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A Driver-Vehicle Model for ADS
Scenario-Based Testing

Rodrigo Queiroz , Divit Sharma, Ricardo Caldas , Krzysztof Czarnecki , Sergio García,
Thorsten Berger , and Patrizio Pelliccione

Abstract— Scenario-based testing for automated driving
systems (ADS) must be able to simulate traffic scenarios that rely
on interactions with other vehicles. Although many languages
for high-level scenario modelling have been proposed, they
lack the features to precisely and reliably control the required
micro-simulation, while also supporting behavior reuse and test
reproducibility for a wide range of interactive scenarios. To fill
this gap between scenario design and execution, we propose the
Simulated Driver-Vehicle (SDV) model to represent and simulate
vehicles as dynamic entities with their behavior being constrained
by scenario design and goals set by testers. The model combines
driver and vehicle as a single entity. It is based on human-like
driving and the mechanical limitations of real vehicles for
realistic simulation. The model leverages behavior trees to express
high-level behaviors in terms of lower-level maneuvers, affording
multiple driving styles and reuse. Furthermore, optimization-
based maneuver planners guide the simulated vehicles towards
the desired behavior. Our extensive evaluation shows the model’s
design effectiveness using NHTSA pre-crash scenarios, its motion
realism in comparison to naturalistic urban traffic, and its
scalability with traffic density. Finally, we show the applicability
of our SDV model to test a real ADS and to identify crash
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Fig. 1. A challenging interaction between ego and human-operated vehicles
based on a pre-crash scenario from NHTSA [2] and using our SDV model
in simulation: (left) in the map frame, the SDV Model as v2 performs the
cut-in maneuver targeting ego, and (right) a high-fidelity co-simulator renders
the scene.

scenarios, which are impractical to represent using predefined
vehicle trajectories. The SDV model instances can be injected
into existing simulation environments via co-simulation.

Index Terms— Intelligent vehicles, autonomous vehicles,
autonomous driving, system testing, simulation, road traffic.

I. INTRODUCTION

TESTING automated driving systems (ADS) requires sim-
ulating a wide range of operating scenarios to ensure

an ADS’s safety and conformity to traffic regulations and
industry standards. As the responsibility for the driving task
shifts from the human driver to the ADS [1], the system is
required to handle interactions with other road users, especially
human-operated vehicles. Test scenarios must reflect how these
dynamic interactions between the subject system (a.k.a. ego
vehicle) and other vehicles can unfold in real traffic.

Figure 1 shows a near-collision of ego with v2 cutting-
in before, taken from the National Highway Traffic Safety
Administration’s (NHTSA) pre-crash scenario catalog [2].
The cut-in maneuver of v2 triggers reactions by other close
vehicles, with ego’s reaction strongly influencing how the
scenario unfolds. Testing collision avoidance in such sce-
narios requires models able to represent and simulate traffic
dynamics, including the interactions between ego and other
human-operated vehicles.

Many domain-specific languages (DSLs) [3], [4] for
scenario-based testing have emerged. These DSLs include
models for representing test scenarios. Testers design such sce-
narios by defining behaviors of human-operated vehicles, and
then executing them in simulation tools. However, these DSLs
are often limited to relatively simple models, for instance,
replay of pre-recorded trajectories [5], event-based orchestra-
tion to directly manipulate the vehicle state [6], [7], and narrow
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behavior models (e.g., vehicle following [8]). As a result,
testers may have limited control over the precise movement of
the simulated vehicles and the resulting behaviors may vary
between simulation tools, hurting test reproducibility and the
validity of test results.

To bridge the gap between scenario design and exe-
cution, we contribute the GeoScenario Simulated Driver-
Vehicle (SDV) model to specify and simulate realistic
behavior of human-operated vehicles in ADS scenario test-
ing. SDV offers high expressiveness, execution accuracy,
scalability, and reuse. It extends the scenario-definition lan-
guage GeoScenario [5] with human-operated vehicles as
dynamic agents in both scenario representation and simulation
execution. It implements a driver behavior model inspired
by Michon [9], including (i) route selection as a strategic
decision, (ii) maneuver selection as a tactical decision, and
(iii) maneuver implementation as an operational decision.
Specifically, the maneuver selection logic is expressed using
behavior trees [10], [11], offering modularity and reuse.
The maneuvers are implemented using an optimization-based
trajectory planner, which guides the simulation towards achiev-
ing the scenario’s test objectives. The executed maneuvers
can be configured by simulation engineers to reflect different
driving styles, subject to the human and physical limitations
of actual vehicles.

We evaluate our model’s (i) scenario design effectiveness,
which includes expressiveness, execution accuracy, and reuse,
using NHTSA pre-crash scenarios; (ii) motion realism in com-
parison to naturalistic urban traffic; (iii) scalability with traffic
density; and (iv) practical applicability to test an actual ADS.
The results show that our model can successfully express,
achieving levels of model reuse of over 80 %, and accurately
execute all eighteen NHTSA vehicle-to-vehicle pre-crash sce-
narios (except one variant), while only four scenarios are
effectively expressible using predefined trajectories, which is
our baseline. We also show that, after calibration, the model is
capable of producing maneuver decisions and trajectories that
closely resemble those from recorded real-world traffic. The
model also scales in scenarios with up to 10–20 simultaneous
and highly interactive vehicles in real-time simulation. Finally,
we demonstrate the model’s applicability to test an ADS
software stack in simulation, which has been tested on public
roads, and reveal collision scenarios that cannot be expressed
using the baseline.

In summary, our paper contributes:

• a novel simulation model for human-operated vehicles,
that combines behavior trees with an optimization-based
trajectory planner to provide a highly-expressive, control-
lable, realistic, reusable, and scalable scenario represen-
tation for ADS testing;

• a set of experiments to support our claims about the
qualities of the model;

• an open-source reference implementation of the model,
which can be integrated with any simulation environment
in co-simulation mode.1

1https://github.com/rodrigoqueiroz/geoscenarioserver

II. BACKGROUND AND RELATED WORK

A. Scenario-Based Testing

Kaner et al. [12] define scenario-based testing as the dom-
inant paradigm of black-box testing, where scenarios are used
to check how the system copes with both nominal and off-
nominal situations. In the automotive context, ISO 26262 [13]
and ISO 21448 [14] guide the development of safety-critical
electrical/electronic vehicle systems and mandate the use of
scenarios in validation activities.

Scenarios are designed based on expert knowledge and on
the traffic situations the ADS must be able to cope with,
or by reproducing and augmenting situations collected from
traffic databases. For example, CommonRoad [15], a bench-
mark for motion planners, provides scenarios extracted from
NGSIM data [16]. A scenario can also be systematically
generated to achieve specific test goals, e.g., lead the sys-
tem to trigger a certain behavior, such as an emergency
maneuver, or find a critical situation leading to a crash.
For example, Abdessalem et al. [17], [18] use evolutionary
optimization methods combined with surrogate model learning
to find crash scenarios.

B. Scenario Representation and Driver Behavior

Multiple tool-independent DSLs have emerged recently,
providing a formal definition of scenario structure, behavior,
test conditions, and pass/fail criteria to support scenario-based
testing in simulation. The goal is to offer a uniform rep-
resentation and semantics across methods and tools. The
scope and structure of each language vary, but fundamentally
they all define how vehicles behave in traffic and orchestrate
interactions with ego that must be executed by a simulation
tool during the test.

OpenScenario [6] is a standard managed by the Asso-
ciation for Standardization of Automation and Measuring
Systems (ASAM). The format describes dynamic content in
driving simulation applications in combination with Open-
DRIVE [19], which specifies the road structure. It covers
traffic and driver behavior, weather, environmental events, and
other features. It includes the description of a driver, but
there is no model for driver behavior in any form other than
“road following.” The standard also does not contain maneuver
models or a vehicle model. Maneuvers are described in terms
of actions (e.g., change the vehicle’s position or speed), and
trajectories (defined as a polyline, clothoid, or spline).

The Measurable Scenario Description Language
(MSDL) [7] expands the concepts of OpenScenario. The
language uses modifiers to change the behavior of the
agents similarly to actions from OpenScenario. It introduces
parameter variability (a range instead of a single value)
along with constraints to narrow down values and connect
multiple parameters (e.g., velocity of vehicle A is between
10 and 20 m/s and less than vehicle B). The language
supports generating concrete scenarios by picking random
values while obeying the constraints.

Other formats are Scenic [20], Scenario Description Lan-
guage (SDL) [21], and SceML [22]. A common trait amongst
them is that they are primarily declarative languages. They
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define “what” must happen in a scenario during key events
without specifying “how.” Their approach relies on external
simulation models to handle the execution.

Finally, GeoScenario [5] provides mechanisms to represent
road users and an orchestration system to allow testers’
control of how they interact with ego. The language tackles
the multi-agent orchestration via triggers, but is limited at
the individual vehicle behavior to select among predefined
trajectories specific to the road. Our SDV model extends
GeoScenario with interactive and flexible driver behavior.

C. Models for Traffic Simulation

Macroscopic traffic models describe vehicle motion and
interaction in terms of flow and density. They are mainly used
for large scale simulation over a road network [23]. They are
not suitable for street-level vehicle motion and interactions and
thus ADS testing.

In contrast, microscopic traffic models can generate vehicle
motion and interactions at the individual vehicle level at the
cost of limited scalability [24]. They are able to encode simple
rules that allow a vehicle to follow waypoints or the structure
of the road, avoid frontal collisions by alternating between
driving and stopping, and perform maneuvers triggered by
conditions [25], [26], [27]. However, while capturing this
reactive behavior, they usually lack enough detail to simulate
complex interactions between the vehicle under test and other
road users in realistic conditions. For example, they often use
simplistic motion limited to a constant velocity throughout
a maneuver and disregard the physical limitation of a real
vehicle. They also cannot represent complex interactions,
such as vehicles responding to merge attempts, using the
available road space to navigate around obstacles, or skillfully
navigating an intersection with multiple influencing factors
(e.g., vehicles, pedestrians, and traffic regulation).

Established microscopic models target a particular maneu-
ver, for example, vehicle following [8], [25], [28], [29],
decisions to perform lane changes [26], [30], and the execution
of lane changes [31]. While these models capture details of
speed regulation during vehicle following or the parameters
of deciding lane changes, they are suitable for testing specific
functions and subsystems (for instance, testing adaptive cruise
control) in a very constrained environment. They do not cover
the complexity of the full driving task required for scenarios
in system-level testing of an ADS, including complex decision
making among multiple maneuvers and trajectory generation.
They can be used to inform the design and parameter setting
of the behavior trees in our model, however.

A different approach is to learn models directly from
data. For example, a trajectory prediction model trained on
recorded traffic data can be run in closed loop as a simula-
tor [32], [33], [34], [35], [36], [37]. Recent approaches allow
a degree of controllability of the road users during simulation,
e.g., by using conditional models [36] or diffusion models
with cost functions [35], [37] to guide trajectory sampling
during inference. While helping to automate scenario creation,
the main limitation of purely data-driven approaches is the
inherent bias in the data used to build the models. In particular,
driver mistakes and safety-critical scenarios are rare in traffic
and thus usually absent from or rare in existing datasets.

In fact, programmable behavior models provide an opportunity
to generate such rare scenarios and use them to augment the
training for data-driven approaches. Finally, while the models
can capture the diversity of driving styles in road environments
they were trained on, they are difficult to generalize to other
environments [38].

Thus, scenario-based testing requires executable models
that offer high expressiveness, controllability, and realistic
behavior—a combination that existing work currently lacks.

D. Behavior Trees

Behavior trees is a discrete control architecture, which
aims to address the shortcomings of finite state machines and
their variations, and provide improved modularity, reusability,
scalability, and readability [10], [11], [39]. These user-oriented
qualities motivate their use to express driving behavior, which
has been explored in the past. Several works have proposed
using behavior trees to make maneuver decisions within an
ADS [41], [42]. Perhaps the closest is BTScenario [43], which
uses them to control maneuvers of vehicles in simulation test-
ing. However, BTScenario uses behavior trees to issue driving
control inputs directly to a longitudinal and lateral controller.
The lack of a trajectory planner makes it impossible to plan
flexible and realistic trajectories to avoid static and dynamic
obstacles. The work also lacks a systematic evaluation of
expressiveness, reusability, motion realism, and scalability.
In another work, we used behavior trees to control pedestrians
in simulation, where behavior trees set motion objectives for
pedestrians moving according to the social force model [44].
To the best of our knowledge, we are not aware of other work
that (i) combines behvaior trees with an optimization-based
planner to provide a highly-expressive, controllable, realistic,
reusable, and scalable scenario representation for ADS testing,
and (ii) systematically evaluates such an approach.

III. THE SDV MODEL

We now introduce the concepts and the algorithm of the
SDV model (see Fig. 2). The overall simulation consists of
(i) a set of simulated road users, each run in a separate process
(SDV Planner) that plans its future trajectory, and (ii) a single
traffic simulation process (Traffic Simulation) that executes
these trajectories. For simplicity and scalability, the model
combines driver and vehicle as a single entity (SDV Planner),
abstracting away driver inputs, such as steering angle, braking,
and throttle.

An SDV Planner executes its behavior tree and communi-
cates with the Traffic Simulation using two shared variables:
an SDV Planner pi reads the traffic state (TS) and writes
the traffic plan (TP), and the Traffic Simulation reads TP and
writes TS. The latter includes the current state of all vehicles,
including their coordinates x, y in the global Cartesian frame
of the simulation, their first and second time derivatives, and
heading θ :

VehicleStateCartesian(t) = [x, ẋ, ẍ, y, ẏ, ÿ, θ]t (1)

The traffic plan includes the future trajectories for all SDVs.
Each trajectory is represented in the Frénet reference
frame [45] of the respective SDV (Fig. 3). This is moti-
vated by the fact that safety requirements on the motion
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Fig. 2. Flow diagram of the simulation. Top-level sharp-cornered rectangles represent processes; nested ones represent procedures. Round-cornered rectangles
denote data. Solid arrows represent control flow; dashed ones represent data flow. Arrows attached to vehicles denote velocities; curves denote trajectories.

Fig. 3. Road Geometry and vehicle displacement from original coordinates
are transformed into Frénet Frame using the tangential and normal vectors t⃗ ,
n⃗ from the lane centre line (shown in red).

of an on-road vehicle are typically specified relative to
its Frénet frame derived from the local lane geometry
(see, e.g., Shalev-Shwartz et al. [46]).

A. SDV Planner

An SDV Planner process is instantiated for each SDV,
as indicated by the stacked boxes in Fig. 2. The SDV
Planner pi for vehicle vi is given a route, represented as
a sequence of lane segments that can be legally traversed
by the vehicle, and a behavior tree (btree), and it performs
a maneuver planning loop with six steps (pi .1–6). Maneu-
ver planning starts with the procedure pi .1:perceive, which
retrieves the current traffic state from the perspective of vi
and simulates perception, including sensor range. The next
procedure, pi .2:predict, projects the perceived local traffic
state forward to the future simulation time targeted by the
current maneuver planning iteration. Prediction uses the pre-
viously planned trajectory for vi but assumes constant velocity
for all other vehicles, including externally-simulated ones for
which planned trajectories are not observable, such as ego
under test. The next step, pi .1:to_ff, transforms the local traffic
state TS into the Frénet frame of vi , resulting in ff_local_TS.
The frame is defined w.r.t. the center line of the lane (red
in Fig. 3(b)) that vi is traveling on as part of its route
(Fig. 3(a)). Its origin is the point along this line that is closest

Fig. 4. Graphical representation of an example SDV behavior tree structuring
the decision-making with conditions (c) and maneuvers (m). ‘?’ is the fallback
operator (short-circuit or), and → is the sequence operator (short-circuit and).

to the vehicle. The resulting frame’s S axis represents the
longitudinal displacement along this center line, and the D axis
represents the lateral displacement.

B. Maneuver Selection

Maneuver selection is expressed using behavior trees. Their
leaf nodes are either (i) conditions to be evaluated (based on
the traffic state), (ii) decisions that start (or end) maneuvers,
or (iii) references to sub-trees. The inner nodes are control
nodes, a.k.a. operators, which are responsible for coordinating
the execution of their child nodes. There are three operators.
The fallback operator commands a sequential execution of its
children, left-to-right, and returns success immediately when a
child succeeds; otherwise, it executes the next child. It returns
failure when none of the children succeeds. The sequence
operator also commands a sequential execution of its children,
left-to-right, but returns failure immediately when a child fails;
otherwise, it executes the next child. It returns success when
all of the children succeed. The parallel operator commands
the execution of all children at the same time. The rule for
success or failure of the parallel operator is user-defined.

Figure 4 shows a graphical representation of two example
behavior trees, with the left one being the main tree planning
cut-in behavior, and the right one being a sub-tree referred
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to from the main one and performing lane maintenance.
The main behavior tree would be assigned to an SDV,
e.g., v2 in Fig. 1. In each maneuver planning cycle of v2,
the main tree is “ticked” (pi .4:tick in Fig. 2), i.e., executed,
with the local traffic state as context. The execution starts
with the root of the main behavior tree and traverses the
nodes according to the operator semantics. In our example
(Fig. 4), the execution starts from the fallback operator at
the root and proceeds to its child sequence node and then
to condition (c:trigger), which tests whether the simulation
has been running for 4 s. If the condition is satisfied, the
execution proceeds to the deepest sequence node and then to
the condition (c:gap) checking the acceptance distance gap
of 5 m (+−10%) for a lane change in front of another vehicle
to the right (lane_id= −1). If the gap condition is satisfied,
the maneuver node (m:swerve) executes the lane change with
a target distance gap of 5 m and a relative velocity of −3 m/s
(1s=(5,−3)). If any of the two conditions fails, the reference
node is executed, triggering the execution of the sub-tree
on the right, which implements a simple lane maintenance
behavior.

A maneuver exposes a set of parameters to control it
according to scenario objectives. We use existing maneuver
catalogs [47], [48] and implement a subset to support the
evaluation in Sec. V: keep velocity, follow vehicle, swerve
(used for lane change and swerve-in-lane), merge-in-front,
stop, and reverse. Note that these are elemental maneuvers;
composite maneuvers are implemented as behavior trees over
the elemental maneuvers. For instance, lane maintenance
composes velocity keeping, vehicle following, and stopping
(for more complex examples see Queiroz [49]).

A maneuver node (e.g., m:swerve in Fig. 4) is repre-
sented by a maneuver configuration (mconfig in Fig. 2),
consisting of the maneuver type (e.g., swerve) and a set of
maneuver-specific parameter values, such as the target gap
distance and velocity delta for swerve. The behavior tree exe-
cution (‘tick’) is expected to return a maneuver configuration,
which is passed to maneuver trajectory planning. A given
maneuver ends when a condition for a new maneuver is
triggered in btree.

C. Maneuver Trajectory Planning

The maneuver trajectory is planned by pi .5:plan_mtraj
in Fig. 2 using the maneuver configuration (mconfig) and local
traffic (ff_local_TS) as inputs. A trajectory is represented by
longitudinal S(t) and lateral D(t) position in Frénet frame as
functions of time and the trajectory duration T (2). Velocity
and acceleration are the first and second derivatives, respec-
tively, yielding the longitudinal and lateral state (3):

Trajectory = [S, D, T ] (2)

VehicleStateFrénet(t) = [S(t − t0), Ṡ(t − t0), S̈(t − t0),

D(t − t0), Ḋ(t − t0), D̈(t − t0)]

for 0 ≤ t − t0 ≤ T (3)

The maneuver trajectory planning has three steps: (i) sam-
pling the target states for the maneuver, (ii) generating
candidate trajectories, and (iii) selecting an optimal trajectory.
Each of these steps is controlled by a set of parameters

Fig. 5. Trajectory planning by the SDV during a cut-in maneuver.

accessible through the maneuver configuration and allowing
testers to realize a particular driving style or misbehavior.
The generated trajectories are kept short (2 to 5 s), but
some maneuvers, e.g., vehicle following, are performed over
extended periods of time and thus consist of a sequence of
trajectories. A behavior tree decides when to start, finish,
or abort a maneuver.

Figure 5 shows an example of trajectory planning for a
cut-in maneuver to the right lane. The grey lines are the
candidate trajectories eliminated by the optimization step due
to feasibility constraints or higher cost. The blue line is the best
cut-in trajectory based on motion constraints and the scenario
goals specified in mconfig, such as the target gap to ego. The
green line is the ego trajectory. The remainder of this section
describes each of the three planning steps in more detail.

1) Maneuver Target Sampling (pi .5.1:sample_targets):
Each maneuver has its own configurable criteria to define its
target state and a time to reach it (T ). Target sampling requires
evaluating the road structure, traffic, and other objects. For
example, in the NHTSA pre-crash scenario ‘following vehicle
making maneuver’ scenario, a leading vehicle decelerates to
turn right that may end up in a crash with an inattentive
following vehicle.

In such scenario, the leading vehicle’s target for velocity
keeping is to comfortably accelerate to and maintain a speci-
fied target velocity, e.g., 16 m/s. The following vehicle’s target
for vehicle following is to reach and keep a certain target time
gap, e.g., 10 s. While defining the maneuver configuration,
parameters can be set as a single value or a value range,
e.g., a vehicle target speed of exactly 14 m/s, or within 20 %
from 14 m/s. The target sampling step samples multiple values
for each range parameter independently and creates a target
state set as a Cartesian product over the parameter value sets.
The sampling method of choice and the number of samples per
parameter are configurable through mconfig. The target state
set corresponds to the end points of the trajectories in Fig. 5.

2) Trajectory Generation (pi .5.2:gen_traj): Given a target
state set, trajectory generation computes a smooth motion
profile between the current vehicle state and each target state in
the Frénet frame (Fig. 5). We use an approach that plans each
trajectory as a pair of quintic polynomials, in longitudinal and
lateral direction, respectively, which minimizes jerk to reflect
smooth and comfortable driving [45]. A quintic polynomial is
a jerk-minimal connection between two points P0 and PT ,
with p(t) as location and T as the motion duration [50].
More precisely, such a quintic polynomial minimizes the total
accumulated jerk over the one-dimensional trajectory:

Jp,T :=

∫ t=T

t=0

...
p 2(t)dt (4)
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Fig. 6. Checking for collisions with static objects and dynamic obstacles.

This step generates a trajectory by computing the coef-
ficients of two quintic polynomials, S(t) for the lon-
gitudinal dimension as p(t), and D(t) for the lateral
direction as p(t), to fit the boundary conditions: the ini-
tial state VehicleStateFrénet(t0) and each of the target states
VehicleStateFrénet(t0 + T ) from the target-sampling step. This
results in a candidate set that respect the maneuver target
constraints.

3) Optimal Trajectory Selection (pi .5.3:optimize): This
step selects a trajectory that is feasible and optimal with
respect to a set of maneuver feasibility constraints and cost
functions, which are configured in the maneuver configuration
to suit the needs of the test scenario. Feasibility constraints
reject trajectories with any collision, direction inversion, lane
departure, and exceedance of maximum lateral/longitudinal
jerk and acceleration. These are checked by sampling points
over the planned and predicted trajectories (e.g., ego), as illus-
trated Fig. 6. Note that the optimization step predicts the
motion of other vehicles by assuming constant longitudinal
velocity in Frénet frame. Furthermore, the constraints can be
configured to fit the scenario objectives. For example, the
behavior tree of a v2 (Fig. 1) may issue a swerve maneu-
ver with a configuration that disables its collision check to
simulate a reckless cut-in.

The remaining candidate set is ranked using a weighted sum
of configurable cost functions:

• Time cost penalizes trajectories longer or shorter than the
target time T .

• Efficiency cost penalizes low average velocity.
• Lane-offset cost penalizes distance from lane center dur-

ing the entire trajectory.
• Jerk cost penalizes high longitudinal and lateral jerk over

the entire trajectory (JS,T and JD,T ).
• Acceleration cost penalizes high longitudinal and lateral

acceleration over the entire trajectory.
• Proximity cost penalizes proximity to obstacles (vehicles,

pedestrians, or other objects).
The best trajectory is the lowest-cost feasible one. Weights
can be adjusted per behavior tree node according to scenario
goals. For example, if a given scenario requires the vehicle
to drive too close to ego, the proximity cost weight for ego
should be lowered. The resulting trajectory respects realistic
vehicle motion, balances conflicting qualities such as progress
and comfort, while implementing the scenario goals.

a) Traffic simulation execution: Traffic plans are exe-
cuted in Traffic Simulation, a process that sets the traffic state

of each SDV in TS according to its planned trajectory. It runs
at a fixed frequency that is typically an order of magnitude
higher than that of an SDVPlanner. The new trajectories
produced by the SDVPlanner processes arrive asynchronously
in the traffic plan TP (e.g., pi .6:write). Traffic Simulation
retrieves the state of each SDV for the current simulation
time from TP, transforms it to the global Cartesian frame of
the simulation (TSim.1:ro_cf), and updates the state of the
corresponding SDV in TS (TSim.2:update). Note that updates
to TP (pi .6:write) and TS (TSim.2:update) are atomic.

IV. MODEL IMPLEMENTATION

A reference implementation for the SDV model and tools
for running scenarios in simulation are available as part
of the open-source project GeoScenario Server. The server
parses scenario definitions expressed using Lanelet2 map [51]
and the GeoScenario language [5] extended with the SDV
behavior-tree definition format and creates a traffic simulation
with the SDV model instances running concurrently. The
server is implemented in Python and operates as a co-simulator
to be interfaced with the simulation of the ego vehicle, its
sensors, and the ADS under test. The implementation also
provides a sample integration with an existing simulator,
WISE Sim, and an ADS software stack, WISE ADS. The
GSClient component provides a shared memory interface
between the GeoScenario Server and WISE Sim, which runs
within the game engine Unreal and provides LiDAR and
camera simulation. The high-fidelity dynamics model of the
ego vehicle, a Lincoln MKZ, runs as a Robot Operating
System (ROS) [52] module along with the WISE ADS. The
GeoScenario Server can be integrated into any other simulation
environment, simply by customizing GSClient for the new
environment.

V. EVALUATION

We evaluate the SDV model in terms of design effec-
tiveness, realistic vehicle motion, practical applicability for
scenario-based ADS testing, and scalability. The following
research questions guide our evaluation:

• RQ1: Can realistic and interactive scenarios for ADS
testing be effectively modeled and executed via SDV
models?

• RQ2: Can SDV models generate realistic vehicle motion?
• RQ3: Can the use of SDV models improve the effective-

ness of scenario-based testing of a real ADS?
• RQ4: How does the model performance scale with traffic

density?

A. Effective Scenario Development (RQ1)

We evaluate the effectiveness of scenario development using
the SDV model by analyzing how the model improves GeoSce-
nario as the baseline DSL to design and execute test scenarios
from a catalog using three metrics:
(i) Expressiveness: Given a set of scenarios, we classify them

as follows: we assign success (S) when all behaviors are
successfully expressed with no limitations, partial (P)
when the behaviors for at least one variation of the
scenario can be expressed, or failure (F) otherwise.
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(ii) Execution accuracy: After running a simulation, we clas-
sify the degree to which scenarios are correctly executed
according to NHTSA description: success (S) when all
vehicles behave as expected and the scenario objective is
achieved; partial (P) when at least one variation of the
scenario succeeds; and failure (F) otherwise.

(iii) Reuse: We quantify reuse in a scenario based on the
internal reuse level [53]. Given a scenario containing a
set of behavior trees (higher-level items), the metric is
defined as M/L , where M is the number of nodes (lower-
level items) that are used more than once (i.e., used
also in behavior trees of other scenarios) and L is the
total number of nodes in the set of behavior trees. This
metric assumes values between 0 and 1 and represents the
percentage of internal reuse. We also compute the internal
reuse level accounting for only the nodes that are actually
executed in a successful simulation.

Since the SDV model extends the capabilities of GeoSce-
nario, we use the latter as the baseline [5]. We focus on
safety-critical scenarios and, specifically, we use the Pre-Crash
Scenario Typology from NHTSA [2]. These interactive and
realistic scenarios can challenge the ADS capabilities in crash
avoidance and they are commonly used as a reference for ADS
validation in other projects [27], [54]. We filter the original set
for scenarios with vehicle-to-vehicle interactions, resulting in
18 scenarios (Table I).

We design each scenario using a combination of the original
GeoScenario and multiple instances of SDV models with their
respective behavior trees and maneuver configurations. The
original NHTSA set is based on reported events between
human-operated vehicles, but we assume that one of the
vehicles is ego, operated by the ADS (similar to how Waymo
adapts NHTSA scenarios as tests [54]). Ego’s goal is to drive
through the scenario (from start to goal point) and avoid
a collision. The goal of an SDV is to interact with ego
using target parameters defined by the tester, e.g., achieving
a certain time gap before braking. The overall scenario goal
is to replicate the pre-crash events as described by NHTSA,
leading to a crash or a near-crash. If execution differs by either
a safe outcome (vehicles never interact or interact differently
than intended) or another type of crash, the scenario execution
fails. After modeling the scenarios, we simulate them in the
reference implementation (Sec. IV).

As part of the comparison of expressiveness with the base-
line, we classify the type of SDV behavior required in each
scenario as static or dynamic with respect to three elements:
path shapes, speed profiles, and behavior triggers. Behavior
triggers are conditions triggering the required changes in paths
and speed profiles during the scenario (Table I). Scenarios
that involve static behavior for all three elements, i.e., fixed
paths and speed profiles for each SDV and their starting
triggers, can be easily designed with predefined trajectories
from start to finish and do not benefit significantly from a
dynamic model (stat,stat,stat in Table I). Scenarios that require
dynamic behaviors, but the behaviors can be expressed as sets
of static paths and velocity profiles with dynamic triggers
to select among them (stat,stat,dyn in Table I), can still be
modeled using predefined trajectories with reasonable effort.

TABLE I
SCENARIOS AND PERFORMANCE

Finally, scenarios that require dynamic path or velocity profile
or both (dyn,stat,*; stat,dyn,*; and dyn,dyn,* in Table I) are
impractical to be modeled using predefined trajectories, but
are enabled by the proposed SDV model. For example, the
cut-in scenario has a continuous space of paths and speed
profiles, and a dynamic trajectory needs to be planned based
on the ego behavior, which may vary from execution to
execution. We note that using the NHTSA descriptions of the
scenarios as a source, many scenario variants are possible.
Our classification is based on the minimal behavior required
to reproduce the critical event occurring immediately prior to a
crash as described by NHTSA; however, added elements, such
as additional vehicles, might change the static classification to
a dynamic one, but not the other way.

Results: Due to limited space, we focus on the main findings
here. The full list of scenarios is in the online repository.2

Expressiveness: All 18 scenarios except for one variant
of #17 are successfully expressed using the SDV model.
We identify 14 scenarios (78%) that depend on dynamic path
or velocity profile, or both, and thus are impractical for the
baseline. For instance, a vehicle leaving a parking position
in scenario #17 must start this maneuver only when ego is
approaching and adjust its trajectory, in one of the variants,

2https://github.com/rodrigoqueiroz/geoscenarioserver
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to merge ahead of ego. While the vehicle must challenge
the ADS, an unavoidable lateral crash into ego would not
be useful as a test scenario. To achieve the scenario goal,
the vehicle must be able to generate a trajectory relative
to ego’s motion at run time. The same requirement applies
to all lane-change scenarios (#16-#19). For crossing-path
scenarios #30 and #31, the velocity profile must be dynam-
ically planned. The SDV models enable us to successfully
express these dynamic behaviors, which are infeasible with
the baseline, resulting in a higher expressiveness. One variant
of Scenario #17 “Parked Vehicle SD” requires the parked
vehicle to join traffic by making a U-turn, and this maneuver
is currently not supported by the implementation of trajectory
generation.

A total of four scenarios (22%) require only static trajecto-
ries (stat,stat,* in Table I) and thus can be designed with the
baseline. For instance, in the rear-end scenario #25 both path
shape and speed profile can be generated offline and expressed
as predefined trajectories with only a trigger to activate the
deceleration as ego approaches. In such examples, the SDV
model does not increase expressiveness. However, it adds
two advantages: (i) conciseness, by defining the scenario at
a higher level of abstraction using target parameters instead
of detailed trajectories, and (ii) flexibility, by allowing the
scenario to be replicated in different road geometries without
changing the behavior definition.

Execution: In 17 scenarios, vehicles perform as expected,
and the scenario ends with a crash or near-crash as described in
the NHTSA report. The performance deviates from the design
in the scenario #16 “Vehicle(s) Turning - Same Direction.” The
assigned behavior requires that vehicles perform a maneuver
that violates the legal road-network connectivity. Since the
current implementation relies on the Lanelet map to constrain
the driving space, the map requires an adaptation to execute
the scenario correctly.

Reuse: The composable nature of behavior trees allows us
to reuse most of them, i.e., use each tree in two or more
scenarios, since there is significant commonality in the driving
task for the different scenarios. In most scenarios, vehicles start
by performing normal lane maintenance until an unexpected
event occurs, such as a risky behavior of another vehicle. The
differences among scenarios emerge in such events and are
usually modeled at the highest levels of the main behavior tree
for the given scenario. We call them the “scenario-trees.” The
remaining tasks are reusable and performed using “sub-trees”
(e.g., performing a lane-change). This reuse pattern is not
part of the original behavior-tree concept, but it has emerged
during this experiment when trying to maximize reuse. In some
instances, a simple overriding of parameters for conditions
or maneuvers during the sub-tree composition is sufficient to
adapt the behavior from one scenario to another and achieve
the scenario objective with 100% reuse (see Internal Reuse
Level in Table I). Overall, the average internal reuse level
(weighted by the size of behavior trees in each scenario)
is 0.93 for all nodes, and 0.81 for executed nodes.

The experience modeling and running NHTSA scenarios
reveals how effective the SDV model can be in ADS scenario
development. The model enables expressing highly dynamic

Fig. 7. A snapshot of the signalized intersection used for experiments and
its corresponding simulation on the right.

behaviors, fosters reuse, and can successfully execute most
scenarios in simulation. Vehicle interactions involving lane
changing, merging, and crossing paths are severely limited or
impractical using the baseline of predefined trajectories. Thus,
such interactive scenarios benefit most from the SDV model.
The limitations we identify are due to missing underlying
maneuvers (such as a U-turn) or the map constraints that
prevent certain vehicle movements. We will address them in
future work.

B. Vehicle Motion (RQ2)

As the primary goal is to simulate human-operated vehicles,
a good model must reflect the human-driving behavior and
how vehicles move in naturalistic traffic conditions. To eval-
uate the motion realism, we use SDV models to replicate
scenarios collected from urban traffic and compare their behav-
ior with real vehicles. It is unreasonable to expect SDV models
to drive exactly like the empirical vehicle, since not even
humans drive equally. However, our model is designed to be
highly configurable and adapt to different driving styles. With
the proper configuration in the calibration process, we expect
that SDV models can approximate the behavior of the empir-
ical vehicles to a high degree given the same environment
conditions. We use data from a busy signalized intersection
during mid-day traffic in Waterloo, Canada, which is part of
the Waterloo Multi-Agent Traffic Dataset [55]. The “birds-
eye” video was collected using a drone and processed to label
and track pedestrians and vehicles (Fig. 7).

This experiment follows four steps:
1) Data preparation: We classify the vehicle trajectories

in the dataset into five scenario types based on the
main maneuver they represent: (i) vehicle crossing
intersection unconstrained (free), (ii) vehicle stopping
(red light), (iii) vehicle resuming driving (green light),
(iv) vehicle following a lead through the intersection
(follow), and (v) vehicle partly following a lead when
the lead merges or leaves mid-scenario (free/follow).
In cases where a vehicle stops at a signal light, we split
the trajectory into two scenarios, namely (ii) and (iii),
in order to eliminate the waiting state. Each such
classified vehicle trajectory represents an individual
experimental trial.

2) Test generation: For each classified vehicle trajectory,
we identify the traffic conditions that may affect how the
vehicle is driving, e.g., signal light states and all other
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vehicles and pedestrians that may affect it, to be repro-
duced in simulation. Each classified vehicle trajectory is
used as a reference vehicle for a single test. We generate
a new GeoScenario test replacing the reference vehicle
with an SDV model instance with a standard-driver
behavior tree and using the same start state (velocity
and position in the intersection), and replicate the traffic
conditions to ensure the driving task is influenced by the
same factors. The standard-driver behavior tree is capa-
ble of performing each of the five maneuvers. We also
assign a route goal to the model based on the last known
position of the empirical reference vehicle to ensure the
simulated vehicle will navigate the intersection towards
the same exit lane. All other relevant empirical vehicles
and pedestrians are included in the test as agents with
predefined trajectories, and the signal light phases are
also replicated. We generate 100 test scenarios and
manually review the correctness of the identified traffic
conditions.

3) Calibration: While each simulated reference uses
the same standard-driver behavior tree, it needs a
behavior-tree configuration to replicate the driving style
of its empirical counterpart. We use a set of rules to
automatically analyze each empirical reference trajec-
tory and generate a configuration for it by extracting
a set of high-level driving-style parameter values and
value ranges, including maximum and average veloci-
ties, lateral displacement on the lane, stopping distance
to target, reaction times, and time gap to other vehicles.
We adjust the SDV parameter ranges to target similar
values.

4) Simulation: We run two simulations per scenario using
the SDV model, one with a default configuration before
the calibration and another one after the calibration, and
export the resulting trajectories as a discrete set of the
vehicle states in the simulation frequency at 30 Hz. The
default configuration uses nominal naturalistic driving
parameters, such as zero offset from the lane centerline
and a time gap range of 1.8..2.2 s [56].

The SDV performance is assessed using a measure of
distance between the simulated trajectory T1 and the empirical
reference trajectory T2, which takes into account both their
spatial and temporal characteristics. The shorter the distance,
the more similar the motion behavior of the simulated and
the empirical vehicle. We use the spatio-temporal Euclidean
distance (STED) [57], which represents the average Euclidean
distance between positions of the respective vehicles, T1(t)
and T2(t), along their respective trajectories T1 and T2, over
the interval l in which both trajectories exist:

dSTED(T1, T2) =

∫
l d(T1(t), T2(t)) dt

|l|
(5)

Results: Figure 8 shows the distribution of STED before
and after calibration per scenario type. The majority of sim-
ulated trajectories are already fairly similar to their empirical
reference even before the calibration with an average STED
of 4.27 m. A review of the simulated trajectories shows a
similar decision making patterns, such as reacting to traffic

Fig. 8. Performance (Eq. 5) for all scenarios and per type, before (b) and
after (a) calibration, measured using STED in meters. Orange lines represent
medians, and green triangles represent averages.

Fig. 9. Paths and speed profiles for three sample scenarios. Empirical vehicles
in red; SDV models in dashed blue (before calibration) and solid blue (after
calibration). Eq. 5 defines performance using the spatio-temporal Euclidean
distance (STED).

lights and vehicles ahead, to the empirical ones. However,
the main differences are observed in the speed profiles, lat-
eral placement on the lane, time gaps, and various delays
and reaction times, all indicative of different driving styles.
The calibration brings the simulated trajectories significantly
closer to their empirical counterparts: average STED for all
100 scenarios reduces from 4.27 m to 1.24 m. At an individual
level, calibration improves the performance in 82 scenarios.
Although the performance is worse for 18 scenarios, it is only
slightly worse for 16 of them, with less than 1 m deterioration.
Only two scenarios deteriorated more significantly, by 1.4 m
and 1.9 m. The latter deviation is due to an erratic driving
style of the empirical reference vehicle, which accelerates hard
when resuming driving on green and then decelerates for no
apparent reason. Such erratic behavior could be replicated by
a dedicated maneuver.

Figure 9 shows the paths and speed profiles of sample
individual scenarios. Plot (a) shows the reference vehicle 5
reacting to a red light. The path before calibration shows
the simulated vehicle stop at the stop line, but the empirical
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vehicle stops about 2.5 m before the line. After calibration,
both the simulated and empirical paths match up almost
perfectly, with an STED of 17 cm, and a maximum distance
of 31 cm. The calibrated speed profile also closely matches the
empirical one. Plot (b) shows vehicle 97 crossing the intersec-
tion southwards, while already following a lead vehicle. The
black dashed line shows the lead vehicle’s speed profile, which
is fairly constant throughout the scenario. The initially slower
reference vehicle accelerates to match the lead’s speed. The
calibration improves the default configuration to match the
more aggressive time-gap of the empirical vehicle, resulting
in closely matched speed profile and reducing the STED from
2.37 m to 17 cm. In rare cases, the calibration does not improve
performance, as shown in plot (c). A vehicle approaches the
intersection with a red light and an already stopped vehicle
ahead. The reference vehicle can resume driving on the green
light, but needs to keep distance from the lead vehicle. The
simulated vehicle resumes with a smaller delay compared to
the empirical one.

In summary, SDV models can closely reproduce the
behavior of human-operated vehicles under the same traffic
conditions. The model calibration can address varying driving
styles and significantly increase the similarities in the trajec-
tories. In some scenarios, such as in Fig. 9 (a), the simulated
trajectory after calibration is in essence indistinguishable from
the empirical one, with maximum difference of 31 cm. In some
scenarios the human behaves unexpectedly, however, and the
current automatic calibration process cannot replicate such
behaviors, but they could be modeled in the behavior trees
as additional maneuvers.

C. Application (RQ3)

We run an in-depth case study to evaluate how the
model performs in a real ADS testing environment and
answer RQ3. We choose the cut-in lane change NHTSA
scenario (#18 in Table I) to test an actual ADS software as
the subject system. In this scenario, a vehicle changes lanes at
a non-junction and merges closely in front of the ego traveling
in a adjacent lane in the same direction. Cut-in maneuvers from
other drivers pose challenges to the ADS and if not handled
properly can lead to crashes. Thus, they represent an important
test case.

The test aims to evaluate the impact of key vehicle inter-
action parameters, such as relative velocity and gap, on the
likelihood and crash severity. The non-deterministic behavior
of the subject ADS makes simulating this type of scenario
challenging, however. Reaching the desired test parameter
values while performing realistic vehicle interactions requires
a reactive model, capable of adapting and re-planning trajec-
tories as the scenario unfolds.

The case study has an explorative nature, with the objective
to generate practical insights of applying the SDV model to
test a real ADS, including identifying potential limitations.

1) System Under Test: We test WISE ADS, developed at the
University of Waterloo.3 The ADS software consists of a set

3https://uwaterloo.ca/waterloo-intelligent-systems-engineering-
lab/projects/wise-automated-driving-system

of ROS modules implementing object-detection and tracking,
occupancy and high-definition mapping, localization and state
estimation, maneuver and trajectory planning, and control.
The software can operate a Lincoln MKZ Hybrid, equipped
with a drive-by-wire interface and a suite of LiDAR, camera,
GPS, and inertial sensors, in automated mode at SAE level 3
on public roads in Waterloo. We test the ADS software in
simulation, using WISE Sim with the GeoScenario Server
implementing the SDV model (see Sec. IV).

2) Test Scenario: The cut-in behavior is expressed as a
behavior tree similar to Fig. 4 and assigned to an SDV model
instance. According to this behavior tree, the vehicle must
reach a certain acceptance (rear) gap before performing the
cut-in maneuver and then achieve a certain target (rear) gap
to ego. The behavior tree calls the standard-driver behavior
tree to maintain its current lane, parameterized with a target
speed of 14 m/s (+ − 10%), which is slightly higher than the
road speed limit. The simulation plans candidate trajectories by
sampling 6 target velocities from this target range (uniformly,
by default). After a delay of 4 s to allow the vehicle to pick up
pace, it starts checking for the acceptance distance gap of 5 m
(+−10%) for a lane change to the right (lane= −1), on which
ego drives at the road speed limit. Once the acceptance gap is
satisfied, the lane change is triggered, with a target distance
gap of 5 m and a relative velocity of −3 m/s (1s=(5,−3)). The
experiment repeats the scenario with different combinations
of parameters to evaluate how ego handles a variety of cut-in
trajectories and find configurations that are more likely cause
a crash.

Results: As expected, more aggressive cut-ins (shorter
acceptance distance gap, shorter target distance gap, and lower
target velocity) are more likely to cause collisions, but the
response of the ADS to different parameter combinations of
the cut-in maneuver is non-obvious (see Table II). Scenarios #7
and #8 are parameterized with the same short acceptance gap
1da=2 m and the same target relative velocity 1vt= −5 m/s,
but #8 has a smaller target distance gap, 1dt= −5 m, com-
pared to 1dt=−2 m for #7. As a result, #8 ends in a collision.
Note that 1dt and 1vt are planned relative to the predicted
ego location at the end of the cut-in maneuver, assuming ego
continues at a constant velocity. Thus, although a negative 1dt
would guarantee a collision if ego maintained its velocity, ego
is likely to brake and thus a negative 1dt does not necessarily
result in a collision. Scenarios #9-11 use a larger acceptance
gap, with 1da=5 m. As a result, although #9 has the same
target parameters as #8, a collision is avoided, since the larger
acceptance gap gives ego more time to react. Increasing the
target deltas in #11 results in a collision, however. Figure 10
shows scenario #8 with the SDV’s trajectory generation (a-b),
its ground-truth perspective (c), and the ADS’s internal per-
ception of the scenario (d). The ADS detects the SDV (yellow
bounding box), and the ADS’s tracker predicts the SDV’s
future trajectory (bold green line) as in conflict with the ego’s
lane. Although ego initiates an emergency stop, the rear-end
collision is not avoided.

This experiment demonstrates how the SDV model can be
used with a real ADS to search for scenarios and param-
eters where the system may not be able avoid a collision.
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Fig. 10. One of the simulation scenarios that results in a crash; in (a) and (b),
the SDV trajectory generation in Frénet Frame targeting ego at two dif-
ferent moments (optimal trajectory in blue and infeasible ones in red); in
(c) the SDV simulation view in Cartesian coordinates; and in (d) the ADS
perception (circles represent the lidar simulation, with the ego located at
their center).

TABLE II
SIMULATION PARAMETERS FOR SDV BEHAVIOR AND RESULTS

We found that using another SDV instance as placeholder for
ego enables a rapid iterative development of test scenarios.
The iterations are needed to ensure the correct behavior of the
cutting-in vehicle and select reasonable ranges of test parame-
ters, before running the more time-consuming simulation with
ego controlled by the ADS. Finally, the experiment results
also highlight the importance of being able to plan the SDV
maneuver trajectories dynamically and influence their shape
via parameters.

D. Scalability (RQ4)

We evaluate the SDV model scalability to see if it can
support scenarios with heavy traffic. To support such scenarios,
the model must be able to scale traffic density without any
significant degradation of the simulation performance or the
quality of the planned trajectories.

1) Reference Implementation and Performance Require-
ments: The experiment uses the reference implementation
(Sec. IV). To provide a sufficient simulation update rate, the
SDVPlanner instances target a planning rate of 3 Hz, and the
TrafficSim process targets updating the position of all vehicles
at 30 Hz. Planning is a highly time-critical task, which needs
to be executed within its target period of 333 ms (3 Hz). If a
vehicle misses the target time to generate its plan, it likely
affects the quality of its trajectory and the resulting motion.

TABLE III
PERFORMANCE WITH MULTIPLE SCENARIO CONFIGURATIONS

Furthermore, a long overrun can affect the SDV model’s ability
to predict the traffic state, resulting in sub-optimal trajectories
and even unintended collisions. The state transformation and
update is performed by TrafficSim and must be completed
for all vehicles within 33 ms (30 Hz). A small exceedance,
if consistent, may be acceptable, as it would slightly reduce
the update frequency below 30 Hz without compromising
the actual vehicle motion. The experiment is executed on
an Intel Core i7-6800K (3.40 GHz), with 32 GB RAM and
Ubuntu 18.04.5.

2) Scenarios: We use two long-running scenarios, each
with a two-minute duration, and vary the number of SDVs,
up to 20. In each scenario, the SDVs travel in one lane and
form a virtual platoon, simulating heavy traffic. In scenario A,
the SDVs travel without any disturbance, and in scenario B,
they need to steer to avoid a static obstacle in their lane. When
running scenario B, the object collision checking for obstacle
avoidance is activated. The purpose of scenario B is to show
the impact of object collision checking on scalability, since it
is computationally expensive. Each vehicle travelling behind
another one is expected to observe a safe following distance.

3) Metrics: We evaluate the adherence to the target rates
using the following metrics: Target Rate Compliance (TRC),
defined as the % of simulation (execution) ticks from all
vehicles that adhere to the target tick time of 33 ms (30 Hz);
the maximum tick time; the Target Planning Rate Compli-
ance (TPRC), defined as the % of planning cycles from all
vehicles that adhere to the target time of 333 ms (3 Hz); and
the maximum planning time.

Results: Both scenarios with up to 20 vehicles execute suc-
cessfully, without any collisions or lane boundary violations.
The planning adheres to the target rate with almost 100%,
with 99.8% being the worst case (Table III). However, exe-
cution deteriorates significantly between 10 and 15 vehicles,
especially when the collision checking is active, plunging from
98.49% to 78.58%. Such a deterioration of the target rate to
update the state of all vehicles may introduce inconsistencies
and confuse the ADS under test, such as inducing significant
errors in its object tracking system. However, reducing the
update rate from 30 Hz to 20 Hz results in near perfect
adherence for up to 20 vehicles when no collision checking is
used and up to 15 vehicles with the collision checking active.
Thus, scenarios with up to 10 SDV instances are easily handled
by the reference implementation, and scaling to 20 instances
requires reducing the update rate. For scenarios requiring more
vehicles, the traffic can mix SDV instances for interactions
with ego and vehicles based on predefined trajectories, with
negligible computing cost.
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VI. CONCLUSION

We presented the SDV model to express and execute
scenarios for ADS scenario-based testing in simulation. The
model encapsulates driver and vehicle as a single entity
with an architecture that provides a user-oriented language
to coordinate the vehicle behavior and motion planning that
optimizes for realism and achieving the scenario test objective.
In particular, behavior trees provide a high-level description of
discrete decisions, with a high-level of abstraction and param-
eterization to support controllability and reuse. Furthermore,
dynamic trajectory planning allows for flexible adaptation of
the SDV trajectories to different road geometries and achiev-
ing the test objective despite varying and unpredictable ego
behaviors.

The evaluation shows that our proposed approach sup-
ports effective test scenario development and execution using
the NHTSA vehicle-to-vehicle pre-crash scenarios, with high
internal reuse of over 80 %. The analysis also shows that
the majority of scenarios require dynamic trajectory planning,
benefiting from the SDV model compared to the baseline.
The evaluation demonstrates the ability of the SDV model
to faithfully reproduce real-world vehicle behavior, includ-
ing different driving styles by adjusting parameters, with
an average spatio-temporal trajectory distance of 1.24 m.
It also allows custom behaviors and misbehaviors by adding
dedicated conditions and maneuvers. The reference implemen-
tation demonstrates that the SDV model scales to execute
scenarios with 10-20 highly interactive vehicles, and additional
optimizations, such as reducing the number of sampled trajec-
tories for vehicles farther away from ego, allow for further
scaling. Finally, the application of the SDV model to test
WISE ADS in the cut-in scenario confirms the usefulness
of the model and offers practical insights. Among others, the
ability to control the shape of the cut-in trajectories uncovers
the varied response of the ADS to different trajectories,
showing that not only the target gap and velocity, but also
the acceptance gap impact the likelihood of a collision. Fur-
thermore, using an SDV model instance in place of ego helps
accelerate the development of the test scenario and parameter
selection to tune the trajectories of the agent that challenges
ego.

In future work, we plan several model extensions and new
capabilities that exploit the model. First, we plan to expand
the model with new maneuvers and configuration options
based on additional scenarios, harvested from a wider range
of naturalistic data, such as the additional locations in the
Waterloo dataset [55] and the multi-country INTERACTION
dataset [58]. We plan to improve the auto-calibration pro-
cess and further automate creation of behavior trees and
their parameterization to approximate the naturalistic traffic.
We will also expand the behavior trees and maneuvers for
interaction with pedestrians [44]. Finally, we plan to exploit
the model in generating new scenarios by injecting road-user
misbehaviors into behavior trees, such as simulating dis-
traction [59] and ignoring occlusions [60]. The SDV model
implementation and toolset to design and run scenarios is
publicly available and can be integrated with any simulation
environment via co-simulation.
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