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Parking Guidance and Geofencing for Last-Mile
Delivery Operations

Michele D. Simoni

Abstract— The current shortage of road and parking capacity
to accommodate freight traffic poses a significant challenge
in cities. This study develops and analyzes alternative traffic
management strategies for last-mile delivery operations. Three
alternative implementations of parking guidance involving allo-
cating commercial vehicles to dedicated loading/unloading bays
are investigated alongside a vehicle-specific geofence strategy.
Methodologically, an agent-based model framework is employed
to reproduce the interactions among (parking and cruising)
carriers, the surrounding traffic, and a traffic controller. An effi-
cient metaheuristic is integrated with simulation to address the
corresponding optimization. The effectiveness of the strategies
in reducing traffic congestion and other externalities varies
depending on the level and configuration of freight demand.
Among the parking guidance strategies, those weighing more
on carriers’ convenience mitigate potential risks of equity and
acceptability issues but at the cost of an efficiency loss. Geofencing
is less problematic due to the minor operational modifications,
offering comparable traffic performance improvement for low
and medium demand levels.

Index Terms— Curbside management, simulation-based opti-
mization, parking guidance, geofencing, last-mile delivery.

I. INTRODUCTION

PARKING space scarcity and poor management represent
a serious sustainability issue in cities worldwide. Freight

last mile operations (cruising and parking) significantly impact
traffic congestion, pollutants, and livability in cities [1], [2].
The increased competition among multiple curb users, includ-
ing regular vehicles, and ride-hailing services, makes this
problem even more compelling. Furthermore, e-commerce’s
rise results in shorter but more frequent stops of delivery
vans carrying parcels and adds another layer of complexity
to the problem [3]. Closely related to the issue of commercial
parking space, cruising (the action of searching for parking
near the desired destination) represents an important source of
externalities too. Cruising represents an important component
in commercial trips, accounting for several hundred meters
per route segment [4], and therefore increasing traffic and
pollution impacts of urban freight deliveries.

Standard approaches like enforcing restrictions and creating
more dedicated infrastructure are often ineffective. Increas-
ing fines and controls does not considerably affect carriers’
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behavior since they are relatively inelastic and integrate this
cost into the delivery charges for providing a service in that
area [5]. Devoting additional curbside space to delivery vehi-
cles is also an unfeasible solution given the already burdened
urban road infrastructure and the amount of space that all
urban freight operations would require [6]. In recent years,
new policy solutions aimed at managing more efficiently the
available infrastructure space through dynamic commercial
vehicle load zones, off-hours delivery, and curbside reserva-
tions, have become popular among transport policy-makers
and researchers [7].

In particular, progress in wireless communication, compu-
tational, and sensing technologies occurred in the previous
decade have paved the path towards more advanced Intelligent
Transport System (ITS) solutions to improve transportation
systems’ operations. Parking guidance and vehicle access con-
trol systems have been successfully implemented worldwide
since the Seventies through cameras and Variable Message
Signs. Recent Vehicle-to-infrastructure (V2I) communication
systems enable more complex solutions by allowing fast and
customized transfer of information between vehicles and the
road infrastructure manager. Sensors can be employed to
monitor parking availability and traffic information in real-
time and exchange information with equipped vehicles via 5G
cellular networks [8]. Based on these technologies, new traffic
management strategies for delivery vehicles in urban areas
could be developed to achieve a more balanced utilization of
the curbside and reduce traffic congestion.

This paper defines, models, and investigates alternative
strategies for managing last-mile delivery operations. The
investigated strategies rely on two main technical solutions
that offer flexibility in their implementation to achieve specific
objectives (as detailed in Section III-C). The first consists
of a guidance system that identifies the best assignment of
commercial bays to carriers based on the incoming delivery
vehicles’ parking requests and potential negative effects from
illegally parked and cruising operations. The second consists
of a geofencing system that identifies vehicle-specific access
areas (set of streets) that should be open to freight operations to
reduce the negative effects of their illegal parking and cruising.
The inefficiency arising from detouring original vehicles’ trips
can also be considered in the optimization problem.

The contributions of this paper are several. First, novel,
more comprehensive last-mile freight management strategies
that consider delivery operations’ traffic externalities are pro-
posed. The integration of guidance and geofencing systems
for commercial operations, particularly in relation to dynamic
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traffic models, remains an area that has received limited atten-
tion thus far. While a few studies have examined this concept
in the context of specific road segments, the few operations
research studies adopting a network-level perspective have
predominantly focused on optimizing carriers’ route efficiency,
overlooking the broader impact on traffic congestion (see the
following section for further details). The proposed study aims
to fill this gap by adopting a network-wide approach and
explicitly modeling carriers’ operations and delivery trips, and
their influence on traffic congestion patterns and vice versa.
This is possible due to the hybrid nature of the developed
framework, which combines macroscopic modeling of traffic
flows with microscopic modeling of carriers’ movements and
operations.

Second, this study thoroughly explains the implications of
four alternative implementation strategies through a compre-
hensive analysis of their performance in realistic settings,
considering various demand and supply conditions. The anal-
yses address city authorities’ objectives, such as the reduction
of traffic congestion, pollution mitigation, and curbing ille-
gal parking. Concurrently, freight carriers’ priorities, such as
delivery efficiency and detours, are considered. Several key
performance indicators (KPIs) are adopted, allowing for a
thorough assessment of the strategies’ effectiveness.

Finally, from a methodological perspective, the proposed
strategies rely on a simulation-based optimization approach
where an agent-based model is coupled to an optimization
metaheuristic to identify the best-performing solutions. The
proposed approach is accurate and realistic since it reproduces
carriers’ delivery operations at the individual level and network
phenomena like traffic congestion. The illegal parking behav-
ior is modeled as a temporary reduction of road throughput.
The cruising behavior is modeled through a Markov pro-
cess depending on parking availability and deviation from
the original route. An important advantage of the proposed
framework is its computational efficiency, allowing for the
rapid evaluation of hundreds of potential solutions within
minutes. This efficiency facilitates extensive scenario analysis
and decision-making processes.

The remainder of this paper offers the following: a review of
the related literature and real-world case studies, a description
of the strategies and corresponding modeling and optimization
framework adopted, an analysis of different scenarios, and
conclusions.

II. RELATED LITERATURE AND REAL-WORLD
APPLICATIONS

The limited parking available for commercial vehicles is
undoubtedly a key concern among the other inefficiencies
connected with the last mile of the urban freight distribution
(e.g., pollution, congestion, and safety) [3]. According to a
survey done in Chicago by Kawamura et al. [9], trucks were
unlawfully parked more than 28 percent of the time, compared
to 3 percent for passenger vehicles. In Paris, a similar survey
conducted by Dablanc and Beziat [10] identified more than
50 percent of delivery operations as illegally parked. While
these numbers might vary considerably across cities and during

the day, urban delivery operations can disproportionately
impact network congestion and pollution levels. For example,
the overall levels of NOx and PM2.5 pollutants can grow
by more than 50 percent, depending on the shares of truck
traffic [11]. Similarly, the traffic performance of a large urban
corridor can decrease by more than 20 percent, with around
20 illegal parking operations per hour [12]. Cruising for park-
ing also represents a source of externality. In addition to the
time spent for searching a delivery location by carriers, extra
driving represents an additional source of traffic and pollution
(air and noise). Due to the difficulty of monitoring commercial
vehicles’ cruising movements, little is known about the extent
and effects of this phenomenon. Empirical research estimated
a contribution between 20 and 30 percent of total vehicle
miles traveled in cities from cruising [13] and a median
deviation in delivery trips of 2.3 minutes [14]. Nevertheless,
it is difficult to generalize these results since they depend on a
number of variables, including transport infrastructure, parking
choice, vehicle type, parking congestion, and expected dwell
time [4].

In the past decade, a growing number of studies have
addressed the issue of curbside by developing simulation-
based curbside management solutions. Roca-Riu et al. [15]
propose a centralized commercial bay management system and
formulate the corresponding optimization as an assignment
problem. The dynamic management of commercial bays is
addressed by means of simulation by Comi et al. [16] who
highlight its considerable potential benefits. Letnik et al. [17]
investigate a sizing problem combined with the management
of commercial bays and identify several potential benefits,
including reduced energy consumption and delivery times.
The solution method involves the combination of cluster-
ing and routing sub-models. To determine the number of
commercial bays and their position for a given demand,
Pinto et al. [18] employ the “covering principle,” based on
the acceptable walking distances from the carrier final des-
tinations. Yang et al. [19] propose an auction-based system
that optimizes the usage of pre-booked loading and unloading
facilities to maximize the system’s social welfare. The booking
requests’ time preferences and service duration are considered
for determining the best potential assignment. Mor et al. [20]
adopt a more extensive perspective by including the carriers’
routing and scheduling dimension in the management problem
and its influence on the optimal assignment. Different degrees
of carrier flexibility seem to affect the overall rates of illegal
parking and therefore the efficiency of the proposed system.

Only a handful of studies has focused on the traffic per-
spective by adopting traffic simulation to evaluate delivery
operations management solutions. McLeod and Cherrett [21]
develop a loading bay booking and control system for truck
deliveries and investigate the potential effects for the case
of Winchester High Street (London). The corresponding
algorithm, which is based on a series of rules, is tied to
an AIMSUN simulator. The authors highlight the detrimental
effects of advanced booking of loading bays in the presence
of early and late vehicle arrivals. To assess parking rules on a
few-block scenario in Toronto, Nourinejad et al. [22] couple
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a parking choice model with microscopic simulation using
Paramics. Aditjandra et al. [23] use a microsimulation method
to analyze in detail the environmental impact of a large freight
traffic generator (although they did not consider curbside).
Transmodeler is adopted by Ukkusuri et al. [24] to examine
the effects of an off-peak delivery program in Manhattan
and compare the findings to a regional travel demand model.
Munuzuri et al. [25] propose their own ad-hoc microsimulation
to investigate double-parking and loading/unloading activities
on a four-link network. Roca-Riu et al. [26] adopt an analytical
approach to design shoulder lanes that can be dynamically
used for delivery on a single link. Simoni and Claudel [27]
adopt a hybrid simulation approach where traffic is modeled
macroscopically while trucks movements and operations are
reproduced microscopically to identify the optimal location of
delivery stops on a single link. Generally, as the case studies’
scale demonstrates, mesoscopic and microscopic simulations
are best suited to evaluating small scenarios due to their high
computing costs and demanding calibration procedures.

Few studies have also been conducted on the design and
development of geofences, but none on freight traffic and
delivery operations. Relevant works include applications to
designated or forbidden areas for autonomous driving in
scenarios with mixed flows [28], [29]. Similarly, all the
research on parking guidance systems (PGS) has focused on
the passenger segment. For a recent up-do-date overview of
PGS’ technical description and algorithms for passenger traffic
applications the reader is referred to [30] and [31].

Among real-world applications of freight curbside manage-
ment, of particular relevance is the “CurbFlow” pilot program
run in Washington D.C. during 2019, where both commer-
cial operators and private users could reserve curbside space
among nine available slots for 30 minutes [32]. The initial
results of this three-month pilot seem promising as double-
parked delivery operations reduced by 64 percent. Other major
cities in the U.S., like Los Angeles, San Francisco, Chicago,
and New York, have dedicated curbside space for delivery
operations in central business districts during certain times of
the day [33]. Still, no reservation system for freight seems to
be in place. In Europe, relevant real-world experiences include
the “Straightsol” pilot project (December 2011-March 2012)
in Lisbon [34], and the “ALF” project in Lyon [35]. In the
first one, a system of parking meters and loop detectors was
installed to improve the efficiency of loading and unloading
operations. In the second, a dedicated app was developed for
reserving commercial bays for a limited amount of time with
a 24-hour notice.

The first geofencing trial projects for freight have been
implemented in some European cities between 2010 and 2020.
The Smartfusion project involved a real-traffic trial in Berlin to
determine electric mode “sensitive” geofences along a specific
route [36]. A geofencing solution for freight movements has
been tested in Stockholm to support off-peak delivery with
electric vehicles [37]. Similar systems for hybrid delivery
vans to control emissions levels have been tested in Cologne
(Germany), Turin (Italy), London (U.K.), and Valencia
(Spain) [38].

III. METHODOLOGY

This study focuses on the modeling and analysis of alter-
native curbside management strategies for last mile freight
operations, employing a simulation-based optimization frame-
work. The framework involves two key types of agents: a
“parking manager” and carriers. These agents interact based
on parking behavior, traffic impacts, and optimization utilizing
a metaheuristic approach.

Section III-A introduces the fundamental concepts and
assumptions underlying the alternative strategies implemented
by the parking manager and describes the overall simu-
lation framework. The corresponding optimization problem
formulation, along with the solution method, is elaborated in
Section III-B. The modeling of carriers’ operations, encom-
passing cruising and parking behaviors, as well as their
interactions with the surrounding traffic, are detailed in
Section III-C.

A. Problem Setup and Simulation Framework

One solution to deal with the adverse effects of trucks’ cruis-
ing and illegal parking is to manage the existing commercial
parking infrastructure through control systems regulated by
public authorities (parking manager). A practical implemen-
tation of this solution could rely on a web app that requires
carriers approaching the designated area for management to
notify their planned delivery location, estimated arrival time,
and planned duration of the unloading/loading operation. The
parking manager processes carriers’ information and provides
guidance and recommendations based on the selected strategy.

In the parking guidance-based strategies, the parking man-
ager processes carriers’ notifications as ‘requests’ and per-
forms an assignment to commercial bays based on alternative
objective function formulations, which could represent the
estimated traffic network delay or carriers’ inconvenience.
Not all the requests might be fulfilled depending on the
demand and supply levels. When such circumstances occur,
the parking manager does not provide any directions to
carriers that are not assigned. The primary rationale behind
this solution is to reduce the most ‘critical’ illegal park-
ing operations and decrease cruising. In the geofence-based
strategies, the parking manager identifies areas accessible to
vehicles where cruising and parking are allowed. Unlike the
previous approach, the parking manager does not identify
a specific commercial parking spot but rather indicates the
carriers a set of streets (links) where trucks cannot perform
delivery operations. Unlike traditional geofencing methods,
the proposed solution is ‘vehicle-specific’ since it tailors a
dedicated geofence for each approaching vehicle. Similarly,
parking guidance-based strategies, such a choice can be made
to minimize the total network traffic delay or include broader
objectives. To account for carriers’ perspective, guidance and
geofence strategies can include the inconvenience of detouring
trips in their optimization formulation (see Section III-B).

Both parking guidance and geofencing focus on the short-
term (e.g., upcoming 15 minutes with known predicted traffic
flows) and circumscribed locations (e.g., neighborhoods, 10 to
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Fig. 1. Overview of the proposed curbside management approach.

30 blocks) with limited availability of commercial bays. All
delivery vehicles are positioned outside the managed area
when they communicate with the parking manager. Since
the system must operate in real-time with a rather small
time horizon, the problem only considers a single delivery
per carrier. This is a reasonable assumption given the large
uncertainties that characterize urban delivery routes (a typical
urban delivery route includes around 100 daily stops), which
would eventually preclude a booking system from operating
well with longer time horizons. Given the short time frame
and limited area considered for this problem, it is reasonable
to assume that carriers do not reschedule their stops depending
on the outcome of the curbside management system. In this
study, carrier agents comply with the given recommendations
or restrictions in terms of assigned parking slots and delivery
areas. In parking guidance strategies, if no parking is allocated
to an approaching truck, it drives to the desired destination,
cruise for parking (depending on availability of space), and
perform curbside delivery (legally or not). All the requests are
known in advance as if the system would process the declared
parking requests altogether.

The modeling approach to determine the most efficient
implementations of the management strategies is based on
a simulation-optimization framework. Within this framework,
the parking manager agent derives the most efficient geofenc-
ing or guidance solutions leveraging information on the net-
work’s available commercial bays, carrier agents’ delivery
operations, and their potential effects on traffic patterns. This
process follows a simulation-based optimization process that
accurately models traffic impacts corresponding to alterna-
tive parking assignment configurations. The proposed sim-
ulation of carrier agents allows an accurate evaluation of
the potential effects of detours and illegally parked deliver-
ies on the surrounding traffic (see Section III-B for further
details). Simulation-based optimization is particularly suitable
for complex objective functions that cannot be easily derived
analytically. Figure 1 illustrates a high-level overview of the
problem architecture and highlights how the simulation and
optimization models are linked to the input and output.

The input includes carriers’ information, such as the desired
stop location, delivery routes, estimated arrival time, and
parking duration. Additional input includes the parking infras-
tructure supply, traffic conditions, and the objective of the
parking manager (reflecting a selected strategy). From an
output perspective, the adopted simulation produces detailed
information in addition to the guidance or geofencing solution.
This includes traffic delays and average speeds at the link level,
parking occupancy over time, and individual carriers’ routes
and delivery operations realizations.

B. Optimization

The problem formulation for parking guidance-based strate-
gies is based on some key assumptions. First, the over-
all simulation horizon can be split into smaller time slots
(e.g., 1 minute) for curbside assignment purposes. Second,
an increase in stop duration occurs each time there is a devi-
ation from desired stop location due to the parking manager’s
assignment. This increase is determined by considering the
additional distance from the original delivery destination and
the average walking speed. Finally, in order to account for
trucks’ inconvenience of detours, a threshold distance from
the desired stop location is set in the assignment problem for
both strategies.

The model proposed is an extension of standard integer
programs for assignment problems. The input of the problem
consist of each truck j entering the network with the cor-
responding destination and stop duration (this information is
communicated to the parking manager). The decision variable
xi j t indicates whether a certain parking slot i has been
assigned to truck j during the time slot t . An auxiliary variable
yi j , is adopted for indicating the assignment of parking slot i
to truck j .

Sets
• H : set of network links h
• I : set of candidate parking slots i
• J : set of trucks j
• T : set of time slots t

minimize
xi j t ,yi j

∑
h∈H

[

∑
t∈T

(Nuh(t + 1t) − Nd h(t))1t]

+

∑
j∈J

[

∑
i∈I

(βyi j di j ) + (1 −

∑
i∈I

yi j )φ] (1)

subject to
∑
j∈J

xi j t <= 1 ∀i ∈ I, t ∈ T (1b)

∑
i∈I

xi j t <= 1 ∀t ∈ T (1c)∑
t∈T

xi j t = di j ∀i ∈ I, j ∈ J (1d)∑
t∈T

xi j t <= yi j M ∀i ∈ I, j ∈ J (1e)

The first component of objective function consists of the
total network delay expressed as vehicle loss hours. It is
calculated by summing the differences between the cumulative
curves of arrivals Nd and departures Nu at each interval 1t ,
for each link h within the network. The total network delay is
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affected by the decision variables xi j t (not explicitly shown in
the notation for simplicity) and it is determined throughout
traffic simulation. The second component of the objective
function consists of the penalty associated with detouring
trucks and expresses the inconvenience for a truck to stop
at a different location from the preferred one. Such a penalty
is derived as the product between the whole parking duration
and a fixed penalty rate parameter β. A penalty cost φ for not
assigning trucks is expressed throughout the auxiliary variable
yi j .

Constraint 1b ensures that the same parking slot is not
assigned to two different trucks simultaneously. However, it is
worth noting that it is still possible for two different trucks to
be assigned to the same parking slot but at different times.
To ensure a certain time span before and after the truck’s
planned operations and minimize the risk of conflicts between
trucks assigned to the same slot at different times, a buffer
time can be introduced in the assignment process.Constraint
1c ensures that one truck is not assigned more than one slot.
Constraint 1d enforces the minimum duration of the parking
assignment to accommodate the truck needed stop time. Such
a stop time di j can be pre-computed by extending the original
stop time with the the time spent to reach the final destination
from the assigned parking slot i (return trip). An additional
Constraint 1e is introduced to guarantee consistency between
the two decision variables. By specifying a fixed value of
M , it is possible to enforce a maximum detour constraint by
limiting the duration of the truck’s stop.

Geofence strategies can be expressed by a more compact
formulation. Here, the decision variable x jh represents whether
a link h can be accessed (geofenced) by truck j . According
to this formulation, the objective function can be expressed by
the total network delay alone since the size of geofence (i.e.,
number of links) directly affects the carriers’ inconvenience.
Constraints 1b-1e are replaced by the following constraint:∑

h∈H

x jh <= q ∀ j ∈ J (2)

where 2 ensures that a maximum number of links q is
geofenced for each truck. This threshold can be established
as a problem input depending on the policymakers’ decision.

The adopted optimization approach to solve the defined
mathematical problems consists of the metaheuristic technique
of the memetic algorithm (MA). MAs are particularly suitable
for simulation-based optimization since they do not require
a closed-form mathematical model for the related objective
(which is hard to derive for traffic networks). In this optimiza-
tion strategy, a set of randomly generated solutions (initial
population) is improved through an iterative procedure. The
algorithm terminates upon reaching a predefined maximum
number of iterations or upon achieving a convergence of
solutions. The convergence is determined by considering the
evaluation of multiple runs for each solution. New generations
of “child” solutions are created from the best-performing solu-
tions (parents) through genetic operators (mutation, crossover,
and selection). Considering the inherent randomness of the
parking process, each solution undergoes evaluation through
multiple runs (initially set at 10 per solution, but adjustable

Fig. 2. Metaheuristic solution representation.

as necessary). In parking guidance-based strategies, solutions
(chromosomes) are represented as a sequence of one-minute
time slots for each parking slot present on the network
(Figure 2). Each slot is characterized by a binary value
based on the assignment to trucks on the network (0, when
assigned). Solutions are bred throughout a two-point crossover
procedure to generate child solutions, and simple removal pro-
cedures ensure their feasibility. Random mutations, consisting
of parking slot re-assignments and new assignment additions
(between 10-20%), are included to guarantee search space
exploration. The process accounts for truck travel times and
constraints (e.g., assignment overlap and maximum detour).
Thus, certain modified solutions are discarded. In geofence-
based strategies, each solution is given by combining each
truck sequence of geofenced links as illustrated in Figure 2.
A similar crossover procedure is applied in order to create
new solutions at each iteration. Random mutations consist of
random changes of geofenced links (between 10-20%).

C. Carrier Simulation

Carriers (trucks) are modeled as agents aiming at per-
forming delivery, interacting with each other and with the
surrounding traffic.

A traffic module involves a macroscopic simulation based
on the LWR model for reproducing the main flows on the net-
work ( [39], [40]). Within this framework, trucks movements
and operations are microscopically modeled according to the
theory of moving bottlenecks ( [41], [42], [43]) is developed
for this study. A moving bottleneck consist of any temporary
traffic obstruction characterized by lower speeds. The solution
to the resulting modeling problem can be obtained by coupling
an Ordinary Differential Equation (ODE) expressing the trucks
trajectories with a Partial Differential Equation (PDE) express-
ing the surrounding traffic flows. To accurately reproduce
real-world mobility patterns, the traffic volumes entering and
leaving the network, along with the turning proportions at
intersections, can be fine-tuned using available traffic data.
Additional information on the formulation and corresponding
numerical method are provided by Simoni and Claudel [44].
The adopted numerical method to solve this problem consists
of the Lax-Hopf algorithm [45]. In the LWR model, road traffic
is assumed to follow the main properties of fluid streams.
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More specifically, traffic flow follows two main laws: the
conservation of mass (meaning no vehicles can appear or be
lost), and an explicit relationship between density and outflow
usually referred to as Fundamental Diagram:

∂k(t, x)

∂t
+

∂ Q(k(t, x))

∂x
= 0 (3)

where, for a given time t and position x , k represents the
density in vehicles per unit of length and Q corresponds
to the outflow. The Fundamental Diagram Q(k(t, x)) is a
positive concave function defined on [0, k j ] where k j is the
maximal density (jam density). In this study we adopt a
triangular FD [46]. The problem is solved numerically based
on the Hamilton-Jacobi partial differential equation (PDE)
formulation of the LWR model, which is solved through a
Lax-Hopf formulation [45], [47]. The Hamilton-Jacobi PDE
is expressed as follows:

∂ N (x, t)
∂t

+ q
(

−
∂ N (x, t)

∂x

)
= 0 (4)

where N (x, t) represents the cumulative vehicle count
(Moskovitz function) for given time t and position x . Con-
sidering a space-time domain for a road segment simulation
defined by [0, L] × [0, T ], it is possible to solve the PDE
by means of the Lax-Hopf formula associated with the value
condition functions c(., .):

c(x, t) =


cl

ini (x) t = 0, x ∈ [(l − 1)1x, l1x]

c j
up(t) x = 0, t ∈ [ j1t, ( j + 1)1t]

ck
down(t) x = L , t ∈ [ j1t, ( j + 1)1t]

cn
int (x, t) x ∈ [xb,n, xe,n], t ∈ [tb,n, te,n]

(5)

which represent, respectively, initial, upper boundary, down-
stream boundary, and internal conditions. The interested reader
can find additional details on the Lax-Hopf solution approach
in Claudel and Bayen [48] and Mazare et al. [49]. Simoni
and Claudel [27] provide a comprehensive formulation of the
model and the algorithmic steps of the simulation of truck
operations in traffic networks based on Lax-Hopf.

This study considers delivery vehicles with a maximum
speed equal to the “regular” traffic, a reasonable assumption in
urban settings characterized by low speed limits. In this study,
the primary obstruction to traffic flows occurs when trucks
double-park at the curbside to accomplish their delivery. The
space-time-density diagrams in Figure 3 illustrate the results
of the adopted simulation framework for a vehicle entering
and performing a delivery (red trajectory) on a road stretch
characterized by two lanes over 5 minutes. When the delivery
vehicle finds no parking spot, it illegally parks and causes a
congestion spillback upstream (3a). If commercial parking is
present on the link, such a vehicle will not produce any traffic
disruption (3b).

The simulation includes a parking module in the simula-
tion framework, which is dynamically applied each time a
delivery vehicle approaches its destination. The agents are
represented by trucks, which have delivery routes and aim to
utilize commercial bays for delivery operations. The model is
probabilistic and is based on several factors, such as network
layout, the availability of delivery bays, and parking demand

Fig. 3. Simulation of delivery operations. Source [27].

levels. Each delivery route, consisting of a sequence of links
on the considered network, can be split into two segments:
a ‘traveling’ component and a ‘cruising’ component. Each
truck’s delivery routes are precomputed based on Dijkstra’s
shortest path algorithm, connecting the origins, delivery desti-
nation, and exit destination. Routes can be modified according
to assignment or geofence management strategy results and
then utilized as input for the simulation. The origins and
destinations are represented as nodes located at the edges of
the network. The traveling component consists of that fixed
portion of a route representing the access to the destination
(at this stage, parking is not considered).

The cruising component represents the second variable por-
tion of a route where the truck attempts to find a stop location.
It comprises a sequence of links surrounding the delivery stop.
When the vehicle travels across a ‘cruising link’, it searches for
an available commercial bay. Regardless of the implemented
strategy, a truck will always aim at using a commercial bay,
whose availability depends on other trucks and is, therefore,
deterministic. If no commercial bay is available, the truck
continues to the following cruising link of its route. This
process is repeated until the truck finds a commercial bay
or reaches the final cruising link. If no commercial bays
are available, the probability of double-parking is determined
by considering regular parking demand as a parameter. This
information can be obtained from surveys or land-use data.
A binomial distribution is used to indicate the likelihood of
finding parking, which relies on the number of lots on the
connection and the levels of parking demand. Finally, if all
cruising links are traveled without success in finding parking,
the vehicle commits an infraction and illegally parks. In this
study, the cruising component is derived based on empirical
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TABLE I
OVERVIEW OF CURBSIDE MANAGEMENT STRATEGIES

work by Chiara and Goodchild [14], who estimated an average
commercial cruising time of 2.3 minutes in Seattle (U.S.)
downtown. For each truck, the cruising length is determined
from a normal distribution reflecting this value. Accordingly,
a feasible sequence of links connected to desired destination
is derived. Depending on the amount of aggregation and
number of features considered (parking availability, price,
and propensity of drivers to commit infractions), other cruising
and parking models, such as equilibrium and logit models, may
be used to simulate commercial cruising and parking behavior.
The cruising and parking behavior is modeled according to a
Markovian process expressed as follows:

∏
c∈C Pc(s(c), s(c′))

where the probability of parking at cruise link s(c) depends on
the number of curbside spots available, a general probability
and the presence of other cruising links set C ; this directly
affects the probability of parking in the following cruising
link which depends on s(c′).

The cruising and parking operations are affected differently
by the investigated strategies described in Table I. Strategy 1
(S1) focuses on reducing traffic congestion through parking
slot assignment by prioritizing the minimization of delays
in the objective function (Eq. 1). Strategy 2 (S2) shares the
same goal of reducing traffic congestion but through individual
geofencing, shifting the focus from parking operations to
cruising (a significant contributor to congestion). Strategy 3
(S3) employs parking slot assignment to minimize delays for
carriers, prioritizing the objective function component related
to carriers’ detours. This is done by increasing penalty param-
eters for detouring trucks and unassigned parking spaces in
the objective function (Eq. 1), making the delay minimization
component negligible. Strategy 4 (S4) aims to reduce overall
user delay, including traffic congestion and carriers’ delays,
utilizing parking slot assignment. Conducting a systematic
analysis of the relationship between formulation parameters,
corresponding objective function values, and impacts for
parking guidance strategies exceeds the scope of this study.
Therefore, our focus is on the most representative cases (S1,
S3, and S4).

IV. RESULTS

A. Case Study and Instances

The proposed strategies are evaluated on the layout of the
Austin (U.S.) downtown network, which correspond to an area
of about 0.86 square kilometres. The network consists of two
hundred and one links and a hundred and twenty nodes. Most
of the intersections are signalized, and each link has between
one and three lanes (about 90 percent). We only simulate

Fig. 4. Commercial bay layout in downtown Austin (2018).

green/red phases in this study for simplicity’s purposes, and
we use the same triangle Fundamental Diagram for all links
with qmax=0.4625 veh/s, v=12.5 m/s, and k j=0.1295 veh/m.
The area has 35 parking slots whose location is illustrated in
Figure 4. Traffic volumes and turning proportions at intersec-
tions have been calibrated using traffic data from the “Blue-
tooth Travel Sensors - Individual Address Files (IAFs)” (City
of Austin Transportation Department, 2017), which included
traffic counts and average travel times during different times
of the day [27]. The simulation and optimization processes
are conducted for a specific time interval of 15 minutes (with
4 seconds time steps), aiming to replicate the traffic patterns of
Austin’s downtown network at 8 AM. Each commercial bay
is characterized by 1-minute time slots for the optimization
problem.

Different instances are created based on alternative com-
binations of commercial parking demand (number of trucks)
and its spatial distribution (dispersion of delivery stops across
the area). Four alternative levels of overall demand intensity
(20, 30, 40, 50 trucks) and spatial configurations characterized
by different spatial distributions (e.g., clustered vs. homoge-
neously spread) are considered for a total of 48 instances.
For each instance, ten runs of the optimization algorithm are
performed (since converge of the solution is not guaranteed).
The input parameters and corresponding optimization results
for S1 are described in Table II (Appendix). A summary of
computational and efficiency tests for the other three strategies
is reported in Table III (Appendix). Depending on the instance
size, the best identified solutions deviate within 3% from the
“optimal solution” identified by running the metaheuristic for a
1800-second threshold (network delays can be computed only
through simulation, therefore, benchmarking with a closed
form solution is not feasible). The deviation from the optimal
is consistent across different strategies for the same instance
sizes, allowing a fair comparison of the strategies’ impacts.

B. Efficiency of Strategies

Parking guidance (declined into three different strategies)
and geofencing seem to effectively reduce the network’s traffic
delays for different demand levels and patterns. However,
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Fig. 5. Efficiency of strategies.

the four strategies achieve different results based on the
demand levels. Overall, S2, seems to perform better than
any parking guidance-related strategy for low and medium
levels of parking demand (20, 30, and 40 trucks) (Figure 5a).
Depending on the amount of simulated trucks, S2 achieves
delay reductions between 1.6-2.6% whereas S1, S3, S4 achieve
decreases between 0.5-3.2%. Interestingly, S1 and S4 provide
increasing delay reductions for increasing levels of parking
demand, while the performance of S2 deteriorates for large-
size instances. The efficiency of S3, which achieves signif-
icantly lower reduction than other parking guidance-related
strategies (ranging between 0.5% and 0.9%), is not consid-
erably affected by the demand levels. These results suggest
that, for lower and medium demand volumes, geofencing (S2)
is more efficient than parking guidance strategies considering
traffic delay minimization (S1 and S4). However, when only
carriers’ detour is prioritized in parking guidance (S3), the
results consistently remain low, irrespective of demand lev-
els. Generally, scenarios characterized by uniformly spread
parking demand can benefit more from introducing dynamic
management strategies than those with clusters of demand.

The delay reduction in the former can be as 0.8% higher than
in the latter.

As expected, S1, which focuses on managing the existing
parking infrastructure, determines a significant reduction in
illegal parking (Figure 5b). The highest reduction (about
35%) is reached for low demand configurations (20 trucks).
Due to physical constraints such as slot capacity and the
maximum detour of trucks, the parking guidance strategy
cannot achieve significantly greater reductions (around 30%)
in illegal parking for higher levels of demand. Interestingly,
the parking reduction efficiency of the two other parking
guidance-related strategies, S3 and S4, which is comparable to
S1 for low demand (20 trucks), deteriorates faster for higher
levels (22-26%). S2 has little influence on the amount of
illegal parking, with the highest reduction of about 2.5%.
In configurations with low demand, there is even a slight
increase in double parking (3.5% for 20 trucks).

These results suggest that geofencing can significantly
reduce traffic delays by focusing on trucks’ cruising and
affecting the final portion of their routes. At the same time,
alternative parking guidance implementations can yield dif-
ferent impacts from a network and parking efficiency per-
spective. Strategies that prioritize traffic congestion mitigation,
can achieve comparable results regardless of double-parking
reduction. Conversely, parking guidance focused on carrier
detour minimization, lead to distinct parking configurations,
characterized by similar reductions in double-parking but
minimal improvement in traffic network performance.

These findings are line with the impacts on the utilization
of parking space. Notably, S1 demonstrates a substantial
enhancement in parking utilization, exhibiting increases of
over 12% and 22% in low demand (20 trucks) and high
demand configurations (50 trucks), respectively. Under S1,
parking utilization grows almost linearly for increasing levels
of demand between 20 and 50 trucks. S3 and S4 exhibit a
similar trend. In line with the illegal parking effects, S2 does
not affect significantly the utilization of existing commercial
bays since changes are less than 1%.

C. Distributional (Equity) Impacts

Not only the four strategies have different effects regarding
traffic efficiency improvements, they can also have signif-
icantly different impacts on individual carriers. To gain a
better understanding of the distributional effects and trade-offs
between the perspectives of traffic network operators (public
stakeholders) and carriers, we analyze the effects of strategies
at both the aggregate and individual carrier level.

An analysis of carriers’ change in total distance traveled
(Vehicle Kilometers Traveled, VKT) provides insights into
the overall effects of the alternative strategies on delivery
efficiency (6a). The total distance traveled can be adopted
as a proxy for pollutant emissions and energy consumption
(although average speed also plays a significant role). Gen-
erally, despite the detours, the implementation of parking
guidance leads to a reduction in VKT (between 5.5-7%), likely
attributed to a decrease of cruising and double-parked delivery
operations. Geofence (S2) achieves similar results with an
almost 5% reduction in VKT.
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Fig. 6. Benefits and costs of strategies.

While reductions in total network delay are associated with
decreases in carriers’ VKT, no strong correlation is observed
(correlation coefficients between 0.13 and 0.19). Interestingly,
the reduction in double-parking is only weakly correlated with
the overall delay reduction (correlation coefficients between
0.3 and 0.5). These results suggest that while the overall reduc-
tion in carriers’ distance traveled and double-parking con-
tributes to traffic efficiency improvements, avoiding double-
parked operations and cruising for parking on specific links
may be more crucial. These findings align with previous
research [27] that identified different degrees of response to
freight access policies based on traffic patterns and network
layout.

From an individual carrier perspective, descriptive statis-
tics such as the minimum, maximum, median, and mean of
carriers’ travel time (TT) changes provide valuable insights
into the fairness and distributional effects of different strate-
gies (6b). Notably, all strategies exhibit a positive maximum
change and a negative minimum change, indicating that some
carriers would benefit from improved delivery performance
while others may experience a worsening. However, when

considering curbside management S1 and S4, their larger range
and skewness indicate a greater disparity in effects among
carriers compared to geofencing (S2) or the carrier-oriented
guidance strategy S3. In the former strategies, the range
corresponds to 483s and 467s, while in the latter ones, the
range corresponds to 392s and 395s. Furthermore, the positive
skewness in their distributions suggests that a few carriers
might encounter significant increases in delivery times. On the
contrary, S2 and S3 not only demonstrate a decrease in median
and mean travel times (indicating improved performance), but
also their closer values suggest a more balanced distribution
of impacts across carriers. These strategies exhibit a more
equitable distribution of effects, with a reduced likelihood of
extreme variations in travel time changes.

A more focused analysis of scenarios characterized by clus-
tered demand highlights how parking assignment can differ
across carriers (Figure 7a). In line with the previous analyses,
S1 shows a wider range of detour distance across carriers
and a higher average detour (around 450 m) than S3 and S4
(around 350 m). This strategy also allows higher parking occu-
pancy than the other two strategies((Figure 7b), irrespective of
whether the parking slot is in high or low demand. Although
the utilization of parking slots in high demand can vary by
approximately 15% between S1 (the strategy achieving the
maximum) and S3 (the strategy achieving the minimum), this
disparity can widen to 30% for slots in low demand. This result
is in line with the previous outcomes, highlighting achieving
higher utilization of parking infrastructure (particularly, for
less attractive slots) is likely to generate distributional issues
among carriers (uneven detour distances).

In summary, S1 appears more effective in improving overall
network traffic performance. However, from a distributional
perspective, it may present potential issues. Imposing tighter
detour constraints could help reduce disparities but may com-
promise traffic efficiency. Carriers that are more likely to
trigger congestion phenomena are prioritized in the assign-
ment, but could also be detoured by a significant distance.
Interestingly, despite S3 explicitly prioritizing carriers’ oper-
ations, it is outperformed by S2 in both traffic efficiency and
distributional aspects.

D. Influence of Demand and Supply Layout

To investigate the effectiveness of the parking guidance
strategy across different scenarios characterized by not only
different demand patterns but also supply patterns, this study
considers 10 alternative configurations characterized by ran-
domly generated parking supply configurations, with the
same number as in the Austin downtown. When combined
with medium-sized instances of size 30, 120 combinations
of demand-supply configurations are obtained. The average
distance between nearest neighbors for demand and supply is
adopted as an indicator of spatial dispersion. This indicator
quantifies the average distance between each delivery destina-
tion/commercial bay and its closest neighboring point in the
dataset. Mathematically, it can be expressed as:

D̄NN =
1
N

N∑
i=1

min
j ̸=i

(
|xi − x j |

)
(6)
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Fig. 7. Benefits and costs of strategies.

where xi and x j represent the coordinates of the i and j
parking demand/supply points, respectively, and Ndenotes the
total number of parking demand/supply points in the dataset.
A low value of D̄NN indicates a high spatial concentration or
clustering of parking demand/supply points.

As anticipated, the layouts characterized by a relatively
homogeneously spread demand and supply exhibit the high-
est delay reductions (5-10%) (8a). This result is reasonable
since a well-balanced distribution of delivery destinations and
commercial parking can guarantee a broader range of feasible
assignment solutions (complying with carriers’ detour con-
straints). Interestingly, higher increases in traffic performance
can be observed in scenarios characterized by clustered supply
(with D̄NN below 30) and highly dispersed demand (with
D̄NN above 80). One possible explanation for these findings
is that, even with homogenously spread deliveries, the parking
guidance can guarantee efficient solutions by prioritizing the
“most critical” carriers’ operations and assigning them to
the nearest cluster of commercial bays. These hyphotesis is
supported by an analysis of double-parking reduction((8b),
which suggests no significant differences are found for these
scenarios.

Fig. 8. Impacts of demand and supply layout.

E. Implications for Policy-Making and Implementation

The investigated strategies reduce traffic delays and improve
curbside infrastructure utilization to a different extent. How-
ever, the analyses suggest that city and traffic authorities may
prioritize one strategy over the other based on their specific
objectives regarding urban freight traffic externalities, con-
sidering significant differences in key performance indicators
(KPIs). Geofencing (S2) achieves comparable results, if not
higher than parking guidance in improving traffic performance
for low-medium demand levels. However, parking guidance
(S1,S3,S4) surpasses geofencing by achieving significantly
higher parking utilization and mitigation of illegal parking.
For the investigated scenarios, parking guidance strategies (S1
and S4) explicitly accounting for network delay can preferred
to geofencing for reducing delays and truck traffic-related
pollution. If the primary focus is on parking infrastructure
utilization and addressing safety concerns related to illegal
parking, then parking guidance should be given higher pri-
ority regardless of the demand level. When looking at emis-
sions, noise, and energy consumption, the alternative strategies
achieve similar reductions in carriers’ distance traveled (a
reasonable proxy if combined with speed data) by reducing
cruising for parking.

From an individual carrier perspective, which is focused
on delivery performance, the parking guidance and geofence
strategies may lead to controversial effects. S2 brings tangible
benefits to every carrier due to the general improvements in
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traffic conditions. Instead, while S1 improves overall traf-
fic performance, it exhibits a greater disparity in effects
among carriers due to detours. Some carriers may experience
significant increases in delivery times, leading to poten-
tial equity concerns. Therefore, public acceptability concerns
related to this solution might arise. This issue can be mitigated
by increasing the weight of carriers’ detour costs in the
optimization problem formulation (as in S3 and S4). However,
these implementations might partly address this issue but at an
efficiency cost. Prioritizing carriers in the assignment process
(S3) can improve distributional effects, but it may not yield
significant benefits in terms of overall traffic improvement.

Under these conditions, it becomes important to accurately
assess the investment and maintenance needs for the alternative
strategies. The investigated solutions would rely on a moni-
toring component, a controller, and a communication system
for real-world implementation. Both parking guidance and
geofencing would require a real-time traffic monitoring system
that allows, with the support of prediction and simulation mod-
els, short-term accurate traffic estimation. Collecting granular
traffic data with cameras and detectors is becoming standard
practice in many urban areas. Parking guidance strategies
would require a system to monitor parking spaces. For this
purpose, surface or overhead sensors could be installed at
the commercial bays. Geofencing would require retrofitting
vehicles with navigation devices. Finally, all strategies need to
rely on V2I technologies for fast and reliable communication
of guidance and directions between the parking manager
and carriers. Recent advances in connectivity (5G networks)
provide new prospects for addressing this issue.

V. CONCLUSION

This paper proposes multiple last-mile management strate-
gies for urban freight operations: three based on parking guid-
ance and one based on geofencing. Unlike other approaches,
the proposed solutions explicitly address traffic delays in
their corresponding problem formulations. For this reason,
a simulation-based optimization based on metaheuristics is
developed to identify high-performance solutions efficiently.
The experiments indicate that the proposed strategies can be
potentially implemented in real settings with minor improve-
ments in algorithm efficiency and optimized codes. Future
research will involve the development of rolling horizon-based
approaches for solving the strategies in a streaming fashion

According to various KPIs, both strategies show promising
results to a different extent, depending on demand levels and
patterns. Geofencing achieves higher delay reduction with
minimum changes in the last-mile operations while parking
guidance is very beneficial for parking utilization and illegal
parking mitigation. Therefore, if the primary policy goal is
reducing network traffic congestion for low and medium
demand, it is still possible to achieve that without eliminating
illegal parking. The relation between parking demand, parking
supply layout, and existing traffic patterns holds significant
importance. This suggests that strategies that concentrate on
specific operations and critical areas within the networks
could be exceptionally valuable. Hence, future research should
investigate the relevance of these strategies in other cities,

TABLE II
SUMMARY OF COMPUTATIONAL RESULTS. (*) SIMULATION

THRESHOLD REACHED

TABLE III
SUMMARY OF EFFICIENCY TESTS FOR ALTERNATIVE STRATEGIES

characterized by different demand patterns and diverse infras-
tructure layouts, to gain a more comprehensive understanding.

Carrier-focused concerns, which include equity and accept-
ability, can be addressed by prioritizing carriers’ convenience
(minimizing detours), but with potential efficiency trade-offs.
The analyses show how in urban freight delivery operations
management, much like in other transportation sectors, the
“system optimum” may yield uneven costs to carriers. These
outcomes suggest that, while parking guidance is more suitable
from a city planners’ perspective (focused on minimizing traf-
fic disruptions), geofencing achieves a better balance between
different objectives. Future work will deal with novel strategies
based on this framework aimed at a compromise between
stakeholders (i.e., city and carriers) through novel problem
formulations.

APPENDIX

See Tables II and III.
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