popular term was
coined in the 20th century called Depth-from-Defocus (DfD)
[61]. Using DfD, Carvalho et al. [47] synthetically defocused
datasets (such as NYUv2 [45]) and depth was learned from
the defocused blur showing a performance improvement when
compared to ‘all-in-focus’ (unaugmented) images. As with the
PSF, machine learning tasks that require depth estimation may
benefit from the depth-dependent defocus.

D. Vignetting

Vignetting (otherwise known as ‘light fall off’) is an optical
phenomenon that causes gradual darkening at the periphery
of an image. Vignetting occurs due to the varying angle of
light across a sensor, the intrinsic lens characteristics, and
physical occlusions [62]. It is most apparent in extremely wide
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Fig. 10. Mechanical vignetting in the Woodscape dataset. Note the
presence of black corners due to a mismatch in the sensor and lens aperture.

FOV cameras, such as fisheye. There are four main causes of
vignetting [63]:

1) Mechanical vignetting is the physical occlusion of light
to a camera sensor which gives a loss of information in
the resulting image [63]. This is generally a trade-off in
the design of fisheye cameras. Reducing the mechanical
vignetting would necessitate the sacrifice of camera
FOV, with most fisheye cameras designed either to be
full-circle (ref Figure 8) or cropped-circle (ref Figure 6).

2) The cosine-fourth-power-law describes the illumination
fall off due to the apparent elliptic eccentricity of the
entrance pupil from the point of view of the incident
light ray [64]. The greater the off-axis angle of the
object being imaged the more elliptic the entrance pupil
becomes. This increased eccentricity of the entrance
pupil from the point of view of the object means less
light propagates through the pupil, and hence we have
an illumination fall off.

3) Optical vignetting occurs due to physical occlusion
between lens elements (literally, rear elements are
shaded by those in front). It can often be reduced by
reducing the diameter of the aperture (otherwise known
as ‘stopping down the lens’) [21].

4) Pixel vignetting is caused by the physical structure of
the pixels in an image sensor [65]. In an image sensor,
the top layer of the sensor is not (typically) the light-
sensitive layer. When light is incident on a pixel, it must
travel through a ‘tunnel’ (layers of CMOS) before it hits
the photodiode. The deeper this ‘tunnel’ is relative to the
pixel area, the more a shadow is cast by the pixel walls,
causing increased light fall off with increased incident
angle.

Both optical and pixel vignetting can be compensated for at the
image signal processing stage (ISP) of a camera system [7],
[63]. For the Woodscape dataset, vignetting is largely compen-
sated with radial digital gain correction using a lens shading
block [39]. This post-processing compensation may fix the
visual appearance of the vignetting, but the signal-to-noise

ratio will not be improved. There is also mechanical vignetting
along the aperture, as seen in Figure 6. The “black corners”
that are distinctly visible are due to the lens hood that
prevents the image sensor from seeing the complete FOV.
The on-automotive hybrid structure-from-motion and omni-
directional camera calibration dataset [50] shows some level
of optical/pixel/cosine-fourth vignetting (ref Figure 8).

The ISO12233 standard [66] has introduced polynomial
fitting and non-uniform compensation to correct for vignetting
and geometric distortion effects in Edge Spatial Frequency
Response (e-SFR) measurements [67]. When high (1 side)
and additional low-signal (2 sides) corrections are applied,
the SFR decreases in both stages, hence reducing vignetting
in measurements. ISO12233 is used in measurements for
surround-view cameras in autonomous vehicles [68]. In terms
of computer vision performance, yet again, somewhat coun-
terintuitively, vignetting has been shown to have some positive
impact on statistical metrics for object detection. For instance,
it has been shown that applying vignetting to the KITTI [46]
and Virtual KITTI [69] datasets for 2D object detection on
cars [70], where a Faster-RCNN [71] model with a region
proposal network (RPN) (pre-trained on ImageNet [72]) was
used, precision increased from 83.12% to 88.96% when
vignetting was applied to the images [70] (see Table I). Also,
the number of car detections increased at the periphery of the
images, which is unusual as one would assume that vignetting
would cause a performance drop at the periphery. However,
precision alone is not sufficient for completely determining the
apparent positive impact of vignetting on performance, as it
is well-known that precision is biased towards the positive
class [73]. As a result of insufficient statistical metrics in these
experiments, more investigation is needed on the impact of
vignetting on computer vision performance. On the contrary,
an Adversarial Vignetting Attack (AVA) model confused a
ResNet50 [74] network which demonstrates that vignetting
can have an unpredictable effect on computer vision per-
formance [62] (see Table I). More experiments are needed
to understand these behaviors. Table I provides a detailed
comparison of experiments in the literature aimed at assessing
optical artifacts in computer vision. It is reasonable to deduce
that, among the identified papers, both negative and positive
effects of optical artifacts can occur depending on the nature
of the examined tasks. It cannot be conclusively assumed
that introducing optical artifacts into training data results in
degraded performance. For example, Depth Estimation exper-
iments show a positive impact, and augmenting synthetic data
improves performance on real-world data [75]. It is also evi-
dent that individual metrics, such as precision, improve when
vignetting is applied to KITTI (see Table I). However, degrad-
ing real-world images with vignetting as an adversarial attack
on algorithms gives degrading performance [62]. This demon-
strates that image degradation can lead to positive results for
datasets with simulation but negative on real-world data.

E. Geometric Distortion

The geometry of fisheye cameras has been covered in
several previous surveys [1], [3], and as such we only give
a brief discussion here on the topic.
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Fig. 11. Geometric Relationship between a fisheye point at u on the
two-dimensional image and an equivalent point at s on a unit sphere [1].
The projective sphere is a more natural geometric object for modeling the rays
of an omnidirectional/fisheye camera, in the same manner that the projective
plane is used for narrower FOV cameras [87].

The very strong radial distortion in fisheye optics is, per-
haps, the most obvious undesirable artifact. In [1], there
is an in-depth discussion on different fisheye mathematical
models. It is especially interesting to note a fisheye camera’s
relationship with the 2D image of size I 2 from a geometrical
perspective. Here we give a very brief overview but would
encourage readers to examine the previous surveys for more
details. In Figure 11, θ is the angle at which the ray of light
from an object X maps from a unit sphere onto an image
plane. C is the center of the unit sphere. The radial distance
||u|| of the projected image point u to the image center c
is proportional to this incident angle θ . Some of the classic
geometric projection models that represent fisheye distortion
include (1) equidistant, (2) stereographic, and (3) orthographic
projections. Each projection model has a slight variation of the
general mapping strategy illustrated by Figure 11 [1]. Each
model has its own set of unique functions for both projection
and unprojection and these models in theory can be applied
to fisheye images to either remove the distortion or add dis-
tortion to rectilinear images. The polynomial Brown-Conrady
model (including calibration methods), is implemented in
many commonly used software packages and libraries (e.g.,
MATLAB [88], [89]). The popular Woodscape datasets [39],
[90], examined closely in this paper, use a full fourth-order
polynomial model for fisheye projection:

∥u∥ = r (θ) = a1θ + a2θ
2
+ a3θ

3
+ a4θ

4 (5)

Neural networks are not specifically built for distorted
images which lead to an expected degrading performance [15].
For example, due to the distortion in fisheye imagery, the
implicit assumption of translation invariance in CNNs does not
hold true. Furthermore, the use of augmentation methods does
not necessarily imply more data equates to better performance.
Cho et al. [80] present viewpoint augmentation as the method
that gives the least degrading performance for fisheye (see
Table I). More recent developments show that deformable con-
volution networks [91] would effectively solve the distortion
problem when considering the use of offsets and geometric
transformations in images. Deng et al. [6] propose a restricted
version of this strategy where the model was shown to be
robust for large radial distortions in surround-view systems
(see Table I).

F. Discussion

What is perhaps of most interest is that, when surveying
the admittedly sparse literature, it is not clear that all optical
aberrations impact the performance of all automotive computer
vision tasks negatively (see Table I). Several pieces of work
have demonstrated that certain tasks have been improved
by optical aberrations. For certain tasks, such as those that
extract depth from the image, this can make some sense due
to the depth-dependent nature of certain optical aberrations.
Considering the sparsity of the literature, it is evident that
further work in this space is required.

It should be noted that there are some elements related to
optics that we haven’t discussed completely in this section. For
example, images taken by cameras are also affected by natural
elements of the scene, such as sunlight causing sun flare (as is
the case in Fig 2). False artifacts appear near the aperture of
the lens in scenes with sun flare [92]. This produces unwanted
blurs at the periphery of the image and can be mistaken by
computer vision systems when performing object detection.
Actors such as pedestrians and cars can be occluded by the sun
flare, leading to missed detections. This is especially critical
when the sun is low in the sky in which case sun flare can be
unavoidable despite efforts to remove it in camera production.

Additionally, there is some work ongoing on designing
optical systems for computer vision. Designing optical lenses
for automotive computer vision tasks is especially challenging
given the requirement of using high-quality and standard high-
resolution input images for the training of DNNs and other
recent approaches (e.g., Vision Transformers [93] and Bidirec-
tional Encoder representation from Image Transformers [94]).
Research on lens design optimization concerning computer
vision is ongoing. In Yang et al [86], a Task-Driven End-
to-End Lens design approach has been introduced as a more
feasible option over conventional lens designs. End-to-end
optical design is a relatively new area of research that has
shown promising results when applied to common computer
vision tasks, including object detection. However, these lens
designs rely on well-developed End-to-End optical design
solutions [86], [95], [96], [97]. However, for example, the
TaskLens model [86] shows a lot of potential and unexplored
areas in optical design outperforming the image classification
of three traditional lens designs developed using conventional
lens design methods (i.e., the doublet, triplet, and quadruplet
each having a 68.8◦ FOV and f-number of f/2.8). There is some
very recent work showing a trend in the adoption of optical
lens modeling using artificial intelligence as a strategy to
design for computer vision performance as shown in Table II.

IV. COMPUTER VISION IN SURROUND-VIEW CAMERAS

In the previous section, we briefly discussed the impact
of individual optical artifacts. In this section, we examine
computer vision performance in surround-view cameras as a
whole. This is illustrated using an application of the YOLOv7
object detection algorithm on the Woodscape dataset. What
is evident from the previous section is that for fisheye, the
optical artifacts are strongly spatially variant (in narrow FOV
cameras, this spatial variance can typically be safely ignored).
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TABLE II
OPTICAL LENS MODELLING WITH ARTIFICIAL INTELLIGENCE

Therefore, perhaps, global metrics of performance do not give
us the full picture of the performance of computer vision
from fisheye cameras. In this section, we therefore also briefly
discuss recent proposals on spatially dependent performance
metrics.

A. Computer Vision Performance

Computer Vision research is a consistently developing field
where new algorithms are being developed or optimized to
solve the perception problem in images. To get an idea of
the speed of development, You-Only-Look-Once version 8
(YOLOv8) [98] was released approximately 5 months after
the previous version, i.e., YOLOv7 [99]. To give an indication
of the rate performance improvement for YOLO, using the
baseline models comparison, YOLOv7, when trained on the
MS COCO [100] dataset with 75% fewer parameters than
YOLOv4 [101], is capable of reaching 66.7% AP which is
1.5% better than YOLOv4 [99]. The general trend for each
YOLO version release is based on performance optimization
such as speeding up non-maximum suppression (NMS) and
maintaining previous structural improvements such as being
an anchor-free network [102].

As we have already seen, despite the highly dynamic nature
of computer vision research at the moment, there is relatively
little research done into how optical characteristics, discussed
in Section III, affect computer vision statistical metrics. As dis-
cussed by Brummel et al. [60], spatial metrics are a more
insightful approach than statistical metrics (we shall discuss
these in the next subsection). To our knowledge, to date, there
hasn’t been a more rigorous analysis comparing both metrics
across the FOV of fisheye. This remains an open challenge for
the community. However, here we will give some indication
of the complexity of the problem.

Figure 12 shows the output of YOLOv7 inference run
on a WoodScape sample. In the Regions of Interest (ROIs)
chosen from the image both training from scratch and transfer
learning on MS COCO [100] were performed for YOLOv7.
Comparing both results, there are fewer false positives (FPs)
in the ROIs for transfer learning such as the omission of

the bin and scooter. Higher IoUs are evident for transfer
learning out of the True Positives (TPs) identified suggest-
ing a better performance. Most IoU results average between
0.49-0.83 which is a better performance for smaller objects
than for typical behavior where smaller objects tend to give
lower results in images [103]. However, the current statistics
of YOLO are not meaningful, especially concerning the optical
artifacts discussed in this article. Going forward we need an
accessible platform on which specific metrics are broken down
for each optical artifact, especially in fisheye images. There are
multiple instances of objects being mislabeled by YOLOv7.
For example, two bicycles placed next to each other or a
green bin with four wheels are labeled as ‘vehicles’ in the
right background. A rack of bicycles is also detected as a
vehicle in the left background and the scooter in the right
background is incorrectly labeled as ‘person’. These False
Positive errors are likely (in the terminology of Hoiem [104])
due to similarity or background confusion. Woodscape does
not have a ‘scooter’ or a ‘bin’ label as part of the ground
truth labeling. Object detection errors of fisheye images are
inherently affected by the optical artifacts where the objects in
the scenes are deformed as shown in recent literature [6], [44],
[53], [62]. Not only must the model deal with optical artifacts
discussed previously, but fisheye also introduces rotations of
the objects dependent on the scene positions. Examine the
bicycles in Figure 12. All are approximately vertical in the
scene (i.e., they are standing on the ground), but in the fisheye
image, they appear in a range of different orientations. Any
model must learn rotational invariance to perform well on
fisheye surround-view cameras.

In addition to optical and geometric effects, a practical limi-
tation of using fisheye cameras on a vehicle is that much of the
image will be composed of the bodywork of the ego-vehicle
itself, potentially causing image reflections to be mistaken as
objects in the scene (e.g., see Figure 13). Recently, a simple
U-Net [105] architecture with a Res-Net50 [74] encoder was
proposed to extract areas of the vehicle ego-body in the
surround-view images of Woodscape to prevent unnecessary
computation and detection of false positives [106].
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Fig. 12. YOLOv7 inference regions of interest (ROIs) (red box) on the Woodscape left camera image was performed. Qualitative results show both
training from scratch (orange box) and transfer learning (green box). Notice the misclassification of object types in both instances. The orientation of
the object in the image due to its location can confound an object detection network. Note: the pre-trained model used in transfer learning was pre-trained on
the MS COCO dataset.

Fig. 13. False positive detected on the vehicle bodywork due to reflections
visible in the surround-view camera [106].

Braun et al. [107] discuss the difficulty in accounting for
all possible scenarios with automotive cameras. Feasibility is
one of the main obstacles to building robust computer vision
models for the industry where data needs to be collected in
real-time to account for the consistently changing environ-
mental conditions and traffic scenarios that have not been
tested during development. There are large datasets including
BDD100k [54] and KITTI [46] covering a sample of potential
road traffic events on roads but the data in these represent
just a sample of possible events in the automotive context.
There may be completely different conditions or exceptions
such as the time of year when festivals disrupt the expected
flow of traffic or unplanned roadworks which adds to the
unpredictability of traffic. In short, it is not possible to test
all road traffic scenarios using only real-world datasets that

have a limited size. For this reason, in Section V, we will
discuss the current state of surround-view simulation systems.
First, however, we will briefly discuss some newly developed
metrics for computer vision that take into account the spatial
variance of image and scene.

B. New Spatially Variant Performance Metrics

As mentioned previously, PSFs are used to model the
degree of blurring in images created by an optical system.
The PSFs can represent the way the optical resolution of the
camera system changes from the center to the periphery of
an image. However, measuring PSFs is not straightforward.
As mentioned, the PSF is essentially the spatial impulse
response of the camera. To measure the PSF, you need a
scene with specific hardware (such as lasers or specific scene
targets) [108]. A simpler and more practical measure of spatial
resolution is to use the modulation transfer function (MTF)
[109], which is a measure of the spatial frequency response of
the camera. Indeed, there are mechanisms to extract the MTF
of natural scenes without the need for any specific hardware
or target [110].

The correlation between MTF and computer vision perfor-
mance has been investigated in [59], where it is concluded
that MTF is not a suitable predictor for the performance of
computer vision. The test results show very little difference
in optical performance characteristics using a Cooke Triplet
despite the use of completely different sampling methods
(i.e., superposition (SP) and isoplanar (ISO) with blocks of
area 320 pixels2) [59].

A potential strategy identified in [59] is the use of spatial
metrics [53], [60]. Spatial metrics are a useful approach
to quantifying computer vision algorithms, as they report
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performance measures in different regions within the image.
This is especially interesting given the spatially variant optical
aberrations exhibited in fisheye cameras. The two key metrics
proposed are the Spatial Recall Index (S RI ) and the Spatial
Precision Index (S P I ) as described by (6) and (7) respectively.
These are spatial variants that generalize the statistical metrics
of Recall and Precision, as the names indicate. In [59], both
metrics were adapted to quantify the spatial performance of a
Cascade Mask RCNN model [111] for instance segmentation
in automotive scenes. In each case, the statistical metrics were
adapted by assigning the equivalent statistical value (i.e., both
Precision and Recall) to each pixel occupied by the object
in the bounding box. Using the metrics from (6) and (7) a
correlation was observed between the spatially varying optical
performance and the spatial performance of the Cascade Mask
RCNN model. The S RI is given as:

S RI =

[ N∑
n=1

{
1 (x, y) ∈ [T Pn ∩ Pn]

0 else

]

⊘

[ K∑
k=1

{
1 (x, y) ∈ [Pk]

0 else

]
(6)

where, (x, y) ∈ [T Pn ∩ Pn] are all the pixels belonging to
the n-th true positive mask and the k-th ground-truth mask
denoted by Pk . The element-wise division denoted by ⊘ of
the sum of all TPs and the sum of all ground truths results in
the S RI metric.

Similarly, the S P I metric is found by element-wise division
of N true positive instances and the sum of N true positive
and J false positive instances.

S P I =

[ N∑
n=1

{
1 (x, y) ∈ [T Pn ∩ Pn]

0 else

]

⊘


N∑

n=1

{
1 (x, y) ∈ [T Pn]

0 else

+

J∑
j=1

{
1 (x, y) ∈ [F P j ]

0 else

 (7)

where, (x, y) ∈ [F P j ] denotes the j-th false positive instance
and (x, y) ∈ [T Pn] denotes the n-th true positive instance.
Notice the same numerators are used in both (6) and (7). For
more information please refer to the original work [53], [60].

These spatial metrics were used on degraded versions of
the BDD100k datasets where a defocus of 1z = ±1.25 was
applied. Differences in spatial performance were examined
by comparing the results from the degraded datasets to the
baseline BDD100k dataset. This is known as the spatial
performance drop (S RIdrop and S P Idrop):

S RIdrop = S RIbase − S RI1z (8)
S P Idrop = S P Ibase − S P I1z (9)

where S RIbase and S P Ibase denote the spatial results of the
baseline dataset and S RI1z and S P I1z denote the spatial
results of the degraded datasets.

Four observations can be made from the experiments in [53]
and [60]:

1) It was found that AP dropped from 87.21% (i.e. base-
line) to 84.78% for a defocus of 1z = +1.25 and
82.72% for 1z = −1.25, respectively.

2) Spatial performance drop increases towards the periph-
ery or edges of the images for a negative defocus
(i.e. 1z = −1.25). Conversely, performance drop
increases towards the center of the images for a defocus
of 1z = +1.25 suggesting that statistical metrics vary
across the FOV.

3) Ground truth instances were missed due to the worsen-
ing image quality between 1z = ±1.25.

4) Finally, the number of FPs was not influenced negatively
by the degradations.

Both of these works demonstrate the additional insight that
can be obtained from these metrics and should become part
of the analysis when considering optical artifacts in fisheye
images.

V. SURROUND-VIEW SIMULATIONS

Now we will turn our attention to surround-view simulation.
As a way of resolving the lack of understanding of combining
fisheye cameras with computer vision (especially due to the
lack of public datasets available); automotive simulation can
be utilized. However, as will be discussed in this section,
automotive simulation lacks the optical properties of the
camera and there is no standardized process of perception
algorithms for automotive simulation. As we have already
discussed, datasets will, no matter how large they are, suffer
from a limited set of scenarios in which they are captured.
Additionally, the collection of real-life data for training AI
applications in the automotive industry (including autonomous
driving) is a time-consuming and expensive process [1], [75].
The BDD100k dataset [54] has over 100k driving videos
collected from more than 50k rides capturing New York and
the San Francisco Bay area (among others) and is one of the
largest automotive datasets released to date. Woodscape [39]
has 10k publicly released images from three distinct locations
(USA, Europe, and China) and is the first dataset of its kind to
address surround-view cameras for automated driving. These
datasets, while giving a reasonable amount of data for training
computer vision algorithms for research, have their limitations
where they only show a fraction of what can happen in the real
world. Thus, it is fruitful to provide an overview (and some
discussions) of current trends in automotive scene simulations,
including model-driven and data-driven simulators, which are
proposed to be used for addressing corner cases in autonomous
driving. In the context of simulation, we also revisit the optical
artifacts from Section III and discuss how they should be
combined with the fisheye distortion models for photorealism.

A. The Argument for Simulations

As stated previously simulation lacks the optical properties
of the camera but can potentially be considered as a direc-
tion of research for integrating the camera design with the
simulation tools available. It is quite intuitive why simula-
tions are needed for the development of automated driving
solutions. However, it is still worth taking the time to make
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this explicit (perhaps for the uninitiated reader). Every time a
new traffic scenario is found that is not covered by the public
datasets discussed (or other datasets), the new information
should be added and re-split into the given ratios of training,
validation, and testing. For example, if new data was added to
the Woodscape dataset in the experiment from Section IV-A
Figure 12, the data would need to be re-split into the
(80%-10%-10%) ratio and YOLOv7 would need to be
retrained. This would be very inefficient in the long term,
especially if a diverse set of camera models with different
lens calibrations would need to be incorporated into the
datasets. Therefore, by adding simulation data to real-world
data, the performance of computer vision can improve on
real-world data. This can also be possible where there is a
lack of ground-truth data in real-world images for training
computer vision. For example, as of the writing of this survey,
SynWoodscape [90] is the only publicly available synthetic
fisheye dataset with pixel-wise optical flow ground truth. For
the original Woodscape, it was not possible to obtain optical
flow ground truth in the real scenes, and synthetic data was
identified as the only feasible solution [39]. As a logical
next step, Shen’s experiments [79], demonstrate using the
ground truth from SynWoodscape on the Recurrent All-Pairs
Field Transforms (RAFT) [112] optical flow algorithm to
improve performance and correct erroneous optical flow in
the original Woodscape. Table I shows that synthetic data can
be considered to simulate optical artifacts due to the realism
of automotive simulators. However, as clearly stated in this
section, there are quantitative performance differences between
degraded simulation data and real-world data. Therefore,
a more comprehensive analysis of computer vision algorithms
is required and any simulation results shown here by no means
represents a definitive analysis. Simulation must develop in the
direction of combining the optical properties of the camera
with simulation for there to be any comprehensive analysis.

However, the lack of real-world optical artifacts inside
the simulation presents a disadvantage when it comes to
optimizing algorithms for the real world. In the context
of model-driven simulators, the only approach to solving
this problem is by implementing the lens design inside
the simulator which would lead to the inherent addition of
optical artifacts and a more realistic synthetic image than
before. One such strategy would be combining the well-known
OpticStudio1 with CARLA [113] or Unity where the ability
to consistently alter lens models gives flexibility to the user
as a way of varying optical artifacts inside the simulator.

As of this moment, data augmentation with pixel unpro-
jection (to a ray), rotation, and re-projection (of the ray to
pixel) of the fisheye data can be used as a means of creat-
ing augmented fisheye images for training computer vision
algorithms [80], [114]. However, creating augmented fisheye
data affects the distribution of optical artifacts in the images
in a possibly unrealistic manner. Additionally, by using the
original images for augmentation, no new lens configuration
can be learned from the augmented data, as the augmentation
just models a warped version of the lens configuration of the
original system. Therefore, augmented fisheye data is not nec-
essarily a solution to examining optical performance behavior

on computer vision. If the original data were to be synthesized
(or augmented) for training, both the original and altered
datasets would only ever have one specific lens configuration.
This could potentially lead to overfitting computer vision on
one specific lens configuration, which is not useful for scaling
to different cameras.

The naive approach to solving the data problem would be to
iterate over an entire set of camera lenses. This is impossible
for three reasons:

1) Firstly, using only one camera is not enough to test
all possible combinations. Every time a new cycle of
experiments begins the camera would need to be dis-
assembled and reassembled with new lens calibrations,
which would be a time-consuming process with poten-
tially irreproducible results.

2) Secondly, it is infeasible to test all possible lens cali-
bration combinations for computer vision where data is
collected with a group of cameras with different optical
configurations. This is mainly because it is impossible
to determine the number of cameras needed for this
experiment without making mistakes in assumptions,
for example, about the optical artifacts discussed in
Section III.

3) Finally, it would likely only be possible to estimate
this number via trial-and-error experiments. This could
potentially lead to an unpredictable number of iterations
in experiments to demonstrate a smooth transition of
results iterating over the different lens designs.

A solution to this problem is to use simulation by varying
optical parameters of lenses and examine the effect on com-
puter vision performance. As of today’s research, automotive
simulation can be broken down into the hierarchy presented
in Figure 14, where simulation can be both model-driven and
data-driven.

B. Model-Driven Simulators

Model-driven simulation is where simulation is created
using computer programs to design a scene and landscape
using blueprint assets and mesh vectors. As described by
Mutsche et al. [19], model-driven simulation is more com-
parable to modern video games. As shown in Figure 14, there
is a wide range of model-driven simulators available. Each
simulator is designed with sensors or multi-modal outputs (i.e.,
camera, radar, Light Detection and Ranging (LiDAR), etc.)
applicable to autonomous driving. Model-driven simulation is
challenging in automated driving mainly because it represents
an artificial and near-perfect version of real life, which does
not actually exist. There is a visible difference in texture used
on assets, buildings, and the environment. For example, the
asphalt on the road as depicted in Figure 15 is unnaturally
brighter than the road surface in Figure 12, clearly indicating
that, while objects may resemble real life, current automotive
sensor simulators struggle with texture. Despite these limi-
tations, simulation is improving rapidly in terms of visual
quality. The recent release of Unreal Engine 5.2 (UE5) has
much more control over the look and feel of objects in scenes,
such as applying dust on the clear coating of vehicles. These
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Fig. 14. Simulation Hierarchy. MATLAB RoadRunner custom maps can be exported to any model-driven simulator. Unlike model-driven simulators,
VISTA uses real-life datasets (e.g., KITTI, NuScenes, and Waymo) to generate simulated images or additional viewpoints of the same environment. Also, the
sensors available in the VISTA simulator (i.e., RGB Camera, 3D LiDAR, and Event Camera) can also be found in the model-driven simulators.

Fig. 15. YOLOv7 trained from scratch on SynWoodscape and inference on an MVL sample (green box). Zoomed areas of the image show regions
of interest (ROIs) for object detection (red box). See Figure 12 for comparison. Note the absence of mechanical vignetting (dark corners), artificial lighting
(uniform colors), and the presence of the outline of the cube map fisheye projection model used for distortion (a dark outline of a cube in the center of the
image.

visual improvements suggest that model-driven simulation is
steadily advancing towards photorealism, at least superficially.
By utilizing automotive simulators, such as CARLA [113],
scarcity of data issues are addressed in datasets for supervised
autonomous driving. Therefore, if there were a way to combine
real and synthetic data, it would be possible to measure
optical performance across a range of lens calibrations to
understand which lens combination would be ideal for which

computer vision model. Especially in the space of surround-
view cameras, a simulator such as CARLA with Unreal
Engine [113] would be useful to test out these different
scenarios in combination with fisheye distortion. However,
CARLA cannot natively model fisheye cameras.

To overcome this, to the best of the authors’ knowledge,
all fisheye models created in CARLA use an intermediate
cube map for the creation of the fisheye image [90], [115],
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Fig. 16. Synthetic fisheye images from the OmniScape dataset left and
right views [115]. Note the visibility of the projection cube as shadows in
the image.

Fig. 17. Mapping of the cube map image’s pixels to the fisheye image [90].
Five or six perspective cameras are created in the simulator. Each side of the
cube map has a 90◦ FOV. These are then post-processed into a fisheye image.

[116], [117], shown in Figure 17. The cube map can then
be mapped to a fisheye image using any fisheye model. For
example, in [115], a 10,000 image dataset of fisheye from
CARLA was converted using a six cubic map model, as shown
in Figure 16. The cube map images were converted to fisheye
using the model from [118]. The SynWoodscape dataset took
a similar approach, except using the fourth-order polynomial
model from [39]. However, a major drawback of this two-step
fisheye image creation is that, due to the initial cubic mapping,
there are faint dark outlines of the cube map projection model
itself, such as can be seen in OmniScape (Figure 16, and in
SynWoodscape (Figure 17).

Despite the lack of realism in synthetic data, YOLOv7
does surprisingly well at identifying objects in SynWoodscape
(split into an 80%:10%:10% ratio) which has the same degree
of distortion as Woodscape (see Figure 15). Most notably,
even with a relatively small dataset of 2.5k images, it is
capable of identifying very small pedestrians with the IoU
threshold set to 0.25. A recently released synthetic automotive

surround-view dataset, called Fisheye camera images and
BEV maps from Simulated Sequences of Ego car Motion
(FB-SSEM) [119], was built using the Unity game engine.
This dataset is interesting, as it has both Depth BEV and
fisheye segmentation views, which can be used for a wide
range of computer vision algorithms such as object detection,
segmentation, and trajectory prediction (i.e., predicting the
position of the ego-vehicle in a scene). As the Unity game
engine has built-in fisheye support, it is interesting to note
that we don’t have the same artifacts that occur with the cube
map approach in CARLA. However, this adds a restriction
that, in the Unity game engine, one can only model a fisheye
camera using the projection model implemented in the Unity
source code. As previously discussed, there are many models
of fisheye projection that one may be interested in [1].

A diverse set of maps is required for an algorithm to
learn more efficiently, as information collected from only one
map or scene has a bias for this specific traffic scenario.
RoadRunner2 offers a solution that is a Map Editor tool
designed to create automotive maps for simulators like
CARLA or Unity. With this tool, researchers can design their
custom maps to suit their applications in autonomous driving.
Using maps with different props, actors, and scenery can also
widen the possibilities of fisheye dataset creation.

C. Data-Driven Simulators

Data-driven simulation is a relatively unexplored area in the
simulation field where instead of designing computer models
that imitate the realism of automotive scenarios, publicly
gathered datasets (such as the KITTI [46], NuScenes [120],
and Waymo [121] datasets) can be synthesized for simulation
which would have a more photorealistic appearance. A pub-
licly available interface is being constructed to interface with
these three datasets.3 As of the writing of this paper, the inter-
face for these public datasets has not yet been released on the
official website. The second version of Virtual Image Synthesis
and Transformation for Autonomy (VISTA 2.0) [122] has the
current capabilities to accommodate different sensor systems
such as RGB, LiDAR, and Event-based cameras.

The lack of photorealism in simulators like CARLA raises
the question as to whether model-driven simulation is reli-
able for development and testing in the long term, despite
its practicality and feasibility. This is where photorealistic
simulation, such as VISTA 2.0 can potentially help [122],
[123]. VISTA is a data-driven simulator, which can adapt its
actors and virtual environment to that seen in real-life datasets.
Data-driven simulation is a relatively new area of simulation
development which, as yet, is unproven in surround-view
imaging for automated driving.

The adaptation of public datasets such as KITTI, will
provide an advantage in creating custom synthetic datasets
following these benchmark implementations. For example,
creating a synthetic fisheye dataset using Woodscape with

2RoadRunner Map Editor: https://uk.mathworks.com/products/roadrunner.
html.

3Interface to public datasets available at: https://vista.csail.mit.edu/
interface_to_public_dataset/index.html#interface-to-public-dataset.
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VISTA would be a convenient way of generating synthetic
fisheye data without learning the complexity of model-driven
simulators. This would be especially useful to target scenarios
not covered by the traditional simulators and improve the over-
all quality of testing. However, for this paper, it is important
to note that, at the time of publication, there seem to be no
plans to convert any surround-view dataset with VISTA.

The benefit of VISTA is that it can generate an infinite
set of local viewpoints of trajectories from only a sparsely
sampled set of real-world viewpoints of a scene. Each newly
generated viewpoint is a different view of the same scene.
In Amini’s experiments [123], VISTA outperformed three
other self-driving techniques with viewpoint augmentation:
(1) Domain Randomization [124], (2) Sim-to-Real Domain
Adaption [125], and (3) Imitation Learning [126]. Unlike the
other self-driving strategies, VISTA required no lane interven-
tions, and the near-crash recovery rate improved by 30% when
compared to Imitation Learning.

The VISTA algorithm works in the following manner [122]:
1) In the ego-vehicle’s state, a continuous kinematic model

is updated consisting of the virtual agent’s dynamics and
those of the human driver.

2) The closest frame concerning the vehicle’s pose is taken
and a scene is recreated based on the ego-vehicle’s
perspective.

3) The frame is projected into 3D space to reconstruct the
scene.

4) From the 3D space a coordinate transformation is per-
formed using the virtual agent’s viewpoint.

5) A new 2D simulated observation predicting the next
frame of the scene is reprojected from the 3D trans-
formation back as a new viewpoint.

6) The newly generated observation is sent back to the
agent which then decides the ego-vehicle’s next course
of action in the scene. For example, if the road veers to
the right, the driving wheel is turned to the right.

While data-driven simulation looks powerful, even if in
the early stages, there are still some obvious artifacts. For
example, if one carefully examines the examples provided
in [122], under a modeled camera translation, the resulting
images have unrealistic perspective distortions introduced.

D. Optical Artifacts in Simulation

While simulators produce data that can enhance perfor-
mance for computer vision, questions remain as to how
effectively lens models can translate to a simulation where
there is no lens present in the virtual world. Of course, data-
driven simulators pose an interesting question as to whether
lens configuration is transferable from real datasets, such
as KITTI. However, as clearly indicated in SynWoodscape
Figure 18, there is no evidence of optical artifacts such as
chromatic aberration, astigmatism (or, in fact, any significant
PSF), or vignetting. These simulators are not designed to
incorporate real-world optics and can often bring their own
artifacts (like the visibility of the projection cube).

In Carlson et al. [75] optical artifacts are accounted for in
computer vision experiments by applying them using filters

Fig. 18. SynWoodscape left camera image showing no evidence of lateral
or longitudinal chromatic aberration. See Figure 6 for comparison. Note
also that the projection cube is visible as a shadow structure in the image.

Fig. 19. GTA dataset with optical artifacts applied [75].

(such as chromatic aberration) to the Virtual KITTI [69] and
Grand Theft Auto (GTA) [127] datasets. A sample illustration
of the resulting image from GTA can be seen in Figure 19.
It was shown in [75], from the results with baseline (unaug-
mented) and augmented (i.e., synthetic images with chromatic
aberration, blur, noise, etc.), that by adding the optical artifacts
uniformly across the synthetic images in training, Faster
Region Convolution Neural Network (RCNN) models per-
formed better with slightly improved mean Average Precision
(mAP) compared to the unaugmented synthetic datasets (see
Table I). Questions remain unanswered as to how to control
the application of these optical artifacts in the spatial domain,
especially for fisheye lenses where strong optical aberrations
are not uniform across the image.

In summary, while graphical simulation may seem like a
feasible solution to cover unforeseen scenarios on roads, it is
not the overall solution as currently, simulation alone cannot
completely replace the realism of actual camera footage [107].

VI. CONCLUSION

Automotive surround view cameras have become a niche
research area for computer vision. This survey has identified
the gaps and limitations of current strategies to train computer
vision systems for wide FOV cameras, both in real life
and in simulation. In particular, this survey has discussed
fisheye optical systems, the optical effects that inherently affect
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these systems, and the concept of adding optical effects in
simulation.

Concerning computer vision performance in surround-view
systems, there is little work in the space that examines
the impact of optical artifacts. Some computer vision tasks,
such as those that require depth extraction, appear to be
improved when certain artifacts are present. One might think,
therefore, that for these tasks designing a camera system
with a significantly greater presence of these artifacts may
be beneficial. However, this is not indicated by the results
in this area, in which only residual artifacts are examined.
Likely, the imperfections due to these optical artifacts would
quickly damage the performance of these tasks, were they too
great. Regardless, other tasks are almost certainly negatively
affected by optical artifacts. What is clear is that significantly
more work in this space is required for the community
to understand completely the impact of optical artifacts on
computer vision performance, particularly for surround-view
fisheye cameras, where design challenges mean these artifacts
can be significant.

From this survey, two limitations in surround-view sim-
ulators can be identified. Firstly, popular simulators lack
the simulation of lenses from the real world. Geometric
distortion models have been applied in simulation to introduce
fisheye distortion. However, real fisheye images are not just
affected by distortion but by a wide range of optical effects,
as has been discussed. Also, it is only possible to apply optical
effects to simulated images external to simulators, which is
a problem as there is little to no chance of reproducibility
for projects even if it can be achieved indirectly outside of
simulators. Secondly, as identified in the discussions from
Section V, there is a scarcity of both real and simu-
lated fisheye datasets for automated driving. This hinders
the development of surround-view perception systems, where
current simulation data may prove unsuitable for training,
partially due to the lack of optical effects.
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